mirror of
				https://git.wownero.com/wownero/RandomWOW.git
				synced 2024-08-15 00:23:14 +00:00 
			
		
		
		
	Reworked addition instructions
Some bug fixes
This commit is contained in:
		
							parent
							
								
									2aaec84931
								
							
						
					
					
						commit
						690707ef49
					
				
					 2 changed files with 107 additions and 352 deletions
				
			
		|  | @ -30,22 +30,20 @@ along with RandomX.  If not, see<http://www.gnu.org/licenses/>. | |||
| namespace RandomX { | ||||
|                                             //                             Intel Ivy Bridge reference
 | ||||
| 	namespace LightInstructionType {        //uOPs (decode)   execution ports         latency       code size
 | ||||
| 		constexpr int IADD_R = 0;           //1               p015                    1               3
 | ||||
| 		constexpr int IADD_C = 1;           //1               p015                    1               7
 | ||||
| 		constexpr int IADD_RC = 2;          //1               p1                      3               8
 | ||||
| 		constexpr int ISUB_R = 3;           //1               p015                    1               3
 | ||||
| 		constexpr int IMUL_9C = 4;          //1               p1                      3               8
 | ||||
| 		constexpr int IMUL_R = 5;           //1               p1                      3               4
 | ||||
| 		constexpr int IMUL_C = 6;           //1               p1                      3               7
 | ||||
| 		constexpr int IMULH_R = 7;          //1+2+1           0+(p1,p5)+0             3               3+3+3
 | ||||
| 		constexpr int ISMULH_R = 8;         //1+2+1           0+(p1,p5)+0             3               3+3+3
 | ||||
| 		constexpr int IMUL_RCP = 9;         //1+1             p015+p1                 4              10+4
 | ||||
| 		constexpr int IXOR_R = 10;          //1               p015                    1               3
 | ||||
| 		constexpr int IXOR_C = 11;          //1               p015                    1               7
 | ||||
| 		constexpr int IROR_R = 12;          //1+2             0+(p0,p5)               1               3+3
 | ||||
| 		constexpr int IROR_C = 13;          //1               p05                     1               4
 | ||||
| 		constexpr int COND_R = 14;          //1+1+1+1+1+1     p015+p5+0+p015+p05+p015 3               7+13+3+7+3+3
 | ||||
| 		constexpr int COUNT = 15; | ||||
| 		constexpr int IADD_RS = 0;          //1               p01                     1               4
 | ||||
| 		constexpr int ISUB_R = 1;           //1               p015                    1               3
 | ||||
| 		constexpr int ISUB_C = 2;           //1               p015                    3               7
 | ||||
| 		constexpr int IMUL_R = 3;           //1               p1                      3               4
 | ||||
| 		constexpr int IMUL_C = 4;           //1               p1                      3               7
 | ||||
| 		constexpr int IMULH_R = 5;          //1+2+1           0+(p1,p5)+0             3               3+3+3
 | ||||
| 		constexpr int ISMULH_R = 6;         //1+2+1           0+(p1,p5)+0             3               3+3+3
 | ||||
| 		constexpr int IMUL_RCP = 7;         //1+1             p015+p1                 4              10+4
 | ||||
| 		constexpr int IXOR_R = 8;           //1               p015                    1               3
 | ||||
| 		constexpr int IXOR_C = 9;           //1               p015                    1               7
 | ||||
| 		constexpr int IROR_R = 10;          //1+2             0+(p0,p5)               1               3+3
 | ||||
| 		constexpr int IROR_C = 11;          //1               p05                     1               4
 | ||||
| 		constexpr int COND_R = 12;          //1+1+1+1+1+1     p015+p5+0+p015+p05+p015 3               7+13+3+7+3+3
 | ||||
| 		constexpr int COUNT = 13; | ||||
| 	} | ||||
| 
 | ||||
| 	namespace LightInstructionOpcode { | ||||
|  | @ -62,8 +60,8 @@ namespace RandomX { | |||
| 		constexpr int COND_R = IROR_R + RANDOMX_FREQ_IROR_R + RANDOMX_FREQ_IROL_R + RANDOMX_FREQ_ISWAP_R + RANDOMX_FREQ_FSWAP_R + RANDOMX_FREQ_FADD_R + RANDOMX_FREQ_FADD_M + RANDOMX_FREQ_FSUB_R + RANDOMX_FREQ_FSUB_M + RANDOMX_FREQ_FSCAL_R + RANDOMX_FREQ_FMUL_R + RANDOMX_FREQ_FDIV_M + RANDOMX_FREQ_FSQRT_R; | ||||
| 	} | ||||
| 
 | ||||
| 	static bool isMul(uint8_t opcode) { | ||||
| 		return opcode == LightInstructionOpcode::IMUL_R || opcode == LightInstructionOpcode::IMULH_R || opcode == LightInstructionOpcode::ISMULH_R || opcode == LightInstructionOpcode::IMUL_RCP; | ||||
| 	static bool isMul(int type) { | ||||
| 		return type == LightInstructionType::IMUL_R || type == LightInstructionType::IMUL_C || type == LightInstructionType::IMULH_R || type == LightInstructionType::ISMULH_R || type == LightInstructionType::IMUL_RCP; | ||||
| 	} | ||||
| 
 | ||||
| 	const int lightInstructionOpcode[] = { | ||||
|  | @ -84,33 +82,15 @@ namespace RandomX { | |||
| 		LightInstructionOpcode::COND_R | ||||
| 	}; | ||||
| 
 | ||||
| 	const int lightInstruction[] = { | ||||
| 		LightInstructionType::IADD_R, | ||||
| 		LightInstructionType::IADD_C, | ||||
| 		LightInstructionType::IADD_RC, | ||||
| 		LightInstructionType::ISUB_R, | ||||
| 		LightInstructionType::IMUL_9C, | ||||
| 		LightInstructionType::IMUL_R, | ||||
| 		LightInstructionType::IMUL_R, | ||||
| 		LightInstructionType::IMUL_C, | ||||
| 		LightInstructionType::IMULH_R, | ||||
| 		LightInstructionType::ISMULH_R, | ||||
| 		LightInstructionType::IMUL_RCP, | ||||
| 		LightInstructionType::IXOR_R, | ||||
| 		LightInstructionType::IXOR_C, | ||||
| 		LightInstructionType::IROR_R, | ||||
| 		LightInstructionType::IROR_C, | ||||
| 		LightInstructionType::COND_R | ||||
| 	}; | ||||
| 
 | ||||
| 	namespace ExecutionPort { | ||||
| 		using type = int; | ||||
| 		constexpr type Null = 0; | ||||
| 		constexpr type P0 = 1; | ||||
| 		constexpr type P1 = 2; | ||||
| 		constexpr type P5 = 3; | ||||
| 		constexpr type P05 = 4; | ||||
| 		constexpr type P015 = 5; | ||||
| 		constexpr type P01 = 4; | ||||
| 		constexpr type P05 = 5; | ||||
| 		constexpr type P015 = 6; | ||||
| 	} | ||||
| 
 | ||||
| 	class Blake2Generator { | ||||
|  | @ -210,6 +190,7 @@ namespace RandomX { | |||
| 		static const MacroOp Add_ri; | ||||
| 		static const MacroOp Lea_sib; | ||||
| 		static const MacroOp Sub_rr; | ||||
| 		static const MacroOp Sub_ri; | ||||
| 		static const MacroOp Imul_rr; | ||||
| 		static const MacroOp Imul_rri; | ||||
| 		static const MacroOp Imul_r; | ||||
|  | @ -238,8 +219,9 @@ namespace RandomX { | |||
| 
 | ||||
| 	const MacroOp MacroOp::Add_rr = MacroOp("add r,r", 3, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Add_ri = MacroOp("add r,i", 7, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Lea_sib = MacroOp("lea r,m", 8, 3, ExecutionPort::P1); | ||||
| 	const MacroOp MacroOp::Lea_sib = MacroOp("lea r,r+r*s", 4, 1, ExecutionPort::P01); | ||||
| 	const MacroOp MacroOp::Sub_rr = MacroOp("sub r,r", 3, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Sub_ri = MacroOp("sub r,i", 7, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Imul_rr = MacroOp("imul r,r", 4, 3, ExecutionPort::P1); | ||||
| 	const MacroOp MacroOp::Imul_rri = MacroOp("imul r,r,i", 7, 3, ExecutionPort::P1); | ||||
| 	const MacroOp MacroOp::Imul_r = MacroOp("imul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5); | ||||
|  | @ -253,7 +235,7 @@ namespace RandomX { | |||
| 	const MacroOp MacroOp::Xor_self = MacroOp("xor rcx,rcx", 3); | ||||
| 	const MacroOp MacroOp::Cmp_ri = MacroOp("cmp r,i", 7, 1, ExecutionPort::P015); | ||||
| 	const MacroOp MacroOp::Setcc_r = MacroOp("setcc cl", 3, 1, ExecutionPort::P05); | ||||
| 	const MacroOp MacroOp::TestJmp_fused = MacroOp("testjmp r,i", 13, 0, ExecutionPort::P5); | ||||
| 	const MacroOp MacroOp::TestJmp_fused = MacroOp("testjz r,i", 13, 0, ExecutionPort::P5); | ||||
| 
 | ||||
| 	const MacroOp IMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Mul_r, MacroOp::Mov_rr }; | ||||
| 	const MacroOp ISMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Imul_r, MacroOp::Mov_rr }; | ||||
|  | @ -315,11 +297,9 @@ namespace RandomX { | |||
| 		int getSrcOp() const { | ||||
| 			return srcOp_; | ||||
| 		} | ||||
| 		static const LightInstructionInfo IADD_R; | ||||
| 		static const LightInstructionInfo IADD_C; | ||||
| 		static const LightInstructionInfo IADD_RC; | ||||
| 		static const LightInstructionInfo IADD_RS; | ||||
| 		static const LightInstructionInfo ISUB_R; | ||||
| 		static const LightInstructionInfo IMUL_9C; | ||||
| 		static const LightInstructionInfo ISUB_C; | ||||
| 		static const LightInstructionInfo IMUL_R; | ||||
| 		static const LightInstructionInfo IMUL_C; | ||||
| 		static const LightInstructionInfo IMULH_R; | ||||
|  | @ -344,11 +324,9 @@ namespace RandomX { | |||
| 			: name_(name), type_(-1), latency_(0) {} | ||||
| 	}; | ||||
| 
 | ||||
| 	const LightInstructionInfo LightInstructionInfo::IADD_R = LightInstructionInfo("IADD_R", LightInstructionType::IADD_R, MacroOp::Add_rr, 0); | ||||
| 	const LightInstructionInfo LightInstructionInfo::IADD_C = LightInstructionInfo("IADD_C", LightInstructionType::IADD_C, MacroOp::Add_ri, -1); | ||||
| 	const LightInstructionInfo LightInstructionInfo::IADD_RC = LightInstructionInfo("IADD_RC", LightInstructionType::IADD_RC, MacroOp::Lea_sib, 0); | ||||
| 	const LightInstructionInfo LightInstructionInfo::IADD_RS = LightInstructionInfo("IADD_RS", LightInstructionType::IADD_RS, MacroOp::Lea_sib, 0); | ||||
| 	const LightInstructionInfo LightInstructionInfo::ISUB_R = LightInstructionInfo("ISUB_R", LightInstructionType::ISUB_R, MacroOp::Sub_rr, 0); | ||||
| 	const LightInstructionInfo LightInstructionInfo::IMUL_9C = LightInstructionInfo("IMUL_9C", LightInstructionType::IMUL_9C, MacroOp::Lea_sib, -1); | ||||
| 	const LightInstructionInfo LightInstructionInfo::ISUB_C = LightInstructionInfo("ISUB_C", LightInstructionType::ISUB_C, MacroOp::Sub_ri, -1); | ||||
| 	const LightInstructionInfo LightInstructionInfo::IMUL_R = LightInstructionInfo("IMUL_R", LightInstructionType::IMUL_R, MacroOp::Imul_rr, 0); | ||||
| 	const LightInstructionInfo LightInstructionInfo::IMUL_C = LightInstructionInfo("IMUL_C", LightInstructionType::IMUL_C, MacroOp::Imul_rri, -1); | ||||
| 	const LightInstructionInfo LightInstructionInfo::IMULH_R = LightInstructionInfo("IMULH_R", LightInstructionType::IMULH_R, IMULH_R_ops_array, 1, 0, 1); | ||||
|  | @ -364,7 +342,6 @@ namespace RandomX { | |||
| 	const int buffer0[] = { 3, 3, 10 }; | ||||
| 	const int buffer1[] = { 7, 3, 3, 3 }; | ||||
| 	const int buffer2[] = { 3, 3, 3, 7 }; | ||||
| 	const int buffer3[] = { 4, 8, 4 }; | ||||
| 	const int buffer4[] = { 4, 4, 4, 4 }; | ||||
| 	const int buffer5[] = { 3, 7, 3, 3 }; | ||||
| 	const int buffer6[] = { 3, 3, 7, 3 }; | ||||
|  | @ -390,18 +367,15 @@ namespace RandomX { | |||
| 		} | ||||
| 		const DecoderBuffer& fetchNext(int prevType, Blake2Generator& gen) { | ||||
| 			if (prevType == LightInstructionType::IMULH_R || prevType == LightInstructionType::ISMULH_R) | ||||
| 				return decodeBuffers[0]; | ||||
| 				return decodeBuffer3310; //2-1-1 decode
 | ||||
| 			if (index_ == 0) { | ||||
| 				if ((gen.getByte() % 2) == 0) | ||||
| 					return decodeBuffers[3]; | ||||
| 				else | ||||
| 					return decodeBuffers[4]; | ||||
| 				return decodeBuffer4444; //IMUL_RCP end
 | ||||
| 			} | ||||
| 			if (index_ == 2) { | ||||
| 				return decodeBuffers[7]; | ||||
| 				return decodeBuffer133; //COND_R middle
 | ||||
| 			} | ||||
| 			if (index_ == 7) { | ||||
| 				return decodeBuffers[1]; | ||||
| 				return decodeBuffer7333; //COND_R end
 | ||||
| 			} | ||||
| 			return fetchNextDefault(gen); | ||||
| 		} | ||||
|  | @ -411,36 +385,49 @@ namespace RandomX { | |||
| 		const int* counts_; | ||||
| 		int opsCount_; | ||||
| 		DecoderBuffer() : index_(-1) {} | ||||
| 		static const DecoderBuffer decodeBuffers[8]; | ||||
| 		static const DecoderBuffer decodeBuffer3310; | ||||
| 		static const DecoderBuffer decodeBuffer7333; | ||||
| 		static const DecoderBuffer decodeBuffer3337; | ||||
| 		static const DecoderBuffer decodeBuffer4444; | ||||
| 		static const DecoderBuffer decodeBuffer3733; | ||||
| 		static const DecoderBuffer decodeBuffer3373; | ||||
| 		static const DecoderBuffer decodeBuffer133; | ||||
| 		static const DecoderBuffer* decodeBuffers[7]; | ||||
| 		const DecoderBuffer& fetchNextDefault(Blake2Generator& gen) { | ||||
| 			int select; | ||||
| 			do { | ||||
| 				select = gen.getByte() & 7; | ||||
| 			} while (select == 7); | ||||
| 			return decodeBuffers[select]; | ||||
| 			return *decodeBuffers[select]; | ||||
| 		} | ||||
| 	}; | ||||
| 
 | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffers[8] = { | ||||
| 			DecoderBuffer("3,3,10", 0, buffer0), | ||||
| 			DecoderBuffer("7,3,3,3", 1, buffer1), | ||||
| 			DecoderBuffer("3,3,3,7", 2, buffer2), | ||||
| 			DecoderBuffer("4,8,4", 3, buffer3), | ||||
| 			DecoderBuffer("4,4,4,4", 4, buffer4), | ||||
| 			DecoderBuffer("3,7,3,3", 5, buffer5), | ||||
| 			DecoderBuffer("3,3,7,3", 6, buffer6), | ||||
| 			DecoderBuffer("13,3", 7, buffer7), | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer3310 = DecoderBuffer("3,3,10", 0, buffer0); | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer7333 = DecoderBuffer("7,3,3,3", 1, buffer1); | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer3337 = DecoderBuffer("3,3,3,7", 2, buffer2); | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer4444 = DecoderBuffer("4,4,4,4", 4, buffer4); | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer3733 = DecoderBuffer("3,7,3,3", 5, buffer5); | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer3373 = DecoderBuffer("3,3,7,3", 6, buffer6); | ||||
| 	const DecoderBuffer DecoderBuffer::decodeBuffer133 = DecoderBuffer("13,3", 7, buffer7); | ||||
| 
 | ||||
| 	const DecoderBuffer* DecoderBuffer::decodeBuffers[7] = { | ||||
| 			&DecoderBuffer::decodeBuffer3310, | ||||
| 			&DecoderBuffer::decodeBuffer7333, | ||||
| 			&DecoderBuffer::decodeBuffer3337, | ||||
| 			&DecoderBuffer::decodeBuffer4444, | ||||
| 			&DecoderBuffer::decodeBuffer4444, | ||||
| 			&DecoderBuffer::decodeBuffer3733, | ||||
| 			&DecoderBuffer::decodeBuffer3373, | ||||
| 	}; | ||||
| 
 | ||||
| 	DecoderBuffer DecoderBuffer::Default = DecoderBuffer(); | ||||
| 
 | ||||
| 	const LightInstructionInfo* slot_3[]  = { &LightInstructionInfo::IADD_R, &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IADD_R }; | ||||
| 	const LightInstructionInfo* slot_3L[] = { &LightInstructionInfo::IADD_R, &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IMULH_R, &LightInstructionInfo::ISMULH_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IMULH_R, &LightInstructionInfo::ISMULH_R }; | ||||
| 	const LightInstructionInfo* slot_3F[] = { &LightInstructionInfo::IADD_R, &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IROR_R }; | ||||
| 	const LightInstructionInfo* slot_4[]  = { &LightInstructionInfo::IMUL_R, &LightInstructionInfo::IROR_C }; | ||||
| 	const LightInstructionInfo* slot_7[]  = { &LightInstructionInfo::IADD_C, &LightInstructionInfo::IMUL_C, &LightInstructionInfo::IXOR_C, &LightInstructionInfo::IADD_C }; | ||||
| 	const LightInstructionInfo* slot_3[]  = { &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R }; | ||||
| 	const LightInstructionInfo* slot_3L[] = { &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IMULH_R, &LightInstructionInfo::ISMULH_R }; | ||||
| 	const LightInstructionInfo* slot_3C[] = { &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IROR_R, &LightInstructionInfo::IXOR_R }; | ||||
| 	const LightInstructionInfo* slot_4[]  = { &LightInstructionInfo::IMUL_R, &LightInstructionInfo::IROR_C, &LightInstructionInfo::IADD_RS, &LightInstructionInfo::IMUL_R }; | ||||
| 	const LightInstructionInfo* slot_7[]  = { &LightInstructionInfo::ISUB_C, &LightInstructionInfo::IMUL_C, &LightInstructionInfo::IXOR_C, &LightInstructionInfo::ISUB_C }; | ||||
| 	const LightInstructionInfo* slot_7L   = &LightInstructionInfo::COND_R; | ||||
| 	const LightInstructionInfo* slot_8[]  = { &LightInstructionInfo::IADD_RC, &LightInstructionInfo::IMUL_9C }; | ||||
| 	const LightInstructionInfo* slot_10   = &LightInstructionInfo::IMUL_RCP; | ||||
| 
 | ||||
| 	static bool selectRegister(std::vector<int>& availableRegisters, Blake2Generator& gen, int& reg) { | ||||
|  | @ -469,21 +456,21 @@ namespace RandomX { | |||
| 			instr.setImm32(imm32_); | ||||
| 		} | ||||
| 
 | ||||
| 		static LightInstruction createForSlot(Blake2Generator& gen, int slotSize, bool isLast = false, bool isFirst = false) { | ||||
| 		static LightInstruction createForSlot(Blake2Generator& gen, int slotSize, bool isLast = false, bool complex = false) { | ||||
| 			switch (slotSize) | ||||
| 			{ | ||||
| 			case 3: | ||||
| 				if (isLast) { | ||||
| 					return create(slot_3L[gen.getByte() & 7], gen); | ||||
| 					return create(slot_3L[gen.getByte() & 3], gen); | ||||
| 				} | ||||
| 				else if (isFirst) { | ||||
| 					return create(slot_3F[gen.getByte() & 3], gen); | ||||
| 				else if (complex) { | ||||
| 					return create(slot_3C[gen.getByte() & 3], gen); | ||||
| 				} | ||||
| 				else { | ||||
| 					return create(slot_3[gen.getByte() & 3], gen); | ||||
| 					return create(slot_3[gen.getByte() & 1], gen); | ||||
| 				} | ||||
| 			case 4: | ||||
| 				return create(slot_4[gen.getByte() & 1], gen); | ||||
| 				return create(slot_4[gen.getByte() & 3], gen); | ||||
| 			case 7: | ||||
| 				if (isLast) { | ||||
| 					return create(slot_7L, gen); | ||||
|  | @ -491,12 +478,10 @@ namespace RandomX { | |||
| 				else { | ||||
| 					return create(slot_7[gen.getByte() & 3], gen); | ||||
| 				} | ||||
| 			case 8: | ||||
| 				return create(slot_8[gen.getByte() & 1], gen); | ||||
| 			case 10: | ||||
| 				return create(slot_10, gen); | ||||
| 			default: | ||||
| 				break; | ||||
| 				throw std::runtime_error("Invalid slot"); | ||||
| 			} | ||||
| 		} | ||||
| 
 | ||||
|  | @ -504,38 +489,24 @@ namespace RandomX { | |||
| 			LightInstruction li(info); | ||||
| 			switch (info->getType()) | ||||
| 			{ | ||||
| 			case LightInstructionType::IADD_R: { | ||||
| 				li.mod_ = 0; | ||||
| 			case LightInstructionType::IADD_RS: { | ||||
| 				li.mod_ = gen.getByte(); | ||||
| 				li.imm32_ = 0; | ||||
| 				li.opGroup_ = LightInstructionType::IADD_R; | ||||
| 				li.groupParIsSource_ = true; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IADD_C: { | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = gen.getInt32(); | ||||
| 				li.opGroup_ = LightInstructionType::IADD_R; | ||||
| 				li.groupParIsSource_ = true; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IADD_RC: { | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = gen.getInt32(); | ||||
| 				li.opGroup_ = LightInstructionType::IADD_R; | ||||
| 				li.opGroup_ = LightInstructionType::IADD_RS; | ||||
| 				li.groupParIsSource_ = true; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::ISUB_R: { | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = 0; | ||||
| 				li.opGroup_ = LightInstructionType::IADD_R; | ||||
| 				li.opGroup_ = LightInstructionType::IADD_RS; | ||||
| 				li.groupParIsSource_ = true; | ||||
| 			} break; | ||||
| 
 | ||||
| 			case LightInstructionType::IMUL_9C: { | ||||
| 			case LightInstructionType::ISUB_C: { | ||||
| 				li.mod_ = 0; | ||||
| 				li.imm32_ = gen.getInt32(); | ||||
| 				li.opGroup_ = LightInstructionType::IMUL_C; | ||||
| 				li.opGroup_ = LightInstructionType::ISUB_C; | ||||
| 				li.opGroupPar_ = -1; | ||||
| 			} break; | ||||
| 
 | ||||
|  | @ -721,7 +692,7 @@ namespace RandomX { | |||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 			else if (mop.getUop1() == ExecutionPort::P05) { | ||||
| 			else if (mop.getUop1() == ExecutionPort::P01) { | ||||
| 				for (; cycle < CYCLE_MAP_SIZE; ++cycle) { | ||||
| 					if (!portBusy[cycle][0]) { | ||||
| 						if (commit) { | ||||
|  | @ -730,6 +701,17 @@ namespace RandomX { | |||
| 						} | ||||
| 						return cycle; | ||||
| 					} | ||||
| 					if (!portBusy[cycle][1]) { | ||||
| 						if (commit) { | ||||
| 							if (TRACE) std::cout << "; P1 at cycle " << cycle << std::endl; | ||||
| 							portBusy[cycle][1] = mop.getUop1(); | ||||
| 						} | ||||
| 						return cycle; | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 			else if (mop.getUop1() == ExecutionPort::P05) { | ||||
| 				for (; cycle < CYCLE_MAP_SIZE; ++cycle) { | ||||
| 					if (!portBusy[cycle][2]) { | ||||
| 						if (commit) { | ||||
| 							if (TRACE) std::cout << "; P2 at cycle " << cycle << std::endl; | ||||
|  | @ -737,17 +719,17 @@ namespace RandomX { | |||
| 						} | ||||
| 						return cycle; | ||||
| 					} | ||||
| 					if (!portBusy[cycle][0]) { | ||||
| 						if (commit) { | ||||
| 							if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl; | ||||
| 							portBusy[cycle][0] = mop.getUop1(); | ||||
| 						} | ||||
| 						return cycle; | ||||
| 					} | ||||
| 				} | ||||
| 			} | ||||
| 			else { | ||||
| 				for (; cycle < CYCLE_MAP_SIZE; ++cycle) { | ||||
| 					if (!portBusy[cycle][0]) { | ||||
| 						if (commit) { | ||||
| 							if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl; | ||||
| 							portBusy[cycle][0] = mop.getUop1(); | ||||
| 						} | ||||
| 						return cycle; | ||||
| 					} | ||||
| 					if (!portBusy[cycle][2]) { | ||||
| 						if (commit) { | ||||
| 							if (TRACE) std::cout << "; P2 at cycle " << cycle << std::endl; | ||||
|  | @ -755,6 +737,13 @@ namespace RandomX { | |||
| 						} | ||||
| 						return cycle; | ||||
| 					} | ||||
| 					if (!portBusy[cycle][0]) { | ||||
| 						if (commit) { | ||||
| 							if (TRACE) std::cout << "; P0 at cycle " << cycle << std::endl; | ||||
| 							portBusy[cycle][0] = mop.getUop1(); | ||||
| 						} | ||||
| 						return cycle; | ||||
| 					} | ||||
| 					if (!portBusy[cycle][1]) { | ||||
| 						if (commit) { | ||||
| 							if (TRACE) std::cout << "; P1 at cycle " << cycle << std::endl; | ||||
|  | @ -813,6 +802,7 @@ namespace RandomX { | |||
| 		bool portsSaturated = false; | ||||
| 		int outIndex = 0; | ||||
| 		int attempts = 0; | ||||
| 		int mulCount = 0; | ||||
| 		constexpr int MAX_ATTEMPTS = 4; | ||||
| 
 | ||||
| 		while(!portsSaturated) { | ||||
|  | @ -872,6 +862,7 @@ namespace RandomX { | |||
| 					} | ||||
| 					if (TRACE) std::cout << "; dst = r" << currentInstruction.getDestination() << std::endl; | ||||
| 				} | ||||
| 				scheduleCycle = scheduleUop<true>(mop, portBusy, scheduleCycle, scheduleCycle); | ||||
| 				depCycle = scheduleCycle + mop.getLatency(); | ||||
| 				if (instrIndex == currentInstruction.getInfo().getResultOp()) { | ||||
| 					int dst = currentInstruction.getDestination(); | ||||
|  | @ -882,7 +873,6 @@ namespace RandomX { | |||
| 					ri.lastOpPar = currentInstruction.getGroupPar(); | ||||
| 					if (TRACE) std::cout << "; RETIRED at cycle " << retireCycle << std::endl; | ||||
| 				} | ||||
| 				scheduleUop<true>(mop, portBusy, scheduleCycle, scheduleCycle); | ||||
| 				codeSize += mop.getSize(); | ||||
| 				mopIndex++; | ||||
| 				instrIndex++; | ||||
|  | @ -893,13 +883,14 @@ namespace RandomX { | |||
| 				cycle = topCycle; | ||||
| 				if (instrIndex >= currentInstruction.getInfo().getSize()) { | ||||
| 					currentInstruction.toInstr(prog(outIndex++)); | ||||
| 					mulCount += isMul(currentInstruction.getType()); | ||||
| 				} | ||||
| 			} | ||||
| 			++cycle; | ||||
| 		} | ||||
| 
 | ||||
| 		std::cout << "; ALU port utilization:" << std::endl; | ||||
| 		std::cout << "; (*= in use, _ = idle)" << std::endl; | ||||
| 		std::cout << "; (* = in use, _ = idle)" << std::endl; | ||||
| 
 | ||||
| 		int portCycles = 0; | ||||
| 		for (int i = 0; i < CYCLE_MAP_SIZE; ++i) { | ||||
|  | @ -920,14 +911,12 @@ namespace RandomX { | |||
| 
 | ||||
| 		int asicLatency[8]; | ||||
| 		memset(asicLatency, 0, sizeof(asicLatency)); | ||||
| 		int mulCount = 0; | ||||
| 
 | ||||
| 		for (int i = 0; i < outIndex; ++i) { | ||||
| 			Instruction& instr = prog(i); | ||||
| 			int latDst = asicLatency[instr.dst] + 1; | ||||
| 			int latSrc = instr.dst != instr.src ? asicLatency[instr.src] + 1 : 0; | ||||
| 			asicLatency[instr.dst] = std::max(latDst, latSrc); | ||||
| 			mulCount += isMul(instr.opcode); | ||||
| 		} | ||||
| 
 | ||||
| 		std::cout << "; Multiplications: " << mulCount << std::endl; | ||||
|  | @ -943,238 +932,4 @@ namespace RandomX { | |||
| 
 | ||||
| 		prog.setSize(outIndex); | ||||
| 	} | ||||
| 
 | ||||
| 	void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister, int nonce) { | ||||
| 
 | ||||
| 		// Source: https://www.agner.org/optimize/instruction_tables.pdf
 | ||||
| 		const int op_latency[LightInstructionType::COUNT] = { 1, 2, 1, 2, 3, 5, 5, 4, 1, 2, 5 }; | ||||
| 
 | ||||
| 		// Instruction latencies for theoretical ASIC implementation
 | ||||
| 		const int asic_op_latency[LightInstructionType::COUNT] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; | ||||
| 
 | ||||
| 		// Available ALUs for each instruction
 | ||||
| 		const int op_ALUs[LightInstructionType::COUNT] = { ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT }; | ||||
| 
 | ||||
| 		uint8_t data[64]; | ||||
| 		memset(data, 0, sizeof(data)); | ||||
| 		memcpy(data, seed, SeedSize); | ||||
| 
 | ||||
| 		// Set data_index past the last byte in data
 | ||||
| 		// to trigger full data update with blake hash
 | ||||
| 		// before we start using it
 | ||||
| 		size_t data_index = sizeof(data); | ||||
| 
 | ||||
| 		int code_size; | ||||
| 
 | ||||
| 		do { | ||||
| 			uint8_t opcode; | ||||
| 			uint8_t dst_index; | ||||
| 			uint8_t src_index; | ||||
| 			uint32_t imm32 = 0; | ||||
| 
 | ||||
| 			int latency[8]; | ||||
| 			int asic_latency[9]; | ||||
| 
 | ||||
| 			// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
 | ||||
| 			// byte 0: current value of the destination register
 | ||||
| 			// byte 1: instruction opcode
 | ||||
| 			// byte 2: current value of the source register
 | ||||
| 			//
 | ||||
| 			// Registers R4-R8 are constant and are treated as having the same value because when we do
 | ||||
| 			// the same operation twice with two constant source registers, it can be optimized into a single operation
 | ||||
| 			uint64_t inst_data[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; | ||||
| 
 | ||||
| 			bool alu_busy[RANDOMX_LPROG_LATENCY + 1][ALU_COUNT]; | ||||
| 			bool is_rotation[LightInstructionType::COUNT]; | ||||
| 			bool rotated[8]; | ||||
| 			int rotate_count = 0; | ||||
| 
 | ||||
| 			memset(latency, 0, sizeof(latency)); | ||||
| 			memset(asic_latency, 0, sizeof(asic_latency)); | ||||
| 			memset(alu_busy, 0, sizeof(alu_busy)); | ||||
| 			memset(is_rotation, 0, sizeof(is_rotation)); | ||||
| 			memset(rotated, 0, sizeof(rotated)); | ||||
| 			is_rotation[LightInstructionType::IROR_R] = true; | ||||
| 
 | ||||
| 			int num_retries = 0; | ||||
| 			code_size = 0; | ||||
| 
 | ||||
| 			int total_iterations = 0; | ||||
| 
 | ||||
| 			// Generate random code to achieve minimal required latency for our abstract CPU
 | ||||
| 			// Try to get this latency for all 4 registers
 | ||||
| 			while (((latency[0] < RANDOMX_LPROG_LATENCY) || (latency[1] < RANDOMX_LPROG_LATENCY) || (latency[2] < RANDOMX_LPROG_LATENCY) || (latency[3] < RANDOMX_LPROG_LATENCY) | ||||
| 				|| (latency[4] < RANDOMX_LPROG_LATENCY) || (latency[5] < RANDOMX_LPROG_LATENCY) || (latency[6] < RANDOMX_LPROG_LATENCY) || (latency[7] < RANDOMX_LPROG_LATENCY)) && (num_retries < 64)) | ||||
| 			{ | ||||
| 				// Fail-safe to guarantee loop termination
 | ||||
| 				++total_iterations; | ||||
| 				if (total_iterations > 1024) { | ||||
| 					std::cout << "total_iterations = " << total_iterations << std::endl; | ||||
| 					break; | ||||
| 				} | ||||
| 
 | ||||
| 				check_data(data_index, 1, data, sizeof(data)); | ||||
| 				const uint8_t b1 = data[data_index++]; | ||||
| 				int instrType = lightInstruction[b1 & ((1 << LIGHT_OPCODE_BITS) - 1)]; | ||||
| 
 | ||||
| 				check_data(data_index, 1, data, sizeof(data)); | ||||
| 				const uint8_t b2 = data[data_index++]; | ||||
| 				dst_index = b2 & ((1 << V4_DST_INDEX_BITS) - 1); | ||||
| 				src_index = (b2 >> (V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1); | ||||
| 
 | ||||
| 				const int a = dst_index; | ||||
| 				int b = src_index; | ||||
| 
 | ||||
| 				// Don't do rotation with the same destination twice because it's equal to a single rotation
 | ||||
| 				if (is_rotation[instrType] && rotated[a]) | ||||
| 				{ | ||||
| 					continue; | ||||
| 				} | ||||
| 
 | ||||
| 				// Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
 | ||||
| 				//	2x IADD_RC(a, b, C) = IADD_RC(a, b*2, C1+C2)
 | ||||
| 				//	2x ISUB_R(a, b) = ISUB_R(a, 2*b)
 | ||||
| 				//	2x IMUL_R(a, b) = IMUL_R(a, b*b)
 | ||||
| 				//	2x IMUL_9C(a, C) = 9 * (9 * a + C1) + C2 = 81 * a + (9 * C1 + C2)
 | ||||
| 				//	2x IMUL_RCP(a, C) = a * (C * C)
 | ||||
| 				//	2x IXOR_R = NOP
 | ||||
| 				//	2x IROR_R(a, b) = IROR_R(a, 2*b)
 | ||||
| 				if (instrType != LightInstructionType::IMULH_R && instrType != LightInstructionType::ISMULH_R && ((inst_data[a] & 0xFFFF00) == (instrType << 8) + ((inst_data[b] & 255) << 16))) | ||||
| 				{ | ||||
| 					continue; | ||||
| 				} | ||||
| 
 | ||||
| 				if ((instrType == LightInstructionType::IADD_RC) || (instrType == LightInstructionType::IMUL_9C) || (instrType == LightInstructionType::IMUL_RCP) || (instrType == LightInstructionType::COND_R) || ((instrType != LightInstructionType::IMULH_R) && (instrType != LightInstructionType::ISMULH_R) && (a == b))) | ||||
| 				{ | ||||
| 					check_data(data_index, 4, data, sizeof(data)); | ||||
| 					imm32 = load32(&data[data_index++]); | ||||
| 				} | ||||
| 
 | ||||
| 				// Find which ALU is available (and when) for this instruction
 | ||||
| 				int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b]; | ||||
| 				int alu_index = -1; | ||||
| 				while (next_latency < RANDOMX_LPROG_LATENCY) | ||||
| 				{ | ||||
| 					for (int i = op_ALUs[instrType] - 1; i >= 0; --i) | ||||
| 					{ | ||||
| 						if (!alu_busy[next_latency][i]) | ||||
| 						{ | ||||
| 							// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
 | ||||
| 							if ((instrType == LightInstructionType::IADD_RC || instrType == LightInstructionType::IMUL_9C || instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R) && alu_busy[next_latency + 1][i]) | ||||
| 							{ | ||||
| 								continue; | ||||
| 							} | ||||
| 
 | ||||
| 							// Rotation can only start when previous rotation is finished, so do an additional availability check
 | ||||
| 							if (is_rotation[instrType] && (next_latency < rotate_count * op_latency[instrType])) | ||||
| 							{ | ||||
| 								continue; | ||||
| 							} | ||||
| 
 | ||||
| 							alu_index = i; | ||||
| 							break; | ||||
| 						} | ||||
| 					} | ||||
| 					if (alu_index >= 0) | ||||
| 					{ | ||||
| 						break; | ||||
| 					} | ||||
| 					++next_latency; | ||||
| 				} | ||||
| 
 | ||||
| 				// Don't generate instructions that leave some register unchanged for more than 15 cycles
 | ||||
| 				if (next_latency > latency[a] + 15) | ||||
| 				{ | ||||
| 					continue; | ||||
| 				} | ||||
| 
 | ||||
| 				next_latency += op_latency[instrType]; | ||||
| 
 | ||||
| 				if (next_latency <= RANDOMX_LPROG_LATENCY) | ||||
| 				{ | ||||
| 					if (is_rotation[instrType]) | ||||
| 					{ | ||||
| 						++rotate_count; | ||||
| 					} | ||||
| 
 | ||||
| 					// Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
 | ||||
| 					alu_busy[next_latency - op_latency[instrType]][alu_index] = true; | ||||
| 					latency[a] = next_latency; | ||||
| 
 | ||||
| 					// ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
 | ||||
| 					asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[instrType]; | ||||
| 
 | ||||
| 					rotated[a] = is_rotation[instrType]; | ||||
| 
 | ||||
| 					inst_data[a] = code_size + (instrType << 8) + ((inst_data[b] & 255) << 16); | ||||
| 
 | ||||
| 					prog(code_size).opcode = lightInstructionOpcode[instrType]; | ||||
| 					prog(code_size).dst = dst_index; | ||||
| 					prog(code_size).src = src_index; | ||||
| 					prog(code_size).setImm32(imm32); | ||||
| 
 | ||||
| 					if (instrType == LightInstructionType::IADD_RC || instrType == LightInstructionType::IMUL_9C || instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R) | ||||
| 					{ | ||||
| 						// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
 | ||||
| 						alu_busy[next_latency - op_latency[instrType] + 1][alu_index] = true; | ||||
| 					} | ||||
| 
 | ||||
| 					++code_size; | ||||
| 					if (code_size >= RANDOMX_LPROG_MIN_SIZE) | ||||
| 					{ | ||||
| 						break; | ||||
| 					} | ||||
| 				} | ||||
| 				else | ||||
| 				{ | ||||
| 					++num_retries; | ||||
| 					std::cout << "Retry " << num_retries << " with code_size = " << code_size << ", next_latency = " << next_latency << std::endl; | ||||
| 				} | ||||
| 			} | ||||
| 
 | ||||
| 			// ASIC has more execution resources and can extract as much parallelism from the code as possible
 | ||||
| 			// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
 | ||||
| 			// Get this latency for at least 1 of the 4 registers
 | ||||
| 			const int prev_code_size = code_size; | ||||
| 			if ((code_size < RANDOMX_LPROG_MAX_SIZE) && (asic_latency[indexRegister] < RANDOMX_LPROG_ASIC_LATENCY)) | ||||
| 			{ | ||||
| 				int min_idx = indexRegister; | ||||
| 				int max_idx = 0; | ||||
| 				for (int i = 1; i < 8; ++i) | ||||
| 				{ | ||||
| 					//if (asic_latency[i] < asic_latency[min_idx]) min_idx = i;
 | ||||
| 					if (asic_latency[i] > asic_latency[max_idx]) max_idx = i; | ||||
| 				} | ||||
| 
 | ||||
| 				const int pattern[3] = { LightInstructionType::IMUL_R, LightInstructionType::IROR_R, LightInstructionType::IMUL_R }; | ||||
| 				const int instrType = pattern[(code_size - prev_code_size) % 3]; | ||||
| 				latency[min_idx] = latency[max_idx] + op_latency[instrType]; | ||||
| 				asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[instrType]; | ||||
| 
 | ||||
| 				prog(code_size).opcode = lightInstructionOpcode[instrType]; | ||||
| 				prog(code_size).dst = min_idx; | ||||
| 				prog(code_size).src = max_idx; | ||||
| 
 | ||||
| 				++code_size; | ||||
| 			} | ||||
| 
 | ||||
| 			for (int i = 0; i < 8; ++i) { | ||||
| 				std::cout << "Latency " << i << " = " << latency[i] << std::endl; | ||||
| 			} | ||||
| 
 | ||||
| 			std::cout << "Code size = " << code_size << std::endl; | ||||
| 			std::cout << "ALUs:" << std::endl; | ||||
| 			for (int i = 0; i < RANDOMX_LPROG_LATENCY + 1; ++i) { | ||||
| 				for (int j = 0; j < ALU_COUNT; ++j) { | ||||
| 					std::cout << (alu_busy[i][j] ? '*' : '_'); | ||||
| 				} | ||||
| 				std::cout << std::endl; | ||||
| 			} | ||||
| 
 | ||||
| 			// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
 | ||||
| 			// It never does more than 4 iterations for all block heights < 10,000,000
 | ||||
| 		} while ((code_size < RANDOMX_LPROG_MIN_SIZE) || (code_size > RANDOMX_LPROG_MAX_SIZE)); | ||||
| 
 | ||||
| 		prog.setSize(code_size); | ||||
| 	} | ||||
| } | ||||
|  | @ -224,10 +224,10 @@ int main(int argc, char** argv) { | |||
| 	if (genLight) { | ||||
| 		RandomX::LightProgram p; | ||||
| 		RandomX::generateLightProg2(p, seed, 0, programCount); | ||||
| 		RandomX::AssemblyGeneratorX86 asmX86; | ||||
| 		asmX86.generateProgram(p); | ||||
| 		//RandomX::AssemblyGeneratorX86 asmX86;
 | ||||
| 		//asmX86.generateProgram(p);
 | ||||
| 		//std::ofstream file("lightProg2.asm");
 | ||||
| 		asmX86.printCode(std::cout); | ||||
| 		//asmX86.printCode(std::cout);
 | ||||
| 		return 0; | ||||
| 	} | ||||
| 
 | ||||
|  |  | |||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue