mirror of
				https://git.wownero.com/wownero/RandomWOW.git
				synced 2024-08-15 00:23:14 +00:00 
			
		
		
		
	WIP
This commit is contained in:
		
							parent
							
								
									cc70e53bb1
								
							
						
					
					
						commit
						59bbb572c2
					
				
					 11 changed files with 874 additions and 9 deletions
				
			
		|  | @ -20,6 +20,7 @@ along with RandomX.  If not, see<http://www.gnu.org/licenses/>. | |||
| #pragma once | ||||
| 
 | ||||
| #include "Instruction.hpp" | ||||
| #include "configuration.h" | ||||
| #include <sstream> | ||||
| 
 | ||||
| namespace RandomX { | ||||
|  |  | |||
|  | @ -78,6 +78,9 @@ namespace RandomX { | |||
| 		uint32_t getImm32() const { | ||||
| 			return load32(&imm32); | ||||
| 		} | ||||
| 		void setImm32(uint32_t val) { | ||||
| 			return store32(&imm32, val); | ||||
| 		} | ||||
| 		const char* getName() const { | ||||
| 			return names[opcode]; | ||||
| 		} | ||||
|  |  | |||
|  | @ -238,12 +238,7 @@ namespace RandomX { | |||
| 		emitByte(0xc0 + readReg1); | ||||
| 		memcpy(code + codePos, codeLoopLoad, loopLoadSize); | ||||
| 		codePos += loopLoadSize; | ||||
| 		for (unsigned i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) { | ||||
| 			Instruction& instr = prog(i); | ||||
| 			instr.src %= RegistersCount; | ||||
| 			instr.dst %= RegistersCount; | ||||
| 			generateCode(instr, i); | ||||
| 		} | ||||
| 		generateCode(prog); | ||||
| 		emit(REX_MOV_RR); | ||||
| 		emitByte(0xc0 + readReg2); | ||||
| 		emit(REX_XOR_EAX); | ||||
|  |  | |||
|  | @ -52,6 +52,16 @@ namespace RandomX { | |||
| 		uint8_t* code; | ||||
| 		int32_t codePos; | ||||
| 
 | ||||
| 		template<class P> | ||||
| 		void generateCode(P& prog) { | ||||
| 			for (unsigned i = 0; i < prog.getSize(); ++i) { | ||||
| 				Instruction& instr = prog(i); | ||||
| 				instr.src %= RegistersCount; | ||||
| 				instr.dst %= RegistersCount; | ||||
| 				generateCode(instr, i); | ||||
| 			} | ||||
| 		} | ||||
| 
 | ||||
| 		void generateProgramPrologue(Program&); | ||||
| 		void generateProgramEpilogue(Program&); | ||||
| 		int getConditionRegister(); | ||||
|  |  | |||
							
								
								
									
										342
									
								
								src/LightProgramGenerator.cpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										342
									
								
								src/LightProgramGenerator.cpp
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,342 @@ | |||
| /*
 | ||||
| Copyright (c) 2019 tevador | ||||
| 
 | ||||
| This file is part of RandomX. | ||||
| 
 | ||||
| RandomX is free software: you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation, either version 3 of the License, or | ||||
| (at your option) any later version. | ||||
| 
 | ||||
| RandomX is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||||
| GNU General Public License for more details. | ||||
| 
 | ||||
| You should have received a copy of the GNU General Public License | ||||
| along with RandomX.  If not, see<http://www.gnu.org/licenses/>.
 | ||||
| */ | ||||
| 
 | ||||
| #include "blake2/blake2.h" | ||||
| #include "configuration.h" | ||||
| #include "Program.hpp" | ||||
| #include "blake2/endian.h"; | ||||
| #include <iostream> | ||||
| 
 | ||||
| namespace RandomX { | ||||
| 
 | ||||
| 	namespace LightInstruction { | ||||
| 		constexpr int IADD_R = 0; | ||||
| 		constexpr int IADD_RC = 1; | ||||
| 		constexpr int ISUB_R = 2; | ||||
| 		constexpr int IMUL_9C = 3; | ||||
| 		constexpr int IMUL_R = 4; | ||||
| 		constexpr int IMULH_R = 5; | ||||
| 		constexpr int ISMULH_R = 6; | ||||
| 		constexpr int IMUL_RCP = 7; | ||||
| 		constexpr int IXOR_R = 8; | ||||
| 		constexpr int IROR_R = 9; | ||||
| 		constexpr int COND_R = 10; | ||||
| 		constexpr int COUNT = 11; | ||||
| 	} | ||||
| 
 | ||||
| 	const int lightInstruction[] = { | ||||
| 		LightInstruction::IADD_RC, | ||||
| 		LightInstruction::IADD_RC, | ||||
| 		LightInstruction::ISUB_R, | ||||
| 		LightInstruction::ISUB_R, | ||||
| 		LightInstruction::IMUL_9C, | ||||
| 		LightInstruction::IMUL_R, | ||||
| 		LightInstruction::IMUL_R, | ||||
| 		LightInstruction::IMUL_R, | ||||
| 		LightInstruction::IMULH_R, | ||||
| 		LightInstruction::ISMULH_R, | ||||
| 		LightInstruction::IMUL_RCP, | ||||
| 		LightInstruction::IXOR_R, | ||||
| 		LightInstruction::IXOR_R, | ||||
| 		LightInstruction::IROR_R, | ||||
| 		LightInstruction::IROR_R, | ||||
| 		LightInstruction::COND_R | ||||
| 	}; | ||||
| 
 | ||||
| 	namespace LightInstructionOpcode { | ||||
| 		constexpr int IADD_R = 0; | ||||
| 		constexpr int IADD_RC = RANDOMX_FREQ_IADD_R + RANDOMX_FREQ_IADD_M; | ||||
| 		constexpr int ISUB_R = IADD_RC + RANDOMX_FREQ_IADD_RC; | ||||
| 		constexpr int IMUL_9C = ISUB_R + RANDOMX_FREQ_ISUB_R + RANDOMX_FREQ_ISUB_M; | ||||
| 		constexpr int IMUL_R = IMUL_9C + RANDOMX_FREQ_IMUL_9C; | ||||
| 		constexpr int IMULH_R = IMUL_R + RANDOMX_FREQ_IMUL_R + RANDOMX_FREQ_IMUL_M; | ||||
| 		constexpr int ISMULH_R = IMULH_R + RANDOMX_FREQ_IMULH_R + RANDOMX_FREQ_IMULH_M; | ||||
| 		constexpr int IMUL_RCP = ISMULH_R + RANDOMX_FREQ_ISMULH_R + RANDOMX_FREQ_ISMULH_M;; | ||||
| 		constexpr int IXOR_R = IMUL_RCP + RANDOMX_FREQ_IMUL_RCP + RANDOMX_FREQ_INEG_R; | ||||
| 		constexpr int IROR_R = IXOR_R + RANDOMX_FREQ_IXOR_R + RANDOMX_FREQ_IXOR_M; | ||||
| 		constexpr int COND_R = IROR_R + RANDOMX_FREQ_IROR_R + RANDOMX_FREQ_IROL_R + RANDOMX_FREQ_ISWAP_R + RANDOMX_FREQ_FSWAP_R + RANDOMX_FREQ_FADD_R + RANDOMX_FREQ_FADD_M + RANDOMX_FREQ_FSUB_R + RANDOMX_FREQ_FSUB_M + RANDOMX_FREQ_FSCAL_R + RANDOMX_FREQ_FMUL_R + RANDOMX_FREQ_FDIV_M + RANDOMX_FREQ_FSQRT_R; | ||||
| 	} | ||||
| 
 | ||||
| 	const int lightInstructionOpcode[] = { | ||||
| 		LightInstructionOpcode::IADD_R, | ||||
| 		LightInstructionOpcode::IADD_RC, | ||||
| 		LightInstructionOpcode::ISUB_R, | ||||
| 		LightInstructionOpcode::IMUL_9C, | ||||
| 		LightInstructionOpcode::IMUL_R, | ||||
| 		LightInstructionOpcode::IMULH_R, | ||||
| 		LightInstructionOpcode::ISMULH_R, | ||||
| 		LightInstructionOpcode::IMUL_RCP, | ||||
| 		LightInstructionOpcode::IXOR_R, | ||||
| 		LightInstructionOpcode::IROR_R, | ||||
| 		LightInstructionOpcode::COND_R | ||||
| 	}; | ||||
| 
 | ||||
| 	constexpr int ALU_COUNT_MUL = 1; | ||||
| 	constexpr int ALU_COUNT = 4; | ||||
| 	constexpr int LIGHT_OPCODE_BITS = 4; | ||||
| 	constexpr int V4_SRC_INDEX_BITS = 3; | ||||
| 	constexpr int V4_DST_INDEX_BITS = 3; | ||||
| 
 | ||||
| 	static int blakeCounter = 0; | ||||
| 
 | ||||
| 	// If we don't have enough data available, generate more
 | ||||
| 	static FORCE_INLINE void check_data(size_t& data_index, const size_t bytes_needed, uint8_t* data, const size_t data_size) | ||||
| 	{ | ||||
| 		if (data_index + bytes_needed > data_size) | ||||
| 		{ | ||||
| 			std::cout << "Calling Blake " << (++blakeCounter) << std::endl; | ||||
| 			blake2b(data, data_size, data, data_size, nullptr, 0); | ||||
| 			data_index = 0; | ||||
| 		} | ||||
| 	} | ||||
| 
 | ||||
| 	void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister) { | ||||
| 
 | ||||
| 		// Source: https://www.agner.org/optimize/instruction_tables.pdf
 | ||||
| 		const int op_latency[LightInstruction::COUNT] = { 1, 2, 1, 2, 3, 5, 5, 4, 1, 2, 5 }; | ||||
| 
 | ||||
| 		// Instruction latencies for theoretical ASIC implementation
 | ||||
| 		const int asic_op_latency[LightInstruction::COUNT] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; | ||||
| 
 | ||||
| 		// Available ALUs for each instruction
 | ||||
| 		const int op_ALUs[LightInstruction::COUNT] = { ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT }; | ||||
| 
 | ||||
| 		uint8_t data[64]; | ||||
| 		memset(data, 0, sizeof(data)); | ||||
| 		memcpy(data, seed, SeedSize); | ||||
| 
 | ||||
| 		// Set data_index past the last byte in data
 | ||||
| 		// to trigger full data update with blake hash
 | ||||
| 		// before we start using it
 | ||||
| 		size_t data_index = sizeof(data); | ||||
| 
 | ||||
| 		int code_size; | ||||
| 
 | ||||
| 		do { | ||||
| 			uint8_t opcode; | ||||
| 			uint8_t dst_index; | ||||
| 			uint8_t src_index; | ||||
| 			uint32_t imm32 = 0; | ||||
| 
 | ||||
| 			int latency[8]; | ||||
| 			int asic_latency[9]; | ||||
| 
 | ||||
| 			// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
 | ||||
| 			// byte 0: current value of the destination register
 | ||||
| 			// byte 1: instruction opcode
 | ||||
| 			// byte 2: current value of the source register
 | ||||
| 			//
 | ||||
| 			// Registers R4-R8 are constant and are treated as having the same value because when we do
 | ||||
| 			// the same operation twice with two constant source registers, it can be optimized into a single operation
 | ||||
| 			uint64_t inst_data[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; | ||||
| 
 | ||||
| 			bool alu_busy[RANDOMX_LPROG_LATENCY + 1][ALU_COUNT]; | ||||
| 			bool is_rotation[LightInstruction::COUNT]; | ||||
| 			bool rotated[8]; | ||||
| 			int rotate_count = 0; | ||||
| 
 | ||||
| 			memset(latency, 0, sizeof(latency)); | ||||
| 			memset(asic_latency, 0, sizeof(asic_latency)); | ||||
| 			memset(alu_busy, 0, sizeof(alu_busy)); | ||||
| 			memset(is_rotation, 0, sizeof(is_rotation)); | ||||
| 			memset(rotated, 0, sizeof(rotated)); | ||||
| 			is_rotation[LightInstruction::IROR_R] = true; | ||||
| 
 | ||||
| 			int num_retries = 0; | ||||
| 			code_size = 0; | ||||
| 
 | ||||
| 			int total_iterations = 0; | ||||
| 
 | ||||
| 			// Generate random code to achieve minimal required latency for our abstract CPU
 | ||||
| 			// Try to get this latency for all 4 registers
 | ||||
| 			while (((latency[0] < RANDOMX_LPROG_LATENCY) || (latency[1] < RANDOMX_LPROG_LATENCY) || (latency[2] < RANDOMX_LPROG_LATENCY) || (latency[3] < RANDOMX_LPROG_LATENCY) | ||||
| 				|| (latency[4] < RANDOMX_LPROG_LATENCY) || (latency[5] < RANDOMX_LPROG_LATENCY) || (latency[6] < RANDOMX_LPROG_LATENCY) || (latency[7] < RANDOMX_LPROG_LATENCY)) && (num_retries < 64)) | ||||
| 			{ | ||||
| 				// Fail-safe to guarantee loop termination
 | ||||
| 				++total_iterations; | ||||
| 				if (total_iterations > 1024) { | ||||
| 					std::cout << "total_iterations = " << total_iterations << std::endl; | ||||
| 					break; | ||||
| 				} | ||||
| 
 | ||||
| 				check_data(data_index, 1, data, sizeof(data)); | ||||
| 				const uint8_t b1 = data[data_index++]; | ||||
| 				int instrType = lightInstruction[b1 & ((1 << LIGHT_OPCODE_BITS) - 1)]; | ||||
| 
 | ||||
| 				check_data(data_index, 1, data, sizeof(data)); | ||||
| 				const uint8_t b2 = data[data_index++]; | ||||
| 				dst_index = b2 & ((1 << V4_DST_INDEX_BITS) - 1); | ||||
| 				src_index = (b2 >> (V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1); | ||||
| 
 | ||||
| 				const int a = dst_index; | ||||
| 				int b = src_index; | ||||
| 
 | ||||
| 				// Don't do rotation with the same destination twice because it's equal to a single rotation
 | ||||
| 				if (is_rotation[instrType] && rotated[a]) | ||||
| 				{ | ||||
| 					continue; | ||||
| 				} | ||||
| 
 | ||||
| 				// Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
 | ||||
| 				//	2x IADD_RC(a, b, C) = IADD_RC(a, b*2, C1+C2)
 | ||||
| 				//	2x ISUB_R(a, b) = ISUB_R(a, 2*b)
 | ||||
| 				//	2x IMUL_R(a, b) = IMUL_R(a, b*b)
 | ||||
| 				//	2x IMUL_9C(a, C) = 9 * (9 * a + C1) + C2 = 81 * a + (9 * C1 + C2)
 | ||||
| 				//	2x IMUL_RCP(a, C) = a * (C * C)
 | ||||
| 				//	2x IXOR_R = NOP
 | ||||
| 				//	2x IROR_R(a, b) = IROR_R(a, 2*b)
 | ||||
| 				if (instrType != LightInstruction::IMULH_R && instrType != LightInstruction::ISMULH_R && ((inst_data[a] & 0xFFFF00) == (instrType << 8) + ((inst_data[b] & 255) << 16))) | ||||
| 				{ | ||||
| 					continue; | ||||
| 				} | ||||
| 
 | ||||
| 				if ((instrType == LightInstruction::IADD_RC) || (instrType == LightInstruction::IMUL_9C) || (instrType == LightInstruction::IMUL_RCP) || (instrType == LightInstruction::COND_R) || ((instrType != LightInstruction::IMULH_R) && (instrType != LightInstruction::ISMULH_R) && (a == b))) | ||||
| 				{ | ||||
| 					check_data(data_index, 4, data, sizeof(data)); | ||||
| 					imm32 = load32(&data[data_index++]); | ||||
| 				} | ||||
| 
 | ||||
| 				// Find which ALU is available (and when) for this instruction
 | ||||
| 				int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b]; | ||||
| 				int alu_index = -1; | ||||
| 				while (next_latency < RANDOMX_LPROG_LATENCY) | ||||
| 				{ | ||||
| 					for (int i = op_ALUs[instrType] - 1; i >= 0; --i) | ||||
| 					{ | ||||
| 						if (!alu_busy[next_latency][i]) | ||||
| 						{ | ||||
| 							// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
 | ||||
| 							if ((instrType == LightInstruction::IADD_RC || instrType == LightInstruction::IMUL_9C || instrType == LightInstruction::IMULH_R || instrType == LightInstruction::ISMULH_R) && alu_busy[next_latency + 1][i]) | ||||
| 							{ | ||||
| 								continue; | ||||
| 							} | ||||
| 
 | ||||
| 							// Rotation can only start when previous rotation is finished, so do an additional availability check
 | ||||
| 							if (is_rotation[instrType] && (next_latency < rotate_count * op_latency[instrType])) | ||||
| 							{ | ||||
| 								continue; | ||||
| 							} | ||||
| 
 | ||||
| 							alu_index = i; | ||||
| 							break; | ||||
| 						} | ||||
| 					} | ||||
| 					if (alu_index >= 0) | ||||
| 					{ | ||||
| 						break; | ||||
| 					} | ||||
| 					++next_latency; | ||||
| 				} | ||||
| 
 | ||||
| 				// Don't generate instructions that leave some register unchanged for more than 15 cycles
 | ||||
| 				if (next_latency > latency[a] + 15) | ||||
| 				{ | ||||
| 					continue; | ||||
| 				} | ||||
| 
 | ||||
| 				next_latency += op_latency[instrType]; | ||||
| 
 | ||||
| 				if (next_latency <= RANDOMX_LPROG_LATENCY) | ||||
| 				{ | ||||
| 					if (is_rotation[instrType]) | ||||
| 					{ | ||||
| 						++rotate_count; | ||||
| 					} | ||||
| 
 | ||||
| 					// Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
 | ||||
| 					alu_busy[next_latency - op_latency[instrType]][alu_index] = true; | ||||
| 					latency[a] = next_latency; | ||||
| 
 | ||||
| 					// ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
 | ||||
| 					asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[instrType]; | ||||
| 
 | ||||
| 					rotated[a] = is_rotation[instrType]; | ||||
| 
 | ||||
| 					inst_data[a] = code_size + (instrType << 8) + ((inst_data[b] & 255) << 16); | ||||
| 
 | ||||
| 					prog(code_size).opcode = lightInstructionOpcode[instrType]; | ||||
| 					prog(code_size).dst = dst_index; | ||||
| 					prog(code_size).src = src_index; | ||||
| 					prog(code_size).setImm32(imm32); | ||||
| 
 | ||||
| 					if (instrType == LightInstruction::IADD_RC || instrType == LightInstruction::IMUL_9C || instrType == LightInstruction::IMULH_R || instrType == LightInstruction::ISMULH_R) | ||||
| 					{ | ||||
| 						// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
 | ||||
| 						alu_busy[next_latency - op_latency[instrType] + 1][alu_index] = true; | ||||
| 					} | ||||
| 
 | ||||
| 					++code_size; | ||||
| 					if (code_size >= RANDOMX_LPROG_MIN_SIZE) | ||||
| 					{ | ||||
| 						break; | ||||
| 					} | ||||
| 				} | ||||
| 				else | ||||
| 				{ | ||||
| 					++num_retries; | ||||
| 					std::cout << "Retry " << num_retries << " with code_size = " << code_size << ", next_latency = " << next_latency << std::endl; | ||||
| 				} | ||||
| 			} | ||||
| 
 | ||||
| 			// ASIC has more execution resources and can extract as much parallelism from the code as possible
 | ||||
| 			// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
 | ||||
| 			// Get this latency for at least 1 of the 4 registers
 | ||||
| 			const int prev_code_size = code_size; | ||||
| 			if ((code_size < RANDOMX_LPROG_MAX_SIZE) && (asic_latency[indexRegister] < RANDOMX_LPROG_ASIC_LATENCY)) | ||||
| 			{ | ||||
| 				int min_idx = indexRegister; | ||||
| 				int max_idx = 0; | ||||
| 				for (int i = 1; i < 8; ++i) | ||||
| 				{ | ||||
| 					//if (asic_latency[i] < asic_latency[min_idx]) min_idx = i;
 | ||||
| 					if (asic_latency[i] > asic_latency[max_idx]) max_idx = i; | ||||
| 				} | ||||
| 
 | ||||
| 				const int pattern[3] = { LightInstruction::IMUL_R, LightInstruction::IROR_R, LightInstruction::IMUL_R }; | ||||
| 				const int instrType = pattern[(code_size - prev_code_size) % 3]; | ||||
| 				latency[min_idx] = latency[max_idx] + op_latency[instrType]; | ||||
| 				asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[instrType]; | ||||
| 
 | ||||
| 				prog(code_size).opcode = lightInstructionOpcode[instrType]; | ||||
| 				prog(code_size).dst = min_idx; | ||||
| 				prog(code_size).src = max_idx; | ||||
| 
 | ||||
| 				++code_size; | ||||
| 			} | ||||
| 
 | ||||
| 			for (int i = 0; i < 8; ++i) { | ||||
| 				std::cout << "Latency " << i << " = " << latency[i] << std::endl; | ||||
| 			} | ||||
| 
 | ||||
| 			std::cout << "Code size = " << code_size << std::endl; | ||||
| 			std::cout << "ALUs:" << std::endl; | ||||
| 			for (int i = 0; i < RANDOMX_LPROG_LATENCY + 1; ++i) { | ||||
| 				for (int j = 0; j < ALU_COUNT; ++j) { | ||||
| 					std::cout << (alu_busy[i][j] ? '*' : '_'); | ||||
| 				} | ||||
| 				std::cout << std::endl; | ||||
| 			} | ||||
| 
 | ||||
| 			// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
 | ||||
| 			// It never does more than 4 iterations for all block heights < 10,000,000
 | ||||
| 		} while ((code_size < RANDOMX_LPROG_MIN_SIZE) || (code_size > RANDOMX_LPROG_MAX_SIZE)); | ||||
| 
 | ||||
| 		prog.setSize(code_size); | ||||
| 	} | ||||
| } | ||||
							
								
								
									
										24
									
								
								src/LightProgramGenerator.hpp
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										24
									
								
								src/LightProgramGenerator.hpp
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,24 @@ | |||
| /*
 | ||||
| Copyright (c) 2019 tevador | ||||
| 
 | ||||
| This file is part of RandomX. | ||||
| 
 | ||||
| RandomX is free software: you can redistribute it and/or modify | ||||
| it under the terms of the GNU General Public License as published by | ||||
| the Free Software Foundation, either version 3 of the License, or | ||||
| (at your option) any later version. | ||||
| 
 | ||||
| RandomX is distributed in the hope that it will be useful, | ||||
| but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||||
| GNU General Public License for more details. | ||||
| 
 | ||||
| You should have received a copy of the GNU General Public License | ||||
| along with RandomX.  If not, see<http://www.gnu.org/licenses/>.
 | ||||
| */ | ||||
| 
 | ||||
| #include "Program.hpp" | ||||
| 
 | ||||
| namespace RandomX { | ||||
| 	void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister); | ||||
| } | ||||
|  | @ -21,7 +21,8 @@ along with RandomX.  If not, see<http://www.gnu.org/licenses/>. | |||
| #include "hashAes1Rx4.hpp" | ||||
| 
 | ||||
| namespace RandomX { | ||||
| 	void Program::print(std::ostream& os) const { | ||||
| 	template<size_t PROGRAM_SIZE> | ||||
| 	void ProgramBase::print(std::ostream& os) const { | ||||
| 		for (int i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) { | ||||
| 			auto instr = programBuffer[i]; | ||||
| 			os << instr; | ||||
|  |  | |||
|  | @ -39,11 +39,45 @@ namespace RandomX { | |||
| 		uint64_t getEntropy(int i) { | ||||
| 			return load64(&entropyBuffer[i]); | ||||
| 		} | ||||
| 		uint32_t getSize() { | ||||
| 			return RANDOMX_PROGRAM_SIZE; | ||||
| 		} | ||||
| 	private: | ||||
| 		void print(std::ostream&) const; | ||||
| 		void print(std::ostream& os) const { | ||||
| 			for (int i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) { | ||||
| 				auto instr = programBuffer[i]; | ||||
| 				os << instr; | ||||
| 			} | ||||
| 		} | ||||
| 		uint64_t entropyBuffer[16]; | ||||
| 		Instruction programBuffer[RANDOMX_PROGRAM_SIZE]; | ||||
| 	}; | ||||
| 
 | ||||
| 	class LightProgram { | ||||
| 	public: | ||||
| 		Instruction& operator()(int pc) { | ||||
| 			return programBuffer[pc]; | ||||
| 		} | ||||
| 		friend std::ostream& operator<<(std::ostream& os, const LightProgram& p) { | ||||
| 			p.print(os); | ||||
| 			return os; | ||||
| 		} | ||||
| 		uint32_t getSize() { | ||||
| 			return size; | ||||
| 		} | ||||
| 		void setSize(uint32_t val) { | ||||
| 			size = val; | ||||
| 		} | ||||
| 	private: | ||||
| 		void print(std::ostream& os) const { | ||||
| 			for (unsigned i = 0; i < size; ++i) { | ||||
| 				auto instr = programBuffer[i]; | ||||
| 				os << instr; | ||||
| 			} | ||||
| 		} | ||||
| 		Instruction programBuffer[RANDOMX_LPROG_MAX_SIZE]; | ||||
| 		uint32_t size; | ||||
| 	}; | ||||
| 
 | ||||
| 	static_assert(sizeof(Program) % 64 == 0, "Invalid size of class Program"); | ||||
| } | ||||
|  |  | |||
|  | @ -37,6 +37,11 @@ along with RandomX.  If not, see<http://www.gnu.org/licenses/>. | |||
| //Number of random Cache accesses per Dataset block. Minimum is 2.
 | ||||
| #define RANDOMX_CACHE_ACCESSES     8 | ||||
| 
 | ||||
| #define RANDOMX_LPROG_LATENCY      168 | ||||
| #define RANDOMX_LPROG_ASIC_LATENCY 84 | ||||
| #define RANDOMX_LPROG_MIN_SIZE     225 | ||||
| #define RANDOMX_LPROG_MAX_SIZE     512 | ||||
| 
 | ||||
| //Dataset size in bytes. Must be a power of 2.
 | ||||
| #define RANDOMX_DATASET_SIZE       (2ULL * 1024 * 1024 * 1024) | ||||
| 
 | ||||
|  |  | |||
							
								
								
									
										11
									
								
								src/main.cpp
									
										
									
									
									
								
							
							
						
						
									
										11
									
								
								src/main.cpp
									
										
									
									
									
								
							|  | @ -36,6 +36,7 @@ along with RandomX.  If not, see<http://www.gnu.org/licenses/>. | |||
| #include "dataset.hpp" | ||||
| #include "Cache.hpp" | ||||
| #include "hashAes1Rx4.hpp" | ||||
| #include "LightProgramGenerator.hpp" | ||||
| 
 | ||||
| const uint8_t seed[32] = { 191, 182, 222, 175, 249, 89, 134, 104, 241, 68, 191, 62, 162, 166, 61, 64, 123, 191, 227, 193, 118, 60, 188, 53, 223, 133, 175, 24, 123, 230, 55, 74 }; | ||||
| 
 | ||||
|  | @ -203,7 +204,7 @@ void mine(RandomX::VirtualMachine* vm, std::atomic<uint32_t>& atomicNonce, Atomi | |||
| } | ||||
| 
 | ||||
| int main(int argc, char** argv) { | ||||
| 	bool softAes, genAsm, miningMode, verificationMode, help, largePages, async, genNative, jit; | ||||
| 	bool softAes, genAsm, miningMode, verificationMode, help, largePages, async, genNative, jit, genLight; | ||||
| 	int programCount, threadCount, initThreadCount, epoch; | ||||
| 
 | ||||
| 	readOption("--softAes", argc, argv, softAes); | ||||
|  | @ -218,6 +219,14 @@ int main(int argc, char** argv) { | |||
| 	readOption("--jit", argc, argv, jit); | ||||
| 	readOption("--genNative", argc, argv, genNative); | ||||
| 	readOption("--help", argc, argv, help); | ||||
| 	readOption("--genLight", argc, argv, genLight); | ||||
| 
 | ||||
| 	if (genLight) { | ||||
| 		RandomX::LightProgram p; | ||||
| 		RandomX::generateLightProgram(p, seed, 0); | ||||
| 		std::cout << p << std::endl; | ||||
| 		return 0; | ||||
| 	} | ||||
| 
 | ||||
| 	if (genAsm) { | ||||
| 		if (softAes) | ||||
|  |  | |||
							
								
								
									
										441
									
								
								src/variant4_random_math.h
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										441
									
								
								src/variant4_random_math.h
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,441 @@ | |||
| #ifndef VARIANT4_RANDOM_MATH_H | ||||
| #define VARIANT4_RANDOM_MATH_H | ||||
| 
 | ||||
| // Register size can be configured to either 32 bit (uint32_t) or 64 bit (uint64_t)
 | ||||
| typedef uint32_t v4_reg; | ||||
| 
 | ||||
| enum V4_Settings | ||||
| { | ||||
| 	// Generate code with minimal theoretical latency = 45 cycles, which is equivalent to 15 multiplications
 | ||||
| 	TOTAL_LATENCY = 15 * 3, | ||||
| 	 | ||||
| 	// Always generate at least 60 instructions
 | ||||
| 	NUM_INSTRUCTIONS_MIN = 60, | ||||
| 
 | ||||
| 	// Never generate more than 70 instructions (final RET instruction doesn't count here)
 | ||||
| 	NUM_INSTRUCTIONS_MAX = 70, | ||||
| 
 | ||||
| 	// Available ALUs for MUL
 | ||||
| 	// Modern CPUs typically have only 1 ALU which can do multiplications
 | ||||
| 	ALU_COUNT_MUL = 1, | ||||
| 
 | ||||
| 	// Total available ALUs
 | ||||
| 	// Modern CPUs have 4 ALUs, but we use only 3 because random math executes together with other main loop code
 | ||||
| 	ALU_COUNT = 3, | ||||
| }; | ||||
| 
 | ||||
| enum V4_InstructionList | ||||
| { | ||||
| 	MUL,	// a*b
 | ||||
| 	ADD,	// a+b + C, C is an unsigned 32-bit constant
 | ||||
| 	SUB,	// a-b
 | ||||
| 	ROR,	// rotate right "a" by "b & 31" bits
 | ||||
| 	ROL,	// rotate left "a" by "b & 31" bits
 | ||||
| 	XOR,	// a^b
 | ||||
| 	RET,	// finish execution
 | ||||
| 	V4_INSTRUCTION_COUNT = RET, | ||||
| }; | ||||
| 
 | ||||
| // V4_InstructionDefinition is used to generate code from random data
 | ||||
| // Every random sequence of bytes is a valid code
 | ||||
| //
 | ||||
| // There are 9 registers in total:
 | ||||
| // - 4 variable registers
 | ||||
| // - 5 constant registers initialized from loop variables
 | ||||
| // This is why dst_index is 2 bits
 | ||||
| enum V4_InstructionDefinition | ||||
| { | ||||
| 	V4_OPCODE_BITS = 3, | ||||
| 	V4_DST_INDEX_BITS = 2, | ||||
| 	V4_SRC_INDEX_BITS = 3, | ||||
| }; | ||||
| 
 | ||||
| struct V4_Instruction | ||||
| { | ||||
| 	uint8_t opcode; | ||||
| 	uint8_t dst_index; | ||||
| 	uint8_t src_index; | ||||
| 	uint32_t C; | ||||
| }; | ||||
| 
 | ||||
| #ifndef FORCEINLINE | ||||
| #if defined(__GNUC__) | ||||
| #define FORCEINLINE __attribute__((always_inline)) inline | ||||
| #elif defined(_MSC_VER) | ||||
| #define FORCEINLINE __forceinline | ||||
| #else | ||||
| #define FORCEINLINE inline | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| #ifndef UNREACHABLE_CODE | ||||
| #if defined(__GNUC__) | ||||
| #define UNREACHABLE_CODE __builtin_unreachable() | ||||
| #elif defined(_MSC_VER) | ||||
| #define UNREACHABLE_CODE __assume(false) | ||||
| #else | ||||
| #define UNREACHABLE_CODE | ||||
| #endif | ||||
| #endif | ||||
| 
 | ||||
| // Random math interpreter's loop is fully unrolled and inlined to achieve 100% branch prediction on CPU:
 | ||||
| // every switch-case will point to the same destination on every iteration of Cryptonight main loop
 | ||||
| //
 | ||||
| // This is about as fast as it can get without using low-level machine code generation
 | ||||
| static FORCEINLINE void v4_random_math(const struct V4_Instruction* code, v4_reg* r) | ||||
| { | ||||
| 	enum | ||||
| 	{ | ||||
| 		REG_BITS = sizeof(v4_reg) * 8, | ||||
| 	}; | ||||
| 
 | ||||
| #define V4_EXEC(i) \ | ||||
| 	{ \ | ||||
| 		const struct V4_Instruction* op = code + i; \ | ||||
| 		const v4_reg src = r[op->src_index]; \ | ||||
| 		v4_reg* dst = r + op->dst_index; \ | ||||
| 		switch (op->opcode) \ | ||||
| 		{ \ | ||||
| 		case MUL: \ | ||||
| 			*dst *= src; \ | ||||
| 			break; \ | ||||
| 		case ADD: \ | ||||
| 			*dst += src + op->C; \ | ||||
| 			break; \ | ||||
| 		case SUB: \ | ||||
| 			*dst -= src; \ | ||||
| 			break; \ | ||||
| 		case ROR: \ | ||||
| 			{ \ | ||||
| 				const uint32_t shift = src % REG_BITS; \ | ||||
| 				*dst = (*dst >> shift) | (*dst << ((REG_BITS - shift) % REG_BITS)); \ | ||||
| 			} \ | ||||
| 			break; \ | ||||
| 		case ROL: \ | ||||
| 			{ \ | ||||
| 				const uint32_t shift = src % REG_BITS; \ | ||||
| 				*dst = (*dst << shift) | (*dst >> ((REG_BITS - shift) % REG_BITS)); \ | ||||
| 			} \ | ||||
| 			break; \ | ||||
| 		case XOR: \ | ||||
| 			*dst ^= src; \ | ||||
| 			break; \ | ||||
| 		case RET: \ | ||||
| 			return; \ | ||||
| 		default: \ | ||||
| 			UNREACHABLE_CODE; \ | ||||
| 			break; \ | ||||
| 		} \ | ||||
| 	} | ||||
| 
 | ||||
| #define V4_EXEC_10(j) \ | ||||
| 	V4_EXEC(j + 0) \ | ||||
| 	V4_EXEC(j + 1) \ | ||||
| 	V4_EXEC(j + 2) \ | ||||
| 	V4_EXEC(j + 3) \ | ||||
| 	V4_EXEC(j + 4) \ | ||||
| 	V4_EXEC(j + 5) \ | ||||
| 	V4_EXEC(j + 6) \ | ||||
| 	V4_EXEC(j + 7) \ | ||||
| 	V4_EXEC(j + 8) \ | ||||
| 	V4_EXEC(j + 9) | ||||
| 
 | ||||
| 	// Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency
 | ||||
| 	// I've checked all block heights < 10,000,000 and here is the distribution of program sizes:
 | ||||
| 	//
 | ||||
| 	// 60      27960
 | ||||
| 	// 61      105054
 | ||||
| 	// 62      2452759
 | ||||
| 	// 63      5115997
 | ||||
| 	// 64      1022269
 | ||||
| 	// 65      1109635
 | ||||
| 	// 66      153145
 | ||||
| 	// 67      8550
 | ||||
| 	// 68      4529
 | ||||
| 	// 69      102
 | ||||
| 
 | ||||
| 	// Unroll 70 instructions here
 | ||||
| 	V4_EXEC_10(0);		// instructions 0-9
 | ||||
| 	V4_EXEC_10(10);		// instructions 10-19
 | ||||
| 	V4_EXEC_10(20);		// instructions 20-29
 | ||||
| 	V4_EXEC_10(30);		// instructions 30-39
 | ||||
| 	V4_EXEC_10(40);		// instructions 40-49
 | ||||
| 	V4_EXEC_10(50);		// instructions 50-59
 | ||||
| 	V4_EXEC_10(60);		// instructions 60-69
 | ||||
| 
 | ||||
| #undef V4_EXEC_10 | ||||
| #undef V4_EXEC | ||||
| } | ||||
| 
 | ||||
| // If we don't have enough data available, generate more
 | ||||
| static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed, int8_t* data, const size_t data_size) | ||||
| { | ||||
| 	if (*data_index + bytes_needed > data_size) | ||||
| 	{ | ||||
| 		hash_extra_blake(data, data_size, (char*) data); | ||||
| 		*data_index = 0; | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Generates as many random math operations as possible with given latency and ALU restrictions
 | ||||
| // "code" array must have space for NUM_INSTRUCTIONS_MAX+1 instructions
 | ||||
| static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height) | ||||
| { | ||||
| 	// MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle
 | ||||
| 	// These latencies match real-life instruction latencies for Intel CPUs starting from Sandy Bridge and up to Skylake/Coffee lake
 | ||||
| 	//
 | ||||
| 	// AMD Ryzen has the same latencies except 1-cycle ROR/ROL, so it'll be a bit faster than Intel Sandy Bridge and newer processors
 | ||||
| 	// Surprisingly, Intel Nehalem also has 1-cycle ROR/ROL, so it'll also be faster than Intel Sandy Bridge and newer processors
 | ||||
| 	// AMD Bulldozer has 4 cycles latency for MUL (slower than Intel) and 1 cycle for ROR/ROL (faster than Intel), so average performance will be the same
 | ||||
| 	// Source: https://www.agner.org/optimize/instruction_tables.pdf
 | ||||
| 	const int op_latency[V4_INSTRUCTION_COUNT] = { 3, 2, 1, 2, 2, 1 }; | ||||
| 
 | ||||
| 	// Instruction latencies for theoretical ASIC implementation
 | ||||
| 	const int asic_op_latency[V4_INSTRUCTION_COUNT] = { 3, 1, 1, 1, 1, 1 }; | ||||
| 
 | ||||
| 	// Available ALUs for each instruction
 | ||||
| 	const int op_ALUs[V4_INSTRUCTION_COUNT] = { ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT }; | ||||
| 
 | ||||
| 	int8_t data[32]; | ||||
| 	memset(data, 0, sizeof(data)); | ||||
| 	uint64_t tmp = SWAP64LE(height); | ||||
| 	memcpy(data, &tmp, sizeof(uint64_t)); | ||||
| 	data[20] = -38; // change seed
 | ||||
| 
 | ||||
| 	// Set data_index past the last byte in data
 | ||||
| 	// to trigger full data update with blake hash
 | ||||
| 	// before we start using it
 | ||||
| 	size_t data_index = sizeof(data); | ||||
| 
 | ||||
| 	int code_size; | ||||
| 
 | ||||
| 	// There is a small chance (1.8%) that register R8 won't be used in the generated program
 | ||||
| 	// So we keep track of it and try again if it's not used
 | ||||
| 	bool r8_used; | ||||
| 	do { | ||||
| 		int latency[9]; | ||||
| 		int asic_latency[9]; | ||||
| 
 | ||||
| 		// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
 | ||||
| 		// byte 0: current value of the destination register
 | ||||
| 		// byte 1: instruction opcode
 | ||||
| 		// byte 2: current value of the source register
 | ||||
| 		//
 | ||||
| 		// Registers R4-R8 are constant and are treated as having the same value because when we do
 | ||||
| 		// the same operation twice with two constant source registers, it can be optimized into a single operation
 | ||||
| 		uint32_t inst_data[9] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF }; | ||||
| 
 | ||||
| 		bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT]; | ||||
| 		bool is_rotation[V4_INSTRUCTION_COUNT]; | ||||
| 		bool rotated[4]; | ||||
| 		int rotate_count = 0; | ||||
| 
 | ||||
| 		memset(latency, 0, sizeof(latency)); | ||||
| 		memset(asic_latency, 0, sizeof(asic_latency)); | ||||
| 		memset(alu_busy, 0, sizeof(alu_busy)); | ||||
| 		memset(is_rotation, 0, sizeof(is_rotation)); | ||||
| 		memset(rotated, 0, sizeof(rotated)); | ||||
| 		is_rotation[ROR] = true; | ||||
| 		is_rotation[ROL] = true; | ||||
| 
 | ||||
| 		int num_retries = 0; | ||||
| 		code_size = 0; | ||||
| 
 | ||||
| 		int total_iterations = 0; | ||||
| 		r8_used = false; | ||||
| 
 | ||||
| 		// Generate random code to achieve minimal required latency for our abstract CPU
 | ||||
| 		// Try to get this latency for all 4 registers
 | ||||
| 		while (((latency[0] < TOTAL_LATENCY) || (latency[1] < TOTAL_LATENCY) || (latency[2] < TOTAL_LATENCY) || (latency[3] < TOTAL_LATENCY)) && (num_retries < 64)) | ||||
| 		{ | ||||
| 			// Fail-safe to guarantee loop termination
 | ||||
| 			++total_iterations; | ||||
| 			if (total_iterations > 256) | ||||
| 				break; | ||||
| 
 | ||||
| 			check_data(&data_index, 1, data, sizeof(data)); | ||||
| 
 | ||||
| 			const uint8_t c = ((uint8_t*)data)[data_index++]; | ||||
| 
 | ||||
| 			// MUL = opcodes 0-2
 | ||||
| 			// ADD = opcode 3
 | ||||
| 			// SUB = opcode 4
 | ||||
| 			// ROR/ROL = opcode 5, shift direction is selected randomly
 | ||||
| 			// XOR = opcodes 6-7
 | ||||
| 			uint8_t opcode = c & ((1 << V4_OPCODE_BITS) - 1); | ||||
| 			if (opcode == 5) | ||||
| 			{ | ||||
| 				check_data(&data_index, 1, data, sizeof(data)); | ||||
| 				opcode = (data[data_index++] >= 0) ? ROR : ROL; | ||||
| 			} | ||||
| 			else if (opcode >= 6) | ||||
| 			{ | ||||
| 				opcode = XOR; | ||||
| 			} | ||||
| 			else | ||||
| 			{ | ||||
| 				opcode = (opcode <= 2) ? MUL : (opcode - 2); | ||||
| 			} | ||||
| 
 | ||||
| 			uint8_t dst_index = (c >> V4_OPCODE_BITS) & ((1 << V4_DST_INDEX_BITS) - 1); | ||||
| 			uint8_t src_index = (c >> (V4_OPCODE_BITS + V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1); | ||||
| 
 | ||||
| 			const int a = dst_index; | ||||
| 			int b = src_index; | ||||
| 
 | ||||
| 			// Don't do ADD/SUB/XOR with the same register
 | ||||
| 			if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b)) | ||||
| 			{ | ||||
| 				// Use register R8 as source instead
 | ||||
| 				b = 8; | ||||
| 				src_index = 8; | ||||
| 			} | ||||
| 
 | ||||
| 			// Don't do rotation with the same destination twice because it's equal to a single rotation
 | ||||
| 			if (is_rotation[opcode] && rotated[a]) | ||||
| 			{ | ||||
| 				continue; | ||||
| 			} | ||||
| 
 | ||||
| 			// Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
 | ||||
| 			// 2xADD(a, b, C) = ADD(a, b*2, C1+C2), same for SUB and rotations
 | ||||
| 			// 2xXOR(a, b) = NOP
 | ||||
| 			if ((opcode != MUL) && ((inst_data[a] & 0xFFFF00) == (opcode << 8) + ((inst_data[b] & 255) << 16))) | ||||
| 			{ | ||||
| 				continue; | ||||
| 			} | ||||
| 
 | ||||
| 			// Find which ALU is available (and when) for this instruction
 | ||||
| 			int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b]; | ||||
| 			int alu_index = -1; | ||||
| 			while (next_latency < TOTAL_LATENCY) | ||||
| 			{ | ||||
| 				for (int i = op_ALUs[opcode] - 1; i >= 0; --i) | ||||
| 				{ | ||||
| 					if (!alu_busy[next_latency][i]) | ||||
| 					{ | ||||
| 						// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
 | ||||
| 						if ((opcode == ADD) && alu_busy[next_latency + 1][i]) | ||||
| 						{ | ||||
| 							continue; | ||||
| 						} | ||||
| 
 | ||||
| 						// Rotation can only start when previous rotation is finished, so do an additional availability check
 | ||||
| 						if (is_rotation[opcode] && (next_latency < rotate_count * op_latency[opcode])) | ||||
| 						{ | ||||
| 							continue; | ||||
| 						} | ||||
| 
 | ||||
| 						alu_index = i; | ||||
| 						break; | ||||
| 					} | ||||
| 				} | ||||
| 				if (alu_index >= 0) | ||||
| 				{ | ||||
| 					break; | ||||
| 				} | ||||
| 				++next_latency; | ||||
| 			} | ||||
| 
 | ||||
| 			// Don't generate instructions that leave some register unchanged for more than 7 cycles
 | ||||
| 			if (next_latency > latency[a] + 7) | ||||
| 			{ | ||||
| 				continue; | ||||
| 			} | ||||
| 
 | ||||
| 			next_latency += op_latency[opcode]; | ||||
| 
 | ||||
| 			if (next_latency <= TOTAL_LATENCY) | ||||
| 			{ | ||||
| 				if (is_rotation[opcode]) | ||||
| 				{ | ||||
| 					++rotate_count; | ||||
| 				} | ||||
| 
 | ||||
| 				// Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
 | ||||
| 				alu_busy[next_latency - op_latency[opcode]][alu_index] = true; | ||||
| 				latency[a] = next_latency; | ||||
| 
 | ||||
| 				// ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
 | ||||
| 				asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[opcode]; | ||||
| 
 | ||||
| 				rotated[a] = is_rotation[opcode]; | ||||
| 
 | ||||
| 				inst_data[a] = code_size + (opcode << 8) + ((inst_data[b] & 255) << 16); | ||||
| 
 | ||||
| 				code[code_size].opcode = opcode; | ||||
| 				code[code_size].dst_index = dst_index; | ||||
| 				code[code_size].src_index = src_index; | ||||
| 				code[code_size].C = 0; | ||||
| 
 | ||||
| 				if (src_index == 8) | ||||
| 				{ | ||||
| 					r8_used = true; | ||||
| 				} | ||||
| 
 | ||||
| 				if (opcode == ADD) | ||||
| 				{ | ||||
| 					// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
 | ||||
| 					alu_busy[next_latency - op_latency[opcode] + 1][alu_index] = true; | ||||
| 
 | ||||
| 					// ADD instruction requires 4 more random bytes for 32-bit constant "C" in "a = a + b + C"
 | ||||
| 					check_data(&data_index, sizeof(uint32_t), data, sizeof(data)); | ||||
| 					uint32_t t; | ||||
| 					memcpy(&t, data + data_index, sizeof(uint32_t)); | ||||
| 					code[code_size].C = SWAP32LE(t); | ||||
| 					data_index += sizeof(uint32_t); | ||||
| 				} | ||||
| 
 | ||||
| 				++code_size; | ||||
| 				if (code_size >= NUM_INSTRUCTIONS_MIN) | ||||
| 				{ | ||||
| 					break; | ||||
| 				} | ||||
| 			} | ||||
| 			else | ||||
| 			{ | ||||
| 				++num_retries; | ||||
| 			} | ||||
| 		} | ||||
| 
 | ||||
| 		// ASIC has more execution resources and can extract as much parallelism from the code as possible
 | ||||
| 		// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
 | ||||
| 		// Get this latency for at least 1 of the 4 registers
 | ||||
| 		const int prev_code_size = code_size; | ||||
| 		while ((code_size < NUM_INSTRUCTIONS_MAX) && (asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY)) | ||||
| 		{ | ||||
| 			int min_idx = 0; | ||||
| 			int max_idx = 0; | ||||
| 			for (int i = 1; i < 4; ++i) | ||||
| 			{ | ||||
| 				if (asic_latency[i] < asic_latency[min_idx]) min_idx = i; | ||||
| 				if (asic_latency[i] > asic_latency[max_idx]) max_idx = i; | ||||
| 			} | ||||
| 
 | ||||
| 			const uint8_t pattern[3] = { ROR, MUL, MUL }; | ||||
| 			const uint8_t opcode = pattern[(code_size - prev_code_size) % 3]; | ||||
| 			latency[min_idx] = latency[max_idx] + op_latency[opcode]; | ||||
| 			asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[opcode]; | ||||
| 
 | ||||
| 			code[code_size].opcode = opcode; | ||||
| 			code[code_size].dst_index = min_idx; | ||||
| 			code[code_size].src_index = max_idx; | ||||
| 			code[code_size].C = 0; | ||||
| 			++code_size; | ||||
| 		} | ||||
| 
 | ||||
| 	// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
 | ||||
| 	// It never does more than 4 iterations for all block heights < 10,000,000
 | ||||
| 	}  while (!r8_used || (code_size < NUM_INSTRUCTIONS_MIN) || (code_size > NUM_INSTRUCTIONS_MAX)); | ||||
| 
 | ||||
| 	// It's guaranteed that NUM_INSTRUCTIONS_MIN <= code_size <= NUM_INSTRUCTIONS_MAX here
 | ||||
| 	// Add final instruction to stop the interpreter
 | ||||
| 	code[code_size].opcode = RET; | ||||
| 	code[code_size].dst_index = 0; | ||||
| 	code[code_size].src_index = 0; | ||||
| 	code[code_size].C = 0; | ||||
| 
 | ||||
| 	return code_size; | ||||
| } | ||||
| 
 | ||||
| #endif | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue