1
1
Fork 0
mirror of https://github.com/pbatard/rufus.git synced 2024-08-14 23:57:05 +00:00
rufus/src/stdfn.c

783 lines
23 KiB
C
Raw Normal View History

/*
* Rufus: The Reliable USB Formatting Utility
* Standard Windows function calls
* Copyright © 2013-2015 Pete Batard <pete@akeo.ie>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#endif
#include <windows.h>
#include <sddl.h>
#include "msapi_utf8.h"
#include "rufus.h"
#include "resource.h"
#include "settings.h"
#include "localization.h"
int nWindowsVersion = WINDOWS_UNDEFINED;
char WindowsVersionStr[128] = "Windows ";
/*
* Hash table functions - modified From glibc 2.3.2:
* [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
* [Knuth] The Art of Computer Programming, part 3 (6.4)
*/
/*
* For the used double hash method the table size has to be a prime. To
* correct the user given table size we need a prime test. This trivial
* algorithm is adequate because the code is called only during init and
* the number is likely to be small
*/
static uint32_t isprime(uint32_t number)
{
// no even number will be passed
uint32_t divider = 3;
while((divider * divider < number) && (number % divider != 0))
divider += 2;
return (number % divider != 0);
}
/*
* Before using the hash table we must allocate memory for it.
* We allocate one element more as the found prime number says.
* This is done for more effective indexing as explained in the
* comment for the hash function.
*/
BOOL htab_create(uint32_t nel, htab_table* htab)
{
if (htab == NULL) {
return FALSE;
}
if (htab->table != NULL) {
uprintf("warning: htab_create() was called with a non empty table");
return FALSE;
}
// Change nel to the first prime number not smaller as nel.
nel |= 1;
while(!isprime(nel))
nel += 2;
htab->size = nel;
htab->filled = 0;
// allocate memory and zero out.
htab->table = (htab_entry*)calloc(htab->size + 1, sizeof(htab_entry));
if (htab->table == NULL) {
uprintf("could not allocate space for hash table\n");
return FALSE;
}
return TRUE;
}
/* After using the hash table it has to be destroyed. */
void htab_destroy(htab_table* htab)
{
size_t i;
if ((htab == NULL) || (htab->table == NULL)) {
return;
}
for (i=0; i<htab->size+1; i++) {
if (htab->table[i].used) {
safe_free(htab->table[i].str);
}
}
htab->filled = 0; htab->size = 0;
safe_free(htab->table);
htab->table = NULL;
}
/*
* This is the search function. It uses double hashing with open addressing.
* We use a trick to speed up the lookup. The table is created with one
* more element available. This enables us to use the index zero special.
* This index will never be used because we store the first hash index in
* the field used where zero means not used. Every other value means used.
* The used field can be used as a first fast comparison for equality of
* the stored and the parameter value. This helps to prevent unnecessary
* expensive calls of strcmp.
*/
uint32_t htab_hash(char* str, htab_table* htab)
{
uint32_t hval, hval2;
uint32_t idx;
uint32_t r = 0;
int c;
char* sz = str;
if ((htab == NULL) || (htab->table == NULL) || (str == NULL)) {
return 0;
}
// Compute main hash value using sdbm's algorithm (empirically
// shown to produce half the collisions as djb2's).
// See http://www.cse.yorku.ca/~oz/hash.html
while ((c = *sz++) != 0)
r = c + (r << 6) + (r << 16) - r;
if (r == 0)
++r;
// compute table hash: simply take the modulus
hval = r % htab->size;
if (hval == 0)
++hval;
// Try the first index
idx = hval;
if (htab->table[idx].used) {
if ( (htab->table[idx].used == hval)
&& (safe_strcmp(str, htab->table[idx].str) == 0) ) {
// existing hash
return idx;
}
// uprintf("hash collision ('%s' vs '%s')\n", str, htab->table[idx].str);
// Second hash function, as suggested in [Knuth]
hval2 = 1 + hval % (htab->size - 2);
do {
// Because size is prime this guarantees to step through all available indexes
if (idx <= hval2) {
idx = ((uint32_t)htab->size) + idx - hval2;
} else {
idx -= hval2;
}
// If we visited all entries leave the loop unsuccessfully
if (idx == hval) {
break;
}
// If entry is found use it.
if ( (htab->table[idx].used == hval)
&& (safe_strcmp(str, htab->table[idx].str) == 0) ) {
return idx;
}
}
while (htab->table[idx].used);
}
// Not found => New entry
// If the table is full return an error
if (htab->filled >= htab->size) {
uprintf("hash table is full (%d entries)", htab->size);
return 0;
}
safe_free(htab->table[idx].str);
htab->table[idx].used = hval;
htab->table[idx].str = (char*) malloc(safe_strlen(str)+1);
if (htab->table[idx].str == NULL) {
uprintf("could not duplicate string for hash table\n");
return 0;
}
memcpy(htab->table[idx].str, str, safe_strlen(str)+1);
++htab->filled;
return idx;
}
BOOL is_x64(void)
{
BOOL ret = FALSE;
PF_TYPE_DECL(WINAPI, BOOL, IsWow64Process, (HANDLE, PBOOL));
// Detect if we're running a 32 or 64 bit system
if (sizeof(uintptr_t) < 8) {
PF_INIT(IsWow64Process, Kernel32);
if (pfIsWow64Process != NULL) {
(*pfIsWow64Process)(GetCurrentProcess(), &ret);
}
} else {
ret = TRUE;
}
return ret;
}
// From smartmontools os_win32.cpp
void GetWindowsVersion(void)
{
OSVERSIONINFOEXA vi, vi2;
const char* w = 0;
const char* w64 = "32 bit";
char* vptr;
size_t vlen;
unsigned major, minor;
ULONGLONG major_equal, minor_equal;
BOOL ws;
nWindowsVersion = WINDOWS_UNDEFINED;
safe_strcpy(WindowsVersionStr, sizeof(WindowsVersionStr), "Windows Undefined");
memset(&vi, 0, sizeof(vi));
vi.dwOSVersionInfoSize = sizeof(vi);
if (!GetVersionExA((OSVERSIONINFOA *)&vi)) {
memset(&vi, 0, sizeof(vi));
vi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOA);
if (!GetVersionExA((OSVERSIONINFOA *)&vi))
return;
}
if (vi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
if (vi.dwMajorVersion > 6 || (vi.dwMajorVersion == 6 && vi.dwMinorVersion >= 2)) {
// Starting with Windows 8.1 Preview, GetVersionEx() does no longer report the actual OS version
// See: http://msdn.microsoft.com/en-us/library/windows/desktop/dn302074.aspx
// And starting with Windows 10 Preview 2, Windows enforces the use of the application/supportedOS
// manifest in order for VerSetConditionMask() to report the ACTUAL OS major and minor...
major_equal = VerSetConditionMask(0, VER_MAJORVERSION, VER_EQUAL);
for (major = vi.dwMajorVersion; major <= 9; major++) {
memset(&vi2, 0, sizeof(vi2));
vi2.dwOSVersionInfoSize = sizeof(vi2); vi2.dwMajorVersion = major;
if (!VerifyVersionInfoA(&vi2, VER_MAJORVERSION, major_equal))
continue;
if (vi.dwMajorVersion < major) {
vi.dwMajorVersion = major; vi.dwMinorVersion = 0;
}
minor_equal = VerSetConditionMask(0, VER_MINORVERSION, VER_EQUAL);
for (minor = vi.dwMinorVersion; minor <= 9; minor++) {
memset(&vi2, 0, sizeof(vi2)); vi2.dwOSVersionInfoSize = sizeof(vi2);
vi2.dwMinorVersion = minor;
if (!VerifyVersionInfoA(&vi2, VER_MINORVERSION, minor_equal))
continue;
vi.dwMinorVersion = minor;
break;
}
break;
}
}
if (vi.dwMajorVersion <= 0xf && vi.dwMinorVersion <= 0xf) {
ws = (vi.wProductType <= VER_NT_WORKSTATION);
nWindowsVersion = vi.dwMajorVersion << 4 | vi.dwMinorVersion;
switch (nWindowsVersion) {
case 0x51: w = "XP";
break;
case 0x52: w = (!GetSystemMetrics(89)?"2003":"2003_R2");
break;
case 0x60: w = (ws?"Vista":"2008");
break;
case 0x61: w = (ws?"7":"2008_R2");
break;
case 0x62: w = (ws?"8":"2012");
break;
case 0x63: w = (ws?"8.1":"2012_R2");
break;
case 0x64: w = (ws?"10 (Preview 1)":"Server 10 (Preview 1)");
break;
// Starting with Windows 10 Preview 2, the major is the same as the public-facing version
case 0xA0: w = (ws?"10":"Server 10");
break;
default:
if (nWindowsVersion < 0x51)
nWindowsVersion = WINDOWS_UNSUPPORTED;
else
w = "11 or later";
break;
}
}
}
if (is_x64())
w64 = "64-bit";
vptr = &WindowsVersionStr[sizeof("Windows ") - 1];
vlen = sizeof(WindowsVersionStr) - sizeof("Windows ") - 1;
if (!w)
safe_sprintf(vptr, vlen, "%s %u.%u %s", (vi.dwPlatformId==VER_PLATFORM_WIN32_NT?"NT":"??"),
(unsigned)vi.dwMajorVersion, (unsigned)vi.dwMinorVersion, w64);
else if (vi.wServicePackMinor)
safe_sprintf(vptr, vlen, "%s SP%u.%u %s", w, vi.wServicePackMajor, vi.wServicePackMinor, w64);
else if (vi.wServicePackMajor)
safe_sprintf(vptr, vlen, "%s SP%u %s", w, vi.wServicePackMajor, w64);
else
safe_sprintf(vptr, vlen, "%s %s", w, w64);
}
/*
* String array manipulation
*/
void StrArrayCreate(StrArray* arr, uint32_t initial_size)
{
if (arr == NULL) return;
arr->Max = initial_size; arr->Index = 0;
arr->String = (char**)calloc(arr->Max, sizeof(char*));
if (arr->String == NULL)
uprintf("Could not allocate string array\n");
}
int32_t StrArrayAdd(StrArray* arr, const char* str)
{
char** old_table;
if ((arr == NULL) || (arr->String == NULL))
return -1;
if (arr->Index == arr->Max) {
arr->Max *= 2;
old_table = arr->String;
arr->String = (char**)realloc(arr->String, arr->Max*sizeof(char*));
if (arr->String == NULL) {
free(old_table);
uprintf("Could not reallocate string array\n");
return -1;
}
}
arr->String[arr->Index] = safe_strdup(str);
if (arr->String[arr->Index] == NULL) {
uprintf("Could not store string in array\n");
return -1;
}
return arr->Index++;
}
void StrArrayClear(StrArray* arr)
{
size_t i;
if ((arr == NULL) || (arr->String == NULL))
return;
for (i=0; i<arr->Index; i++) {
safe_free(arr->String[i]);
}
arr->Index = 0;
}
void StrArrayDestroy(StrArray* arr)
{
StrArrayClear(arr);
if (arr != NULL)
safe_free(arr->String);
}
/*
* Retrieve the SID of the current user. The returned PSID must be freed by the caller using LocalFree()
*/
static PSID GetSID(void) {
TOKEN_USER* tu = NULL;
DWORD len;
HANDLE token;
PSID ret = NULL;
char* psid_string = NULL;
if (!OpenProcessToken(GetCurrentProcess(), TOKEN_QUERY, &token)) {
uprintf("OpenProcessToken failed: %s\n", WindowsErrorString());
return NULL;
}
if (!GetTokenInformation(token, TokenUser, tu, 0, &len)) {
if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) {
uprintf("GetTokenInformation (pre) failed: %s\n", WindowsErrorString());
return NULL;
}
tu = (TOKEN_USER*)calloc(1, len);
}
if (tu == NULL) {
return NULL;
}
if (GetTokenInformation(token, TokenUser, tu, len, &len)) {
/*
* now of course, the interesting thing is that if you return tu->User.Sid
* but free tu, the PSID pointer becomes invalid after a while.
* The workaround? Convert to string then back to PSID
*/
if (!ConvertSidToStringSidA(tu->User.Sid, &psid_string)) {
uprintf("Unable to convert SID to string: %s\n", WindowsErrorString());
ret = NULL;
} else {
if (!ConvertStringSidToSidA(psid_string, &ret)) {
uprintf("Unable to convert string back to SID: %s\n", WindowsErrorString());
ret = NULL;
}
// MUST use LocalFree()
LocalFree(psid_string);
}
} else {
ret = NULL;
uprintf("GetTokenInformation (real) failed: %s\n", WindowsErrorString());
}
free(tu);
return ret;
}
/*
* read or write I/O to a file
* buffer is allocated by the procedure. path is UTF-8
*/
BOOL FileIO(BOOL save, char* path, char** buffer, DWORD* size)
{
SECURITY_ATTRIBUTES s_attr, *ps = NULL;
SECURITY_DESCRIPTOR s_desc;
PSID sid = NULL;
HANDLE handle;
BOOL r;
BOOL ret = FALSE;
// Change the owner from admin to regular user
sid = GetSID();
if ( (sid != NULL)
&& InitializeSecurityDescriptor(&s_desc, SECURITY_DESCRIPTOR_REVISION)
&& SetSecurityDescriptorOwner(&s_desc, sid, FALSE) ) {
s_attr.nLength = sizeof(SECURITY_ATTRIBUTES);
s_attr.bInheritHandle = FALSE;
s_attr.lpSecurityDescriptor = &s_desc;
ps = &s_attr;
} else {
uprintf("Could not set security descriptor: %s\n", WindowsErrorString());
}
if (!save) {
*buffer = NULL;
}
handle = CreateFileU(path, save?GENERIC_WRITE:GENERIC_READ, FILE_SHARE_READ,
ps, save?CREATE_ALWAYS:OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (handle == INVALID_HANDLE_VALUE) {
uprintf("Could not %s file '%s'\n", save?"create":"open", path);
goto out;
}
if (save) {
r = WriteFile(handle, *buffer, *size, size, NULL);
} else {
*size = GetFileSize(handle, NULL);
*buffer = (char*)malloc(*size);
if (*buffer == NULL) {
uprintf("Could not allocate buffer for reading file\n");
goto out;
}
r = ReadFile(handle, *buffer, *size, size, NULL);
}
if (!r) {
uprintf("I/O Error: %s\n", WindowsErrorString());
goto out;
}
PrintInfoDebug(0, save?MSG_216:MSG_215, path);
ret = TRUE;
out:
CloseHandle(handle);
if (!ret) {
// Only leave a buffer allocated if successful
*size = 0;
if (!save) {
safe_free(*buffer);
}
}
return ret;
}
unsigned char* GetResource(HMODULE module, char* name, char* type, const char* desc, DWORD* len, BOOL duplicate)
{
HGLOBAL res_handle;
HRSRC res;
unsigned char* p = NULL;
res = FindResourceA(module, name, type);
if (res == NULL) {
uprintf("Could not locate resource '%s': %s\n", desc, WindowsErrorString());
goto out;
}
res_handle = LoadResource(module, res);
if (res_handle == NULL) {
uprintf("Could not load resource '%s': %s\n", desc, WindowsErrorString());
goto out;
}
*len = SizeofResource(module, res);
if (duplicate) {
p = (unsigned char*)malloc(*len);
if (p == NULL) {
uprintf("Coult not allocate resource '%s'\n", desc);
goto out;
}
memcpy(p, LockResource(res_handle), *len);
} else {
p = (unsigned char*)LockResource(res_handle);
}
out:
return p;
}
DWORD GetResourceSize(HMODULE module, char* name, char* type, const char* desc)
{
DWORD len = 0;
return (GetResource(module, name, type, desc, &len, FALSE) == NULL)?0:len;
}
// Run a console command, with optional redirection of stdout and stderr to our log
DWORD RunCommand(const char* cmd, const char* dir, BOOL log)
{
DWORD ret, dwRead, dwAvail, dwPipeSize = 4096;
STARTUPINFOA si = {0};
PROCESS_INFORMATION pi = {0};
HANDLE hOutputRead = INVALID_HANDLE_VALUE, hOutputWrite = INVALID_HANDLE_VALUE;
HANDLE hDupOutputWrite = INVALID_HANDLE_VALUE;
static char* output;
si.cb = sizeof(si);
if (log) {
// NB: The size of a pipe is a suggestion, NOT an absolute guarantee
// This means that you may get a pipe of 4K even if you requested 1K
if (!CreatePipe(&hOutputRead, &hOutputWrite, NULL, dwPipeSize)) {
ret = GetLastError();
uprintf("Could not set commandline pipe: %s", WindowsErrorString());
goto out;
}
// We need an inheritable pipe endpoint handle
DuplicateHandle(GetCurrentProcess(), hOutputWrite, GetCurrentProcess(), &hDupOutputWrite,
0L, TRUE, DUPLICATE_CLOSE_SOURCE | DUPLICATE_SAME_ACCESS);
si.dwFlags = STARTF_USESHOWWINDOW | STARTF_USESTDHANDLES;
si.wShowWindow = SW_HIDE;
si.hStdOutput = hDupOutputWrite;
si.hStdError = hDupOutputWrite;
}
if (!CreateProcessU(NULL, cmd, NULL, NULL, TRUE,
NORMAL_PRIORITY_CLASS | CREATE_NO_WINDOW, NULL, dir, &si, &pi)) {
ret = GetLastError();
uprintf("Unable to launch command '%s': %s", cmd, WindowsErrorString());
goto out;
}
if (log) {
while (1) {
// coverity[string_null]
if (PeekNamedPipe(hOutputRead, NULL, dwPipeSize, NULL, &dwAvail, NULL)) {
if (dwAvail != 0) {
output = malloc(dwAvail + 1);
if ((output != NULL) && (ReadFile(hOutputRead, output, dwAvail, &dwRead, NULL)) && (dwRead != 0)) {
output[dwAvail] = 0;
// coverity[tainted_string]
uprintf(output);
}
free(output);
}
}
if (WaitForSingleObject(pi.hProcess, 0) == WAIT_OBJECT_0)
break;
Sleep(100);
};
} else {
WaitForSingleObject(pi.hProcess, INFINITE);
}
if (!GetExitCodeProcess(pi.hProcess, &ret))
ret = GetLastError();
CloseHandle(pi.hProcess);
CloseHandle(pi.hThread);
out:
safe_closehandle(hDupOutputWrite);
safe_closehandle(hOutputRead);
return ret;
}
BOOL CompareGUID(const GUID *guid1, const GUID *guid2) {
if ((guid1 != NULL) && (guid2 != NULL)) {
return (memcmp(guid1, guid2, sizeof(GUID)) == 0);
}
return FALSE;
}
/*
* Set or restore a Local Group Policy DWORD key indexed by szPath/SzPolicy
*/
#pragma push_macro("INTERFACE")
#undef INTERFACE
#define INTERFACE IGroupPolicyObject
#define REGISTRY_EXTENSION_GUID { 0x35378EACL, 0x683F, 0x11D2, {0xA8, 0x9A, 0x00, 0xC0, 0x4F, 0xBB, 0xCF, 0xA2} }
#define GPO_OPEN_LOAD_REGISTRY 1
#define GPO_SECTION_MACHINE 2
typedef enum _GROUP_POLICY_OBJECT_TYPE {
GPOTypeLocal = 0, GPOTypeRemote, GPOTypeDS
} GROUP_POLICY_OBJECT_TYPE, *PGROUP_POLICY_OBJECT_TYPE;
DECLARE_INTERFACE_(IGroupPolicyObject, IUnknown) {
STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID *ppvObj) PURE;
STDMETHOD_(ULONG, AddRef) (THIS) PURE;
STDMETHOD_(ULONG, Release) (THIS) PURE;
STDMETHOD(New) (THIS_ LPOLESTR pszDomainName, LPOLESTR pszDisplayName, DWORD dwFlags) PURE;
STDMETHOD(OpenDSGPO) (THIS_ LPOLESTR pszPath, DWORD dwFlags) PURE;
STDMETHOD(OpenLocalMachineGPO) (THIS_ DWORD dwFlags) PURE;
STDMETHOD(OpenRemoteMachineGPO) (THIS_ LPOLESTR pszComputerName, DWORD dwFlags) PURE;
STDMETHOD(Save) (THIS_ BOOL bMachine, BOOL bAdd,GUID *pGuidExtension, GUID *pGuid) PURE;
STDMETHOD(Delete) (THIS) PURE;
STDMETHOD(GetName) (THIS_ LPOLESTR pszName, int cchMaxLength) PURE;
STDMETHOD(GetDisplayName) (THIS_ LPOLESTR pszName, int cchMaxLength) PURE;
STDMETHOD(SetDisplayName) (THIS_ LPOLESTR pszName) PURE;
STDMETHOD(GetPath) (THIS_ LPOLESTR pszPath, int cchMaxPath) PURE;
STDMETHOD(GetDSPath) (THIS_ DWORD dwSection, LPOLESTR pszPath ,int cchMaxPath) PURE;
STDMETHOD(GetFileSysPath) (THIS_ DWORD dwSection, LPOLESTR pszPath, int cchMaxPath) PURE;
STDMETHOD(GetRegistryKey) (THIS_ DWORD dwSection, HKEY *hKey) PURE;
STDMETHOD(GetOptions) (THIS_ DWORD *dwOptions) PURE;
STDMETHOD(SetOptions) (THIS_ DWORD dwOptions, DWORD dwMask) PURE;
STDMETHOD(GetType) (THIS_ GROUP_POLICY_OBJECT_TYPE *gpoType) PURE;
STDMETHOD(GetMachineName) (THIS_ LPOLESTR pszName, int cchMaxLength) PURE;
STDMETHOD(GetPropertySheetPages) (THIS_ HPROPSHEETPAGE **hPages, UINT *uPageCount) PURE;
};
typedef IGroupPolicyObject *LPGROUPPOLICYOBJECT;
// I've seen rare cases where pLGPO->lpVtbl->Save(...) gets stuck, which prevents the
// application from launching altogether. To alleviate this, use a thread that we can
// terminate if needed...
typedef struct {
BOOL bRestore;
BOOL* bExistingKey;
const char* szPath;
const char* szPolicy;
DWORD dwValue;
} SetLGP_Params;
DWORD WINAPI SetLGPThread(LPVOID param)
{
SetLGP_Params* p = (SetLGP_Params*)param;
LONG r;
DWORD disp, regtype, val=0, val_size=sizeof(DWORD);
HRESULT hr;
IGroupPolicyObject* pLGPO;
// Along with global 'existing_key', this static value is used to restore initial state
static DWORD original_val;
HKEY path_key = NULL, policy_key = NULL;
// MSVC is finicky about these ones => redefine them
const IID my_IID_IGroupPolicyObject =
{ 0xea502723L, 0xa23d, 0x11d1, { 0xa7, 0xd3, 0x0, 0x0, 0xf8, 0x75, 0x71, 0xe3 } };
const IID my_CLSID_GroupPolicyObject =
{ 0xea502722L, 0xa23d, 0x11d1, { 0xa7, 0xd3, 0x0, 0x0, 0xf8, 0x75, 0x71, 0xe3 } };
GUID ext_guid = REGISTRY_EXTENSION_GUID;
// Can be anything really
GUID snap_guid = { 0x3D271CFCL, 0x2BC6, 0x4AC2, {0xB6, 0x33, 0x3B, 0xDF, 0xF5, 0xBD, 0xAB, 0x2A} };
// Reinitialize COM since it's not shared between threads
IGNORE_RETVAL(CoInitializeEx(NULL, COINIT_APARTMENTTHREADED));
// We need an IGroupPolicyObject instance to set a Local Group Policy
hr = CoCreateInstance(&my_CLSID_GroupPolicyObject, NULL, CLSCTX_INPROC_SERVER, &my_IID_IGroupPolicyObject, (LPVOID*)&pLGPO);
if (FAILED(hr)) {
uprintf("SetLGP: CoCreateInstance failed; hr = %x\n", hr);
goto error;
}
hr = pLGPO->lpVtbl->OpenLocalMachineGPO(pLGPO, GPO_OPEN_LOAD_REGISTRY);
if (FAILED(hr)) {
uprintf("SetLGP: OpenLocalMachineGPO failed - error %x\n", hr);
goto error;
}
hr = pLGPO->lpVtbl->GetRegistryKey(pLGPO, GPO_SECTION_MACHINE, &path_key);
if (FAILED(hr)) {
uprintf("SetLGP: GetRegistryKey failed - error %x\n", hr);
goto error;
}
// The DisableSystemRestore is set in Software\Policies\Microsoft\Windows\DeviceInstall\Settings
r = RegCreateKeyExA(path_key, p->szPath, 0, NULL, 0, KEY_SET_VALUE | KEY_QUERY_VALUE,
NULL, &policy_key, &disp);
if (r != ERROR_SUCCESS) {
uprintf("SetLGP: Failed to open LGPO path %s - error %x\n", p->szPath, hr);
policy_key = NULL;
goto error;
}
if ((disp == REG_OPENED_EXISTING_KEY) && (!p->bRestore) && (!(*(p->bExistingKey)))) {
// backup existing value for restore
*(p->bExistingKey) = TRUE;
regtype = REG_DWORD;
r = RegQueryValueExA(policy_key, p->szPolicy, NULL, &regtype, (LPBYTE)&original_val, &val_size);
if (r == ERROR_FILE_NOT_FOUND) {
// The Key exists but not its value, which is OK
*(p->bExistingKey) = FALSE;
} else if (r != ERROR_SUCCESS) {
uprintf("SetLGP: Failed to read original %s policy value - error %x\n", p->szPolicy, r);
}
}
if ((!p->bRestore) || (*(p->bExistingKey))) {
val = (p->bRestore)?original_val:p->dwValue;
r = RegSetValueExA(policy_key, p->szPolicy, 0, REG_DWORD, (BYTE*)&val, sizeof(val));
} else {
r = RegDeleteValueA(policy_key, p->szPolicy);
}
if (r != ERROR_SUCCESS) {
uprintf("SetLGP: RegSetValueEx / RegDeleteValue failed - error %x\n", r);
}
RegCloseKey(policy_key);
policy_key = NULL;
// Apply policy
hr = pLGPO->lpVtbl->Save(pLGPO, TRUE, (p->bRestore)?FALSE:TRUE, &ext_guid, &snap_guid);
if (hr != S_OK) {
uprintf("SetLGP: Unable to apply %s policy - error %x\n", p->szPolicy, hr);
goto error;
} else {
if ((!p->bRestore) || (*(p->bExistingKey))) {
uprintf("SetLGP: Successfully %s %s policy to 0x%08X\n", (p->bRestore)?"restored":"set", p->szPolicy, val);
} else {
uprintf("SetLGP: Successfully removed %s policy key\n", p->szPolicy);
}
}
RegCloseKey(path_key);
pLGPO->lpVtbl->Release(pLGPO);
return TRUE;
error:
if (path_key != NULL) RegCloseKey(path_key);
if (pLGPO != NULL) pLGPO->lpVtbl->Release(pLGPO);
return FALSE;
}
#pragma pop_macro("INTERFACE")
BOOL SetLGP(BOOL bRestore, BOOL* bExistingKey, const char* szPath, const char* szPolicy, DWORD dwValue)
{
SetLGP_Params params = {bRestore, bExistingKey, szPath, szPolicy, dwValue};
DWORD r = FALSE;
HANDLE thread_id;
if (ReadSettingBool(SETTING_DISABLE_LGP)) {
uprintf("LPG handling disabled, per settings");
return FALSE;
}
thread_id = CreateThread(NULL, 0, SetLGPThread, (LPVOID)&params, 0, NULL);
if (thread_id == NULL) {
uprintf("SetLGP: Unable to start thread");
return FALSE;
}
if (WaitForSingleObject(thread_id, 2500) != WAIT_OBJECT_0) {
uprintf("SetLGP: Killing stuck thread!");
TerminateThread(thread_id, 0);
CloseHandle(thread_id);
return FALSE;
}
if (!GetExitCodeThread(thread_id, &r))
return FALSE;
return (BOOL) r;
}