mirror of
				https://git.wownero.com/wownero/RandomWOW.git
				synced 2024-08-15 00:23:14 +00:00 
			
		
		
		
	Code generator refactoring
This commit is contained in:
		
							parent
							
								
									37ff37cd11
								
							
						
					
					
						commit
						24a22c6b54
					
				
					 3 changed files with 187 additions and 223 deletions
				
			
		|  | @ -31,40 +31,10 @@ along with RandomX.  If not, see<http://www.gnu.org/licenses/>. | |||
| 
 | ||||
| namespace RandomX { | ||||
| 
 | ||||
| 	namespace LightInstructionOpcode { | ||||
| 		constexpr int IADD_RS = 0; | ||||
| 		constexpr int IADD_RC = RANDOMX_FREQ_IADD_RS + RANDOMX_FREQ_IADD_M; | ||||
| 		constexpr int ISUB_R = IADD_RC + RANDOMX_FREQ_IADD_RC; | ||||
| 		constexpr int IMUL_9C = ISUB_R + RANDOMX_FREQ_ISUB_R + RANDOMX_FREQ_ISUB_M; | ||||
| 		constexpr int IMUL_R = IMUL_9C + RANDOMX_FREQ_IMUL_9C; | ||||
| 		constexpr int IMULH_R = IMUL_R + RANDOMX_FREQ_IMUL_R + RANDOMX_FREQ_IMUL_M; | ||||
| 		constexpr int ISMULH_R = IMULH_R + RANDOMX_FREQ_IMULH_R + RANDOMX_FREQ_IMULH_M; | ||||
| 		constexpr int IMUL_RCP = ISMULH_R + RANDOMX_FREQ_ISMULH_R + RANDOMX_FREQ_ISMULH_M; | ||||
| 		constexpr int IXOR_R = IMUL_RCP + RANDOMX_FREQ_IMUL_RCP + RANDOMX_FREQ_INEG_R; | ||||
| 		constexpr int IROR_R = IXOR_R + RANDOMX_FREQ_IXOR_R + RANDOMX_FREQ_IXOR_M; | ||||
| 		constexpr int COND_R = IROR_R + RANDOMX_FREQ_IROR_R + RANDOMX_FREQ_IROL_R + RANDOMX_FREQ_ISWAP_R + RANDOMX_FREQ_FSWAP_R + RANDOMX_FREQ_FADD_R + RANDOMX_FREQ_FADD_M + RANDOMX_FREQ_FSUB_R + RANDOMX_FREQ_FSUB_M + RANDOMX_FREQ_FSCAL_R + RANDOMX_FREQ_FMUL_R + RANDOMX_FREQ_FDIV_M + RANDOMX_FREQ_FSQRT_R; | ||||
| 	} | ||||
| 
 | ||||
| 	static bool isMul(int type) { | ||||
| 		return type == LightInstructionType::IMUL_R || type == LightInstructionType::IMULH_R || type == LightInstructionType::ISMULH_R || type == LightInstructionType::IMUL_RCP; | ||||
| 	} | ||||
| 
 | ||||
| 	const int lightInstructionOpcode[] = { | ||||
| 		LightInstructionOpcode::IADD_RS, | ||||
| 		LightInstructionOpcode::ISUB_R,    //ISUB_R
 | ||||
| 		LightInstructionOpcode::ISUB_R,    //ISUB_R
 | ||||
| 		LightInstructionOpcode::IMUL_R,    //IMUL_R
 | ||||
| 		LightInstructionOpcode::IMUL_R,    //IMUL_C
 | ||||
| 		LightInstructionOpcode::IMULH_R, | ||||
| 		LightInstructionOpcode::ISMULH_R, | ||||
| 		LightInstructionOpcode::IMUL_RCP, | ||||
| 		LightInstructionOpcode::IXOR_R,    //IXOR_R
 | ||||
| 		LightInstructionOpcode::IXOR_R,    //IXOR_C
 | ||||
| 		LightInstructionOpcode::IROR_R,    //IROR_R
 | ||||
| 		LightInstructionOpcode::IROR_R,    //IROR_C
 | ||||
| 		LightInstructionOpcode::COND_R | ||||
| 	}; | ||||
| 
 | ||||
| 	namespace ExecutionPort { | ||||
| 		using type = int; | ||||
| 		constexpr type Null = 0; | ||||
|  | @ -144,31 +114,11 @@ namespace RandomX { | |||
| 		bool isDependent() const { | ||||
| 			return dependent_; | ||||
| 		} | ||||
| 		int getCycle() const { | ||||
| 			return cycle_; | ||||
| 		} | ||||
| 		void setCycle(int cycle) { | ||||
| 			cycle_ = cycle; | ||||
| 		} | ||||
| 		MacroOp* getSrcDep() const { | ||||
| 			return depSrc_; | ||||
| 		} | ||||
| 		void setSrcDep(MacroOp* src) { | ||||
| 			depSrc_ = src; | ||||
| 		} | ||||
| 		MacroOp* getDstDep() const { | ||||
| 			return depDst_; | ||||
| 		} | ||||
| 		void setDstDep(MacroOp* dst) { | ||||
| 			depDst_ = dst; | ||||
| 		} | ||||
| 		static const MacroOp Add_rr; | ||||
| 		static const MacroOp Add_ri; | ||||
| 		static const MacroOp Lea_sib; | ||||
| 		static const MacroOp Sub_rr; | ||||
| 		static const MacroOp Sub_ri; | ||||
| 		static const MacroOp Imul_rr; | ||||
| 		static const MacroOp Imul_rri; | ||||
| 		static const MacroOp Imul_r; | ||||
| 		static const MacroOp Mul_r; | ||||
| 		static const MacroOp Mov_rr; | ||||
|  | @ -193,21 +143,28 @@ namespace RandomX { | |||
| 		MacroOp* depSrc_ = nullptr; | ||||
| 	}; | ||||
| 
 | ||||
| 	//Size: 3 bytes
 | ||||
| 	const MacroOp MacroOp::Add_rr = MacroOp("add r,r", 3, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Add_ri = MacroOp("add r,i", 7, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Lea_sib = MacroOp("lea r,r+r*s", 4, 1, ExecutionPort::P01); | ||||
| 	const MacroOp MacroOp::Sub_rr = MacroOp("sub r,r", 3, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Sub_ri = MacroOp("sub r,i", 7, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Imul_rr = MacroOp("imul r,r", 4, 3, ExecutionPort::P1); | ||||
| 	const MacroOp MacroOp::Imul_rri = MacroOp("imul r,r,i", 7, 3, ExecutionPort::P1); | ||||
| 	const MacroOp MacroOp::Xor_rr = MacroOp("xor r,r", 3, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Imul_r = MacroOp("imul r", 3, 4, ExecutionPort::P1, ExecutionPort::P5); | ||||
| 	const MacroOp MacroOp::Mul_r = MacroOp("mul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5); | ||||
| 	const MacroOp MacroOp::Mov_rr = MacroOp("mov r,r", 3); | ||||
| 	const MacroOp MacroOp::Mov_ri64 = MacroOp("mov rax,i64", 10, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Xor_rr = MacroOp("xor r,r", 3, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Xor_ri = MacroOp("xor r,i", 7, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Ror_rcl = MacroOp("ror r,cl", 3, 1, ExecutionPort::P0, ExecutionPort::P5); | ||||
| 
 | ||||
| 	//Size: 4 bytes
 | ||||
| 	const MacroOp MacroOp::Lea_sib = MacroOp("lea r,r+r*s", 4, 1, ExecutionPort::P01); | ||||
| 	const MacroOp MacroOp::Imul_rr = MacroOp("imul r,r", 4, 3, ExecutionPort::P1); | ||||
| 	const MacroOp MacroOp::Ror_ri = MacroOp("ror r,i", 4, 1, ExecutionPort::P05); | ||||
| 
 | ||||
| 	//Size: 7 bytes (can be optionally padded with nop to 8 or 9 bytes)
 | ||||
| 	const MacroOp MacroOp::Add_ri = MacroOp("add r,i", 7, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Xor_ri = MacroOp("xor r,i", 7, 1, ExecutionPort::P015); | ||||
| 
 | ||||
| 	//Size: 10 bytes
 | ||||
| 	const MacroOp MacroOp::Mov_ri64 = MacroOp("mov rax,i64", 10, 1, ExecutionPort::P015); | ||||
| 
 | ||||
| 	//Unused:
 | ||||
| 	const MacroOp MacroOp::Ror_rcl = MacroOp("ror r,cl", 3, 1, ExecutionPort::P0, ExecutionPort::P5); | ||||
| 	const MacroOp MacroOp::Xor_self = MacroOp("xor rcx,rcx", 3); | ||||
| 	const MacroOp MacroOp::Cmp_ri = MacroOp("cmp r,i", 7, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Setcc_r = MacroOp("setcc cl", 3, 1, ExecutionPort::P05); | ||||
|  | @ -216,36 +173,9 @@ namespace RandomX { | |||
| 	const MacroOp IMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Mul_r, MacroOp::Mov_rr }; | ||||
| 	const MacroOp ISMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Imul_r, MacroOp::Mov_rr }; | ||||
| 	const MacroOp IMUL_RCP_ops_array[] = { MacroOp::Mov_ri64, MacroOp(MacroOp::Imul_rr, true) }; | ||||
| 	const MacroOp IROR_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Ror_rcl }; | ||||
| 	const MacroOp COND_R_ops_array[] = { MacroOp::Add_ri, MacroOp(MacroOp::TestJz_fused, true), MacroOp::Xor_self, MacroOp::Cmp_ri, MacroOp(MacroOp::Setcc_r, true), MacroOp(MacroOp::Add_rr, true) }; | ||||
| 
 | ||||
| 
 | ||||
| 	class LightInstructionInfo { | ||||
| 	public: | ||||
| 		LightInstructionInfo(const char* name, int type, const MacroOp& op, int srcOp) | ||||
| 			: name_(name), type_(type), latency_(op.getLatency()), srcOp_(srcOp) { | ||||
| 			ops_.push_back(MacroOp(op)); | ||||
| 		} | ||||
| 		template <size_t N> | ||||
| 		LightInstructionInfo(const char* name, int type, const MacroOp(&arr)[N], int resultOp, int dstOp, int srcOp) | ||||
| 			: name_(name), type_(type), latency_(0), resultOp_(resultOp), dstOp_(dstOp), srcOp_(srcOp) { | ||||
| 			for (unsigned i = 0; i < N; ++i) { | ||||
| 				ops_.push_back(MacroOp(arr[i])); | ||||
| 				latency_ += ops_.back().getLatency(); | ||||
| 			} | ||||
| 			static_assert(N > 1, "Invalid array size"); | ||||
| 		} | ||||
| 		template <size_t N> | ||||
| 		LightInstructionInfo(const char* name, int type, const MacroOp*(&arr)[N], int latency, int resultOp, int dstOp, int srcOp) | ||||
| 			: name_(name), type_(type), latency_(latency), resultOp_(resultOp), dstOp_(dstOp), srcOp_(srcOp) { | ||||
| 			for (unsigned i = 0; i < N; ++i) { | ||||
| 				ops_.push_back(MacroOp(arr[i])); | ||||
| 				if (arr[i].isDependent()) { | ||||
| 					ops_[i].setSrcDep(&ops_[i - 1]); | ||||
| 				} | ||||
| 			} | ||||
| 			static_assert(N > 1, "Invalid array size"); | ||||
| 		} | ||||
| 		const char* getName() const { | ||||
| 			return name_; | ||||
| 		} | ||||
|  | @ -258,7 +188,7 @@ namespace RandomX { | |||
| 		int getLatency() const { | ||||
| 			return latency_; | ||||
| 		} | ||||
| 		MacroOp& getOp(int index) { | ||||
| 		const MacroOp& getOp(int index) const { | ||||
| 			return ops_[index]; | ||||
| 		} | ||||
| 		int getType() const { | ||||
|  | @ -299,6 +229,19 @@ namespace RandomX { | |||
| 
 | ||||
| 		LightInstructionInfo(const char* name) | ||||
| 			: name_(name), type_(-1), latency_(0) {} | ||||
| 		LightInstructionInfo(const char* name, int type, const MacroOp& op, int srcOp) | ||||
| 			: name_(name), type_(type), latency_(op.getLatency()), srcOp_(srcOp) { | ||||
| 			ops_.push_back(MacroOp(op)); | ||||
| 		} | ||||
| 		template <size_t N> | ||||
| 		LightInstructionInfo(const char* name, int type, const MacroOp(&arr)[N], int resultOp, int dstOp, int srcOp) | ||||
| 			: name_(name), type_(type), latency_(0), resultOp_(resultOp), dstOp_(dstOp), srcOp_(srcOp) { | ||||
| 			for (unsigned i = 0; i < N; ++i) { | ||||
| 				ops_.push_back(MacroOp(arr[i])); | ||||
| 				latency_ += ops_.back().getLatency(); | ||||
| 			} | ||||
| 			static_assert(N > 1, "Invalid array size"); | ||||
| 		} | ||||
| 	}; | ||||
| 
 | ||||
| 	const LightInstructionInfo LightInstructionInfo::ISUB_R = LightInstructionInfo("ISUB_R", LightInstructionType::ISUB_R, MacroOp::Sub_rr, 0); | ||||
|  | @ -320,13 +263,6 @@ namespace RandomX { | |||
| 	 | ||||
| 	const LightInstructionInfo LightInstructionInfo::NOP = LightInstructionInfo("NOP"); | ||||
| 
 | ||||
| 	const int buffer0[] = { 4, 8, 4 }; | ||||
| 	const int buffer1[] = { 7, 3, 3, 3 }; | ||||
| 	const int buffer2[] = { 3, 7, 3, 3 }; | ||||
| 	const int buffer3[] = { 4, 9, 3 }; | ||||
| 	const int buffer4[] = { 4, 4, 4, 4 }; | ||||
| 	const int buffer5[] = { 3, 3, 10 }; | ||||
| 
 | ||||
| 	class DecoderBuffer { | ||||
| 	public: | ||||
| 		static const DecoderBuffer Default; | ||||
|  | @ -346,13 +282,22 @@ namespace RandomX { | |||
| 			return name_; | ||||
| 		} | ||||
| 		const DecoderBuffer* fetchNext(int instrType, int cycle, int mulCount, Blake2Generator& gen) const { | ||||
| 			//If the current RandomX instruction is "IMULH", the next fetch configuration must be 3-3-10
 | ||||
| 			//because the full 128-bit multiplication instruction is 3 bytes long and decodes to 2 uOPs on Intel CPUs.
 | ||||
| 			//Intel CPUs can decode at most 4 uOPs per cycle, so this requires a 2-1-1 configuration for a total of 3 macro ops.
 | ||||
| 			if (instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R) | ||||
| 				return &decodeBuffer3310; //2-1-1 decode
 | ||||
| 				return &decodeBuffer3310; | ||||
| 
 | ||||
| 			//To make sure that the multiplication port is saturated, a 4-4-4-4 configuration is generated if the number of multiplications
 | ||||
| 			//is lower than the number of cycles.
 | ||||
| 			if (mulCount < cycle + 1) | ||||
| 				return &decodeBuffer4444; | ||||
| 			if (index_ == 5) { //IMUL_RCP end
 | ||||
| 
 | ||||
| 			//If the current RandomX instruction is "IMUL_RCP", the next buffer must begin with a 4-byte slot for multiplication.
 | ||||
| 			if(instrType == LightInstructionType::IMUL_RCP) | ||||
| 				return (gen.getByte() & 1) ? &decodeBuffer484 : &decodeBuffer493; | ||||
| 			} | ||||
| 
 | ||||
| 			//Default: select a random fetch configuration.
 | ||||
| 			return fetchNextDefault(gen); | ||||
| 		} | ||||
| 	private: | ||||
|  | @ -373,6 +318,16 @@ namespace RandomX { | |||
| 		} | ||||
| 	}; | ||||
| 
 | ||||
| 	//these are some of the options how to split a 16-byte window into 3 or 4 x86 instructions.
 | ||||
| 	//RandomX uses instructions with a native size of 3 (sub, xor, mul, mov), 4 (lea, mul), 7 (xor, add immediate) or 10 bytes (mov 64-bit immediate).
 | ||||
| 	//Slots with sizes of 8 or 9 bytes need to be padded with a nop instruction.
 | ||||
| 	const int buffer0[] = { 4, 8, 4 }; | ||||
| 	const int buffer1[] = { 7, 3, 3, 3 }; | ||||
| 	const int buffer2[] = { 3, 7, 3, 3 }; | ||||
| 	const int buffer3[] = { 4, 9, 3 }; | ||||
| 	const int buffer4[] = { 4, 4, 4, 4 }; | ||||
| 	const int buffer5[] = { 3, 3, 10 }; | ||||
| 
 | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer484 = DecoderBuffer("4,8,4", 0, buffer0); | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer7333 = DecoderBuffer("7,3,3,3", 1, buffer1); | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer3733 = DecoderBuffer("3,7,3,3", 2, buffer2); | ||||
|  | @ -401,7 +356,6 @@ namespace RandomX { | |||
| 		int index; | ||||
| 		if (availableRegisters.size() == 0) | ||||
| 			return false; | ||||
| 			//throw std::runtime_error("No available registers");
 | ||||
| 
 | ||||
| 		if (availableRegisters.size() > 1) { | ||||
| 			index = gen.getInt32() % availableRegisters.size(); | ||||
|  | @ -423,131 +377,136 @@ namespace RandomX { | |||
| 			instr.setImm32(imm32_); | ||||
| 		} | ||||
| 
 | ||||
| 		static LightInstruction createForSlot(Blake2Generator& gen, int slotSize, int fetchType, bool isLast, bool isFirst) { | ||||
| 		void createForSlot(Blake2Generator& gen, int slotSize, int fetchType, bool isLast, bool isFirst) { | ||||
| 			switch (slotSize) | ||||
| 			{ | ||||
| 			case 3: | ||||
| 				if (isLast) { | ||||
| 					return create(slot_3L[gen.getByte() & 3], gen); | ||||
| 					create(slot_3L[gen.getByte() & 3], gen); | ||||
| 				} | ||||
| 				else { | ||||
| 					return create(slot_3[gen.getByte() & 1], gen); | ||||
| 					create(slot_3[gen.getByte() & 1], gen); | ||||
| 				} | ||||
| 				break; | ||||
| 			case 4: | ||||
| 				if (fetchType == 4 && !isLast) { | ||||
| 					return create(&LightInstructionInfo::IMUL_R, gen); | ||||
| 					create(&LightInstructionInfo::IMUL_R, gen); | ||||
| 				} | ||||
| 				else { | ||||
| 					return create(slot_4[gen.getByte() & 1], gen); | ||||
| 					create(slot_4[gen.getByte() & 1], gen); | ||||
| 				} | ||||
| 				break; | ||||
| 			case 7: | ||||
| 				return create(slot_7[gen.getByte() & 1], gen); | ||||
| 				create(slot_7[gen.getByte() & 1], gen); | ||||
| 				break; | ||||
| 			case 8: | ||||
| 				return create(slot_8[gen.getByte() & 1], gen); | ||||
| 				create(slot_8[gen.getByte() & 1], gen); | ||||
| 				break; | ||||
| 			case 9: | ||||
| 				return create(slot_9[gen.getByte() & 1], gen); | ||||
| 				create(slot_9[gen.getByte() & 1], gen); | ||||
| 				break; | ||||
| 			case 10: | ||||
| 				return create(slot_10, gen); | ||||
| 				create(slot_10, gen); | ||||
| 				break; | ||||
| 			default: | ||||
| 				throw std::runtime_error("Invalid slot"); | ||||
| 				UNREACHABLE; | ||||
| 			} | ||||
| 		} | ||||
| 
 | ||||
| 		static LightInstruction create(const LightInstructionInfo* info, Blake2Generator& gen) { | ||||
| 			LightInstruction li(info); | ||||
| 		void create(const LightInstructionInfo* info, Blake2Generator& gen) { | ||||
| 			info_ = info; | ||||
| 			reset(); | ||||
| 			switch (info->getType()) | ||||
| 			{ | ||||
| 			case LightInstructionType::ISUB_R: { | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = 0; | ||||
| 				li.opGroup_ = LightInstructionType::IADD_RS; | ||||
| 				li.groupParIsSource_ = true; | ||||
| 				mod_ = 0; | ||||
| 				imm32_ = 0; | ||||
| 				opGroup_ = LightInstructionType::IADD_RS; | ||||
| 				groupParIsSource_ = true; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IXOR_R: { | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = 0; | ||||
| 				li.opGroup_ = LightInstructionType::IXOR_R; | ||||
| 				li.groupParIsSource_ = true; | ||||
| 				mod_ = 0; | ||||
| 				imm32_ = 0; | ||||
| 				opGroup_ = LightInstructionType::IXOR_R; | ||||
| 				groupParIsSource_ = true; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IADD_RS: { | ||||
| 				li.mod_ = gen.getByte(); | ||||
| 				li.imm32_ = 0; | ||||
| 				li.opGroup_ = LightInstructionType::IADD_RS; | ||||
| 				li.groupParIsSource_ = true; | ||||
| 				mod_ = gen.getByte(); | ||||
| 				imm32_ = 0; | ||||
| 				opGroup_ = LightInstructionType::IADD_RS; | ||||
| 				groupParIsSource_ = true; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IMUL_R: { | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = 0; | ||||
| 				li.opGroup_ = LightInstructionType::IMUL_R; | ||||
| 				li.opGroupPar_ = -1; //TODO
 | ||||
| 				mod_ = 0; | ||||
| 				imm32_ = 0; | ||||
| 				opGroup_ = LightInstructionType::IMUL_R; | ||||
| 				opGroupPar_ = -1; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IROR_C: { | ||||
| 				li.mod_ = 0; | ||||
| 				mod_ = 0; | ||||
| 				do { | ||||
| 					li.imm32_ = gen.getByte() & 63; | ||||
| 				} while (li.imm32_ == 0); | ||||
| 				li.opGroup_ = LightInstructionType::IROR_C; | ||||
| 				li.opGroupPar_ = -1; | ||||
| 					imm32_ = gen.getByte() & 63; | ||||
| 				} while (imm32_ == 0); | ||||
| 				opGroup_ = LightInstructionType::IROR_C; | ||||
| 				opGroupPar_ = -1; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IADD_C7: | ||||
| 			case LightInstructionType::IADD_C8: | ||||
| 			case LightInstructionType::IADD_C9: { | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = gen.getInt32(); | ||||
| 				li.opGroup_ = LightInstructionType::IADD_C7; | ||||
| 				li.opGroupPar_ = -1; | ||||
| 				mod_ = 0; | ||||
| 				imm32_ = gen.getInt32(); | ||||
| 				opGroup_ = LightInstructionType::IADD_C7; | ||||
| 				opGroupPar_ = -1; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IXOR_C7: | ||||
| 			case LightInstructionType::IXOR_C8: | ||||
| 			case LightInstructionType::IXOR_C9: { | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = gen.getInt32(); | ||||
| 				li.opGroup_ = LightInstructionType::IXOR_C7; | ||||
| 				li.opGroupPar_ = -1; | ||||
| 				mod_ = 0; | ||||
| 				imm32_ = gen.getInt32(); | ||||
| 				opGroup_ = LightInstructionType::IXOR_C7; | ||||
| 				opGroupPar_ = -1; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IMULH_R: { | ||||
| 				li.canReuse_ = true; | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = 0; | ||||
| 				li.opGroup_ = LightInstructionType::IMULH_R; | ||||
| 				li.opGroupPar_ = gen.getInt32(); | ||||
| 				canReuse_ = true; | ||||
| 				mod_ = 0; | ||||
| 				imm32_ = 0; | ||||
| 				opGroup_ = LightInstructionType::IMULH_R; | ||||
| 				opGroupPar_ = gen.getInt32(); | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::ISMULH_R: { | ||||
| 				li.canReuse_ = true; | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = 0; | ||||
| 				li.opGroup_ = LightInstructionType::ISMULH_R; | ||||
| 				li.opGroupPar_ = gen.getInt32(); | ||||
| 				canReuse_ = true; | ||||
| 				mod_ = 0; | ||||
| 				imm32_ = 0; | ||||
| 				opGroup_ = LightInstructionType::ISMULH_R; | ||||
| 				opGroupPar_ = gen.getInt32(); | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IMUL_RCP: { | ||||
| 				li.mod_ = 0; | ||||
| 				mod_ = 0; | ||||
| 				do { | ||||
| 					li.imm32_ = gen.getInt32(); | ||||
| 				} while ((li.imm32_ & (li.imm32_ - 1)) == 0); | ||||
| 				li.opGroup_ = LightInstructionType::IMUL_RCP; | ||||
| 				li.opGroupPar_ = -1; | ||||
| 					imm32_ = gen.getInt32(); | ||||
| 				} while ((imm32_ & (imm32_ - 1)) == 0); | ||||
| 				opGroup_ = LightInstructionType::IMUL_RCP; | ||||
| 				opGroupPar_ = -1; | ||||
| 			} break; | ||||
| 
 | ||||
| 			default: | ||||
| 				break; | ||||
| 			} | ||||
| 
 | ||||
| 			return li; | ||||
| 		} | ||||
| 
 | ||||
| 		bool selectDestination(int cycle, RegisterInfo (®isters)[8], Blake2Generator& gen) { | ||||
| 			std::vector<int> availableRegisters; | ||||
| 			for (unsigned i = 0; i < 8; ++i) { | ||||
| 				if (registers[i].latency <= cycle && (canReuse_ || i != src_) && (registers[i].lastOpGroup != opGroup_ || registers[i].lastOpPar != opGroupPar_) && (info_.getType() != LightInstructionType::IADD_RS || i != 5)) | ||||
| 				if (registers[i].latency <= cycle && (canReuse_ || i != src_) && (registers[i].lastOpGroup != opGroup_ || registers[i].lastOpPar != opGroupPar_) && (info_->getType() != LightInstructionType::IADD_RS || i != 5)) | ||||
| 					availableRegisters.push_back(i); | ||||
| 			} | ||||
| 			return selectRegister(availableRegisters, gen, dst_); | ||||
|  | @ -559,7 +518,7 @@ namespace RandomX { | |||
| 				if (registers[i].latency <= cycle) | ||||
| 					availableRegisters.push_back(i); | ||||
| 			} | ||||
| 			if (availableRegisters.size() == 2 && info_.getType() == LightInstructionType::IADD_RS) { | ||||
| 			if (availableRegisters.size() == 2 && info_->getType() == LightInstructionType::IADD_RS) { | ||||
| 				if (availableRegisters[0] == 5 || availableRegisters[1] == 5) { | ||||
| 					opGroupPar_ = src_ = 5; | ||||
| 					return true; | ||||
|  | @ -574,7 +533,7 @@ namespace RandomX { | |||
| 		} | ||||
| 
 | ||||
| 		int getType() { | ||||
| 			return info_.getType(); | ||||
| 			return info_->getType(); | ||||
| 		} | ||||
| 		int getSource() { | ||||
| 			return src_; | ||||
|  | @ -589,14 +548,14 @@ namespace RandomX { | |||
| 			return opGroupPar_; | ||||
| 		} | ||||
| 
 | ||||
| 		LightInstructionInfo& getInfo() { | ||||
| 			return info_; | ||||
| 		const LightInstructionInfo& getInfo() const { | ||||
| 			return *info_; | ||||
| 		} | ||||
| 
 | ||||
| 		static const LightInstruction Null; | ||||
| 
 | ||||
| 	private: | ||||
| 		LightInstructionInfo info_; | ||||
| 		const LightInstructionInfo* info_; | ||||
| 		int src_ = -1; | ||||
| 		int dst_ = -1; | ||||
| 		int mod_; | ||||
|  | @ -606,24 +565,20 @@ namespace RandomX { | |||
| 		bool canReuse_ = false; | ||||
| 		bool groupParIsSource_ = false; | ||||
| 
 | ||||
| 		LightInstruction(const LightInstructionInfo* info) : info_(*info) { | ||||
| 			for (unsigned i = 0; i < info_.getSize(); ++i) { | ||||
| 				MacroOp& mop = info_.getOp(i); | ||||
| 				if (mop.isDependent()) { | ||||
| 					mop.setSrcDep(&info_.getOp(i - 1)); | ||||
| 				} | ||||
| 			} | ||||
| 		void reset() { | ||||
| 			src_ = dst_ = -1; | ||||
| 			canReuse_ = groupParIsSource_ = false; | ||||
| 		} | ||||
| 
 | ||||
| 		LightInstruction(const LightInstructionInfo* info) : info_(info) { | ||||
| 		} | ||||
| 	}; | ||||
| 
 | ||||
| 	const LightInstruction LightInstruction::Null = LightInstruction(&LightInstructionInfo::NOP); | ||||
| 
 | ||||
| 	constexpr int ALU_COUNT_MUL = 1; | ||||
| 	constexpr int ALU_COUNT = 3; | ||||
| 	constexpr int LIGHT_OPCODE_BITS = 4; | ||||
| 	constexpr int V4_SRC_INDEX_BITS = 3; | ||||
| 	constexpr int V4_DST_INDEX_BITS = 3; | ||||
| 	constexpr int CYCLE_MAP_SIZE = RANDOMX_LPROG_LATENCY + 3; | ||||
| 	constexpr int CYCLE_MAP_SIZE = RANDOMX_SUPERSCALAR_LATENCY + 3; | ||||
| 	constexpr int LOOK_FORWARD_CYCLES = 4; | ||||
| 	constexpr int MAX_THROWAWAY_COUNT = 256; | ||||
| #ifndef _DEBUG | ||||
| 	constexpr bool TRACE = false; | ||||
| 	constexpr bool INFO = false; | ||||
|  | @ -735,98 +690,102 @@ namespace RandomX { | |||
| 		return -1; | ||||
| 	} | ||||
| 
 | ||||
| 	// If we don't have enough data available, generate more
 | ||||
| 	static FORCE_INLINE void check_data(size_t& data_index, const size_t bytes_needed, uint8_t* data, const size_t data_size) | ||||
| 	{ | ||||
| 		if (data_index + bytes_needed > data_size) | ||||
| 		{ | ||||
| 			std::cout << "Calling Blake " << (++blakeCounter) << std::endl; | ||||
| 			blake2b(data, data_size, data, data_size, nullptr, 0); | ||||
| 			data_index = 0; | ||||
| 		} | ||||
| 	} | ||||
| 
 | ||||
| 	double generateLightProg2(LightProgram& prog, Blake2Generator& gen) { | ||||
| 
 | ||||
| 		ExecutionPort::type portBusy[CYCLE_MAP_SIZE][3]; | ||||
| 		memset(portBusy, 0, sizeof(portBusy)); | ||||
| 		RegisterInfo registers[8]; | ||||
| 		std::vector<LightInstruction> instructions; | ||||
| 
 | ||||
| 		const DecoderBuffer* fetchLine = &DecoderBuffer::Default; | ||||
| 		const DecoderBuffer* decodeBuffer = &DecoderBuffer::Default; | ||||
| 		LightInstruction currentInstruction = LightInstruction::Null; | ||||
| 		int instrIndex = 0; | ||||
| 		int codeSize = 0; | ||||
| 		int macroOpCount = 0; | ||||
| 		int cycle = 0; | ||||
| 		int fetchCycle = 0; | ||||
| 		int depCycle = 0; | ||||
| 		int retireCycle = 0; | ||||
| 		int mopIndex = 0; | ||||
| 		bool portsSaturated = false; | ||||
| 		int outIndex = 0; | ||||
| 		int attempts = 0; | ||||
| 		int mulCount = 0; | ||||
| 		constexpr int MAX_ATTEMPTS = 4; | ||||
| 		int decodeCycle; | ||||
| 
 | ||||
| 		while(!portsSaturated) { | ||||
| 			fetchLine = fetchLine->fetchNext(currentInstruction.getType(), fetchCycle++, mulCount, gen); | ||||
| 			if (TRACE) std::cout << "; ------------- fetch cycle " << cycle << " (" << fetchLine->getName() << ")" << std::endl; | ||||
| 		//decode instructions for RANDOMX_SUPERSCALAR_LATENCY cycles or until an execution port is saturated.
 | ||||
| 		//Each decode cycle decodes 16 bytes of x86 code.
 | ||||
| 		//Since a decode cycle produces on average 3.45 macro-ops and there are only 3 ALU ports, execution ports are always
 | ||||
| 		//saturated first. The cycle limit is present only to guarantee loop termination.
 | ||||
| 		for (decodeCycle = 0; decodeCycle < RANDOMX_SUPERSCALAR_LATENCY && !portsSaturated && outIndex < RANDOMX_SUPERSCALAR_MAX_SIZE; ++decodeCycle) { | ||||
| 
 | ||||
| 			mopIndex = 0; | ||||
| 			//select a fetch/decode configuration
 | ||||
| 			decodeBuffer = decodeBuffer->fetchNext(currentInstruction.getType(), decodeCycle, mulCount, gen); | ||||
| 			if (TRACE) std::cout << "; ------------- fetch cycle " << cycle << " (" << decodeBuffer->getName() << ")" << std::endl; | ||||
| 
 | ||||
| 			int bufferIndex = 0; | ||||
| 			 | ||||
| 			while (mopIndex < fetchLine->getSize()) { | ||||
| 			//fill all instruction slots in the current fetch/decode buffer
 | ||||
| 			while (bufferIndex < decodeBuffer->getSize()) { | ||||
| 				int topCycle = cycle; | ||||
| 
 | ||||
| 				//if we have created all macro-ops for the current RandomX instruction, create a new instruction
 | ||||
| 				if (instrIndex >= currentInstruction.getInfo().getSize()) { | ||||
| 					if (portsSaturated) | ||||
| 						break; | ||||
| 					currentInstruction = LightInstruction::createForSlot(gen, fetchLine->getCounts()[mopIndex], fetchLine->getIndex(), fetchLine->getSize() == mopIndex + 1, mopIndex == 0); | ||||
| 					currentInstruction.createForSlot(gen, decodeBuffer->getCounts()[bufferIndex], decodeBuffer->getIndex(), decodeBuffer->getSize() == bufferIndex + 1, bufferIndex == 0); | ||||
| 					instrIndex = 0; | ||||
| 					if (TRACE) std::cout << "; " << currentInstruction.getInfo().getName() << std::endl; | ||||
| 				} | ||||
| 				MacroOp& mop = currentInstruction.getInfo().getOp(instrIndex); | ||||
| 				if (fetchLine->getCounts()[mopIndex] != mop.getSize()) { | ||||
| 					if (TRACE) std::cout << "ERROR instruction " << mop.getName() << " doesn't fit into slot of size " << fetchLine->getCounts()[mopIndex] << std::endl; | ||||
| 				} | ||||
| 				const MacroOp& mop = currentInstruction.getInfo().getOp(instrIndex); | ||||
| 				 | ||||
| 				if (TRACE) std::cout << mop.getName() << " "; | ||||
| 
 | ||||
| 				//calculate the earliest cycle when this macro-op (all of its uOPs) can be scheduled for execution
 | ||||
| 				int scheduleCycle = scheduleUop<false>(mop, portBusy, cycle, depCycle); | ||||
| 				mop.setCycle(scheduleCycle); | ||||
| 				if (scheduleCycle < 0) { | ||||
| 					if (TRACE) std::cout << "; Failed at cycle " << cycle << std::endl; | ||||
| 					return 0; | ||||
| 				} | ||||
| 
 | ||||
| 				//find a source register (if applicable) that will be ready when this instruction executes
 | ||||
| 				if (instrIndex == currentInstruction.getInfo().getSrcOp()) { | ||||
| 					for (attempts = 0; attempts < MAX_ATTEMPTS && !currentInstruction.selectSource(scheduleCycle, registers, gen); ++attempts) { | ||||
| 					int forward; | ||||
| 					//if no suitable operand is ready, look up to LOOK_FORWARD_CYCLES forward
 | ||||
| 					for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectSource(scheduleCycle, registers, gen); ++forward) { | ||||
| 						if (TRACE) std::cout << "; src STALL at cycle " << cycle << std::endl; | ||||
| 						++scheduleCycle; | ||||
| 						++cycle; | ||||
| 					} | ||||
| 					if (attempts == MAX_ATTEMPTS) { //throw instruction away
 | ||||
| 						//cycle = topCycle;
 | ||||
| 					//if no register was found, throw the instruction away and try another one
 | ||||
| 					if (forward == LOOK_FORWARD_CYCLES) { | ||||
| 						instrIndex = currentInstruction.getInfo().getSize(); | ||||
| 						if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl; | ||||
| 						continue; | ||||
| 					} | ||||
| 					if (TRACE) std::cout << "; src = r" << currentInstruction.getSource() << std::endl; | ||||
| 				} | ||||
| 				//find a destination register that will be ready when this instruction executes
 | ||||
| 				if (instrIndex == currentInstruction.getInfo().getDstOp()) { | ||||
| 					for (attempts = 0; attempts < MAX_ATTEMPTS && !currentInstruction.selectDestination(scheduleCycle, registers, gen); ++attempts) { | ||||
| 					int forward; | ||||
| 					for (forward = 0; forward < LOOK_FORWARD_CYCLES && !currentInstruction.selectDestination(scheduleCycle, registers, gen); ++forward) { | ||||
| 						if (TRACE) std::cout << "; dst STALL at cycle " << cycle << std::endl; | ||||
| 						++scheduleCycle; | ||||
| 						++cycle; | ||||
| 					} | ||||
| 					if (attempts == MAX_ATTEMPTS) { //throw instruction away
 | ||||
| 						//cycle = topCycle;
 | ||||
| 					if (forward == LOOK_FORWARD_CYCLES) { //throw instruction away
 | ||||
| 						instrIndex = currentInstruction.getInfo().getSize(); | ||||
| 						if (TRACE) std::cout << "; THROW away " << currentInstruction.getInfo().getName() << std::endl; | ||||
| 						continue; | ||||
| 					} | ||||
| 					if (TRACE) std::cout << "; dst = r" << currentInstruction.getDestination() << std::endl; | ||||
| 				} | ||||
| 				//recalculate when the instruction can be scheduled for execution based on operand availability
 | ||||
| 				scheduleCycle = scheduleUop<true>(mop, portBusy, scheduleCycle, scheduleCycle); | ||||
| 
 | ||||
| 				//calculate when the result will be ready
 | ||||
| 				depCycle = scheduleCycle + mop.getLatency(); | ||||
| 
 | ||||
| 				//if this instruction writes the result, modify register information
 | ||||
| 				//  RegisterInfo.latency - which cycle the register will be ready
 | ||||
| 				//  RegisterInfo.lastOpGroup - the last operation that was applied to the register
 | ||||
| 				//  RegisterInfo.lastOpPar - the last operation parameter
 | ||||
| 				if (instrIndex == currentInstruction.getInfo().getResultOp()) { | ||||
| 					int dst = currentInstruction.getDestination(); | ||||
| 					RegisterInfo& ri = registers[dst]; | ||||
|  | @ -837,13 +796,17 @@ namespace RandomX { | |||
| 					if (TRACE) std::cout << "; RETIRED at cycle " << retireCycle << std::endl; | ||||
| 				} | ||||
| 				codeSize += mop.getSize(); | ||||
| 				mopIndex++; | ||||
| 				bufferIndex++; | ||||
| 				instrIndex++; | ||||
| 				macroOpCount++; | ||||
| 				if (scheduleCycle >= RANDOMX_LPROG_LATENCY) { | ||||
| 
 | ||||
| 				//terminating condition
 | ||||
| 				if (scheduleCycle >= RANDOMX_SUPERSCALAR_LATENCY) { | ||||
| 					portsSaturated = true; | ||||
| 				} | ||||
| 				cycle = topCycle; | ||||
| 
 | ||||
| 				//when all macro-ops of the current instruction have been issued, add the instruction into the program
 | ||||
| 				if (instrIndex >= currentInstruction.getInfo().getSize()) { | ||||
| 					currentInstruction.toInstr(prog(outIndex++)); | ||||
| 					mulCount += isMul(currentInstruction.getType()); | ||||
|  | @ -856,19 +819,20 @@ namespace RandomX { | |||
| 		if (INFO) std::cout << "; (* = in use, _ = idle)" << std::endl; | ||||
| 
 | ||||
| 		int portCycles = 0; | ||||
| 		/*for (int i = 0; i < CYCLE_MAP_SIZE; ++i) {
 | ||||
| 		for (int i = 0; i < CYCLE_MAP_SIZE; ++i) { | ||||
| 			std::cout << "; " << std::setw(3) << i << " "; | ||||
| 			for (int j = 0; j < 3; ++j) { | ||||
| 				std::cout << (portBusy[i][j] ? '*' : '_'); | ||||
| 				portCycles += !!portBusy[i][j]; | ||||
| 			} | ||||
| 			std::cout << std::endl; | ||||
| 		}*/ | ||||
| 		} | ||||
| 
 | ||||
| 		double ipc = (macroOpCount / (double)retireCycle); | ||||
| 
 | ||||
| 		if (INFO) std::cout << "; code size " << codeSize << " bytes" << std::endl; | ||||
| 		if (INFO) std::cout << "; x86 macro-ops: " << macroOpCount << std::endl; | ||||
| 		if (INFO) std::cout << "; fetch cycles: " << decodeCycle << std::endl; | ||||
| 		if (INFO) std::cout << "; RandomX instructions: " << outIndex << std::endl; | ||||
| 		if (INFO) std::cout << "; Execution time: " << retireCycle << " cycles" << std::endl; | ||||
| 		if (INFO) std::cout << "; IPC = " << ipc << std::endl; | ||||
|  | @ -878,7 +842,8 @@ namespace RandomX { | |||
| 		int asicLatency[8]; | ||||
| 		memset(asicLatency, 0, sizeof(asicLatency)); | ||||
| 
 | ||||
| 		 | ||||
| 		//Calculate ASIC latency:
 | ||||
| 		//Assumes 1 cycle latency for all operations and unlimited parallelization.
 | ||||
| 		for (int i = 0; i < outIndex; ++i) { | ||||
| 			Instruction& instr = prog(i); | ||||
| 			int latDst = asicLatency[instr.dst] + 1; | ||||
|  | @ -886,16 +851,17 @@ namespace RandomX { | |||
| 			asicLatency[instr.dst] = std::max(latDst, latSrc); | ||||
| 		} | ||||
| 
 | ||||
| 		int asicLatencyFinal = 0; | ||||
| 		//address register is the register with the highest ASIC latency
 | ||||
| 		int asicLatencyMax = 0; | ||||
| 		int addressReg = 0; | ||||
| 		for (int i = 0; i < 8; ++i) { | ||||
| 			if (asicLatency[i] > asicLatencyFinal) { | ||||
| 				asicLatencyFinal = asicLatency[i]; | ||||
| 			if (asicLatency[i] > asicLatencyMax) { | ||||
| 				asicLatencyMax = asicLatency[i]; | ||||
| 				addressReg = i; | ||||
| 			} | ||||
| 		} | ||||
| 
 | ||||
| 		if (INFO) std::cout << "; ASIC latency: " << asicLatencyFinal << std::endl; | ||||
| 		if (INFO) std::cout << "; ASIC latency: " << asicLatencyMax << std::endl; | ||||
| 
 | ||||
| 		if (INFO) { | ||||
| 			std::cout << "; ASIC latency:" << std::endl; | ||||
|  |  | |||
|  | @ -81,7 +81,7 @@ namespace RandomX { | |||
| 				os << instr; | ||||
| 			} | ||||
| 		} | ||||
| 		Instruction programBuffer[RANDOMX_LPROG_MAX_SIZE]; | ||||
| 		Instruction programBuffer[RANDOMX_SUPERSCALAR_MAX_SIZE]; | ||||
| 		uint32_t size; | ||||
| 		int addrReg; | ||||
| 	}; | ||||
|  |  | |||
|  | @ -37,10 +37,8 @@ along with RandomX.  If not, see<http://www.gnu.org/licenses/>. | |||
| //Number of random Cache accesses per Dataset block. Minimum is 2.
 | ||||
| #define RANDOMX_CACHE_ACCESSES     8 | ||||
| 
 | ||||
| #define RANDOMX_LPROG_LATENCY      170 | ||||
| #define RANDOMX_LPROG_ASIC_LATENCY 84 | ||||
| #define RANDOMX_LPROG_MIN_SIZE     225 | ||||
| #define RANDOMX_LPROG_MAX_SIZE     512 | ||||
| #define RANDOMX_SUPERSCALAR_LATENCY   170 | ||||
| #define RANDOMX_SUPERSCALAR_MAX_SIZE  512 | ||||
| 
 | ||||
| //Dataset size in bytes. Must be a power of 2.
 | ||||
| #define RANDOMX_DATASET_SIZE       (2ULL * 1024 * 1024 * 1024) | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue