garden/inner-product.md
2025-09-15 09:48:28 -06:00

778 B

Inner Product

  • operates on two vectors and produces a scalar
  • notation `\braket{x|y}`
    • `\bra{x}` is a bra
    • `\ket{y}` is a ket
  • matrix-multiplication, associates with outer-product
  • follows laws
    1. `\braket{0|y} = 0` and `\braket{x|0} = 0`
    2. `\braket{x + y|z} = \braket{x|z} + \braket{y|z}` and `\braket{x|y + z} = \braket{x|y} + \braket{x|z}`
    3. `\braket{cx|y} = \overline{c}\braket{x|y}` and `\braket{x|cy} = \braket{x|y}c`
    4. `\braket{x|y} = \overline{\braket{y|x}}`
  • the inner product `\braket{x|y}` is antilinear in `x` and linear in `y`
    • if starting with two kets, take the conjugate transpose of the former: `\bra{x} = \ket{x}^\dagger = \overline{\ket{x}}^\intercal = \overline{\ket{x}^\intercal}`