Front-end simulation

This commit is contained in:
tevador 2019-03-31 13:32:16 +02:00
parent 59bbb572c2
commit 2fd0a125b5
4 changed files with 661 additions and 46 deletions

View file

@ -22,43 +22,29 @@ along with RandomX. If not, see<http://www.gnu.org/licenses/>.
#include "Program.hpp" #include "Program.hpp"
#include "blake2/endian.h"; #include "blake2/endian.h";
#include <iostream> #include <iostream>
#include <vector>
namespace RandomX { namespace RandomX {
// Intel Ivy Bridge reference
namespace LightInstruction { namespace LightInstructionType { //uOPs (decode) execution ports latency code size
constexpr int IADD_R = 0; constexpr int IADD_R = 0; //1 p015 1 3
constexpr int IADD_RC = 1; constexpr int IADD_C = 1; //1 p015 1 7
constexpr int ISUB_R = 2; constexpr int IADD_RC = 2; //1 p1 3 8
constexpr int IMUL_9C = 3; constexpr int ISUB_R = 3; //1 p015 1 3
constexpr int IMUL_R = 4; constexpr int IMUL_9C = 4; //1 p1 3 8
constexpr int IMULH_R = 5; constexpr int IMUL_R = 5; //1 p1 3 4
constexpr int ISMULH_R = 6; constexpr int IMUL_C = 6; //1 p1 3 7
constexpr int IMUL_RCP = 7; constexpr int IMULH_R = 7; //1+2+1 0+(p1,p5)+0 3 3+3+3
constexpr int IXOR_R = 8; constexpr int ISMULH_R = 8; //1+2+1 0+(p1,p5)+0 3 3+3+3
constexpr int IROR_R = 9; constexpr int IMUL_RCP = 9; //1+1 p015+p1 4 10+4
constexpr int COND_R = 10; constexpr int IXOR_R = 10; //1 p015 1 3
constexpr int COUNT = 11; constexpr int IXOR_C = 11; //1 p015 1 7
constexpr int IROR_R = 12; //1+2 0+(p0,p5) 1 3+3
constexpr int IROR_C = 13; //1 p05 1 4
constexpr int COND_R = 14; //1+1+1+1+1+1 p015+p5+0+p015+p05+p015 3 7+13+3+7+3+3
constexpr int COUNT = 15;
} }
const int lightInstruction[] = {
LightInstruction::IADD_RC,
LightInstruction::IADD_RC,
LightInstruction::ISUB_R,
LightInstruction::ISUB_R,
LightInstruction::IMUL_9C,
LightInstruction::IMUL_R,
LightInstruction::IMUL_R,
LightInstruction::IMUL_R,
LightInstruction::IMULH_R,
LightInstruction::ISMULH_R,
LightInstruction::IMUL_RCP,
LightInstruction::IXOR_R,
LightInstruction::IXOR_R,
LightInstruction::IROR_R,
LightInstruction::IROR_R,
LightInstruction::COND_R
};
namespace LightInstructionOpcode { namespace LightInstructionOpcode {
constexpr int IADD_R = 0; constexpr int IADD_R = 0;
constexpr int IADD_RC = RANDOMX_FREQ_IADD_R + RANDOMX_FREQ_IADD_M; constexpr int IADD_RC = RANDOMX_FREQ_IADD_R + RANDOMX_FREQ_IADD_M;
@ -67,26 +53,605 @@ namespace RandomX {
constexpr int IMUL_R = IMUL_9C + RANDOMX_FREQ_IMUL_9C; constexpr int IMUL_R = IMUL_9C + RANDOMX_FREQ_IMUL_9C;
constexpr int IMULH_R = IMUL_R + RANDOMX_FREQ_IMUL_R + RANDOMX_FREQ_IMUL_M; constexpr int IMULH_R = IMUL_R + RANDOMX_FREQ_IMUL_R + RANDOMX_FREQ_IMUL_M;
constexpr int ISMULH_R = IMULH_R + RANDOMX_FREQ_IMULH_R + RANDOMX_FREQ_IMULH_M; constexpr int ISMULH_R = IMULH_R + RANDOMX_FREQ_IMULH_R + RANDOMX_FREQ_IMULH_M;
constexpr int IMUL_RCP = ISMULH_R + RANDOMX_FREQ_ISMULH_R + RANDOMX_FREQ_ISMULH_M;; constexpr int IMUL_RCP = ISMULH_R + RANDOMX_FREQ_ISMULH_R + RANDOMX_FREQ_ISMULH_M;
constexpr int IXOR_R = IMUL_RCP + RANDOMX_FREQ_IMUL_RCP + RANDOMX_FREQ_INEG_R; constexpr int IXOR_R = IMUL_RCP + RANDOMX_FREQ_IMUL_RCP + RANDOMX_FREQ_INEG_R;
constexpr int IROR_R = IXOR_R + RANDOMX_FREQ_IXOR_R + RANDOMX_FREQ_IXOR_M; constexpr int IROR_R = IXOR_R + RANDOMX_FREQ_IXOR_R + RANDOMX_FREQ_IXOR_M;
constexpr int COND_R = IROR_R + RANDOMX_FREQ_IROR_R + RANDOMX_FREQ_IROL_R + RANDOMX_FREQ_ISWAP_R + RANDOMX_FREQ_FSWAP_R + RANDOMX_FREQ_FADD_R + RANDOMX_FREQ_FADD_M + RANDOMX_FREQ_FSUB_R + RANDOMX_FREQ_FSUB_M + RANDOMX_FREQ_FSCAL_R + RANDOMX_FREQ_FMUL_R + RANDOMX_FREQ_FDIV_M + RANDOMX_FREQ_FSQRT_R; constexpr int COND_R = IROR_R + RANDOMX_FREQ_IROR_R + RANDOMX_FREQ_IROL_R + RANDOMX_FREQ_ISWAP_R + RANDOMX_FREQ_FSWAP_R + RANDOMX_FREQ_FADD_R + RANDOMX_FREQ_FADD_M + RANDOMX_FREQ_FSUB_R + RANDOMX_FREQ_FSUB_M + RANDOMX_FREQ_FSCAL_R + RANDOMX_FREQ_FMUL_R + RANDOMX_FREQ_FDIV_M + RANDOMX_FREQ_FSQRT_R;
} }
const int lightInstructionOpcode[] = { const int lightInstructionOpcode[] = {
LightInstructionOpcode::IADD_R,
LightInstructionOpcode::IADD_R, LightInstructionOpcode::IADD_R,
LightInstructionOpcode::IADD_RC, LightInstructionOpcode::IADD_RC,
LightInstructionOpcode::ISUB_R, LightInstructionOpcode::ISUB_R,
LightInstructionOpcode::IMUL_9C, LightInstructionOpcode::IMUL_9C,
LightInstructionOpcode::IMUL_R, LightInstructionOpcode::IMUL_R,
LightInstructionOpcode::IMUL_R,
LightInstructionOpcode::IMULH_R, LightInstructionOpcode::IMULH_R,
LightInstructionOpcode::ISMULH_R, LightInstructionOpcode::ISMULH_R,
LightInstructionOpcode::IMUL_RCP, LightInstructionOpcode::IMUL_RCP,
LightInstructionOpcode::IXOR_R, LightInstructionOpcode::IXOR_R,
LightInstructionOpcode::IXOR_R,
LightInstructionOpcode::IROR_R,
LightInstructionOpcode::IROR_R, LightInstructionOpcode::IROR_R,
LightInstructionOpcode::COND_R LightInstructionOpcode::COND_R
}; };
const int lightInstruction[] = {
LightInstructionType::IADD_R,
LightInstructionType::IADD_C,
LightInstructionType::IADD_RC,
LightInstructionType::ISUB_R,
LightInstructionType::IMUL_9C,
LightInstructionType::IMUL_R,
LightInstructionType::IMUL_R,
LightInstructionType::IMUL_C,
LightInstructionType::IMULH_R,
LightInstructionType::ISMULH_R,
LightInstructionType::IMUL_RCP,
LightInstructionType::IXOR_R,
LightInstructionType::IXOR_C,
LightInstructionType::IROR_R,
LightInstructionType::IROR_C,
LightInstructionType::COND_R
};
namespace ExecutionPort {
using type = int;
constexpr type Null = 0;
constexpr type P0 = 1;
constexpr type P1 = 2;
constexpr type P5 = 4;
constexpr type P05 = 6;
constexpr type P015 = 7;
}
class Blake2Generator {
public:
Blake2Generator(const void* seed) : dataIndex(sizeof(data)) {
memset(data, 0, sizeof(data));
memcpy(data, seed, SeedSize);
data[60] = 39;
}
uint8_t getByte() {
checkData(1);
return data[dataIndex++];
}
uint32_t getInt32() {
checkData(4);
auto ret = load32(&data[dataIndex]);
dataIndex += 4;
return ret;
}
private:
uint8_t data[64];
size_t dataIndex;
void checkData(const size_t bytesNeeded) {
if (dataIndex + bytesNeeded > sizeof(data)) {
blake2b(data, sizeof(data), data, sizeof(data), nullptr, 0);
dataIndex = 0;
}
}
};
class MacroOp {
public:
MacroOp(const char* name, int size)
: name_(name), size_(size), latency_(0), uop1_(ExecutionPort::Null), uop2_(ExecutionPort::Null) {}
MacroOp(const char* name, int size, int latency, ExecutionPort::type uop)
: name_(name), size_(size), latency_(latency), uop1_(uop), uop2_(ExecutionPort::Null) {}
MacroOp(const char* name, int size, int latency, ExecutionPort::type uop1, ExecutionPort::type uop2)
: name_(name), size_(size), latency_(latency), uop1_(uop1), uop2_(uop2) {}
const char* getName() const {
return name_;
}
int getSize() const {
return size_;
}
int getLatency() const {
return latency_;
}
ExecutionPort::type getUop1() const {
return uop1_;
}
ExecutionPort::type getUop2() const {
return uop2_;
}
bool isSimple() const {
return uop2_ == ExecutionPort::Null;
}
bool isEliminated() const {
return uop1_ == ExecutionPort::Null;
}
static const MacroOp Add_rr;
static const MacroOp Add_ri;
static const MacroOp Lea_sib;
static const MacroOp Sub_rr;
static const MacroOp Imul_rr;
static const MacroOp Imul_rri;
static const MacroOp Imul_r;
static const MacroOp Mul_r;
static const MacroOp Mov_rr;
static const MacroOp Mov_ri64;
static const MacroOp Xor_rr;
static const MacroOp Xor_ri;
static const MacroOp Ror_rcl;
static const MacroOp Ror_ri;
static const MacroOp TestJmp_fused;
static const MacroOp Xor_self;
static const MacroOp Cmp_ri;
static const MacroOp Setcc_r;
private:
const char* name_;
int size_;
int latency_;
ExecutionPort::type uop1_;
ExecutionPort::type uop2_;
};
const MacroOp MacroOp::Add_rr = MacroOp("add r,r", 3, 1, ExecutionPort::P015);
const MacroOp MacroOp::Add_ri = MacroOp("add r,i", 7, 1, ExecutionPort::P015);
const MacroOp MacroOp::Lea_sib = MacroOp("lea r,m", 8, 3, ExecutionPort::P1);
const MacroOp MacroOp::Sub_rr = MacroOp("sub r,r", 3, 1, ExecutionPort::P015);
const MacroOp MacroOp::Imul_rr = MacroOp("imul r,r", 4, 3, ExecutionPort::P1);
const MacroOp MacroOp::Imul_rri = MacroOp("imul r,r,i", 7, 3, ExecutionPort::P1);
const MacroOp MacroOp::Imul_r = MacroOp("imul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5);
const MacroOp MacroOp::Mul_r = MacroOp("mul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5);
const MacroOp MacroOp::Mov_rr = MacroOp("mov r,r", 3);
const MacroOp MacroOp::Mov_ri64 = MacroOp("mov rax,i64", 10, 1, ExecutionPort::P015);
const MacroOp MacroOp::Xor_rr = MacroOp("xor r,r", 3, 1, ExecutionPort::P015);
const MacroOp MacroOp::Xor_ri = MacroOp("xor r,i", 7, 1, ExecutionPort::P015);
const MacroOp MacroOp::Ror_rcl = MacroOp("ror r,cl", 3, 1, ExecutionPort::P0, ExecutionPort::P5);
const MacroOp MacroOp::Ror_ri = MacroOp("ror r,i", 4, 1, ExecutionPort::P05);
const MacroOp MacroOp::Xor_self = MacroOp("xor rcx,rcx", 3);
const MacroOp MacroOp::Cmp_ri = MacroOp("cmp r,i", 7, 1, ExecutionPort::P015);
const MacroOp MacroOp::Setcc_r = MacroOp("setcc cl", 3, 1, ExecutionPort::P05);
const MacroOp MacroOp::TestJmp_fused = MacroOp("testjmp r,i", 13, 0, ExecutionPort::P5);
template <typename T, size_t N>
T* begin(T(&arr)[N]) { return &arr[0]; }
template <typename T, size_t N>
T* end(T(&arr)[N]) { return &arr[0] + N; }
const MacroOp* IMULH_R_ops_array[] = { &MacroOp::Mov_rr, &MacroOp::Mul_r, &MacroOp::Mov_rr };
const MacroOp* ISMULH_R_ops_array[] = { &MacroOp::Mov_rr, &MacroOp::Imul_r, &MacroOp::Mov_rr };
const MacroOp* IMUL_RCP_ops_array[] = { &MacroOp::Mov_ri64, &MacroOp::Imul_rr };
const MacroOp* IROR_R_ops_array[] = { &MacroOp::Mov_rr, &MacroOp::Ror_rcl };
const MacroOp* COND_R_ops_array[] = { &MacroOp::Add_ri, &MacroOp::TestJmp_fused, &MacroOp::Xor_self, &MacroOp::Cmp_ri, &MacroOp::Setcc_r, &MacroOp::Add_rr };
class LightInstructionInfo {
public:
LightInstructionInfo(const char* name, const MacroOp* op)
: name_(name), op_(op), opsCount_(1), latency_(op->getLatency()) {}
template <size_t N>
LightInstructionInfo(const char* name, const MacroOp*(&arr)[N])
: name_(name), ops_(arr), opsCount_(N), latency_(0) {
for (unsigned i = 0; i < N; ++i) {
latency_ += arr[i]->getLatency();
}
static_assert(N > 1, "Invalid array size");
}
template <size_t N>
LightInstructionInfo(const char* name, const MacroOp*(&arr)[N], int latency)
: name_(name), ops_(arr), opsCount_(N), latency_(latency) {
static_assert(N > 1, "Invalid array size");
}
const char* getName() const {
return name_;
}
int getSize() const {
return opsCount_;
}
bool isSimple() const {
return opsCount_ == 1;
}
int getLatency() const {
return latency_;
}
const MacroOp* getOp(int index) const {
return opsCount_ > 1 ? ops_[index] : op_;
}
static const LightInstructionInfo IADD_R;
static const LightInstructionInfo IADD_C;
static const LightInstructionInfo IADD_RC;
static const LightInstructionInfo ISUB_R;
static const LightInstructionInfo IMUL_9C;
static const LightInstructionInfo IMUL_R;
static const LightInstructionInfo IMUL_C;
static const LightInstructionInfo IMULH_R;
static const LightInstructionInfo ISMULH_R;
static const LightInstructionInfo IMUL_RCP;
static const LightInstructionInfo IXOR_R;
static const LightInstructionInfo IXOR_C;
static const LightInstructionInfo IROR_R;
static const LightInstructionInfo IROR_C;
static const LightInstructionInfo COND_R;
static const LightInstructionInfo NOP;
private:
const char* name_;
union {
const MacroOp** ops_;
const MacroOp* op_;
};
int opsCount_;
int latency_;
LightInstructionInfo(const char* name)
: name_(name), opsCount_(0), latency_(0) {}
};
const LightInstructionInfo LightInstructionInfo::IADD_R = LightInstructionInfo("IADD_R", &MacroOp::Add_rr);
const LightInstructionInfo LightInstructionInfo::IADD_C = LightInstructionInfo("IADD_C", &MacroOp::Add_ri);
const LightInstructionInfo LightInstructionInfo::IADD_RC = LightInstructionInfo("IADD_RC", &MacroOp::Lea_sib);
const LightInstructionInfo LightInstructionInfo::ISUB_R = LightInstructionInfo("ISUB_R", &MacroOp::Sub_rr);
const LightInstructionInfo LightInstructionInfo::IMUL_9C = LightInstructionInfo("IMUL_9C", &MacroOp::Lea_sib);
const LightInstructionInfo LightInstructionInfo::IMUL_R = LightInstructionInfo("IMUL_R", &MacroOp::Imul_rr);
const LightInstructionInfo LightInstructionInfo::IMUL_C = LightInstructionInfo("IMUL_C", &MacroOp::Imul_rri);
const LightInstructionInfo LightInstructionInfo::IMULH_R = LightInstructionInfo("IMULH_R", IMULH_R_ops_array);
const LightInstructionInfo LightInstructionInfo::ISMULH_R = LightInstructionInfo("ISMULH_R", ISMULH_R_ops_array);
const LightInstructionInfo LightInstructionInfo::IMUL_RCP = LightInstructionInfo("IMUL_RCP", IMUL_RCP_ops_array);
const LightInstructionInfo LightInstructionInfo::IXOR_R = LightInstructionInfo("IXOR_R", &MacroOp::Xor_rr);
const LightInstructionInfo LightInstructionInfo::IXOR_C = LightInstructionInfo("IXOR_C", &MacroOp::Xor_ri);
const LightInstructionInfo LightInstructionInfo::IROR_R = LightInstructionInfo("IROR_R", IROR_R_ops_array);
const LightInstructionInfo LightInstructionInfo::IROR_C = LightInstructionInfo("IROR_C", &MacroOp::Ror_ri);
const LightInstructionInfo LightInstructionInfo::COND_R = LightInstructionInfo("COND_R", COND_R_ops_array);
const LightInstructionInfo LightInstructionInfo::NOP = LightInstructionInfo("NOP");
const int buffer0[] = { 3, 3, 10 };
const int buffer1[] = { 7, 3, 3, 3 };
const int buffer2[] = { 3, 3, 3, 7 };
const int buffer3[] = { 4, 8, 4 };
const int buffer4[] = { 4, 4, 4, 4 };
const int buffer5[] = { 3, 7, 3, 3 };
const int buffer6[] = { 3, 3, 7, 3 };
const int buffer7[] = { 13, 3 };
class DecoderBuffer {
public:
static DecoderBuffer Default;
template <size_t N>
DecoderBuffer(const char* name, int index, const int(&arr)[N])
: name_(name), index_(index), counts_(arr), opsCount_(N) {}
const int* getCounts() const {
return counts_;
}
int getSize() const {
return opsCount_;
}
int getIndex() const {
return index_;
}
const char* getName() const {
return name_;
}
const DecoderBuffer& fetchNext(int prevType, Blake2Generator& gen) {
if (prevType == LightInstructionType::IMULH_R || prevType == LightInstructionType::ISMULH_R)
return decodeBuffers[0];
if (index_ == 0) {
if ((gen.getByte() % 2) == 0)
return decodeBuffers[3];
else
return decodeBuffers[4];
}
if (index_ == 2) {
return decodeBuffers[7];
}
if (index_ == 7) {
return decodeBuffers[1];
}
return fetchNextDefault(gen);
}
private:
const char* name_;
int index_;
const int* counts_;
int opsCount_;
DecoderBuffer() : index_(-1) {}
static const DecoderBuffer decodeBuffers[8];
const DecoderBuffer& fetchNextDefault(Blake2Generator& gen) {
int select;
do {
select = gen.getByte() & 7;
} while (select == 7);
return decodeBuffers[select];
}
};
const DecoderBuffer DecoderBuffer::decodeBuffers[8] = {
DecoderBuffer("3,3,10", 0, buffer0),
DecoderBuffer("7,3,3,3", 1, buffer1),
DecoderBuffer("3,3,3,7", 2, buffer2),
DecoderBuffer("4,8,4", 3, buffer3),
DecoderBuffer("4,4,4,4", 4, buffer4),
DecoderBuffer("3,7,3,3", 5, buffer5),
DecoderBuffer("3,3,7,3", 6, buffer6),
DecoderBuffer("13,3", 7, buffer7),
};
DecoderBuffer DecoderBuffer::Default = DecoderBuffer();
const int slot_3[] = { LightInstructionType::IADD_R, LightInstructionType::ISUB_R, LightInstructionType::IXOR_R, LightInstructionType::IADD_R };
const int slot_3L[] = { LightInstructionType::IADD_R, LightInstructionType::ISUB_R, LightInstructionType::IXOR_R, LightInstructionType::IMULH_R, LightInstructionType::ISMULH_R, LightInstructionType::IXOR_R, LightInstructionType::IMULH_R, LightInstructionType::ISMULH_R };
const int slot_3F[] = { LightInstructionType::IADD_R, LightInstructionType::ISUB_R, LightInstructionType::IXOR_R, LightInstructionType::IROR_R };
const int slot_4[] = { LightInstructionType::IMUL_R, LightInstructionType::IROR_C };
const int slot_7[] = { LightInstructionType::IADD_C, LightInstructionType::IMUL_C, LightInstructionType::IXOR_C, LightInstructionType::IXOR_C };
const int slot_7L = LightInstructionType::COND_R;
const int slot_8[] = { LightInstructionType::IADD_RC, LightInstructionType::IMUL_9C };
const int slot_10 = LightInstructionType::IMUL_RCP;
class LightInstruction {
public:
Instruction toInstr() {
Instruction instr;
instr.opcode = lightInstructionOpcode[type_];
instr.dst = dst_;
instr.src = src_ >= 0 ? src_ : dst_;
instr.mod = mod_;
instr.setImm32(imm32_);
return instr;
}
static LightInstruction createForSlot(Blake2Generator& gen, int slotSize, bool isLast = false, bool isFirst = false) {
switch (slotSize)
{
case 3:
if (isLast) {
return create(slot_3L[gen.getByte() & 7], gen);
}
else if (isFirst) {
return create(slot_3F[gen.getByte() & 3], gen);
}
else {
return create(slot_3[gen.getByte() & 3], gen);
}
case 4:
return create(slot_4[gen.getByte() & 1], gen);
case 7:
if (isLast) {
return create(slot_7L, gen);
}
else {
return create(slot_7[gen.getByte() & 3], gen);
}
case 8:
return create(slot_8[gen.getByte() & 1], gen);
case 10:
return create(slot_10, gen);
default:
break;
}
}
static LightInstruction create(int type, Blake2Generator& gen) {
LightInstruction li;
li.type_ = type;
li.opGroup_ = type;
switch (type)
{
case LightInstructionType::IADD_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.info_ = &LightInstructionInfo::IADD_R;
li.opGroup_ = LightInstructionType::IADD_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IADD_C: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.info_ = &LightInstructionInfo::IADD_C;
li.opGroup_ = LightInstructionType::IADD_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IADD_RC: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.info_ = &LightInstructionInfo::IADD_RC;
li.opGroup_ = LightInstructionType::IADD_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::ISUB_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.info_ = &LightInstructionInfo::ISUB_R;
li.opGroup_ = LightInstructionType::IADD_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IMUL_9C: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.info_ = &LightInstructionInfo::IMUL_9C;
li.opGroup_ = LightInstructionType::IMUL_C;
li.opGroupPar_ = -1;
} break;
case LightInstructionType::IMUL_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.info_ = &LightInstructionInfo::IMUL_R;
li.opGroup_ = LightInstructionType::IMUL_R;
li.opGroupPar_ = gen.getInt32();
} break;
case LightInstructionType::IMUL_C: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.info_ = &LightInstructionInfo::IMUL_C;
li.opGroup_ = LightInstructionType::IMUL_C;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IMULH_R: {
li.dst_ = gen.getByte() & 7;
li.src_ = gen.getByte() & 7;
li.mod_ = 0;
li.imm32_ = 0;
li.info_ = &LightInstructionInfo::IMULH_R;
li.opGroup_ = LightInstructionType::IMULH_R;
li.opGroupPar_ = gen.getInt32();
} break;
case LightInstructionType::ISMULH_R: {
li.dst_ = gen.getByte() & 7;
li.src_ = gen.getByte() & 7;
li.mod_ = 0;
li.imm32_ = 0;
li.info_ = &LightInstructionInfo::ISMULH_R;
li.opGroup_ = LightInstructionType::ISMULH_R;
li.opGroupPar_ = gen.getInt32();
} break;
case LightInstructionType::IMUL_RCP: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.info_ = &LightInstructionInfo::IMUL_RCP;
li.opGroup_ = LightInstructionType::IMUL_C;
li.opGroupPar_ = -1;
} break;
case LightInstructionType::IXOR_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.info_ = &LightInstructionInfo::IXOR_R;
li.opGroup_ = LightInstructionType::IXOR_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IXOR_C: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.info_ = &LightInstructionInfo::IXOR_C;
li.opGroup_ = LightInstructionType::IXOR_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IROR_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.info_ = &LightInstructionInfo::IROR_R;
li.opGroup_ = LightInstructionType::IROR_R;
li.opGroupPar_ = -1;
} break;
case LightInstructionType::IROR_C: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getByte();
li.info_ = &LightInstructionInfo::IROR_C;
li.opGroup_ = LightInstructionType::IROR_R;
li.opGroupPar_ = -1;
} break;
case LightInstructionType::COND_R: {
li.dst_ = gen.getByte() & 7;
li.src_ = gen.getByte() & 7;
li.mod_ = gen.getByte();
li.imm32_ = gen.getInt32();
li.info_ = &LightInstructionInfo::COND_R;
li.opGroup_ = LightInstructionType::COND_R;
li.opGroupPar_ = li.imm32_;
} break;
default:
break;
}
return li;
}
int getType() {
return type_;
}
int getSource() {
return src_;
}
int getDestination() {
return dst_;
}
int getGroup() {
return opGroup_;
}
int getGroupPar() {
return opGroupPar_;
}
const LightInstructionInfo* getInfo() {
return info_;
}
static const LightInstruction Null;
private:
int type_;
int src_;
int dst_;
int mod_;
uint32_t imm32_;
const LightInstructionInfo* info_;
int opGroup_;
int opGroupPar_;
LightInstruction() {}
LightInstruction(int type, const LightInstructionInfo* info) : type_(type), info_(info) {}
};
class RegisterInfo {
public:
RegisterInfo() : lastOpGroup(-1), source(-1), value(0), latency(0) {}
int lastOpGroup;
int source;
int value;
int latency;
};
const LightInstruction LightInstruction::Null = LightInstruction(-1, &LightInstructionInfo::NOP);
constexpr int ALU_COUNT_MUL = 1; constexpr int ALU_COUNT_MUL = 1;
constexpr int ALU_COUNT = 4; constexpr int ALU_COUNT = 4;
constexpr int LIGHT_OPCODE_BITS = 4; constexpr int LIGHT_OPCODE_BITS = 4;
@ -106,16 +671,61 @@ namespace RandomX {
} }
} }
void generateLightProg2(LightProgram& prog, const void* seed, int indexRegister) {
bool portBusy[RANDOMX_LPROG_LATENCY][3];
RegisterInfo registers[8];
bool decoderBusy[RANDOMX_LPROG_LATENCY][4];
Blake2Generator gen(seed);
std::vector<LightInstruction> instructions;
DecoderBuffer& fetchLine = DecoderBuffer::Default;
LightInstruction currentInstruction = LightInstruction::Null;
int instrIndex = 0;
int codeSize = 0;
int macroOpCount = 0;
int rxOpCount = 0;
for (int cycle = 0; cycle < 170; ++cycle) {
fetchLine = fetchLine.fetchNext(currentInstruction.getType(), gen);
std::cout << "; cycle " << cycle << " buffer " << fetchLine.getName() << std::endl;
int mopIndex = 0;
while (mopIndex < fetchLine.getSize()) {
if (instrIndex >= currentInstruction.getInfo()->getSize()) {
currentInstruction = LightInstruction::createForSlot(gen, fetchLine.getCounts()[mopIndex], fetchLine.getSize() == mopIndex + 1, fetchLine.getIndex() == 0 && mopIndex == 0);
instrIndex = 0;
std::cout << "; " << currentInstruction.getInfo()->getName() << std::endl;
rxOpCount++;
}
if (fetchLine.getCounts()[mopIndex] != currentInstruction.getInfo()->getOp(instrIndex)->getSize()) {
std::cout << "ERROR instruction " << currentInstruction.getInfo()->getOp(instrIndex)->getName() << " doesn't fit into slot of size " << fetchLine.getCounts()[mopIndex] << std::endl;
return;
}
std::cout << currentInstruction.getInfo()->getOp(instrIndex)->getName() << std::endl;
codeSize += currentInstruction.getInfo()->getOp(instrIndex)->getSize();
mopIndex++;
instrIndex++;
macroOpCount++;
}
}
std::cout << "; code size " << codeSize << std::endl;
std::cout << "; x86 macro-ops: " << macroOpCount << std::endl;
std::cout << "; RandomX instructions: " << rxOpCount << std::endl;
}
void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister) { void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister) {
// Source: https://www.agner.org/optimize/instruction_tables.pdf // Source: https://www.agner.org/optimize/instruction_tables.pdf
const int op_latency[LightInstruction::COUNT] = { 1, 2, 1, 2, 3, 5, 5, 4, 1, 2, 5 }; const int op_latency[LightInstructionType::COUNT] = { 1, 2, 1, 2, 3, 5, 5, 4, 1, 2, 5 };
// Instruction latencies for theoretical ASIC implementation // Instruction latencies for theoretical ASIC implementation
const int asic_op_latency[LightInstruction::COUNT] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }; const int asic_op_latency[LightInstructionType::COUNT] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
// Available ALUs for each instruction // Available ALUs for each instruction
const int op_ALUs[LightInstruction::COUNT] = { ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT }; const int op_ALUs[LightInstructionType::COUNT] = { ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT };
uint8_t data[64]; uint8_t data[64];
memset(data, 0, sizeof(data)); memset(data, 0, sizeof(data));
@ -147,7 +757,7 @@ namespace RandomX {
uint64_t inst_data[8] = { 0, 1, 2, 3, 4, 5, 6, 7 }; uint64_t inst_data[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
bool alu_busy[RANDOMX_LPROG_LATENCY + 1][ALU_COUNT]; bool alu_busy[RANDOMX_LPROG_LATENCY + 1][ALU_COUNT];
bool is_rotation[LightInstruction::COUNT]; bool is_rotation[LightInstructionType::COUNT];
bool rotated[8]; bool rotated[8];
int rotate_count = 0; int rotate_count = 0;
@ -156,7 +766,7 @@ namespace RandomX {
memset(alu_busy, 0, sizeof(alu_busy)); memset(alu_busy, 0, sizeof(alu_busy));
memset(is_rotation, 0, sizeof(is_rotation)); memset(is_rotation, 0, sizeof(is_rotation));
memset(rotated, 0, sizeof(rotated)); memset(rotated, 0, sizeof(rotated));
is_rotation[LightInstruction::IROR_R] = true; is_rotation[LightInstructionType::IROR_R] = true;
int num_retries = 0; int num_retries = 0;
code_size = 0; code_size = 0;
@ -201,12 +811,12 @@ namespace RandomX {
// 2x IMUL_RCP(a, C) = a * (C * C) // 2x IMUL_RCP(a, C) = a * (C * C)
// 2x IXOR_R = NOP // 2x IXOR_R = NOP
// 2x IROR_R(a, b) = IROR_R(a, 2*b) // 2x IROR_R(a, b) = IROR_R(a, 2*b)
if (instrType != LightInstruction::IMULH_R && instrType != LightInstruction::ISMULH_R && ((inst_data[a] & 0xFFFF00) == (instrType << 8) + ((inst_data[b] & 255) << 16))) if (instrType != LightInstructionType::IMULH_R && instrType != LightInstructionType::ISMULH_R && ((inst_data[a] & 0xFFFF00) == (instrType << 8) + ((inst_data[b] & 255) << 16)))
{ {
continue; continue;
} }
if ((instrType == LightInstruction::IADD_RC) || (instrType == LightInstruction::IMUL_9C) || (instrType == LightInstruction::IMUL_RCP) || (instrType == LightInstruction::COND_R) || ((instrType != LightInstruction::IMULH_R) && (instrType != LightInstruction::ISMULH_R) && (a == b))) if ((instrType == LightInstructionType::IADD_RC) || (instrType == LightInstructionType::IMUL_9C) || (instrType == LightInstructionType::IMUL_RCP) || (instrType == LightInstructionType::COND_R) || ((instrType != LightInstructionType::IMULH_R) && (instrType != LightInstructionType::ISMULH_R) && (a == b)))
{ {
check_data(data_index, 4, data, sizeof(data)); check_data(data_index, 4, data, sizeof(data));
imm32 = load32(&data[data_index++]); imm32 = load32(&data[data_index++]);
@ -222,7 +832,7 @@ namespace RandomX {
if (!alu_busy[next_latency][i]) if (!alu_busy[next_latency][i])
{ {
// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check // ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
if ((instrType == LightInstruction::IADD_RC || instrType == LightInstruction::IMUL_9C || instrType == LightInstruction::IMULH_R || instrType == LightInstruction::ISMULH_R) && alu_busy[next_latency + 1][i]) if ((instrType == LightInstructionType::IADD_RC || instrType == LightInstructionType::IMUL_9C || instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R) && alu_busy[next_latency + 1][i])
{ {
continue; continue;
} }
@ -275,7 +885,7 @@ namespace RandomX {
prog(code_size).src = src_index; prog(code_size).src = src_index;
prog(code_size).setImm32(imm32); prog(code_size).setImm32(imm32);
if (instrType == LightInstruction::IADD_RC || instrType == LightInstruction::IMUL_9C || instrType == LightInstruction::IMULH_R || instrType == LightInstruction::ISMULH_R) if (instrType == LightInstructionType::IADD_RC || instrType == LightInstructionType::IMUL_9C || instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R)
{ {
// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too // ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
alu_busy[next_latency - op_latency[instrType] + 1][alu_index] = true; alu_busy[next_latency - op_latency[instrType] + 1][alu_index] = true;
@ -308,7 +918,7 @@ namespace RandomX {
if (asic_latency[i] > asic_latency[max_idx]) max_idx = i; if (asic_latency[i] > asic_latency[max_idx]) max_idx = i;
} }
const int pattern[3] = { LightInstruction::IMUL_R, LightInstruction::IROR_R, LightInstruction::IMUL_R }; const int pattern[3] = { LightInstructionType::IMUL_R, LightInstructionType::IROR_R, LightInstructionType::IMUL_R };
const int instrType = pattern[(code_size - prev_code_size) % 3]; const int instrType = pattern[(code_size - prev_code_size) % 3];
latency[min_idx] = latency[max_idx] + op_latency[instrType]; latency[min_idx] = latency[max_idx] + op_latency[instrType];
asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[instrType]; asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[instrType];

View file

@ -21,4 +21,5 @@ along with RandomX. If not, see<http://www.gnu.org/licenses/>.
namespace RandomX { namespace RandomX {
void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister); void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister);
void generateLightProg2(LightProgram& prog, const void* seed, int indexRegister);
} }

View file

@ -223,8 +223,8 @@ int main(int argc, char** argv) {
if (genLight) { if (genLight) {
RandomX::LightProgram p; RandomX::LightProgram p;
RandomX::generateLightProgram(p, seed, 0); RandomX::generateLightProg2(p, seed, 0);
std::cout << p << std::endl; //std::cout << p << std::endl;
return 0; return 0;
} }

View file

@ -1,3 +1,5 @@
mov ebx, 111 ; Start marker bytes
db 064h, 067h, 090h ; Start marker bytes
randomx_isn_0: randomx_isn_0:
; IROR_R r3, 30 ; IROR_R r3, 30
ror r11, 30 ror r11, 30
@ -1001,3 +1003,5 @@ randomx_isn_255:
; IROR_R r7, r3 ; IROR_R r7, r3
mov ecx, r11d mov ecx, r11d
ror r15, cl ror r15, cl
mov ebx, 222 ; End marker bytes
db 064h, 067h, 090h ; End marker bytes