Refactoring + comments

This commit is contained in:
tevador 2019-04-12 13:32:22 +02:00
parent 24a22c6b54
commit d49302561f
5 changed files with 183 additions and 216 deletions

View file

@ -69,54 +69,54 @@ namespace RandomX {
Instruction& instr = prog(i); Instruction& instr = prog(i);
switch (instr.opcode) switch (instr.opcode)
{ {
case RandomX::LightInstructionType::ISUB_R: case RandomX::SuperscalarInstructionType::ISUB_R:
asmCode << "sub " << regR[instr.dst] << ", " << regR[instr.src] << std::endl; asmCode << "sub " << regR[instr.dst] << ", " << regR[instr.src] << std::endl;
break; break;
case RandomX::LightInstructionType::IXOR_R: case RandomX::SuperscalarInstructionType::IXOR_R:
asmCode << "xor " << regR[instr.dst] << ", " << regR[instr.src] << std::endl; asmCode << "xor " << regR[instr.dst] << ", " << regR[instr.src] << std::endl;
break; break;
case RandomX::LightInstructionType::IADD_RS: case RandomX::SuperscalarInstructionType::IADD_RS:
asmCode << "lea " << regR[instr.dst] << ", [" << regR[instr.dst] << "+" << regR[instr.src] << "*" << (1 << (instr.mod % 4)) << "]" << std::endl; asmCode << "lea " << regR[instr.dst] << ", [" << regR[instr.dst] << "+" << regR[instr.src] << "*" << (1 << (instr.mod % 4)) << "]" << std::endl;
break; break;
case RandomX::LightInstructionType::IMUL_R: case RandomX::SuperscalarInstructionType::IMUL_R:
asmCode << "imul " << regR[instr.dst] << ", " << regR[instr.src] << std::endl; asmCode << "imul " << regR[instr.dst] << ", " << regR[instr.src] << std::endl;
break; break;
case RandomX::LightInstructionType::IROR_C: case RandomX::SuperscalarInstructionType::IROR_C:
asmCode << "ror " << regR[instr.dst] << ", " << instr.getImm32() << std::endl; asmCode << "ror " << regR[instr.dst] << ", " << instr.getImm32() << std::endl;
break; break;
case RandomX::LightInstructionType::IADD_C7: case RandomX::SuperscalarInstructionType::IADD_C7:
asmCode << "add " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl; asmCode << "add " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl;
break; break;
case RandomX::LightInstructionType::IXOR_C7: case RandomX::SuperscalarInstructionType::IXOR_C7:
asmCode << "xor " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl; asmCode << "xor " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl;
break; break;
case RandomX::LightInstructionType::IADD_C8: case RandomX::SuperscalarInstructionType::IADD_C8:
asmCode << "add " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl; asmCode << "add " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl;
asmCode << "nop" << std::endl; asmCode << "nop" << std::endl;
break; break;
case RandomX::LightInstructionType::IXOR_C8: case RandomX::SuperscalarInstructionType::IXOR_C8:
asmCode << "xor " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl; asmCode << "xor " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl;
asmCode << "nop" << std::endl; asmCode << "nop" << std::endl;
break; break;
case RandomX::LightInstructionType::IADD_C9: case RandomX::SuperscalarInstructionType::IADD_C9:
asmCode << "add " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl; asmCode << "add " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl;
asmCode << "xchg ax, ax ;nop" << std::endl; asmCode << "xchg ax, ax ;nop" << std::endl;
break; break;
case RandomX::LightInstructionType::IXOR_C9: case RandomX::SuperscalarInstructionType::IXOR_C9:
asmCode << "xor " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl; asmCode << "xor " << regR[instr.dst] << ", " << (int32_t)instr.getImm32() << std::endl;
asmCode << "xchg ax, ax ;nop" << std::endl; asmCode << "xchg ax, ax ;nop" << std::endl;
break; break;
case RandomX::LightInstructionType::IMULH_R: case RandomX::SuperscalarInstructionType::IMULH_R:
asmCode << "mov rax, " << regR[instr.dst] << std::endl; asmCode << "mov rax, " << regR[instr.dst] << std::endl;
asmCode << "mul " << regR[instr.src] << std::endl; asmCode << "mul " << regR[instr.src] << std::endl;
asmCode << "mov " << regR[instr.dst] << ", rdx" << std::endl; asmCode << "mov " << regR[instr.dst] << ", rdx" << std::endl;
break; break;
case RandomX::LightInstructionType::ISMULH_R: case RandomX::SuperscalarInstructionType::ISMULH_R:
asmCode << "mov rax, " << regR[instr.dst] << std::endl; asmCode << "mov rax, " << regR[instr.dst] << std::endl;
asmCode << "imul " << regR[instr.src] << std::endl; asmCode << "imul " << regR[instr.src] << std::endl;
asmCode << "mov " << regR[instr.dst] << ", rdx" << std::endl; asmCode << "mov " << regR[instr.dst] << ", rdx" << std::endl;
break; break;
case RandomX::LightInstructionType::IMUL_RCP: case RandomX::SuperscalarInstructionType::IMUL_RCP:
asmCode << "mov rax, " << (int64_t)reciprocal(instr.getImm32()) << std::endl; asmCode << "mov rax, " << (int64_t)reciprocal(instr.getImm32()) << std::endl;
asmCode << "imul " << regR[instr.dst] << ", rax" << std::endl; asmCode << "imul " << regR[instr.dst] << ", rax" << std::endl;
break; break;
@ -178,38 +178,38 @@ namespace RandomX {
Instruction& instr = prog(i); Instruction& instr = prog(i);
switch (instr.opcode) switch (instr.opcode)
{ {
case RandomX::LightInstructionType::ISUB_R: case RandomX::SuperscalarInstructionType::ISUB_R:
asmCode << regR[instr.dst] << " -= " << regR[instr.src] << ";" << std::endl; asmCode << regR[instr.dst] << " -= " << regR[instr.src] << ";" << std::endl;
break; break;
case RandomX::LightInstructionType::IXOR_R: case RandomX::SuperscalarInstructionType::IXOR_R:
asmCode << regR[instr.dst] << " ^= " << regR[instr.src] << ";" << std::endl; asmCode << regR[instr.dst] << " ^= " << regR[instr.src] << ";" << std::endl;
break; break;
case RandomX::LightInstructionType::IADD_RS: case RandomX::SuperscalarInstructionType::IADD_RS:
asmCode << regR[instr.dst] << " += " << regR[instr.src] << "*" << (1 << (instr.mod % 4)) << ";" << std::endl; asmCode << regR[instr.dst] << " += " << regR[instr.src] << "*" << (1 << (instr.mod % 4)) << ";" << std::endl;
break; break;
case RandomX::LightInstructionType::IMUL_R: case RandomX::SuperscalarInstructionType::IMUL_R:
asmCode << regR[instr.dst] << " *= " << regR[instr.src] << ";" << std::endl; asmCode << regR[instr.dst] << " *= " << regR[instr.src] << ";" << std::endl;
break; break;
case RandomX::LightInstructionType::IROR_C: case RandomX::SuperscalarInstructionType::IROR_C:
asmCode << regR[instr.dst] << " = rotr(" << regR[instr.dst] << ", " << instr.getImm32() << ");" << std::endl; asmCode << regR[instr.dst] << " = rotr(" << regR[instr.dst] << ", " << instr.getImm32() << ");" << std::endl;
break; break;
case RandomX::LightInstructionType::IADD_C7: case RandomX::SuperscalarInstructionType::IADD_C7:
case RandomX::LightInstructionType::IADD_C8: case RandomX::SuperscalarInstructionType::IADD_C8:
case RandomX::LightInstructionType::IADD_C9: case RandomX::SuperscalarInstructionType::IADD_C9:
asmCode << regR[instr.dst] << " += " << (int32_t)instr.getImm32() << ";" << std::endl; asmCode << regR[instr.dst] << " += " << (int32_t)instr.getImm32() << ";" << std::endl;
break; break;
case RandomX::LightInstructionType::IXOR_C7: case RandomX::SuperscalarInstructionType::IXOR_C7:
case RandomX::LightInstructionType::IXOR_C8: case RandomX::SuperscalarInstructionType::IXOR_C8:
case RandomX::LightInstructionType::IXOR_C9: case RandomX::SuperscalarInstructionType::IXOR_C9:
asmCode << regR[instr.dst] << " ^= " << (int32_t)instr.getImm32() << ";" << std::endl; asmCode << regR[instr.dst] << " ^= " << (int32_t)instr.getImm32() << ";" << std::endl;
break; break;
case RandomX::LightInstructionType::IMULH_R: case RandomX::SuperscalarInstructionType::IMULH_R:
asmCode << regR[instr.dst] << " = mulh(" << regR[instr.dst] << ", " << regR[instr.src] << ");" << std::endl; asmCode << regR[instr.dst] << " = mulh(" << regR[instr.dst] << ", " << regR[instr.src] << ");" << std::endl;
break; break;
case RandomX::LightInstructionType::ISMULH_R: case RandomX::SuperscalarInstructionType::ISMULH_R:
asmCode << regR[instr.dst] << " = smulh(" << regR[instr.dst] << ", " << regR[instr.src] << ");" << std::endl; asmCode << regR[instr.dst] << " = smulh(" << regR[instr.dst] << ", " << regR[instr.src] << ");" << std::endl;
break; break;
case RandomX::LightInstructionType::IMUL_RCP: case RandomX::SuperscalarInstructionType::IMUL_RCP:
asmCode << regR[instr.dst] << " *= " << (int64_t)reciprocal(instr.getImm32()) << ";" << std::endl; asmCode << regR[instr.dst] << " *= " << (int64_t)reciprocal(instr.getImm32()) << ";" << std::endl;
break; break;
default: default:

View file

@ -480,38 +480,38 @@ namespace RandomX {
Instruction& instr = prog(j); Instruction& instr = prog(j);
switch (instr.opcode) switch (instr.opcode)
{ {
case RandomX::LightInstructionType::ISUB_R: case RandomX::SuperscalarInstructionType::ISUB_R:
r[instr.dst] -= r[instr.src]; r[instr.dst] -= r[instr.src];
break; break;
case RandomX::LightInstructionType::IXOR_R: case RandomX::SuperscalarInstructionType::IXOR_R:
r[instr.dst] ^= r[instr.src]; r[instr.dst] ^= r[instr.src];
break; break;
case RandomX::LightInstructionType::IADD_RS: case RandomX::SuperscalarInstructionType::IADD_RS:
r[instr.dst] += r[instr.src] << (instr.mod % 4); r[instr.dst] += r[instr.src] << (instr.mod % 4);
break; break;
case RandomX::LightInstructionType::IMUL_R: case RandomX::SuperscalarInstructionType::IMUL_R:
r[instr.dst] *= r[instr.src]; r[instr.dst] *= r[instr.src];
break; break;
case RandomX::LightInstructionType::IROR_C: case RandomX::SuperscalarInstructionType::IROR_C:
r[instr.dst] = rotr(r[instr.dst], instr.getImm32()); r[instr.dst] = rotr(r[instr.dst], instr.getImm32());
break; break;
case RandomX::LightInstructionType::IADD_C7: case RandomX::SuperscalarInstructionType::IADD_C7:
case RandomX::LightInstructionType::IADD_C8: case RandomX::SuperscalarInstructionType::IADD_C8:
case RandomX::LightInstructionType::IADD_C9: case RandomX::SuperscalarInstructionType::IADD_C9:
r[instr.dst] += signExtend2sCompl(instr.getImm32()); r[instr.dst] += signExtend2sCompl(instr.getImm32());
break; break;
case RandomX::LightInstructionType::IXOR_C7: case RandomX::SuperscalarInstructionType::IXOR_C7:
case RandomX::LightInstructionType::IXOR_C8: case RandomX::SuperscalarInstructionType::IXOR_C8:
case RandomX::LightInstructionType::IXOR_C9: case RandomX::SuperscalarInstructionType::IXOR_C9:
r[instr.dst] ^= signExtend2sCompl(instr.getImm32()); r[instr.dst] ^= signExtend2sCompl(instr.getImm32());
break; break;
case RandomX::LightInstructionType::IMULH_R: case RandomX::SuperscalarInstructionType::IMULH_R:
r[instr.dst] = mulh(r[instr.dst], r[instr.src]); r[instr.dst] = mulh(r[instr.dst], r[instr.src]);
break; break;
case RandomX::LightInstructionType::ISMULH_R: case RandomX::SuperscalarInstructionType::ISMULH_R:
r[instr.dst] = smulh(r[instr.dst], r[instr.src]); r[instr.dst] = smulh(r[instr.dst], r[instr.src]);
break; break;
case RandomX::LightInstructionType::IMUL_RCP: case RandomX::SuperscalarInstructionType::IMUL_RCP:
if(superscalar) if(superscalar)
r[instr.dst] *= reciprocals[instr.getImm32()]; r[instr.dst] *= reciprocals[instr.getImm32()];
else else
@ -560,7 +560,7 @@ namespace RandomX {
for (unsigned i = 0; i < RANDOMX_CACHE_ACCESSES; ++i) { for (unsigned i = 0; i < RANDOMX_CACHE_ACCESSES; ++i) {
for (unsigned j = 0; j < superScalarPrograms[i].getSize(); ++j) { for (unsigned j = 0; j < superScalarPrograms[i].getSize(); ++j) {
Instruction& instr = superScalarPrograms[i](j); Instruction& instr = superScalarPrograms[i](j);
if (instr.opcode == LightInstructionType::IMUL_RCP) { if (instr.opcode == SuperscalarInstructionType::IMUL_RCP) {
auto rcp = reciprocal(instr.getImm32()); auto rcp = reciprocal(instr.getImm32());
instr.setImm32(reciprocals.size()); instr.setImm32(reciprocals.size());
reciprocals.push_back(rcp); reciprocals.push_back(rcp);

View file

@ -348,63 +348,63 @@ namespace RandomX {
void JitCompilerX86::generateCode<LightProgram>(Instruction& instr, int i) { void JitCompilerX86::generateCode<LightProgram>(Instruction& instr, int i) {
switch (instr.opcode) switch (instr.opcode)
{ {
case RandomX::LightInstructionType::ISUB_R: case RandomX::SuperscalarInstructionType::ISUB_R:
emit(REX_SUB_RR); emit(REX_SUB_RR);
emitByte(0xc0 + 8 * instr.dst + instr.src); emitByte(0xc0 + 8 * instr.dst + instr.src);
break; break;
case RandomX::LightInstructionType::IXOR_R: case RandomX::SuperscalarInstructionType::IXOR_R:
emit(REX_XOR_RR); emit(REX_XOR_RR);
emitByte(0xc0 + 8 * instr.dst + instr.src); emitByte(0xc0 + 8 * instr.dst + instr.src);
break; break;
case RandomX::LightInstructionType::IADD_RS: case RandomX::SuperscalarInstructionType::IADD_RS:
emit(REX_LEA); emit(REX_LEA);
emitByte(0x04 + 8 * instr.dst); emitByte(0x04 + 8 * instr.dst);
genSIB(instr.mod % 4, instr.src, instr.dst); genSIB(instr.mod % 4, instr.src, instr.dst);
break; break;
case RandomX::LightInstructionType::IMUL_R: case RandomX::SuperscalarInstructionType::IMUL_R:
emit(REX_IMUL_RR); emit(REX_IMUL_RR);
emitByte(0xc0 + 8 * instr.dst + instr.src); emitByte(0xc0 + 8 * instr.dst + instr.src);
break; break;
case RandomX::LightInstructionType::IROR_C: case RandomX::SuperscalarInstructionType::IROR_C:
emit(REX_ROT_I8); emit(REX_ROT_I8);
emitByte(0xc8 + instr.dst); emitByte(0xc8 + instr.dst);
emitByte(instr.getImm32() & 63); emitByte(instr.getImm32() & 63);
break; break;
case RandomX::LightInstructionType::IADD_C7: case RandomX::SuperscalarInstructionType::IADD_C7:
emit(REX_81); emit(REX_81);
emitByte(0xc0 + instr.dst); emitByte(0xc0 + instr.dst);
emit32(instr.getImm32()); emit32(instr.getImm32());
break; break;
case RandomX::LightInstructionType::IXOR_C7: case RandomX::SuperscalarInstructionType::IXOR_C7:
emit(REX_XOR_RI); emit(REX_XOR_RI);
emitByte(0xf0 + instr.dst); emitByte(0xf0 + instr.dst);
emit32(instr.getImm32()); emit32(instr.getImm32());
break; break;
case RandomX::LightInstructionType::IADD_C8: case RandomX::SuperscalarInstructionType::IADD_C8:
emit(REX_81); emit(REX_81);
emitByte(0xc0 + instr.dst); emitByte(0xc0 + instr.dst);
emit32(instr.getImm32()); emit32(instr.getImm32());
emit(NOP1); emit(NOP1);
break; break;
case RandomX::LightInstructionType::IXOR_C8: case RandomX::SuperscalarInstructionType::IXOR_C8:
emit(REX_XOR_RI); emit(REX_XOR_RI);
emitByte(0xf0 + instr.dst); emitByte(0xf0 + instr.dst);
emit32(instr.getImm32()); emit32(instr.getImm32());
emit(NOP1); emit(NOP1);
break; break;
case RandomX::LightInstructionType::IADD_C9: case RandomX::SuperscalarInstructionType::IADD_C9:
emit(REX_81); emit(REX_81);
emitByte(0xc0 + instr.dst); emitByte(0xc0 + instr.dst);
emit32(instr.getImm32()); emit32(instr.getImm32());
emit(NOP2); emit(NOP2);
break; break;
case RandomX::LightInstructionType::IXOR_C9: case RandomX::SuperscalarInstructionType::IXOR_C9:
emit(REX_XOR_RI); emit(REX_XOR_RI);
emitByte(0xf0 + instr.dst); emitByte(0xf0 + instr.dst);
emit32(instr.getImm32()); emit32(instr.getImm32());
emit(NOP2); emit(NOP2);
break; break;
case RandomX::LightInstructionType::IMULH_R: case RandomX::SuperscalarInstructionType::IMULH_R:
emit(REX_MOV_RR64); emit(REX_MOV_RR64);
emitByte(0xc0 + instr.dst); emitByte(0xc0 + instr.dst);
emit(REX_MUL_R); emit(REX_MUL_R);
@ -412,7 +412,7 @@ namespace RandomX {
emit(REX_MOV_R64R); emit(REX_MOV_R64R);
emitByte(0xc2 + 8 * instr.dst); emitByte(0xc2 + 8 * instr.dst);
break; break;
case RandomX::LightInstructionType::ISMULH_R: case RandomX::SuperscalarInstructionType::ISMULH_R:
emit(REX_MOV_RR64); emit(REX_MOV_RR64);
emitByte(0xc0 + instr.dst); emitByte(0xc0 + instr.dst);
emit(REX_MUL_R); emit(REX_MUL_R);
@ -420,7 +420,7 @@ namespace RandomX {
emit(REX_MOV_R64R); emit(REX_MOV_R64R);
emitByte(0xc2 + 8 * instr.dst); emitByte(0xc2 + 8 * instr.dst);
break; break;
case RandomX::LightInstructionType::IMUL_RCP: case RandomX::SuperscalarInstructionType::IMUL_RCP:
emit(MOV_RAX_I); emit(MOV_RAX_I);
emit64(reciprocal(instr.getImm32())); emit64(reciprocal(instr.getImm32()));
emit(REX_IMUL_RM); emit(REX_IMUL_RM);

View file

@ -31,8 +31,8 @@ along with RandomX. If not, see<http://www.gnu.org/licenses/>.
namespace RandomX { namespace RandomX {
static bool isMul(int type) { static bool isMultiplication(int type) {
return type == LightInstructionType::IMUL_R || type == LightInstructionType::IMULH_R || type == LightInstructionType::ISMULH_R || type == LightInstructionType::IMUL_RCP; return type == SuperscalarInstructionType::IMUL_R || type == SuperscalarInstructionType::IMULH_R || type == SuperscalarInstructionType::ISMULH_R || type == SuperscalarInstructionType::IMUL_RCP;
} }
namespace ExecutionPort { namespace ExecutionPort {
@ -40,10 +40,10 @@ namespace RandomX {
constexpr type Null = 0; constexpr type Null = 0;
constexpr type P0 = 1; constexpr type P0 = 1;
constexpr type P1 = 2; constexpr type P1 = 2;
constexpr type P5 = 3; constexpr type P5 = 4;
constexpr type P01 = 4; constexpr type P01 = P0 | P1;
constexpr type P05 = 5; constexpr type P05 = P0 | P5;
constexpr type P015 = 6; constexpr type P015 = P0 | P1 | P5;
} }
Blake2Generator::Blake2Generator(const void* seed, int nonce) : dataIndex(sizeof(data)) { Blake2Generator::Blake2Generator(const void* seed, int nonce) : dataIndex(sizeof(data)) {
@ -244,22 +244,22 @@ namespace RandomX {
} }
}; };
const LightInstructionInfo LightInstructionInfo::ISUB_R = LightInstructionInfo("ISUB_R", LightInstructionType::ISUB_R, MacroOp::Sub_rr, 0); const LightInstructionInfo LightInstructionInfo::ISUB_R = LightInstructionInfo("ISUB_R", SuperscalarInstructionType::ISUB_R, MacroOp::Sub_rr, 0);
const LightInstructionInfo LightInstructionInfo::IXOR_R = LightInstructionInfo("IXOR_R", LightInstructionType::IXOR_R, MacroOp::Xor_rr, 0); const LightInstructionInfo LightInstructionInfo::IXOR_R = LightInstructionInfo("IXOR_R", SuperscalarInstructionType::IXOR_R, MacroOp::Xor_rr, 0);
const LightInstructionInfo LightInstructionInfo::IADD_RS = LightInstructionInfo("IADD_RS", LightInstructionType::IADD_RS, MacroOp::Lea_sib, 0); const LightInstructionInfo LightInstructionInfo::IADD_RS = LightInstructionInfo("IADD_RS", SuperscalarInstructionType::IADD_RS, MacroOp::Lea_sib, 0);
const LightInstructionInfo LightInstructionInfo::IMUL_R = LightInstructionInfo("IMUL_R", LightInstructionType::IMUL_R, MacroOp::Imul_rr, 0); const LightInstructionInfo LightInstructionInfo::IMUL_R = LightInstructionInfo("IMUL_R", SuperscalarInstructionType::IMUL_R, MacroOp::Imul_rr, 0);
const LightInstructionInfo LightInstructionInfo::IROR_C = LightInstructionInfo("IROR_C", LightInstructionType::IROR_C, MacroOp::Ror_ri, -1); const LightInstructionInfo LightInstructionInfo::IROR_C = LightInstructionInfo("IROR_C", SuperscalarInstructionType::IROR_C, MacroOp::Ror_ri, -1);
const LightInstructionInfo LightInstructionInfo::IADD_C7 = LightInstructionInfo("IADD_C7", LightInstructionType::IADD_C7, MacroOp::Add_ri, -1); const LightInstructionInfo LightInstructionInfo::IADD_C7 = LightInstructionInfo("IADD_C7", SuperscalarInstructionType::IADD_C7, MacroOp::Add_ri, -1);
const LightInstructionInfo LightInstructionInfo::IXOR_C7 = LightInstructionInfo("IXOR_C7", LightInstructionType::IXOR_C7, MacroOp::Xor_ri, -1); const LightInstructionInfo LightInstructionInfo::IXOR_C7 = LightInstructionInfo("IXOR_C7", SuperscalarInstructionType::IXOR_C7, MacroOp::Xor_ri, -1);
const LightInstructionInfo LightInstructionInfo::IADD_C8 = LightInstructionInfo("IADD_C8", LightInstructionType::IADD_C8, MacroOp::Add_ri, -1); const LightInstructionInfo LightInstructionInfo::IADD_C8 = LightInstructionInfo("IADD_C8", SuperscalarInstructionType::IADD_C8, MacroOp::Add_ri, -1);
const LightInstructionInfo LightInstructionInfo::IXOR_C8 = LightInstructionInfo("IXOR_C8", LightInstructionType::IXOR_C8, MacroOp::Xor_ri, -1); const LightInstructionInfo LightInstructionInfo::IXOR_C8 = LightInstructionInfo("IXOR_C8", SuperscalarInstructionType::IXOR_C8, MacroOp::Xor_ri, -1);
const LightInstructionInfo LightInstructionInfo::IADD_C9 = LightInstructionInfo("IADD_C9", LightInstructionType::IADD_C9, MacroOp::Add_ri, -1); const LightInstructionInfo LightInstructionInfo::IADD_C9 = LightInstructionInfo("IADD_C9", SuperscalarInstructionType::IADD_C9, MacroOp::Add_ri, -1);
const LightInstructionInfo LightInstructionInfo::IXOR_C9 = LightInstructionInfo("IXOR_C9", LightInstructionType::IXOR_C9, MacroOp::Xor_ri, -1); const LightInstructionInfo LightInstructionInfo::IXOR_C9 = LightInstructionInfo("IXOR_C9", SuperscalarInstructionType::IXOR_C9, MacroOp::Xor_ri, -1);
const LightInstructionInfo LightInstructionInfo::IMULH_R = LightInstructionInfo("IMULH_R", LightInstructionType::IMULH_R, IMULH_R_ops_array, 1, 0, 1); const LightInstructionInfo LightInstructionInfo::IMULH_R = LightInstructionInfo("IMULH_R", SuperscalarInstructionType::IMULH_R, IMULH_R_ops_array, 1, 0, 1);
const LightInstructionInfo LightInstructionInfo::ISMULH_R = LightInstructionInfo("ISMULH_R", LightInstructionType::ISMULH_R, ISMULH_R_ops_array, 1, 0, 1); const LightInstructionInfo LightInstructionInfo::ISMULH_R = LightInstructionInfo("ISMULH_R", SuperscalarInstructionType::ISMULH_R, ISMULH_R_ops_array, 1, 0, 1);
const LightInstructionInfo LightInstructionInfo::IMUL_RCP = LightInstructionInfo("IMUL_RCP", LightInstructionType::IMUL_RCP, IMUL_RCP_ops_array, 1, 1, -1); const LightInstructionInfo LightInstructionInfo::IMUL_RCP = LightInstructionInfo("IMUL_RCP", SuperscalarInstructionType::IMUL_RCP, IMUL_RCP_ops_array, 1, 1, -1);
const LightInstructionInfo LightInstructionInfo::NOP = LightInstructionInfo("NOP"); const LightInstructionInfo LightInstructionInfo::NOP = LightInstructionInfo("NOP");
@ -285,7 +285,7 @@ namespace RandomX {
//If the current RandomX instruction is "IMULH", the next fetch configuration must be 3-3-10 //If the current RandomX instruction is "IMULH", the next fetch configuration must be 3-3-10
//because the full 128-bit multiplication instruction is 3 bytes long and decodes to 2 uOPs on Intel CPUs. //because the full 128-bit multiplication instruction is 3 bytes long and decodes to 2 uOPs on Intel CPUs.
//Intel CPUs can decode at most 4 uOPs per cycle, so this requires a 2-1-1 configuration for a total of 3 macro ops. //Intel CPUs can decode at most 4 uOPs per cycle, so this requires a 2-1-1 configuration for a total of 3 macro ops.
if (instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R) if (instrType == SuperscalarInstructionType::IMULH_R || instrType == SuperscalarInstructionType::ISMULH_R)
return &decodeBuffer3310; return &decodeBuffer3310;
//To make sure that the multiplication port is saturated, a 4-4-4-4 configuration is generated if the number of multiplications //To make sure that the multiplication port is saturated, a 4-4-4-4 configuration is generated if the number of multiplications
@ -294,7 +294,7 @@ namespace RandomX {
return &decodeBuffer4444; return &decodeBuffer4444;
//If the current RandomX instruction is "IMUL_RCP", the next buffer must begin with a 4-byte slot for multiplication. //If the current RandomX instruction is "IMUL_RCP", the next buffer must begin with a 4-byte slot for multiplication.
if(instrType == LightInstructionType::IMUL_RCP) if(instrType == SuperscalarInstructionType::IMUL_RCP)
return (gen.getByte() & 1) ? &decodeBuffer484 : &decodeBuffer493; return (gen.getByte() & 1) ? &decodeBuffer484 : &decodeBuffer493;
//Default: select a random fetch configuration. //Default: select a random fetch configuration.
@ -381,6 +381,7 @@ namespace RandomX {
switch (slotSize) switch (slotSize)
{ {
case 3: case 3:
//if this is the last slot, we can also select "IMULH" instructions
if (isLast) { if (isLast) {
create(slot_3L[gen.getByte() & 3], gen); create(slot_3L[gen.getByte() & 3], gen);
} }
@ -389,6 +390,7 @@ namespace RandomX {
} }
break; break;
case 4: case 4:
//if this is the 4-4-4-4 buffer, issue multiplications as the first 3 instructions
if (fetchType == 4 && !isLast) { if (fetchType == 4 && !isLast) {
create(&LightInstructionInfo::IMUL_R, gen); create(&LightInstructionInfo::IMUL_R, gen);
} }
@ -418,83 +420,83 @@ namespace RandomX {
reset(); reset();
switch (info->getType()) switch (info->getType())
{ {
case LightInstructionType::ISUB_R: { case SuperscalarInstructionType::ISUB_R: {
mod_ = 0; mod_ = 0;
imm32_ = 0; imm32_ = 0;
opGroup_ = LightInstructionType::IADD_RS; opGroup_ = SuperscalarInstructionType::IADD_RS;
groupParIsSource_ = true; groupParIsSource_ = true;
} break; } break;
case LightInstructionType::IXOR_R: { case SuperscalarInstructionType::IXOR_R: {
mod_ = 0; mod_ = 0;
imm32_ = 0; imm32_ = 0;
opGroup_ = LightInstructionType::IXOR_R; opGroup_ = SuperscalarInstructionType::IXOR_R;
groupParIsSource_ = true; groupParIsSource_ = true;
} break; } break;
case LightInstructionType::IADD_RS: { case SuperscalarInstructionType::IADD_RS: {
mod_ = gen.getByte(); mod_ = gen.getByte();
imm32_ = 0; imm32_ = 0;
opGroup_ = LightInstructionType::IADD_RS; opGroup_ = SuperscalarInstructionType::IADD_RS;
groupParIsSource_ = true; groupParIsSource_ = true;
} break; } break;
case LightInstructionType::IMUL_R: { case SuperscalarInstructionType::IMUL_R: {
mod_ = 0; mod_ = 0;
imm32_ = 0; imm32_ = 0;
opGroup_ = LightInstructionType::IMUL_R; opGroup_ = SuperscalarInstructionType::IMUL_R;
opGroupPar_ = -1; opGroupPar_ = -1;
} break; } break;
case LightInstructionType::IROR_C: { case SuperscalarInstructionType::IROR_C: {
mod_ = 0; mod_ = 0;
do { do {
imm32_ = gen.getByte() & 63; imm32_ = gen.getByte() & 63;
} while (imm32_ == 0); } while (imm32_ == 0);
opGroup_ = LightInstructionType::IROR_C; opGroup_ = SuperscalarInstructionType::IROR_C;
opGroupPar_ = -1; opGroupPar_ = -1;
} break; } break;
case LightInstructionType::IADD_C7: case SuperscalarInstructionType::IADD_C7:
case LightInstructionType::IADD_C8: case SuperscalarInstructionType::IADD_C8:
case LightInstructionType::IADD_C9: { case SuperscalarInstructionType::IADD_C9: {
mod_ = 0; mod_ = 0;
imm32_ = gen.getInt32(); imm32_ = gen.getInt32();
opGroup_ = LightInstructionType::IADD_C7; opGroup_ = SuperscalarInstructionType::IADD_C7;
opGroupPar_ = -1; opGroupPar_ = -1;
} break; } break;
case LightInstructionType::IXOR_C7: case SuperscalarInstructionType::IXOR_C7:
case LightInstructionType::IXOR_C8: case SuperscalarInstructionType::IXOR_C8:
case LightInstructionType::IXOR_C9: { case SuperscalarInstructionType::IXOR_C9: {
mod_ = 0; mod_ = 0;
imm32_ = gen.getInt32(); imm32_ = gen.getInt32();
opGroup_ = LightInstructionType::IXOR_C7; opGroup_ = SuperscalarInstructionType::IXOR_C7;
opGroupPar_ = -1; opGroupPar_ = -1;
} break; } break;
case LightInstructionType::IMULH_R: { case SuperscalarInstructionType::IMULH_R: {
canReuse_ = true; canReuse_ = true;
mod_ = 0; mod_ = 0;
imm32_ = 0; imm32_ = 0;
opGroup_ = LightInstructionType::IMULH_R; opGroup_ = SuperscalarInstructionType::IMULH_R;
opGroupPar_ = gen.getInt32(); opGroupPar_ = gen.getInt32();
} break; } break;
case LightInstructionType::ISMULH_R: { case SuperscalarInstructionType::ISMULH_R: {
canReuse_ = true; canReuse_ = true;
mod_ = 0; mod_ = 0;
imm32_ = 0; imm32_ = 0;
opGroup_ = LightInstructionType::ISMULH_R; opGroup_ = SuperscalarInstructionType::ISMULH_R;
opGroupPar_ = gen.getInt32(); opGroupPar_ = gen.getInt32();
} break; } break;
case LightInstructionType::IMUL_RCP: { case SuperscalarInstructionType::IMUL_RCP: {
mod_ = 0; mod_ = 0;
do { do {
imm32_ = gen.getInt32(); imm32_ = gen.getInt32();
} while ((imm32_ & (imm32_ - 1)) == 0); } while ((imm32_ & (imm32_ - 1)) == 0);
opGroup_ = LightInstructionType::IMUL_RCP; opGroup_ = SuperscalarInstructionType::IMUL_RCP;
opGroupPar_ = -1; opGroupPar_ = -1;
} break; } break;
@ -506,7 +508,7 @@ namespace RandomX {
bool selectDestination(int cycle, RegisterInfo (&registers)[8], Blake2Generator& gen) { bool selectDestination(int cycle, RegisterInfo (&registers)[8], Blake2Generator& gen) {
std::vector<int> availableRegisters; std::vector<int> availableRegisters;
for (unsigned i = 0; i < 8; ++i) { for (unsigned i = 0; i < 8; ++i) {
if (registers[i].latency <= cycle && (canReuse_ || i != src_) && (registers[i].lastOpGroup != opGroup_ || registers[i].lastOpPar != opGroupPar_) && (info_->getType() != LightInstructionType::IADD_RS || i != 5)) if (registers[i].latency <= cycle && (canReuse_ || i != src_) && (registers[i].lastOpGroup != opGroup_ || registers[i].lastOpPar != opGroupPar_) && (info_->getType() != SuperscalarInstructionType::IADD_RS || i != 5))
availableRegisters.push_back(i); availableRegisters.push_back(i);
} }
return selectRegister(availableRegisters, gen, dst_); return selectRegister(availableRegisters, gen, dst_);
@ -518,7 +520,7 @@ namespace RandomX {
if (registers[i].latency <= cycle) if (registers[i].latency <= cycle)
availableRegisters.push_back(i); availableRegisters.push_back(i);
} }
if (availableRegisters.size() == 2 && info_->getType() == LightInstructionType::IADD_RS) { if (availableRegisters.size() == 2 && info_->getType() == SuperscalarInstructionType::IADD_RS) {
if (availableRegisters[0] == 5 || availableRegisters[1] == 5) { if (availableRegisters[0] == 5 || availableRegisters[1] == 5) {
opGroupPar_ = src_ = 5; opGroupPar_ = src_ = 5;
return true; return true;
@ -587,106 +589,70 @@ namespace RandomX {
constexpr bool INFO = true; constexpr bool INFO = true;
#endif #endif
static int blakeCounter = 0; template<bool commit>
static int scheduleUop(ExecutionPort::type uop, ExecutionPort::type(&portBusy)[CYCLE_MAP_SIZE][3], int cycle) {
//The scheduling here is done optimistically by checking port availability in order P5 -> P0 -> P1 to not overload
//P1 (multiplication port) by instructions that can go to any port.
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
if ((uop & ExecutionPort::P5) != 0 && !portBusy[cycle][2]) {
if (commit) {
if (TRACE) std::cout << "; P5 at cycle " << cycle << std::endl;
portBusy[cycle][2] = uop;
}
return cycle;
}
if ((uop & ExecutionPort::P0) != 0 && !portBusy[cycle][0]) {
if (commit) {
if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl;
portBusy[cycle][0] = uop;
}
return cycle;
}
if ((uop & ExecutionPort::P1) != 0 && !portBusy[cycle][1]) {
if (commit) {
if (TRACE) std::cout << "; P1 at cycle " << cycle << std::endl;
portBusy[cycle][1] = uop;
}
return cycle;
}
}
return -1;
}
template<bool commit> template<bool commit>
static int scheduleUop(const MacroOp& mop, ExecutionPort::type(&portBusy)[CYCLE_MAP_SIZE][3], int cycle, int depCycle) { static int scheduleMop(const MacroOp& mop, ExecutionPort::type(&portBusy)[CYCLE_MAP_SIZE][3], int cycle, int depCycle) {
//if this macro-op depends on the previous one, increase the starting cycle if needed
//this handles an explicit dependency chain in IMUL_RCP
if (mop.isDependent()) { if (mop.isDependent()) {
cycle = std::max(cycle, depCycle); cycle = std::max(cycle, depCycle);
} }
//move instructions are eliminated and don't need an execution unit
if (mop.isEliminated()) { if (mop.isEliminated()) {
if (commit) if (commit)
if (TRACE) std::cout << "; (eliminated)" << std::endl; if (TRACE) std::cout << "; (eliminated)" << std::endl;
return cycle; return cycle;
} }
else if (mop.isSimple()) { else if (mop.isSimple()) {
if (mop.getUop1() <= ExecutionPort::P5) { //this macro-op has only one uOP
for (; cycle < CYCLE_MAP_SIZE; ++cycle) { return scheduleUop<commit>(mop.getUop1(), portBusy, cycle);
if (!portBusy[cycle][mop.getUop1() - 1]) {
if (commit) {
if (TRACE) std::cout << "; P" << mop.getUop1() - 1 << " at cycle " << cycle << std::endl;
portBusy[cycle][mop.getUop1() - 1] = mop.getUop1();
}
return cycle;
}
}
}
else if (mop.getUop1() == ExecutionPort::P01) {
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
if (!portBusy[cycle][0]) {
if (commit) {
if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl;
portBusy[cycle][0] = mop.getUop1();
}
return cycle;
}
if (!portBusy[cycle][1]) {
if (commit) {
if (TRACE) std::cout << "; P1 at cycle " << cycle << std::endl;
portBusy[cycle][1] = mop.getUop1();
}
return cycle;
}
}
}
else if (mop.getUop1() == ExecutionPort::P05) {
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
if (!portBusy[cycle][2]) {
if (commit) {
if (TRACE) std::cout << "; P2 at cycle " << cycle << std::endl;
portBusy[cycle][2] = mop.getUop1();
}
return cycle;
}
if (!portBusy[cycle][0]) {
if (commit) {
if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl;
portBusy[cycle][0] = mop.getUop1();
}
return cycle;
}
}
} }
else { else {
//macro-ops with 2 uOPs are scheduled conservatively by requiring both uOPs to execute in the same cycle
for (; cycle < CYCLE_MAP_SIZE; ++cycle) { for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
if (!portBusy[cycle][2]) {
int cycle1 = scheduleUop<false>(mop.getUop1(), portBusy, cycle);
int cycle2 = scheduleUop<false>(mop.getUop2(), portBusy, cycle);
if (cycle1 == cycle2) {
if (commit) { if (commit) {
if (TRACE) std::cout << "; P2 at cycle " << cycle << std::endl; scheduleUop<true>(mop.getUop1(), portBusy, cycle1);
portBusy[cycle][2] = mop.getUop1(); scheduleUop<true>(mop.getUop2(), portBusy, cycle2);
} }
return cycle; return cycle1;
}
if (!portBusy[cycle][0]) {
if (commit) {
if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl;
portBusy[cycle][0] = mop.getUop1();
}
return cycle;
}
if (!portBusy[cycle][1]) {
if (commit) {
if (TRACE) std::cout << "; P1 at cycle " << cycle << std::endl;
portBusy[cycle][1] = mop.getUop1();
}
return cycle;
}
}
}
}
else {
for (; cycle < CYCLE_MAP_SIZE; ++cycle) {
if (!portBusy[cycle][mop.getUop1() - 1] && !portBusy[cycle][mop.getUop2() - 1]) {
if (commit) {
if (TRACE) std::cout << "; P" << mop.getUop1() - 1 << " P" << mop.getUop2() - 1 << " at cycle " << cycle << std::endl;
portBusy[cycle][mop.getUop1() - 1] = mop.getUop1();
portBusy[cycle][mop.getUop2() - 1] = mop.getUop2();
}
return cycle;
} }
} }
} }
if (TRACE) std::cout << "Unable to map operation '" << mop.getName() << "' to execution port (cycle " << cycle << ")" << std::endl;
return -1; return -1;
} }
@ -698,14 +664,14 @@ namespace RandomX {
const DecoderBuffer* decodeBuffer = &DecoderBuffer::Default; const DecoderBuffer* decodeBuffer = &DecoderBuffer::Default;
LightInstruction currentInstruction = LightInstruction::Null; LightInstruction currentInstruction = LightInstruction::Null;
int instrIndex = 0; int macroOpIndex = 0;
int codeSize = 0; int codeSize = 0;
int macroOpCount = 0; int macroOpCount = 0;
int cycle = 0; int cycle = 0;
int depCycle = 0; int depCycle = 0;
int retireCycle = 0; int retireCycle = 0;
bool portsSaturated = false; bool portsSaturated = false;
int outIndex = 0; int programSize = 0;
int mulCount = 0; int mulCount = 0;
int decodeCycle; int decodeCycle;
@ -713,39 +679,40 @@ namespace RandomX {
//Each decode cycle decodes 16 bytes of x86 code. //Each decode cycle decodes 16 bytes of x86 code.
//Since a decode cycle produces on average 3.45 macro-ops and there are only 3 ALU ports, execution ports are always //Since a decode cycle produces on average 3.45 macro-ops and there are only 3 ALU ports, execution ports are always
//saturated first. The cycle limit is present only to guarantee loop termination. //saturated first. The cycle limit is present only to guarantee loop termination.
for (decodeCycle = 0; decodeCycle < RANDOMX_SUPERSCALAR_LATENCY && !portsSaturated && outIndex < RANDOMX_SUPERSCALAR_MAX_SIZE; ++decodeCycle) { //Program size is limited to RANDOMX_SUPERSCALAR_MAX_SIZE instructions.
for (decodeCycle = 0; decodeCycle < RANDOMX_SUPERSCALAR_LATENCY && !portsSaturated && programSize < RANDOMX_SUPERSCALAR_MAX_SIZE; ++decodeCycle) {
//select a fetch/decode configuration //select a decode configuration
decodeBuffer = decodeBuffer->fetchNext(currentInstruction.getType(), decodeCycle, mulCount, gen); decodeBuffer = decodeBuffer->fetchNext(currentInstruction.getType(), decodeCycle, mulCount, gen);
if (TRACE) std::cout << "; ------------- fetch cycle " << cycle << " (" << decodeBuffer->getName() << ")" << std::endl; if (TRACE) std::cout << "; ------------- fetch cycle " << cycle << " (" << decodeBuffer->getName() << ")" << std::endl;
int bufferIndex = 0; int bufferIndex = 0;
//fill all instruction slots in the current fetch/decode buffer //fill all instruction slots in the current decode buffer
while (bufferIndex < decodeBuffer->getSize()) { while (bufferIndex < decodeBuffer->getSize()) {
int topCycle = cycle; int topCycle = cycle;
//if we have created all macro-ops for the current RandomX instruction, create a new instruction //if we have issued all macro-ops for the current RandomX instruction, create a new instruction
if (instrIndex >= currentInstruction.getInfo().getSize()) { if (macroOpIndex >= currentInstruction.getInfo().getSize()) {
if (portsSaturated) if (portsSaturated)
break; break;
//select an instruction so that the first macro-op fits into the current slot
currentInstruction.createForSlot(gen, decodeBuffer->getCounts()[bufferIndex], decodeBuffer->getIndex(), decodeBuffer->getSize() == bufferIndex + 1, bufferIndex == 0); currentInstruction.createForSlot(gen, decodeBuffer->getCounts()[bufferIndex], decodeBuffer->getIndex(), decodeBuffer->getSize() == bufferIndex + 1, bufferIndex == 0);
instrIndex = 0; macroOpIndex = 0;
if (TRACE) std::cout << "; " << currentInstruction.getInfo().getName() << std::endl; if (TRACE) std::cout << "; " << currentInstruction.getInfo().getName() << std::endl;
} }
const MacroOp& mop = currentInstruction.getInfo().getOp(instrIndex); const MacroOp& mop = currentInstruction.getInfo().getOp(macroOpIndex);
if (TRACE) std::cout << mop.getName() << " "; if (TRACE) std::cout << mop.getName() << " ";
//calculate the earliest cycle when this macro-op (all of its uOPs) can be scheduled for execution //calculate the earliest cycle when this macro-op (all of its uOPs) can be scheduled for execution
int scheduleCycle = scheduleUop<false>(mop, portBusy, cycle, depCycle); int scheduleCycle = scheduleMop<false>(mop, portBusy, cycle, depCycle);
if (scheduleCycle < 0) { if (scheduleCycle < 0) {
if (TRACE) std::cout << "; Failed at cycle " << cycle << std::endl; /*if (TRACE)*/ std::cout << "Unable to map operation '" << mop.getName() << "' to execution port (cycle " << cycle << ")" << std::endl;
return 0; return 0;
} }
//find a source register (if applicable) that will be ready when this instruction executes //find a source register (if applicable) that will be ready when this instruction executes
if (instrIndex == currentInstruction.getInfo().getSrcOp()) { if (macroOpIndex == currentInstruction.getInfo().getSrcOp()) {
int forward; int forward;
//if no suitable operand is ready, look up to LOOK_FORWARD_CYCLES forward //if no suitable operand is ready, look up to LOOK_FORWARD_CYCLES forward
for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectSource(scheduleCycle, registers, gen); ++forward) { for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectSource(scheduleCycle, registers, gen); ++forward) {
@ -755,14 +722,14 @@ namespace RandomX {
} }
//if no register was found, throw the instruction away and try another one //if no register was found, throw the instruction away and try another one
if (forward == LOOK_FORWARD_CYCLES) { if (forward == LOOK_FORWARD_CYCLES) {
instrIndex = currentInstruction.getInfo().getSize(); macroOpIndex = currentInstruction.getInfo().getSize();
if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl; if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl;
continue; continue;
} }
if (TRACE) std::cout << "; src = r" << currentInstruction.getSource() << std::endl; if (TRACE) std::cout << "; src = r" << currentInstruction.getSource() << std::endl;
} }
//find a destination register that will be ready when this instruction executes //find a destination register that will be ready when this instruction executes
if (instrIndex == currentInstruction.getInfo().getDstOp()) { if (macroOpIndex == currentInstruction.getInfo().getDstOp()) {
int forward; int forward;
for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectDestination(scheduleCycle, registers, gen); ++forward) { for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectDestination(scheduleCycle, registers, gen); ++forward) {
if (TRACE) std::cout << "; dst STALL at cycle " << cycle << std::endl; if (TRACE) std::cout << "; dst STALL at cycle " << cycle << std::endl;
@ -770,14 +737,14 @@ namespace RandomX {
++cycle; ++cycle;
} }
if (forward == LOOK_FORWARD_CYCLES) { //throw instruction away if (forward == LOOK_FORWARD_CYCLES) { //throw instruction away
instrIndex = currentInstruction.getInfo().getSize(); macroOpIndex = currentInstruction.getInfo().getSize();
if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl; if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl;
continue; continue;
} }
if (TRACE) std::cout << "; dst = r" << currentInstruction.getDestination() << std::endl; if (TRACE) std::cout << "; dst = r" << currentInstruction.getDestination() << std::endl;
} }
//recalculate when the instruction can be scheduled for execution based on operand availability //recalculate when the instruction can be scheduled for execution based on operand availability
scheduleCycle = scheduleUop<true>(mop, portBusy, scheduleCycle, scheduleCycle); scheduleCycle = scheduleMop<true>(mop, portBusy, scheduleCycle, scheduleCycle);
//calculate when the result will be ready //calculate when the result will be ready
depCycle = scheduleCycle + mop.getLatency(); depCycle = scheduleCycle + mop.getLatency();
@ -785,8 +752,8 @@ namespace RandomX {
//if this instruction writes the result, modify register information //if this instruction writes the result, modify register information
// RegisterInfo.latency - which cycle the register will be ready // RegisterInfo.latency - which cycle the register will be ready
// RegisterInfo.lastOpGroup - the last operation that was applied to the register // RegisterInfo.lastOpGroup - the last operation that was applied to the register
// RegisterInfo.lastOpPar - the last operation parameter // RegisterInfo.lastOpPar - the last operation source value (-1 = constant, 0-7 = register)
if (instrIndex == currentInstruction.getInfo().getResultOp()) { if (macroOpIndex == currentInstruction.getInfo().getResultOp()) {
int dst = currentInstruction.getDestination(); int dst = currentInstruction.getDestination();
RegisterInfo& ri = registers[dst]; RegisterInfo& ri = registers[dst];
retireCycle = depCycle; retireCycle = depCycle;
@ -797,7 +764,7 @@ namespace RandomX {
} }
codeSize += mop.getSize(); codeSize += mop.getSize();
bufferIndex++; bufferIndex++;
instrIndex++; macroOpIndex++;
macroOpCount++; macroOpCount++;
//terminating condition //terminating condition
@ -807,9 +774,9 @@ namespace RandomX {
cycle = topCycle; cycle = topCycle;
//when all macro-ops of the current instruction have been issued, add the instruction into the program //when all macro-ops of the current instruction have been issued, add the instruction into the program
if (instrIndex >= currentInstruction.getInfo().getSize()) { if (macroOpIndex >= currentInstruction.getInfo().getSize()) {
currentInstruction.toInstr(prog(outIndex++)); currentInstruction.toInstr(prog(programSize++));
mulCount += isMul(currentInstruction.getType()); mulCount += isMultiplication(currentInstruction.getType());
} }
} }
++cycle; ++cycle;
@ -820,12 +787,12 @@ namespace RandomX {
int portCycles = 0; int portCycles = 0;
for (int i = 0; i < CYCLE_MAP_SIZE; ++i) { for (int i = 0; i < CYCLE_MAP_SIZE; ++i) {
std::cout << "; " << std::setw(3) << i << " "; //std::cout << "; " << std::setw(3) << i << " ";
for (int j = 0; j < 3; ++j) { for (int j = 0; j < 3; ++j) {
std::cout << (portBusy[i][j] ? '*' : '_'); //std::cout << (portBusy[i][j] ? '*' : '_');
portCycles += !!portBusy[i][j]; portCycles += !!portBusy[i][j];
} }
std::cout << std::endl; //std::cout << std::endl;
} }
double ipc = (macroOpCount / (double)retireCycle); double ipc = (macroOpCount / (double)retireCycle);
@ -833,7 +800,7 @@ namespace RandomX {
if (INFO) std::cout << "; code size " << codeSize << " bytes" << std::endl; if (INFO) std::cout << "; code size " << codeSize << " bytes" << std::endl;
if (INFO) std::cout << "; x86 macro-ops: " << macroOpCount << std::endl; if (INFO) std::cout << "; x86 macro-ops: " << macroOpCount << std::endl;
if (INFO) std::cout << "; fetch cycles: " << decodeCycle << std::endl; if (INFO) std::cout << "; fetch cycles: " << decodeCycle << std::endl;
if (INFO) std::cout << "; RandomX instructions: " << outIndex << std::endl; if (INFO) std::cout << "; RandomX instructions: " << programSize << std::endl;
if (INFO) std::cout << "; Execution time: " << retireCycle << " cycles" << std::endl; if (INFO) std::cout << "; Execution time: " << retireCycle << " cycles" << std::endl;
if (INFO) std::cout << "; IPC = " << ipc << std::endl; if (INFO) std::cout << "; IPC = " << ipc << std::endl;
if (INFO) std::cout << "; Port-cycles: " << portCycles << std::endl; if (INFO) std::cout << "; Port-cycles: " << portCycles << std::endl;
@ -844,7 +811,7 @@ namespace RandomX {
//Calculate ASIC latency: //Calculate ASIC latency:
//Assumes 1 cycle latency for all operations and unlimited parallelization. //Assumes 1 cycle latency for all operations and unlimited parallelization.
for (int i = 0; i < outIndex; ++i) { for (int i = 0; i < programSize; ++i) {
Instruction& instr = prog(i); Instruction& instr = prog(i);
int latDst = asicLatency[instr.dst] + 1; int latDst = asicLatency[instr.dst] + 1;
int latSrc = instr.dst != instr.src ? asicLatency[instr.src] + 1 : 0; int latSrc = instr.dst != instr.src ? asicLatency[instr.src] + 1 : 0;
@ -874,8 +841,8 @@ namespace RandomX {
} }
} }
prog.setSize(outIndex); prog.setSize(programSize);
prog.setAddressRegister(addressReg); prog.setAddressRegister(addressReg);
return outIndex; return ipc;
} }
} }

View file

@ -22,7 +22,7 @@ along with RandomX. If not, see<http://www.gnu.org/licenses/>.
namespace RandomX { namespace RandomX {
// Intel Ivy Bridge reference // Intel Ivy Bridge reference
namespace LightInstructionType { //uOPs (decode) execution ports latency code size namespace SuperscalarInstructionType { //uOPs (decode) execution ports latency code size
constexpr int ISUB_R = 0; //1 p015 1 3 constexpr int ISUB_R = 0; //1 p015 1 3
constexpr int IXOR_R = 1; //1 p015 1 3 constexpr int IXOR_R = 1; //1 p015 1 3
constexpr int IADD_RS = 2; //1 p01 1 4 constexpr int IADD_RS = 2; //1 p01 1 4