inner product
This commit is contained in:
parent
c0c42524de
commit
9416dd6214
10 changed files with 28 additions and 11 deletions
|
@ -1,4 +1,4 @@
|
|||
# Computational Diffie–Hellman
|
||||
|
||||
- computational version of [[decisional-diffie-hellman|Decisional Diffie–Hellman]]
|
||||
- computational version of [[decisional-diffie-hellman]]
|
||||
- given a generator $`g`$ and uniformly selected $`\left(g^a, g^b\right)`$, compute $`g^{ab}`$
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
# Controlled Not
|
||||
|
||||
- [[quantum-computing|Quantum Computing]]
|
||||
- [[quantum-computing]]
|
||||
- [[push]] [[CNOT]]
|
||||
- quantum equivalent of XOR
|
||||
- written $`\operatorname{CNOT}_{1 \rarr 2}`$ for when $`\left(x, y\right)`$ becomes $`\left(x, x \oplus y\right)`$
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# Decisional Diffie–Hellman
|
||||
|
||||
- decisional version of [[computational-diffie-hellman|Computational Diffie–Hellman]]
|
||||
- decisional version of [[computational-diffie-hellman]]
|
||||
- given a generator $`g`$ and uniformly selected $`\left(g^a, g^b\right)`$, discriminate $`g^{ab}`$ from a different group value $`c`$
|
||||
|
|
13
inner-product.md
Normal file
13
inner-product.md
Normal file
|
@ -0,0 +1,13 @@
|
|||
# Inner Product
|
||||
|
||||
- operates on two vectors and produces a scalar
|
||||
- notation $`\braket{x|y}`$
|
||||
- $`\bra{x}`$ is a [[bra]]
|
||||
- $`\ket{y}`$ is a [[ket]]
|
||||
- follows laws
|
||||
1. $`\braket{0|y} = 0`$ and $`\braket{x|0} = 0`$
|
||||
2. $`\braket{x + y|z} = \braket{x|z} + \braket{y|z}`$ and $`\braket{x|y + z} = \braket{x|y} + \braket{x|z}`$
|
||||
3. $`\braket{cx|y} = \overline{c}\braket{x|y}`$ and $`\braket{x|cy} = \braket{x|y}c`$
|
||||
4. $`\braket{x|y} = \overline{\braket{y|x}}`$
|
||||
- the inner product $`\braket{x|y}`$ is antilinear in $`x`$ and linear in $`y`$
|
||||
- if starting with two [[ket]]s, take the conjugate transpose of the former: $`\bra{x} = \overline{\ket{x}}^\intercal = \overline{\ket{x}^\intercal}`$
|
2
ket.md
2
ket.md
|
@ -1,4 +1,4 @@
|
|||
# Ket
|
||||
|
||||
- $`\ket{u}`$ where $`u`$ is the _name_ of a _state_
|
||||
- [[push]] [[column-vector|Column Vector]]
|
||||
- [[push]] [[column-vector]]
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# NP Complete
|
||||
|
||||
- a problem that all other [[np|NP]] problems can be reduced to
|
||||
- if you can solve the decision version in P-time, you can solve all decision problems in [[np|NP]] in P-time
|
||||
- a problem that all other [[np]] problems can be reduced to
|
||||
- if you can solve the decision version in P-time, you can solve all decision problems in [[np]] in P-time
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
# NP Hard
|
||||
|
||||
- may not necessarily be in [[np|NP]]
|
||||
- computational version of [[np-complete|NP Complete]]
|
||||
- may not necessarily be in [[np]]
|
||||
- computational version of [[np-complete]]
|
||||
|
|
2
np.md
2
np.md
|
@ -1,5 +1,5 @@
|
|||
# NP
|
||||
|
||||
- class of languages whose membership proofs can be verified in polynomial time
|
||||
- the [[discrete-log|Discrete Log]] problem is an example of an NP problem
|
||||
- the [[discrete-log]] problem is an example of an NP problem
|
||||
- from $`g^x`$ in a finite field it is hard to compute $`\log_g\left(g^x\right)`$, but easy to check $`g^x = g^y`$ to validate a knowledge proof of $`x`$
|
||||
|
|
4
quantum-state.md
Normal file
4
quantum-state.md
Normal file
|
@ -0,0 +1,4 @@
|
|||
# Quantum State
|
||||
|
||||
- [[quantum-computing]]
|
||||
- unit-norm (length 1) [[ket]]
|
|
@ -1,6 +1,6 @@
|
|||
# Toffoli Gate
|
||||
|
||||
- [[quantum-computing|Quantum Computing]]
|
||||
- [[quantum-computing]]
|
||||
- also called [[push]] [[CCNOT]]
|
||||
- quantum equivalent of AND/NAND
|
||||
- [[universal-gate|Universal Gate]] for reversible computing
|
||||
- [[universal-gate]] for reversible computing
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue