778 B
778 B
Inner Product
- operates on two vectors and produces a scalar
- notation
`\braket{x|y}`
- matrix-multiplication, associates with outer-product
- follows laws
`\braket{0|y} = 0`
and`\braket{x|0} = 0`
`\braket{x + y|z} = \braket{x|z} + \braket{y|z}`
and`\braket{x|y + z} = \braket{x|y} + \braket{x|z}`
`\braket{cx|y} = \overline{c}\braket{x|y}`
and`\braket{x|cy} = \braket{x|y}c`
`\braket{x|y} = \overline{\braket{y|x}}`
- the inner product
`\braket{x|y}`
is antilinear in`x`
and linear in`y`
- if starting with two kets, take the conjugate transpose of the former:
`\bra{x} = \ket{x}^\dagger = \overline{\ket{x}}^\intercal = \overline{\ket{x}^\intercal}`
- if starting with two kets, take the conjugate transpose of the former: