init
This commit is contained in:
commit
c7398da895
32 changed files with 97059 additions and 0 deletions
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
|||
build/
|
49
Makefile
Normal file
49
Makefile
Normal file
|
@ -0,0 +1,49 @@
|
|||
TARGET_EXEC := final_program.so
|
||||
|
||||
BUILD_DIR := ./build
|
||||
SRC_DIRS := .
|
||||
|
||||
# Find all the C and C++ files we want to compile
|
||||
# Note the single quotes around the * expressions. The shell will incorrectly expand these otherwise, but we want to send the * directly to the find command.
|
||||
SRCS := $(shell find $(SRC_DIRS) -name '*.cpp' -or -name '*.c' -or -name '*.s')
|
||||
|
||||
# Prepends BUILD_DIR and appends .o to every src file
|
||||
# As an example, ./your_dir/hello.cpp turns into ./build/./your_dir/hello.cpp.o
|
||||
OBJS := $(SRCS:%=$(BUILD_DIR)/%.o)
|
||||
|
||||
# String substitution (suffix version without %).
|
||||
# As an example, ./build/hello.cpp.o turns into ./build/hello.cpp.d
|
||||
DEPS := $(OBJS:.o=.d)
|
||||
|
||||
# Every folder in ./src will need to be passed to GCC so that it can find header files
|
||||
INC_DIRS := $(shell find $(SRC_DIRS) -path .git -prune -type d)
|
||||
# Add a prefix to INC_DIRS. So moduleA would become -ImoduleA. GCC understands this -I flag
|
||||
INC_FLAGS := $(addprefix -I,$(INC_DIRS))
|
||||
|
||||
# The -MMD and -MP flags together generate Makefiles for us!
|
||||
# These files will have .d instead of .o as the output.
|
||||
CPPFLAGS := $(INC_FLAGS) -MMD -MP -fPIC
|
||||
|
||||
# The final build step.
|
||||
$(BUILD_DIR)/$(TARGET_EXEC): $(OBJS)
|
||||
$(CXX) -shared $(OBJS) -o $@ $(LDFLAGS)
|
||||
|
||||
# Build step for C source
|
||||
$(BUILD_DIR)/%.c.o: %.c
|
||||
mkdir -p $(dir $@)
|
||||
$(CC) $(CPPFLAGS) $(CFLAGS) -c $< -o $@
|
||||
|
||||
# Build step for C++ source
|
||||
$(BUILD_DIR)/%.cpp.o: %.cpp
|
||||
mkdir -p $(dir $@)
|
||||
$(CXX) $(CPPFLAGS) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
|
||||
.PHONY: clean
|
||||
clean:
|
||||
rm -r $(BUILD_DIR)
|
||||
|
||||
# Include the .d makefiles. The - at the front suppresses the errors of missing
|
||||
# Makefiles. Initially, all the .d files will be missing, and we don't want those
|
||||
# errors to show up.
|
||||
-include $(DEPS)
|
23
common.h
Normal file
23
common.h
Normal file
|
@ -0,0 +1,23 @@
|
|||
#ifndef MENGA_DSP_COMMON
|
||||
#define MENGA_DSP_COMMON
|
||||
|
||||
#include <complex>
|
||||
|
||||
|
||||
typedef std::complex<float> Complex;
|
||||
|
||||
namespace Mengu {
|
||||
|
||||
// returns a Complex number with the same norm as x but with the angle phase
|
||||
template <typename T>
|
||||
std::complex<T> with_phase(const std::complex<T> &x, T phase);
|
||||
|
||||
// A complex number with the same phase as x, but with distance from the origin amp
|
||||
template <typename T>
|
||||
std::complex<T> with_amp(const std::complex<T> &x, T amp) {
|
||||
return x / std::sqrt(std::norm(x)) * amp;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
92
correlation.cpp
Normal file
92
correlation.cpp
Normal file
|
@ -0,0 +1,92 @@
|
|||
#include "correlation.h"
|
||||
#include "common.h"
|
||||
#include <iostream>
|
||||
#include "mengumath.h"
|
||||
#include <cstdint>
|
||||
|
||||
float Mengu::dsp::correlation(const Complex *s1, const Complex *s2, const int length, const int n) {
|
||||
float total = 0;
|
||||
for (uint32_t i = 0; i < length; i++) {
|
||||
total += s1[i].real() * s2[n + i].real();
|
||||
}
|
||||
|
||||
return total;
|
||||
}
|
||||
|
||||
float Mengu::dsp::autocorrelation(const Complex *s, const int length, const int n) {
|
||||
return correlation(s, s, length, n);
|
||||
}
|
||||
|
||||
int Mengu::dsp::find_max_correlation(const Complex *s1, const Complex *s2, const int length, const int search_window_size) {
|
||||
float max_corr = correlation(s1, s2, length, 0);
|
||||
int max_lag = 0;
|
||||
|
||||
for (int i = 1; i < search_window_size; i++) {
|
||||
float corr = correlation(s1, s2, length, i);
|
||||
|
||||
if (corr > max_corr) {
|
||||
max_corr = corr;
|
||||
max_lag = i;
|
||||
}
|
||||
}
|
||||
|
||||
return max_lag;
|
||||
}
|
||||
|
||||
int Mengu::dsp::find_max_correlation_quad(const Complex *s1, const Complex *s2, const int length, const int search_window_size) {
|
||||
float max_corr = -1e10;
|
||||
int max_lag = 0;
|
||||
|
||||
float *scaled_s1 = new float[length];
|
||||
|
||||
for (int i = 0; i < length; i++) {
|
||||
scaled_s1[i] = s1[i].real() * i * (length - i);
|
||||
}
|
||||
|
||||
// do max iteration
|
||||
for (int i = 0; i < search_window_size; i++) {
|
||||
float corr = 0.0f;
|
||||
|
||||
for (int j = 0; j < length; j++) {
|
||||
corr += scaled_s1[j] * s2[i + j].real();
|
||||
}
|
||||
|
||||
if (corr > max_corr) {
|
||||
max_corr = corr;
|
||||
max_lag = i;
|
||||
}
|
||||
}
|
||||
|
||||
delete[] scaled_s1;
|
||||
|
||||
return max_lag;
|
||||
}
|
||||
|
||||
std::vector<float> Mengu::dsp::calc_srhs(const float *envelope,
|
||||
const int &size,
|
||||
const int &min_freq_ind,
|
||||
const int &max_freq_ind,
|
||||
const int &n_harm,
|
||||
const int &step) {
|
||||
std::vector<float> output;
|
||||
for (int freq_ind = min_freq_ind; freq_ind < max_freq_ind; freq_ind += step) {
|
||||
output.push_back(calc_srh(envelope, size, freq_ind, n_harm));
|
||||
}
|
||||
return output;
|
||||
}
|
||||
|
||||
float Mengu::dsp::calc_srh(const float *envelope, const int &size, const int &freq_ind, const int &n_harm) {
|
||||
const int pos_n_harm = MIN(n_harm, size / freq_ind);
|
||||
float pos_interference = 0;
|
||||
for (int k = 1; k < pos_n_harm; k++) {
|
||||
pos_interference += envelope[freq_ind * k];
|
||||
}
|
||||
|
||||
const int neg_n_harm = MIN(n_harm, (int) ((float) size / freq_ind + 0.5));
|
||||
float neg_interference = 0;
|
||||
for (int k = 2; k < neg_n_harm; k++) {
|
||||
neg_interference += envelope[(int) (freq_ind * k - 0.5)];
|
||||
}
|
||||
|
||||
return pos_interference - neg_interference;
|
||||
}
|
177
correlation.h
Normal file
177
correlation.h
Normal file
|
@ -0,0 +1,177 @@
|
|||
/**
|
||||
* @file correlation.h
|
||||
* @author 9exa
|
||||
* @brief Correlation/Convolution functions between signals
|
||||
* @version 0.1
|
||||
* @date 2023-04-30
|
||||
*
|
||||
* @copyright Copyright (c) 2023
|
||||
*/
|
||||
|
||||
#ifndef MENGA_CORRELATION
|
||||
#define MENGA_CORRELATION
|
||||
|
||||
#include "common.h"
|
||||
#include "fft.h"
|
||||
#include "linalg.h"
|
||||
#include "mengumath.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <complex>
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
|
||||
// The (real finite non-circular) cross-correlation of two signals of equal length, on the offset n
|
||||
// basically just a dot product
|
||||
float correlation(const Complex *s1, const Complex *s2, const int length, const int n);
|
||||
|
||||
// The (real finite non-circular) cross-correlation of of a signal on itself, on the offset n
|
||||
float autocorrelation(const Complex *s, const int length, const int n);
|
||||
|
||||
// Find the offset/lag that corresponds to the max cross-correlation between s1 and s2 explored up to length
|
||||
// s2 is assumed to be at least length + search_window_size long
|
||||
int find_max_correlation(const Complex *s1, const Complex *s2, const int length, const int search_window_size);
|
||||
|
||||
// Max correlation where portions toward the center are weighted more
|
||||
int find_max_correlation_quad(const Complex *s1, const Complex *s2, const int length, const int search_window_size);
|
||||
|
||||
// find the sr harmonics of (the positive half of) a frequency amplitude spectrum
|
||||
std::vector<float> calc_srhs(const float *envelope,
|
||||
const int &size,
|
||||
const int &min_freq_ind,
|
||||
const int &max_freq_ind,
|
||||
const int &n_harm = 8,
|
||||
const int &step = 1);
|
||||
|
||||
// the srh of only one frequency
|
||||
float calc_srh(const float *envelope, const int &size, const int &freq_ind, const int &n_harm);
|
||||
|
||||
// performs and stores results of LinearPredictiveCoding. expects a fixed process size so it can be put on the stack
|
||||
template<uint32_t SampleSize, uint32_t NParams>
|
||||
class LPC {
|
||||
public:
|
||||
LPC():
|
||||
_fft(SampleSize),
|
||||
// _b(NParams + 1),
|
||||
// _autocovariance_slice(NParams + 1) {
|
||||
_b{0},
|
||||
_autocovariance_slice{0} {
|
||||
_b[0] = 1;
|
||||
}
|
||||
|
||||
// perform LPC on a sample and set up the intermediate variables
|
||||
void load_sample(const Complex *sample) {
|
||||
_fft.transform(sample, _freq_spectrum.data());
|
||||
|
||||
// assumes that sample are all real numbers; In general-purpose dsp this will cause bugs
|
||||
|
||||
// multiplication in the frequency domain is convolution (reversed correlation) in the real domain
|
||||
std::array<Complex, SampleSize> freq_squared;
|
||||
std::array<Complex, SampleSize> autocovariance_comp;
|
||||
std::transform(
|
||||
_freq_spectrum.cbegin(),
|
||||
_freq_spectrum.cend(),
|
||||
freq_squared.begin(),
|
||||
[] (Complex f) { return std::norm(f); }
|
||||
);
|
||||
_fft.inverse_transform(freq_squared.data(), autocovariance_comp.data());
|
||||
std::transform(
|
||||
autocovariance_comp.cbegin(),
|
||||
autocovariance_comp.cend(),
|
||||
_autocovariance.begin(),
|
||||
[] (Complex c) { return c.real(); }
|
||||
);
|
||||
|
||||
std::copy(
|
||||
_autocovariance.cbegin(),
|
||||
_autocovariance.cbegin() + NParams + 1,
|
||||
_autocovariance_slice.begin()
|
||||
);
|
||||
|
||||
std::array<float, NParams + 1> a = solve_sym_toeplitz(_autocovariance_slice, _b);
|
||||
std::array<Complex, SampleSize> a_comp{0};
|
||||
const float a0 = a[0];
|
||||
std::transform(a.cbegin(), a.cend(), a_comp.begin(),
|
||||
[a0] (float f) { return Complex(f / a0); }
|
||||
);
|
||||
|
||||
std::array<Complex, SampleSize> A;
|
||||
_fft.transform(a_comp.data(), A.data());
|
||||
|
||||
// calc envelope
|
||||
std::transform(A.cbegin(), A.cend(), _envelope.begin(),
|
||||
// try to prevent infs
|
||||
[] (Complex c) { return 1.0f / (sqrt(std::norm(c))); }
|
||||
);
|
||||
|
||||
// calce residuals
|
||||
for (uint32_t i = 0; i < SampleSize; i++) {
|
||||
_residuals[i] = std::sqrt(std::norm(_freq_spectrum[i] * A[i]));
|
||||
}
|
||||
// std::transform(_freq_spectrum.cbegin(), _freq_spectrum.cend(), A.cbegin(), _residuals.begin(),
|
||||
// [] (Complex x_val, Complex a_val) { return std::sqrt(std::norm(x_val * a_val)); }
|
||||
// );
|
||||
}
|
||||
|
||||
// The dft of the loaded samples
|
||||
const std::array<Complex, SampleSize> &get_freq_spectrum() const {
|
||||
return _freq_spectrum;
|
||||
}
|
||||
|
||||
// The correlation of the signal with itself
|
||||
const std::array<float, SampleSize> &get_autocovariance() const {
|
||||
return _autocovariance;
|
||||
}
|
||||
|
||||
// Normalized copy of autocovariance
|
||||
std::array<float, SampleSize> get_autocorrelation() const {
|
||||
std::array<float, SampleSize> autocorrelation;
|
||||
float max_cov = *std::max_element(_autocovariance);
|
||||
std::transform(
|
||||
_autocovariance.cbegin(),
|
||||
_autocovariance.cend(),
|
||||
autocorrelation.begin(),
|
||||
[max_cov] (float cov) {return cov / max_cov;}
|
||||
);
|
||||
}
|
||||
|
||||
// Envelope of the frequency spectrum
|
||||
const std::array<float, SampleSize> &get_envelope() const {
|
||||
return _envelope;
|
||||
}
|
||||
|
||||
// LCP residuals of the frequency
|
||||
const std::array<float, SampleSize> &get_residuals() const {
|
||||
return _residuals;
|
||||
}
|
||||
|
||||
// useful for inversion
|
||||
const FFT &get_fft() const {
|
||||
return _fft;
|
||||
}
|
||||
|
||||
private:
|
||||
// results to be getted
|
||||
std::array<Complex, SampleSize> _freq_spectrum;
|
||||
std::array<float, SampleSize> _autocovariance;
|
||||
std::array<float, SampleSize> _envelope;
|
||||
std::array<float, SampleSize> _residuals;
|
||||
|
||||
// intermediates
|
||||
FFT _fft;
|
||||
std::array<float, NParams + 1> _b;
|
||||
std::array<float, NParams + 1> _autocovariance_slice;
|
||||
// std::vector<float> _b;
|
||||
// std::vector<float> _autocovariance_slice;
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
263
cyclequeue.h
Normal file
263
cyclequeue.h
Normal file
|
@ -0,0 +1,263 @@
|
|||
/**
|
||||
* @file cyclevector.h
|
||||
* @author 9exa
|
||||
* @brief An user-determined-size array where pushing an item removes one from the other end.
|
||||
* Useful for not having to reallocate memory for rapidly appended contiguious data (i.e. sampling)
|
||||
* @version 0.1
|
||||
* @date 2023-02-21
|
||||
*
|
||||
* @copyright Copyright (c) 2023
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef MENGA_CYCLE_QUEUE
|
||||
#define MENGA_CYCLE_QUEUE
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include "mengumath.h"
|
||||
|
||||
namespace Mengu {
|
||||
|
||||
template <class T>
|
||||
class CycleQueue {
|
||||
private:
|
||||
T *_data = nullptr;
|
||||
uint32_t _size = 0;
|
||||
// what part of the data array is the front of the queue and first to be replaced on a push_back()
|
||||
uint32_t _front = 0;
|
||||
uint32_t _capacity = 0;
|
||||
|
||||
inline uint32_t start_inc_down1() {
|
||||
// assert(size != 0)
|
||||
// equiv to posmod (_front + _size - 1) % _size but faster?????
|
||||
return _front == 0 ? _size - 1 : _front - 1;
|
||||
}
|
||||
|
||||
public:
|
||||
CycleQueue() {}
|
||||
CycleQueue(uint32_t size) {
|
||||
if (size > 0) {
|
||||
resize(size);
|
||||
}
|
||||
}
|
||||
// implement "copy" so they don't share the same data array
|
||||
CycleQueue(const CycleQueue &from) {
|
||||
_capacity = from._capacity;
|
||||
_data = new T[_capacity];
|
||||
std::cout << "from something\n";
|
||||
memcpy(_data, from._data, _capacity * sizeof(T));
|
||||
|
||||
_size = from._size;
|
||||
_front = from._front;
|
||||
}
|
||||
|
||||
~CycleQueue() {
|
||||
delete[] _data;
|
||||
}
|
||||
|
||||
inline uint32_t size() const {
|
||||
return _size;
|
||||
}
|
||||
|
||||
|
||||
inline void push_back(const T &x) {
|
||||
if (_size == 0) return;
|
||||
_data[_front] = x;
|
||||
_front = (_front + 1) % _size;
|
||||
}
|
||||
|
||||
inline void push_front(const T &x) {
|
||||
if (_size == 0) return;
|
||||
_front = (_front == 0) ? _size - 1 : _front - 1;
|
||||
_data[_front] = x;
|
||||
}
|
||||
|
||||
void resize(const uint32_t &new_size) {
|
||||
if (_capacity < new_size) {
|
||||
uint32_t new_cap = MAX(_capacity, 1);
|
||||
while (new_cap < new_size) {
|
||||
new_cap = new_cap << 1; // if you leave out the new_cap = the optimizer just skips this loop.
|
||||
// Which makes this infinite loop bug hard to spot
|
||||
|
||||
}
|
||||
reserve(new_cap);
|
||||
} else if (new_size < _size) {
|
||||
//move element of an array such that those at the front are removed
|
||||
uint32_t shift;
|
||||
uint32_t i;
|
||||
if (_front <= new_size) {
|
||||
// shift elements after _front down
|
||||
shift = _size - new_size;
|
||||
i = _front;
|
||||
}
|
||||
else {
|
||||
// shift elements before _front up
|
||||
shift = _front - new_size;
|
||||
i = 0;
|
||||
_front = 0;
|
||||
}
|
||||
for (; i < new_size; i++) {
|
||||
_data[i] = _data[i + shift];
|
||||
}
|
||||
|
||||
// set the deleted slots to be ready for future resizes
|
||||
for (; i < _size; i++) {
|
||||
_data[i] = T();
|
||||
}
|
||||
}
|
||||
else { // (new_size > size) but reserve() has yet to initialize values
|
||||
uint32_t i = _size;
|
||||
for (; i < _front; i++) {
|
||||
_data[(i + _size) % new_size] = _data[i];
|
||||
_data[i] = T();
|
||||
}
|
||||
}
|
||||
_size = new_size;
|
||||
}
|
||||
|
||||
inline uint32_t capacity() const {
|
||||
return _capacity;
|
||||
}
|
||||
|
||||
const T *data() const {
|
||||
return _data;
|
||||
}
|
||||
|
||||
void reserve(const uint32_t &new_cap) {
|
||||
if (_capacity < new_cap) {
|
||||
T *new_data = new T[new_cap];
|
||||
// copy and initialise new array
|
||||
uint32_t i = 0;
|
||||
if (_data != nullptr) {
|
||||
for (; i < _capacity; i++) {
|
||||
new_data[i] = std::move(_data[i]);
|
||||
}
|
||||
delete[] _data;
|
||||
|
||||
}
|
||||
|
||||
for (; i< new_cap; i++) {
|
||||
new_data[i] = T();
|
||||
}
|
||||
|
||||
_data = new_data;
|
||||
_capacity = new_cap;
|
||||
if (_size > _capacity) {
|
||||
resize(_capacity);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// rotates the data array so that ir begins with _friont
|
||||
void make_contiguous() {
|
||||
T *new_data = new T[_capacity];
|
||||
|
||||
uint32_t i = 0;
|
||||
|
||||
if (_data != nullptr) {
|
||||
for (; i < _size; i++) {
|
||||
new_data[i] = std::move(_data[(i + _front) % _size]);
|
||||
}
|
||||
delete[] _data;
|
||||
}
|
||||
|
||||
for (; i< _capacity; i++) {
|
||||
new_data[i] = T();
|
||||
}
|
||||
|
||||
_data = new_data;
|
||||
|
||||
}
|
||||
|
||||
void set(int i, const T &item) {
|
||||
if (i > _size) {
|
||||
std::cout << "tried to set item " << i << "on CycleQueue of size i. Out of range"<< std::endl;
|
||||
}
|
||||
_data[posmod(i +_front, _size)] = item;
|
||||
}
|
||||
|
||||
const T get(int i) const {
|
||||
if (i > _size) {
|
||||
std::cout << "tried to get item " << i << "on CycleQueue of size i. Out of range"<< std::endl;
|
||||
}
|
||||
return _data[posmod(i + _front, _size)];
|
||||
}
|
||||
|
||||
// just moves the front of the Ccle queue by an amount
|
||||
void rotate(int by) {
|
||||
_front = posmod(_front + by, _size);
|
||||
}
|
||||
|
||||
//// Operators
|
||||
inline T &operator[](int i) {
|
||||
return _data[posmod(i + _front, _size)];
|
||||
}
|
||||
|
||||
inline const T &operator[](int i) const {
|
||||
// std::cout << (i + _front) % _size << std::endl;
|
||||
return _data[posmod(i + _front, _size)];
|
||||
}
|
||||
|
||||
CycleQueue &operator=(const CycleQueue &from) {
|
||||
if (from._size != _size) {
|
||||
resize(from._size);
|
||||
}
|
||||
_front = from._front;
|
||||
memcpy(_data, from._data, _size);
|
||||
|
||||
return *this;
|
||||
};
|
||||
|
||||
|
||||
|
||||
//// Conversions
|
||||
// converts the first 'size' items into a contiguous array. -1 does the whole queue
|
||||
T* to_array(T *out, int size = -1) const {
|
||||
if (size == -1) {
|
||||
size = _size;
|
||||
}
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
out[i] = _data[(i + _front) % _size];
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
|
||||
// converts the first 'size' items into a vector. -1 does the whole queue
|
||||
std::vector<T> to_vector(int size = -1) const {
|
||||
if (size == -1) {
|
||||
size = _size;
|
||||
}
|
||||
|
||||
std::vector<T> out;
|
||||
out.resize(size);
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
out[i] = _data[(i + _front) % _size];
|
||||
}
|
||||
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
std::string to_string(const CycleQueue<T> &cq) {
|
||||
using std::to_string;
|
||||
std::string out_string;
|
||||
|
||||
if (cq.size() == 0) {
|
||||
return out_string;
|
||||
}
|
||||
|
||||
out_string.reserve(to_string(cq[0]).size() * cq.size());
|
||||
for (uint32_t i = 0; i < cq.size(); i++) {
|
||||
out_string += to_string(cq[i]);
|
||||
}
|
||||
return out_string;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
#endif
|
31
effect.cpp
Normal file
31
effect.cpp
Normal file
|
@ -0,0 +1,31 @@
|
|||
#include "effect.h"
|
||||
#include "mengumath.h"
|
||||
|
||||
|
||||
Mengu::dsp::EffectChain::EffectChain(uint32_t buffer_size) {
|
||||
_buffer_size = Mengu::last_pow_2(buffer_size);
|
||||
_input_buffer.resize(_buffer_size);
|
||||
_transformed_buffer.resize(_buffer_size);
|
||||
}
|
||||
|
||||
Mengu::dsp::EffectChain::~EffectChain() {
|
||||
for (auto effect: _effects) {
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void Mengu::dsp::EffectChain::push_signal(const Complex *input, const uint32_t &size) {
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
_input_buffer.push_back(input[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void Mengu::dsp::EffectChain::pop_transformed_signal(Complex *output, const uint32_t &size) {
|
||||
for (uint32_t i = _buffer_size - size; i < _buffer_size; i++) {
|
||||
output[i] = _transformed_buffer[i];
|
||||
}
|
||||
}
|
||||
|
||||
void Mengu::dsp::EffectChain::append_effect(Effect *effect) {
|
||||
_effects.push_back(effect);
|
||||
}
|
113
effect.h
Normal file
113
effect.h
Normal file
|
@ -0,0 +1,113 @@
|
|||
#ifndef MENGA_EFFECT
|
||||
#define MENGA_EFFECT
|
||||
|
||||
#include <cstdint>
|
||||
#include "common.h"
|
||||
#include "cyclequeue.h"
|
||||
#include <vector>
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
|
||||
// Types of Properties that an Effect has and how they can be edited by gui
|
||||
// If this was Rust (a better language) this would all be one enum
|
||||
enum EffectPropType {
|
||||
Toggle, // Edited With a ToggleButton
|
||||
Slider, // Edited with A Slider. A min and max value must be declared. Stores real number
|
||||
Knob, // Edited with A Knob. A min and max value must be declared. Stores real number
|
||||
Counter, // Edited with a counter. A step size must be declared. Stores real numbers, but often casted into an int
|
||||
};
|
||||
|
||||
enum EffectPropContScale {
|
||||
Linear,
|
||||
Exp,
|
||||
};
|
||||
|
||||
// Description for the editable properties of an Effect.
|
||||
struct EffectPropDesc {
|
||||
EffectPropType type;
|
||||
const char *name;
|
||||
const char *desc;
|
||||
union {
|
||||
struct {
|
||||
float min_value;
|
||||
float max_value;
|
||||
float step_size;
|
||||
EffectPropContScale scale;
|
||||
} slider_data; // use by slider, knob and counter
|
||||
};
|
||||
};
|
||||
|
||||
// Data used to get and set EffectProperty data
|
||||
struct EffectPropPayload {
|
||||
EffectPropType type;
|
||||
union {
|
||||
bool on; // Used by Toggle
|
||||
float value; // used by slider, knob, and counter
|
||||
};
|
||||
};
|
||||
|
||||
|
||||
//
|
||||
|
||||
// object that takes in the next value signal (time or frequency domain)
|
||||
// and can be queried for the next value in the process signal.
|
||||
class Effect {
|
||||
public:
|
||||
virtual ~Effect() = default;
|
||||
// tells an EffectChain what type of input the effect expects
|
||||
enum InputDomain {
|
||||
Time = 0,
|
||||
Spectral = 1,
|
||||
Frequency = 1
|
||||
};
|
||||
virtual InputDomain get_input_domain() = 0;
|
||||
|
||||
// push new value of signal
|
||||
virtual void push_signal(const Complex *input, const uint32_t &size) = 0;
|
||||
// Last value of transformed signal
|
||||
virtual uint32_t pop_transformed_signal(Complex *output, const uint32_t &size) = 0;
|
||||
// number of samples that can be output given the current pushed signals of the Effect
|
||||
virtual uint32_t n_transformed_ready() const = 0;
|
||||
// resets state of effect to make it reading to take in a new sample
|
||||
virtual void reset() = 0;
|
||||
// The properties that this Effect exposes to be changed by GUI.
|
||||
// The index that they are put in is considered the props id
|
||||
virtual std::vector<EffectPropDesc> get_property_descs() const = 0;
|
||||
// Sets a property with the specified id the value declared in the payload
|
||||
virtual void set_property(uint32_t id, EffectPropPayload data) = 0;
|
||||
// Gets the value of a property with the specified id
|
||||
virtual EffectPropPayload get_property(uint32_t id) const = 0;
|
||||
};
|
||||
|
||||
// Represents a series of effects chained consequtivly. Processed on demand
|
||||
class EffectChain {
|
||||
public:
|
||||
EffectChain(uint32_t buffer_size);
|
||||
~EffectChain();
|
||||
|
||||
// push a new signal. Unlike an Effect the pushed signal can be an arbitrary size as it is stored in a ringbuffer
|
||||
void push_signal(const Complex *input, const uint32_t &size);
|
||||
|
||||
// Last values of transformed signal
|
||||
void pop_transformed_signal(Complex *output, const uint32_t &size);
|
||||
|
||||
// add an Effect
|
||||
void append_effect(Effect *effect);
|
||||
|
||||
// apply all effects
|
||||
void process();
|
||||
|
||||
private:
|
||||
uint32_t _buffer_size;
|
||||
CycleQueue<Complex> _input_buffer;
|
||||
std::vector<Complex> _transformed_buffer;
|
||||
std::vector<Effect *> _effects;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
#endif
|
41
fastmath.h
Normal file
41
fastmath.h
Normal file
|
@ -0,0 +1,41 @@
|
|||
#ifndef MENGA_FAST_MATH
|
||||
#define MENGA_FAST_MATH
|
||||
#include "mengumath.h"
|
||||
#include <cmath>
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
// PADE approximations. Only accurate on certain ranges
|
||||
// use between -pi to +pi
|
||||
template<typename FloatType>
|
||||
FloatType sin(FloatType x) {
|
||||
x = std::fmod(x + MATH_PI, MATH_TAU) - MATH_PI;
|
||||
FloatType x2 = x * x;
|
||||
FloatType numerator = x * ((11 * x2) * x2 + 2520);
|
||||
FloatType denominator = 60 * x2 + 2520;
|
||||
return numerator / denominator;
|
||||
}
|
||||
|
||||
// use between -pi to +pi
|
||||
template<typename FloatType>
|
||||
FloatType cos(FloatType x) {
|
||||
x = std::fmod(x + MATH_PI, MATH_TAU) - MATH_PI;
|
||||
FloatType x2 = x * x;
|
||||
FloatType numerator = 131040 + x2 * (62160 + x2 * (3814 - x2 * 59));
|
||||
FloatType denominator = 131040 + x2 * (3360 + x2 * 34);
|
||||
return numerator / denominator;
|
||||
}
|
||||
template<typename FloatType>
|
||||
FloatType tan(FloatType x) {
|
||||
x = std::fmod(x + MATH_PI, MATH_TAU) - MATH_PI;
|
||||
FloatType x2 = x * x;
|
||||
FloatType numerator = x * (-135135 + x2 * (17325 + x2 * (-378 + x2)));
|
||||
FloatType denominator = -135135 + x2 * (62370 + x2 * (-3150 + 28 * x2));
|
||||
return numerator / denominator;
|
||||
}
|
||||
|
||||
} // namespace dsp
|
||||
} // namespace Mengu
|
||||
|
||||
|
||||
#endif
|
155
fft.cpp
Normal file
155
fft.cpp
Normal file
|
@ -0,0 +1,155 @@
|
|||
#include "fft.h"
|
||||
#include "common.h"
|
||||
#include "fastmath.h"
|
||||
#include "mengumath.h"
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
|
||||
|
||||
using namespace Mengu;
|
||||
|
||||
// helpers
|
||||
|
||||
static void conjugate_arr(Complex *arr, const uint32_t a_size) {
|
||||
for (uint32_t i = 0; i < a_size; i++) {
|
||||
arr[i].imag(-arr[i].imag());
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<Complex> dsp::SFT::perform(const std::vector<Complex> &input) {
|
||||
const size_t outsize = input.size();
|
||||
const Complex mitau(0, -MATH_TAU);
|
||||
|
||||
Complex *es = new Complex[outsize];
|
||||
for (size_t j = 0; j < outsize; j++) {
|
||||
float n = (float) j / outsize;
|
||||
es[j] = std::exp(mitau * n);
|
||||
// std::cout << es[j] << std::endl;
|
||||
}
|
||||
|
||||
std::vector<Complex> outvec;
|
||||
outvec.resize(outsize);
|
||||
for (size_t k = 0; k < outsize; k++) {
|
||||
for (size_t n = 0; n < outsize; n++) {
|
||||
outvec[k] += input[n] * es[n * k % outsize];
|
||||
}
|
||||
outvec[k] /= outsize;
|
||||
}
|
||||
|
||||
delete[] es;
|
||||
|
||||
return outvec;
|
||||
}
|
||||
|
||||
dsp::FFT::FFT(uint32_t size) {
|
||||
_fft_size = is_pow_2(size) ? size : next_pow_2(size);
|
||||
_size = size;
|
||||
_es = new complex<float>[_fft_size];
|
||||
for (uint32_t i = 0; i < _fft_size; i++) {
|
||||
_es[i] = std::polar(1.0f, -(float) MATH_TAU * i / _fft_size);
|
||||
}
|
||||
_inp_vec = new Complex[_fft_size];
|
||||
_out_vec = new Complex[_fft_size];
|
||||
}
|
||||
|
||||
dsp::FFT::~FFT() {
|
||||
delete[] _es;
|
||||
delete[] _inp_vec;
|
||||
delete[] _out_vec;
|
||||
}
|
||||
|
||||
void dsp::FFT::transform(const Complex *input, Complex *output) const {
|
||||
for (uint32_t i = 0; i < _size; i++) {
|
||||
_inp_vec[i] = input[i];
|
||||
}
|
||||
for (uint32_t i = _size; i < _fft_size; i++) {
|
||||
_inp_vec[i] = Complex(0.0f);
|
||||
}
|
||||
|
||||
_transform_rec(_inp_vec, _out_vec, _fft_size, 1);
|
||||
|
||||
for (uint32_t i = 0; i < _size; i++) {
|
||||
output[i] = _out_vec[i] / sqrtf((float) _fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
void dsp::FFT::transform(const CycleQueue<Complex>&input, Complex *output) const {
|
||||
// _transform_rec(input, 0, output, _size, 1);
|
||||
input.to_array(_inp_vec);
|
||||
|
||||
// zero pad the input
|
||||
for (uint32_t i = input.size(); i < _fft_size; i++) {
|
||||
_inp_vec[i] = 0.0f;
|
||||
}
|
||||
|
||||
|
||||
_transform_rec(_inp_vec, _out_vec, _fft_size, 1);
|
||||
for (uint32_t i = 0; i < _size / 2; i++) {
|
||||
output[i] = _out_vec[i] / sqrtf((float) _fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
void dsp::FFT::inverse_transform(const Complex *input, Complex *output) const {
|
||||
|
||||
for (uint32_t i = 0; i < _size; i++) {
|
||||
_inp_vec[i] = input[i];
|
||||
}
|
||||
// zero pad input buffer
|
||||
for (uint32_t i = _size; i < _fft_size; i++) {
|
||||
_inp_vec[i] = 0.0f;
|
||||
}
|
||||
|
||||
|
||||
conjugate_arr(_inp_vec, _size);
|
||||
_transform_rec(_inp_vec, _out_vec, _fft_size, 1);
|
||||
conjugate_arr(_out_vec, _size);
|
||||
|
||||
for (uint32_t i = 0; i < _size; i++) {
|
||||
// only inverse-transforming first half of the freq spectrum. so multiply by 2
|
||||
output[i] = _out_vec[i] / sqrtf((float) _fft_size);
|
||||
}
|
||||
}
|
||||
|
||||
void dsp::FFT::_transform_rec(const Complex *input, Complex *output, const uint32_t N, const uint32_t stride) const {
|
||||
// recursive implementaion of radix-2 fft
|
||||
// Thanks wikipedia
|
||||
if (N == 1) {
|
||||
output[0] = input[0];
|
||||
return;
|
||||
}
|
||||
|
||||
_transform_rec(input, output, N / 2, 2 * stride);
|
||||
_transform_rec(input + stride, output + N / 2, N / 2, 2 * stride);
|
||||
for (uint32_t k = 0; k < N / 2; k++) {
|
||||
const Complex e = _es[k * stride];
|
||||
const Complex p = output[k]; // kth even
|
||||
const Complex q = e * output[k + N / 2]; //kth odd
|
||||
output[k] = p + q;
|
||||
output[k + N / 2] = p - q;
|
||||
}
|
||||
}
|
||||
|
||||
void dsp::FFT::_transform_rec(const CycleQueue<Complex> &input, uint32_t inp_ind, Complex *output, const uint32_t N, const uint32_t stride) const{
|
||||
// recursive implementaion of radix-2 fft
|
||||
// Thanks wikipedia
|
||||
if (N == 1) {
|
||||
output[0] = input[inp_ind];
|
||||
return;
|
||||
}
|
||||
|
||||
_transform_rec(input, inp_ind, output, N / 2, 2 * stride);
|
||||
_transform_rec(input, inp_ind + stride, output + N / 2, N / 2, 2 * stride);
|
||||
|
||||
for (uint32_t k = 0; k < N / 2; k++) {
|
||||
const Complex e = _es[k * stride];
|
||||
const Complex p = output[k]; // kth even
|
||||
const Complex q = e * output[k + N / 2]; //kth odd
|
||||
output[k] = p + q;
|
||||
output[k + N / 2] = p - q;
|
||||
}
|
||||
}
|
||||
|
||||
const Complex *dsp::FFT::get_es() const {
|
||||
return _es;
|
||||
}
|
83
fft.h
Normal file
83
fft.h
Normal file
|
@ -0,0 +1,83 @@
|
|||
#ifndef MENGA_FFT
|
||||
#define MENGA_FFT
|
||||
|
||||
#include <valarray>
|
||||
#include <vector>
|
||||
#include "common.h"
|
||||
#include "cyclequeue.h"
|
||||
|
||||
typedef std::complex<float> Complex;
|
||||
typedef std::valarray<Complex> CArray;
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
using namespace std;
|
||||
|
||||
class SFT {
|
||||
// Slow O(N^2) Fourier Transform
|
||||
public:
|
||||
// SFT();
|
||||
// out-of-place ft
|
||||
vector<Complex> perform(const vector<Complex> &input);
|
||||
private:
|
||||
vector<Complex> _es;
|
||||
// vector<Complex> _sines;
|
||||
};
|
||||
|
||||
class FFTBuffer; // foward declaration
|
||||
|
||||
class FFT {
|
||||
public:
|
||||
// Fast Fourier transform that uses lookup tables and performs onto an established array
|
||||
// Only works for arrays of a declared size. Designed to be cached and use many times
|
||||
// To use it for different sample rates/lengths, create a new FFT of a different size
|
||||
|
||||
// The size needs to be a power of 2 in order for this to work properly
|
||||
FFT(uint32_t size);
|
||||
~FFT();
|
||||
|
||||
|
||||
// Both arrays must be at least as long as _size
|
||||
void transform(const Complex *input, Complex *output) const;
|
||||
void transform(const CycleQueue<Complex> &input, Complex *output) const; // to avoid having to reallocate array
|
||||
|
||||
//unlike 'transform' this edits *input to avoid unnecissary memory allocation
|
||||
void inverse_transform(const Complex *input, Complex *output) const;
|
||||
|
||||
const Complex *get_es() const;
|
||||
|
||||
uint32_t size() const { return _size; }
|
||||
|
||||
private:
|
||||
Complex *_es;
|
||||
uint32_t _size;
|
||||
uint32_t _fft_size; // size of arrays used in fft computations. must be a power of 2
|
||||
|
||||
// cache buffers used in intermediate calculation
|
||||
Complex *_inp_vec;
|
||||
Complex *_out_vec;
|
||||
|
||||
void _transform_rec(const Complex *input, Complex *output, const uint32_t N, const uint32_t stride) const;
|
||||
void _transform_rec(const CycleQueue<Complex> &input, uint32_t inp_ind, Complex *output, const uint32_t N, const uint32_t stride) const;
|
||||
|
||||
friend class FFTBuffer;
|
||||
public:
|
||||
|
||||
|
||||
};
|
||||
|
||||
class FFTBuffer {
|
||||
// class designed to do update a n FFT of a signal in real time
|
||||
public:
|
||||
void push_signal(const Complex *x, const uint32_t &size) {}
|
||||
|
||||
// copies the last 'size'
|
||||
void pop_transformed_signal(const Complex *output, const uint32_t &size) {}
|
||||
private:
|
||||
CycleQueue<Complex> _buffer;
|
||||
};
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
#endif
|
31
filter.cpp
Normal file
31
filter.cpp
Normal file
|
@ -0,0 +1,31 @@
|
|||
#include "filter.h"
|
||||
#include "common.h"
|
||||
#include <complex>
|
||||
#include <cstdint>
|
||||
|
||||
using namespace Mengu;
|
||||
using namespace dsp;
|
||||
|
||||
Complex Mengu::dsp::quad_filter_trans(Complex z, float a1, float a2, float b0, float b1, float b2) {
|
||||
Complex z1 = std::conj(z); //z^-1
|
||||
Complex z2 = z1 * z1;
|
||||
return (b0 + b1 * z1 + b2 * z2) / (1.0f + a1 * z1 + a2 * z2);
|
||||
}
|
||||
|
||||
BiquadFilter::BiquadFilter(float pa1, float pa2, float pb0, float pb1, float pb2) :
|
||||
a1(pa1), a2(pa2), b0(pb0), b1(pb1), b2(pb2) {}
|
||||
|
||||
void BiquadFilter::transform(const float *input, float *output, uint32_t size) {
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
float m = input[i] - a1 * _last_ms[_last_offset] - a2 * _last_ms[(_last_offset + 1) % 2];
|
||||
output[i] = b0 * m + b1 * _last_ms[_last_offset] + b2 * _last_ms[(_last_offset + 1) % 2];
|
||||
|
||||
// push the last m
|
||||
_last_offset = (_last_offset + 1) % 2;
|
||||
_last_ms[_last_offset] = m;
|
||||
}
|
||||
}
|
||||
|
||||
void BiquadFilter::reset() {
|
||||
_last_ms[0] = _last_ms[1] = 0.0f;
|
||||
}
|
44
filter.h
Normal file
44
filter.h
Normal file
|
@ -0,0 +1,44 @@
|
|||
/**
|
||||
* @file filter.h
|
||||
* @author your name (you@domain.com)
|
||||
* @brief Filter functions
|
||||
* @version 0.1
|
||||
* @date 2023-06-10
|
||||
*
|
||||
* @copyright Copyright (c) 2023
|
||||
*
|
||||
*/
|
||||
#ifndef MENGU_FILTER
|
||||
#define MENGU_FILTER
|
||||
|
||||
#include "common.h"
|
||||
#include <cstdint>
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
// the transfer function for a quadratic filter with denominator coefficients a1, a2 and numerator cofficients b0, b1, b2
|
||||
// assumes z is on a unit circle
|
||||
Complex quad_filter_trans(Complex z, float a1, float a2, float b0, float b1, float b2);
|
||||
|
||||
|
||||
class BiquadFilter {
|
||||
public:
|
||||
float a1;
|
||||
float a2;
|
||||
float b0;
|
||||
float b1;
|
||||
float b2;
|
||||
|
||||
BiquadFilter(float pa1, float pa2, float pb0, float pb1, float pb2);
|
||||
|
||||
void transform(const float *input, float *output, uint32_t size);
|
||||
void reset();
|
||||
|
||||
private:
|
||||
// store the last 2 raw inputs and intermediaries
|
||||
float _last_ms[2] {0};
|
||||
uint32_t _last_offset = 0;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
147
formantshifter.cpp
Normal file
147
formantshifter.cpp
Normal file
|
@ -0,0 +1,147 @@
|
|||
|
||||
|
||||
#include "formantshifter.h"
|
||||
#include "common.h"
|
||||
#include "effect.h"
|
||||
#include "interpolation.h"
|
||||
#include "loudness.h"
|
||||
#include "mengumath.h"
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <complex>
|
||||
#include <cstdint>
|
||||
|
||||
using namespace Mengu;
|
||||
using namespace dsp;
|
||||
|
||||
|
||||
|
||||
LPCFormantShifter::LPCFormantShifter() {
|
||||
_transformed_buffer.resize(OverlapSize);
|
||||
}
|
||||
|
||||
Effect::InputDomain LPCFormantShifter::get_input_domain() {
|
||||
return InputDomain::Time;
|
||||
};
|
||||
|
||||
|
||||
// push new value of signal
|
||||
void LPCFormantShifter::push_signal(const Complex *input, const uint32_t &size) {
|
||||
_raw_buffer.extend_back(input, size);
|
||||
}
|
||||
|
||||
// Last value of transformed signal
|
||||
uint32_t LPCFormantShifter::pop_transformed_signal(Complex *output, const uint32_t &size) {
|
||||
std::array<Complex, ProcSize> freq_shifted {0};
|
||||
std::array<Complex, ProcSize> samples {0};
|
||||
std::array<Complex, ProcSize> shifted_samples {0};
|
||||
|
||||
while (_raw_buffer.size() >= ProcSize && _transformed_buffer.size() < size + OverlapSize) {
|
||||
|
||||
// Load sample segment. 0 unused frames
|
||||
_raw_buffer.to_array(samples.data(), ProcSize);
|
||||
|
||||
// do the shifty
|
||||
_lpc.load_sample(samples.data());
|
||||
_shift_by_env(
|
||||
_lpc.get_freq_spectrum().data(),
|
||||
freq_shifted.data(),
|
||||
_lpc.get_envelope().data(),
|
||||
_shift_factor
|
||||
);
|
||||
_lpc.get_fft().inverse_transform(freq_shifted.data(), shifted_samples.data());
|
||||
|
||||
// Make downward shifts not quieter and upward shifts not louder
|
||||
// Automatically adjusts for the fact that only half of the frequency spectrum is used
|
||||
_loudness_norm.normalize(shifted_samples.data(), samples.data(), shifted_samples.data());
|
||||
|
||||
// copy to output
|
||||
mix_and_extend(_transformed_buffer, shifted_samples, OverlapSize, hamming_window);
|
||||
|
||||
_raw_buffer.pop_front_many(nullptr, HopSize);
|
||||
|
||||
}
|
||||
|
||||
if (_transformed_buffer.size() < size + OverlapSize) {
|
||||
// Not enough samples to output anything
|
||||
return 0;
|
||||
}
|
||||
else {
|
||||
return _transformed_buffer.pop_front_many(output, size);
|
||||
}
|
||||
}
|
||||
|
||||
// number of samples that can be output given the current pushed signals of the Effect
|
||||
uint32_t LPCFormantShifter::n_transformed_ready() const {
|
||||
return _raw_buffer.size();
|
||||
};
|
||||
|
||||
// resets state of effect to make it reading to take in a new sample
|
||||
void LPCFormantShifter::reset() {
|
||||
_raw_sample_filter.reset();
|
||||
_shifted_sample_filter.reset();
|
||||
}
|
||||
|
||||
// The properties that this Effect exposes to be changed by GUI.
|
||||
// The index that they are put in is considered the props id
|
||||
std::vector<EffectPropDesc> LPCFormantShifter::get_property_descs() const {
|
||||
return {
|
||||
EffectPropDesc {
|
||||
.type = EffectPropType::Slider,
|
||||
.name = "Formant Shift",
|
||||
.desc = "Scales the formant of pushed signals by this amount",
|
||||
.slider_data = {
|
||||
.min_value = 0.5,
|
||||
.max_value = 2,
|
||||
.scale = Exp,
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
// Sets a property with the specified id the value declared in the payload
|
||||
void LPCFormantShifter::set_property(uint32_t id, EffectPropPayload data) {
|
||||
switch (id) {
|
||||
case 0:
|
||||
if (data.type == Slider) {
|
||||
_shift_factor = data.value;
|
||||
}
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Gets the value of a property with the specified id
|
||||
EffectPropPayload LPCFormantShifter::get_property(uint32_t id) const {
|
||||
return EffectPropPayload {
|
||||
.type = Slider,
|
||||
.value = _shift_factor,
|
||||
};
|
||||
};
|
||||
|
||||
// rescale an array in the freqency domain by the shape of an envelope if it were to be shifted up or down
|
||||
void LPCFormantShifter::_shift_by_env(const Complex *input,
|
||||
Complex *output,
|
||||
const float *envelope,
|
||||
const float shift_factor) {
|
||||
for (uint32_t i = 0; i < ProcSize / 2; i++) {
|
||||
uint32_t shifted_ind = i / shift_factor;
|
||||
if (shifted_ind < ProcSize / 2) {
|
||||
float correction = envelope[shifted_ind] / envelope[i];
|
||||
if (!std::isfinite(correction)) {
|
||||
output[i] = Complex(0.0f);
|
||||
}
|
||||
else {
|
||||
output[i] = correction * input[i];
|
||||
}
|
||||
}
|
||||
else {
|
||||
// output[i] = input[size - 1];
|
||||
output[i] = Complex(0.0f);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
75
formantshifter.h
Normal file
75
formantshifter.h
Normal file
|
@ -0,0 +1,75 @@
|
|||
/**
|
||||
* @file formantshifter.h
|
||||
* @author 9exa
|
||||
* @brief Shifts the formants of a signal in real time.
|
||||
* @date 2023-06-08
|
||||
*/
|
||||
|
||||
#ifndef MENGU_FORMANT_SHIFTER
|
||||
#define MENGU_FORMANT_SHIFTER
|
||||
|
||||
#include "common.h"
|
||||
#include "correlation.h"
|
||||
#include "effect.h"
|
||||
#include "loudness.h"
|
||||
#include "vecdeque.h"
|
||||
#include <cstdint>
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
|
||||
// shifts formants using lpc envelope estimation
|
||||
class LPCFormantShifter: public Effect {
|
||||
public:
|
||||
LPCFormantShifter();
|
||||
// tells an EffectChain what type of input the effect expects
|
||||
virtual InputDomain get_input_domain() override;
|
||||
|
||||
// push new value of signal
|
||||
virtual void push_signal(const Complex *input, const uint32_t &size) override;
|
||||
|
||||
// Last value of transformed signal
|
||||
virtual uint32_t pop_transformed_signal(Complex *output, const uint32_t &size) override;
|
||||
|
||||
// number of samples that can be output given the current pushed signals of the Effect
|
||||
virtual uint32_t n_transformed_ready() const override;
|
||||
|
||||
// resets state of effect to make it reading to take in a new sample
|
||||
virtual void reset() override;
|
||||
|
||||
// The properties that this Effect exposes to be changed by GUI.
|
||||
// The index that they are put in is considered the props id
|
||||
virtual std::vector<EffectPropDesc> get_property_descs() const override;
|
||||
|
||||
// Sets a property with the specified id the value declared in the payload
|
||||
virtual void set_property(uint32_t id, EffectPropPayload data) override;
|
||||
|
||||
// Gets the value of a property with the specified id
|
||||
virtual EffectPropPayload get_property(uint32_t id) const override;
|
||||
private:
|
||||
VecDeque<Complex> _raw_buffer;
|
||||
VecDeque<Complex> _transformed_buffer;
|
||||
|
||||
static constexpr uint32_t ProcSize = 1 << 11;
|
||||
static constexpr uint32_t HopSize = ProcSize * 4 / 5;
|
||||
static constexpr uint32_t OverlapSize = ProcSize - HopSize;
|
||||
|
||||
LPC<ProcSize, 60> _lpc;
|
||||
|
||||
void _shift_by_env(const Complex *input,
|
||||
Complex *output,
|
||||
const float *envelope,
|
||||
const float shift_factor);
|
||||
|
||||
float _shift_factor = 1.0f;
|
||||
|
||||
// Amplifies the formant_shifted samples so they have the same LUFS loudness as the raw_sample
|
||||
LoudnessNormalizer<Complex, ProcSize, 2> _loudness_norm;
|
||||
|
||||
LUFSFilter _raw_sample_filter;
|
||||
LUFSFilter _shifted_sample_filter;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
96
interpolation.h
Normal file
96
interpolation.h
Normal file
|
@ -0,0 +1,96 @@
|
|||
#ifndef MENGA_INTERPOLATION
|
||||
#define MENGA_INTERPOLATION
|
||||
|
||||
#include "mengumath.h"
|
||||
#include "fastmath.h"
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
// Helper functions for various interpolation and windowing methods
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp{
|
||||
|
||||
// The hann function
|
||||
inline float hann(float a0, float x) {
|
||||
return a0 - (1.0 - a0) * std::cos(MATH_TAU * x);
|
||||
// equals
|
||||
// a - (1-a) (c2 -s2)
|
||||
// a (1 - c2 + s2) - (c2 - s2)
|
||||
// a (2s2) - 2s2 - 1
|
||||
// (a - 1) 2 s2
|
||||
}
|
||||
|
||||
// root of the hann function designed to be used once each before and after processing
|
||||
inline float hann_root(float a0, float x) {
|
||||
return std::sqrt(2.0 *(a0 - 1)) * std::sin(MATH_PI * x);
|
||||
}
|
||||
|
||||
// the hann function, centered around 0
|
||||
// inline float hann_centered(float a0, float x) {
|
||||
// return hann(a0, (x + 0.5f));
|
||||
// }
|
||||
|
||||
|
||||
// windows are 1 at 1, 0 at 0
|
||||
inline float hann_window(float x) {
|
||||
return hann(0.5, 0.5f * x);
|
||||
}
|
||||
|
||||
inline float hamming_window(float x) {
|
||||
return hann((float)25 / 46, 0.5f * x);
|
||||
}
|
||||
|
||||
// windows are 1 at 1, 0 at 0
|
||||
inline float hann_window_root(float x) {
|
||||
return std::sin(0.5 * MATH_PI * x);
|
||||
}
|
||||
|
||||
// does windowing to both ends of a sequence, in place
|
||||
template<class T>
|
||||
inline void window_ends(T* a, uint32_t a_size, uint32_t window_size, float window_f (float)) {
|
||||
window_size = MIN(a_size / 2, window_size);
|
||||
for (uint32_t i = 0; i < window_size; i++) {
|
||||
const float w = window_f((float) i / window_size);
|
||||
|
||||
a[i] *= w;
|
||||
a[a_size - 1 - i] *= w;
|
||||
}
|
||||
}
|
||||
|
||||
// added the tail and head of an array after applying a window function to bothe sides
|
||||
template<class T>
|
||||
inline void overlap_add(const T *prev, const T *next, T *output, uint32_t size, float window_f (float)) {
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
const float w = window_f((float) i / size);
|
||||
|
||||
output[i] = w * next[i] + (1- w) * prev[i];
|
||||
}
|
||||
}
|
||||
|
||||
// overlap and extend after applying a window function first
|
||||
// overlap_size may be larger than new_data.size(), in which case only new_data.size() is added. the offset is the same
|
||||
template<class T, class NewT>
|
||||
inline void mix_and_extend(T &array, const NewT &new_data, const uint32_t &overlap_size, float window_f (float)) {
|
||||
|
||||
uint32_t i = 0;
|
||||
|
||||
for(; i < MIN(overlap_size, new_data.size()); i++) {
|
||||
float w = (float) i / overlap_size;
|
||||
float w1 = window_f(w);
|
||||
float w2 = window_f(1.0-w);
|
||||
w2 = 1.0f - w1;
|
||||
uint32_t ind = array.size() - overlap_size + i;
|
||||
array[ind] = array[ind] * w2 + new_data[i] * w1;
|
||||
}
|
||||
|
||||
for (; i < new_data.size(); i++) {
|
||||
array.push_back(new_data[i]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
50
linalg.cpp
Normal file
50
linalg.cpp
Normal file
|
@ -0,0 +1,50 @@
|
|||
#include "linalg.h"
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <vector>
|
||||
|
||||
|
||||
|
||||
std::vector<float> Mengu::dsp::solve_sym_toeplitz(const std::vector<float> &cols, const std::vector<float> &y) {
|
||||
|
||||
// good ol dynamic programming to repeatedly do each step of levinson_recursion consequtively
|
||||
std::vector<float> backward_vec = {1.0f / cols.at(0)}; // y.size assumed small, so use vec
|
||||
backward_vec.reserve(y.size());
|
||||
|
||||
std::vector<float> forward_vec(1);
|
||||
|
||||
float error = 0.0f;
|
||||
|
||||
std::vector<float> result = {y.at(0) / cols.at(0)};
|
||||
result.reserve(y.size());
|
||||
|
||||
for (int n = 1; n < y.size(); n++) {
|
||||
// calculate the current error and backward vec
|
||||
std::copy(backward_vec.crbegin(), backward_vec.crend(), forward_vec.begin());
|
||||
error = dot(cols.data() + 1, backward_vec.data(), n);
|
||||
|
||||
float denom = 1.0f / (1 - error * error);
|
||||
|
||||
scalar_mul_inplace(denom, backward_vec.data(), backward_vec.size());
|
||||
backward_vec.emplace(backward_vec.begin(), 0);
|
||||
|
||||
|
||||
scalar_mul_inplace(-error * denom, forward_vec.data(), forward_vec.size());
|
||||
forward_vec.push_back(0);
|
||||
|
||||
vec_add_inplace(forward_vec, backward_vec);
|
||||
|
||||
|
||||
// calculate this iterations result
|
||||
auto cols_iter = cols.crbegin() + (cols.size() - n - 1); // the elements n to 1
|
||||
float result_error = dot(cols_iter, cols.crend() - 1, result.cbegin());
|
||||
|
||||
std::vector<float> scaled_backward_vec = scalar_mul(y[n] - result_error, backward_vec);
|
||||
result.push_back(0);
|
||||
|
||||
vec_add_inplace(scaled_backward_vec, result);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
148
linalg.h
Normal file
148
linalg.h
Normal file
|
@ -0,0 +1,148 @@
|
|||
/**
|
||||
* @file linalg.h
|
||||
* @author 9exa
|
||||
* @brief objects and algorithms to solve linear equations
|
||||
* @version 0.1
|
||||
* @date 2023-05-04
|
||||
*
|
||||
* @copyright Copyright (c) 2023
|
||||
*
|
||||
*/
|
||||
#ifndef MENGA_LINALG
|
||||
#define MENGA_LINALG
|
||||
|
||||
|
||||
#include <array>
|
||||
#include <cstddef>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
|
||||
//2-D matrix
|
||||
|
||||
// dot_product
|
||||
|
||||
// c-style dot product
|
||||
template<typename T>
|
||||
inline T dot(const T *a, const T *b, const int size) {
|
||||
T total = T();
|
||||
for (int i = 0; i < size; i++) {
|
||||
total += a[i] * b[i];
|
||||
}
|
||||
|
||||
return total;
|
||||
}
|
||||
|
||||
// do product on iterator
|
||||
template<class InputIt1, class InputIt2>
|
||||
inline float dot(InputIt1 afirst, InputIt1 alast, InputIt2 bfirst) {
|
||||
float total = 0.0f;
|
||||
while (afirst != alast) {
|
||||
total += *afirst * *bfirst;
|
||||
|
||||
afirst++;
|
||||
bfirst++;
|
||||
}
|
||||
|
||||
return total;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
std::vector<T> scalar_mul(const T lambda, const std::vector<T> &a) {
|
||||
std::vector<T> scaled;
|
||||
for (T x: a) {
|
||||
scaled.push_back(lambda * x);
|
||||
}
|
||||
return scaled;
|
||||
}
|
||||
|
||||
template<typename T, size_t N>
|
||||
std::array<T, N> scalar_mul(const T lambda, const T *a, size_t size) {
|
||||
std::array<T, N> scaled;
|
||||
for (size_t i = 0; i < size; i++) {
|
||||
scaled[i] = lambda * a[i];
|
||||
}
|
||||
return scaled;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
void scalar_mul_inplace(const T lambda, T *a, const int size) {
|
||||
for (int i = 0; i < size; i++) {
|
||||
a[i] = lambda * a[i];
|
||||
}
|
||||
}
|
||||
|
||||
// add b to a inplace
|
||||
template<typename T>
|
||||
void vec_add_inplace(const std::vector<T> &b, std::vector<T> &a) {
|
||||
for (int i = 0; i < a.size(); i++) {
|
||||
a[i] += b.at(i);
|
||||
}
|
||||
}
|
||||
template<typename T>
|
||||
void vec_add_inplace(const T *b, T *a, const int size) {
|
||||
for (int i = 0; i < size; i++) {
|
||||
a[i] += b[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Solves a system of equations where the matrix is a symmetric TOEplitz matrix,
|
||||
// The matrix is represented as a list of its column values
|
||||
std::vector<float> solve_sym_toeplitz(const std::vector<float> &cols, const std::vector<float> &y);
|
||||
|
||||
|
||||
template <typename T, size_t N>
|
||||
std::array<T, N> solve_sym_toeplitz(const std::array<T, N> &cols, const std::array<T, N> &y) {
|
||||
// good ol dynamic programming to repeatedly do each step of levinson_recursion consequtively
|
||||
std::array<T, N> backward_vec;
|
||||
std::array<T, N> forward_vec;
|
||||
backward_vec[backward_vec.size() - 1] = forward_vec[0] = 1.0 / cols.at(0);
|
||||
|
||||
float error = 0.0f;
|
||||
|
||||
std::array<T, N> result;
|
||||
result[0] = {y.at(0) / cols.at(0)};
|
||||
|
||||
for (int n = 1; n < N; n++) {
|
||||
// calculate the current error and backward vec
|
||||
std::copy(backward_vec.crbegin(), backward_vec.crbegin() + n, forward_vec.begin());
|
||||
error = dot(cols.data() + 1, backward_vec.data() + (N - n), n);
|
||||
|
||||
float denom = 1.0f / (1 - error * error);
|
||||
|
||||
scalar_mul_inplace(denom, backward_vec.data() + (N - n), n);
|
||||
backward_vec[N - 1 - n] = T();
|
||||
|
||||
|
||||
scalar_mul_inplace(-error * denom, forward_vec.data(), n);
|
||||
forward_vec[n] = T();
|
||||
|
||||
vec_add_inplace(forward_vec.data(), backward_vec.data() + (N - n - 1), n + 1);
|
||||
|
||||
|
||||
// calculate this iterations result
|
||||
auto cols_iter = cols.crbegin() + (cols.size() - n - 1); // the elements n to 0
|
||||
float result_error = dot(cols_iter, cols.crend() - 1, result.cbegin());
|
||||
|
||||
std::array<T, N> scaled_backward_vec = scalar_mul<T, N>(
|
||||
y[n] - result_error,
|
||||
backward_vec.data() + (N - n - 1),
|
||||
n + 1);
|
||||
result[n] = T();
|
||||
|
||||
vec_add_inplace(scaled_backward_vec.data(), result.data(), n + 1);
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//
|
||||
|
||||
|
||||
#endif
|
67
loudness.cpp
Normal file
67
loudness.cpp
Normal file
|
@ -0,0 +1,67 @@
|
|||
#include "loudness.h"
|
||||
#include "filter.h"
|
||||
#include "common.h"
|
||||
#include "mengumath.h"
|
||||
#include <complex>
|
||||
#include <cstdint>
|
||||
|
||||
// Coefficients for LUFS_freq filteters
|
||||
// High shelf filter stage
|
||||
#define S1_A1 -1.69065929318241
|
||||
#define S1_A2 0.73248077421585
|
||||
#define S1_B0 1.53512485958697
|
||||
#define S1_B1 -2.69169618940638
|
||||
#define S1_B2 1.19839281085285
|
||||
// High pass Filter stage
|
||||
#define S2_A1 -1.99004745483398
|
||||
#define S2_A2 0.99007225036621
|
||||
#define S2_B0 1.0
|
||||
#define S2_B1 -2.0
|
||||
#define S2_B2 1.0
|
||||
|
||||
#define LUFS_DEFAULT_SAMPLE_RATE 48000
|
||||
|
||||
using namespace Mengu;
|
||||
using namespace dsp;
|
||||
|
||||
float Mengu::dsp::LUFS_freq(Complex *freqs, uint32_t size, uint32_t sample_rate) {
|
||||
// Adjust to the custum sample rate
|
||||
float sample_rate_correction = (float) sample_rate / LUFS_DEFAULT_SAMPLE_RATE * 2;
|
||||
|
||||
float total_amp2 = 0.0f; // total squared amplitude of each freq bin
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
// argument for the transfer functions
|
||||
float omega = (float) MATH_PI * i / size * sample_rate_correction;
|
||||
Complex z = std::polar(1.0f, omega);
|
||||
|
||||
// filtered frequency
|
||||
Complex y = freqs[i] * quad_filter_trans(z, S1_A1, S1_A2, S1_B0, S1_B1, S1_B2);
|
||||
y = y * quad_filter_trans(z, S2_A1, S2_A2, S2_B0, S2_B1, S2_B2);
|
||||
|
||||
total_amp2 += std::norm(y);
|
||||
}
|
||||
|
||||
return -0.691 + 10 * Mengu::log10(total_amp2 / size);
|
||||
|
||||
}
|
||||
|
||||
Complex Mengu::dsp::LUFS_filter_transfer(float freq) {
|
||||
float omega = (float) MATH_PI * freq / LUFS_DEFAULT_SAMPLE_RATE * 2;
|
||||
Complex z = std::polar(1.0f, omega);
|
||||
Complex y = quad_filter_trans(z, S1_A1, S1_A2, S1_B0, S1_B1, S1_B2);
|
||||
return y * quad_filter_trans(z, S2_A1, S2_A2, S2_B0, S2_B1, S2_B2);
|
||||
}
|
||||
|
||||
LUFSFilter::LUFSFilter():
|
||||
_high_shelf_filter(S1_A1, S1_A2, S1_B0, S1_B1, S1_B2),
|
||||
_high_pass_filter(S2_A1, S2_A2, S2_B0, S2_B1, S2_B2) {}
|
||||
|
||||
void LUFSFilter::transform(const float *input, float *output, uint32_t size) {
|
||||
_high_shelf_filter.transform(input, output, size);
|
||||
_high_pass_filter.transform(output, output, size);
|
||||
}
|
||||
|
||||
void LUFSFilter::reset() {
|
||||
_high_shelf_filter.reset();
|
||||
_high_pass_filter.reset();
|
||||
}
|
105
loudness.h
Normal file
105
loudness.h
Normal file
|
@ -0,0 +1,105 @@
|
|||
/**
|
||||
* @file loudness.h
|
||||
* @author your name (you@domain.com)
|
||||
* @brief Functions for calculating loudness in a signal
|
||||
* @version 0.1
|
||||
* @date 2023-06-10
|
||||
*
|
||||
* @copyright Copyright (c) 2023
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef MENGU_LOUDNESS
|
||||
#define MENGU_LOUDNESS
|
||||
|
||||
#include "common.h"
|
||||
#include "filter.h"
|
||||
#include <cstdint>
|
||||
#include <stdint.h>
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
|
||||
// Loudness Units relative to Full Scale of a sample in the frequency domain
|
||||
// first (positive) half of the frequency spectrum only
|
||||
// Only supports 1 channel
|
||||
float LUFS_freq(Complex *freqs, uint32_t size, uint32_t sample_rate = 48000);
|
||||
|
||||
// The value of the transfer function associated with the described frequency bin
|
||||
Complex LUFS_filter_transfer(float freq);
|
||||
|
||||
// Performs the filter step associated with LUFS
|
||||
class LUFSFilter {
|
||||
public:
|
||||
LUFSFilter();
|
||||
|
||||
void transform(const float *input, float *output, uint32_t size);
|
||||
|
||||
void reset();
|
||||
|
||||
private:
|
||||
BiquadFilter _high_shelf_filter; // Stage 1 filter
|
||||
BiquadFilter _high_pass_filter; // Stage 2 filter
|
||||
};
|
||||
|
||||
// Scales a raw sample to have the same Loudness (in LUFS) as a reference sample
|
||||
// The raw sample and reference sample are assumed to come from their own persistant samples
|
||||
template<typename T, uint32_t N, int DefCorrection = 1>
|
||||
class LoudnessNormalizer {
|
||||
public:
|
||||
void normalize(const T *raw_sample, const T *reference_sample, T *output) {
|
||||
float filtered_raw[N];
|
||||
float filtered_reference[N];
|
||||
for (uint32_t i = 0; i < N; i++) {
|
||||
filtered_raw[i] = _as_float(raw_sample[i]);
|
||||
filtered_reference[i] = _as_float(reference_sample[i]);
|
||||
}
|
||||
|
||||
// perform filter
|
||||
_raw_sample_filter.transform(filtered_raw, filtered_raw, N);
|
||||
_reference_sample_filter.transform(filtered_reference, filtered_reference, N);
|
||||
|
||||
// Get the (unormalized) power of each filtered sample
|
||||
float raw_power = 0.0f;
|
||||
float reference_power = 0.0f;
|
||||
for(uint32_t i = 0; i < N; i++) {
|
||||
raw_power += filtered_raw[i] * filtered_raw[i];
|
||||
reference_power += filtered_reference[i] * filtered_reference[i];
|
||||
}
|
||||
float correction = sqrt(reference_power / raw_power);
|
||||
// std::cout << correction << ", " << raw_power << ", " << shifted_power << std::endl;
|
||||
if (!std::isfinite(correction)) {
|
||||
// just correct for 1/2 freq spectrum sampling if correction is not real
|
||||
for (uint32_t i = 0; i < N; i++) {
|
||||
output[i] = raw_sample[i] * (float) DefCorrection;
|
||||
}
|
||||
}
|
||||
else {
|
||||
// otherwise scale the shifted by the correction
|
||||
for (uint32_t i = 0; i < N; i++) {
|
||||
output[i] = raw_sample[i] * correction;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
// resets memory on previous raw and reference samples
|
||||
void reset() {
|
||||
_raw_sample_filter.reset();
|
||||
_reference_sample_filter.reset();
|
||||
}
|
||||
private:
|
||||
LUFSFilter _raw_sample_filter;
|
||||
LUFSFilter _reference_sample_filter;
|
||||
|
||||
|
||||
static float _as_float(T v) {
|
||||
return Complex(v).real();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#endif
|
470
lv2.h
Normal file
470
lv2.h
Normal file
|
@ -0,0 +1,470 @@
|
|||
// Copyright 2006-2020 David Robillard <d@drobilla.net>
|
||||
// Copyright 2006-2012 Steve Harris <steve@plugin.org.uk>
|
||||
// Copyright 2000-2002 Richard W.E. Furse, Paul Barton-Davis, Stefan Westerfeld.
|
||||
// SPDX-License-Identifier: ISC
|
||||
|
||||
#ifndef LV2_H_INCLUDED
|
||||
#define LV2_H_INCLUDED
|
||||
|
||||
/**
|
||||
@defgroup lv2 LV2
|
||||
|
||||
The LV2 specification.
|
||||
|
||||
@{
|
||||
*/
|
||||
|
||||
/**
|
||||
@defgroup lv2core LV2 Core
|
||||
|
||||
Core LV2 specification.
|
||||
|
||||
See <http://lv2plug.in/ns/lv2core> for details.
|
||||
|
||||
@{
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
// clang-format off
|
||||
|
||||
#define LV2_CORE_URI "http://lv2plug.in/ns/lv2core" ///< http://lv2plug.in/ns/lv2core
|
||||
#define LV2_CORE_PREFIX LV2_CORE_URI "#" ///< http://lv2plug.in/ns/lv2core#
|
||||
|
||||
#define LV2_CORE__AllpassPlugin LV2_CORE_PREFIX "AllpassPlugin" ///< http://lv2plug.in/ns/lv2core#AllpassPlugin
|
||||
#define LV2_CORE__AmplifierPlugin LV2_CORE_PREFIX "AmplifierPlugin" ///< http://lv2plug.in/ns/lv2core#AmplifierPlugin
|
||||
#define LV2_CORE__AnalyserPlugin LV2_CORE_PREFIX "AnalyserPlugin" ///< http://lv2plug.in/ns/lv2core#AnalyserPlugin
|
||||
#define LV2_CORE__AudioPort LV2_CORE_PREFIX "AudioPort" ///< http://lv2plug.in/ns/lv2core#AudioPort
|
||||
#define LV2_CORE__BandpassPlugin LV2_CORE_PREFIX "BandpassPlugin" ///< http://lv2plug.in/ns/lv2core#BandpassPlugin
|
||||
#define LV2_CORE__CVPort LV2_CORE_PREFIX "CVPort" ///< http://lv2plug.in/ns/lv2core#CVPort
|
||||
#define LV2_CORE__ChorusPlugin LV2_CORE_PREFIX "ChorusPlugin" ///< http://lv2plug.in/ns/lv2core#ChorusPlugin
|
||||
#define LV2_CORE__CombPlugin LV2_CORE_PREFIX "CombPlugin" ///< http://lv2plug.in/ns/lv2core#CombPlugin
|
||||
#define LV2_CORE__CompressorPlugin LV2_CORE_PREFIX "CompressorPlugin" ///< http://lv2plug.in/ns/lv2core#CompressorPlugin
|
||||
#define LV2_CORE__ConstantPlugin LV2_CORE_PREFIX "ConstantPlugin" ///< http://lv2plug.in/ns/lv2core#ConstantPlugin
|
||||
#define LV2_CORE__ControlPort LV2_CORE_PREFIX "ControlPort" ///< http://lv2plug.in/ns/lv2core#ControlPort
|
||||
#define LV2_CORE__ConverterPlugin LV2_CORE_PREFIX "ConverterPlugin" ///< http://lv2plug.in/ns/lv2core#ConverterPlugin
|
||||
#define LV2_CORE__DelayPlugin LV2_CORE_PREFIX "DelayPlugin" ///< http://lv2plug.in/ns/lv2core#DelayPlugin
|
||||
#define LV2_CORE__DistortionPlugin LV2_CORE_PREFIX "DistortionPlugin" ///< http://lv2plug.in/ns/lv2core#DistortionPlugin
|
||||
#define LV2_CORE__DynamicsPlugin LV2_CORE_PREFIX "DynamicsPlugin" ///< http://lv2plug.in/ns/lv2core#DynamicsPlugin
|
||||
#define LV2_CORE__EQPlugin LV2_CORE_PREFIX "EQPlugin" ///< http://lv2plug.in/ns/lv2core#EQPlugin
|
||||
#define LV2_CORE__EnvelopePlugin LV2_CORE_PREFIX "EnvelopePlugin" ///< http://lv2plug.in/ns/lv2core#EnvelopePlugin
|
||||
#define LV2_CORE__ExpanderPlugin LV2_CORE_PREFIX "ExpanderPlugin" ///< http://lv2plug.in/ns/lv2core#ExpanderPlugin
|
||||
#define LV2_CORE__ExtensionData LV2_CORE_PREFIX "ExtensionData" ///< http://lv2plug.in/ns/lv2core#ExtensionData
|
||||
#define LV2_CORE__Feature LV2_CORE_PREFIX "Feature" ///< http://lv2plug.in/ns/lv2core#Feature
|
||||
#define LV2_CORE__FilterPlugin LV2_CORE_PREFIX "FilterPlugin" ///< http://lv2plug.in/ns/lv2core#FilterPlugin
|
||||
#define LV2_CORE__FlangerPlugin LV2_CORE_PREFIX "FlangerPlugin" ///< http://lv2plug.in/ns/lv2core#FlangerPlugin
|
||||
#define LV2_CORE__FunctionPlugin LV2_CORE_PREFIX "FunctionPlugin" ///< http://lv2plug.in/ns/lv2core#FunctionPlugin
|
||||
#define LV2_CORE__GatePlugin LV2_CORE_PREFIX "GatePlugin" ///< http://lv2plug.in/ns/lv2core#GatePlugin
|
||||
#define LV2_CORE__GeneratorPlugin LV2_CORE_PREFIX "GeneratorPlugin" ///< http://lv2plug.in/ns/lv2core#GeneratorPlugin
|
||||
#define LV2_CORE__HighpassPlugin LV2_CORE_PREFIX "HighpassPlugin" ///< http://lv2plug.in/ns/lv2core#HighpassPlugin
|
||||
#define LV2_CORE__InputPort LV2_CORE_PREFIX "InputPort" ///< http://lv2plug.in/ns/lv2core#InputPort
|
||||
#define LV2_CORE__InstrumentPlugin LV2_CORE_PREFIX "InstrumentPlugin" ///< http://lv2plug.in/ns/lv2core#InstrumentPlugin
|
||||
#define LV2_CORE__LimiterPlugin LV2_CORE_PREFIX "LimiterPlugin" ///< http://lv2plug.in/ns/lv2core#LimiterPlugin
|
||||
#define LV2_CORE__LowpassPlugin LV2_CORE_PREFIX "LowpassPlugin" ///< http://lv2plug.in/ns/lv2core#LowpassPlugin
|
||||
#define LV2_CORE__MixerPlugin LV2_CORE_PREFIX "MixerPlugin" ///< http://lv2plug.in/ns/lv2core#MixerPlugin
|
||||
#define LV2_CORE__ModulatorPlugin LV2_CORE_PREFIX "ModulatorPlugin" ///< http://lv2plug.in/ns/lv2core#ModulatorPlugin
|
||||
#define LV2_CORE__MultiEQPlugin LV2_CORE_PREFIX "MultiEQPlugin" ///< http://lv2plug.in/ns/lv2core#MultiEQPlugin
|
||||
#define LV2_CORE__OscillatorPlugin LV2_CORE_PREFIX "OscillatorPlugin" ///< http://lv2plug.in/ns/lv2core#OscillatorPlugin
|
||||
#define LV2_CORE__OutputPort LV2_CORE_PREFIX "OutputPort" ///< http://lv2plug.in/ns/lv2core#OutputPort
|
||||
#define LV2_CORE__ParaEQPlugin LV2_CORE_PREFIX "ParaEQPlugin" ///< http://lv2plug.in/ns/lv2core#ParaEQPlugin
|
||||
#define LV2_CORE__PhaserPlugin LV2_CORE_PREFIX "PhaserPlugin" ///< http://lv2plug.in/ns/lv2core#PhaserPlugin
|
||||
#define LV2_CORE__PitchPlugin LV2_CORE_PREFIX "PitchPlugin" ///< http://lv2plug.in/ns/lv2core#PitchPlugin
|
||||
#define LV2_CORE__Plugin LV2_CORE_PREFIX "Plugin" ///< http://lv2plug.in/ns/lv2core#Plugin
|
||||
#define LV2_CORE__PluginBase LV2_CORE_PREFIX "PluginBase" ///< http://lv2plug.in/ns/lv2core#PluginBase
|
||||
#define LV2_CORE__Point LV2_CORE_PREFIX "Point" ///< http://lv2plug.in/ns/lv2core#Point
|
||||
#define LV2_CORE__Port LV2_CORE_PREFIX "Port" ///< http://lv2plug.in/ns/lv2core#Port
|
||||
#define LV2_CORE__PortProperty LV2_CORE_PREFIX "PortProperty" ///< http://lv2plug.in/ns/lv2core#PortProperty
|
||||
#define LV2_CORE__Resource LV2_CORE_PREFIX "Resource" ///< http://lv2plug.in/ns/lv2core#Resource
|
||||
#define LV2_CORE__ReverbPlugin LV2_CORE_PREFIX "ReverbPlugin" ///< http://lv2plug.in/ns/lv2core#ReverbPlugin
|
||||
#define LV2_CORE__ScalePoint LV2_CORE_PREFIX "ScalePoint" ///< http://lv2plug.in/ns/lv2core#ScalePoint
|
||||
#define LV2_CORE__SimulatorPlugin LV2_CORE_PREFIX "SimulatorPlugin" ///< http://lv2plug.in/ns/lv2core#SimulatorPlugin
|
||||
#define LV2_CORE__SpatialPlugin LV2_CORE_PREFIX "SpatialPlugin" ///< http://lv2plug.in/ns/lv2core#SpatialPlugin
|
||||
#define LV2_CORE__Specification LV2_CORE_PREFIX "Specification" ///< http://lv2plug.in/ns/lv2core#Specification
|
||||
#define LV2_CORE__SpectralPlugin LV2_CORE_PREFIX "SpectralPlugin" ///< http://lv2plug.in/ns/lv2core#SpectralPlugin
|
||||
#define LV2_CORE__UtilityPlugin LV2_CORE_PREFIX "UtilityPlugin" ///< http://lv2plug.in/ns/lv2core#UtilityPlugin
|
||||
#define LV2_CORE__WaveshaperPlugin LV2_CORE_PREFIX "WaveshaperPlugin" ///< http://lv2plug.in/ns/lv2core#WaveshaperPlugin
|
||||
#define LV2_CORE__appliesTo LV2_CORE_PREFIX "appliesTo" ///< http://lv2plug.in/ns/lv2core#appliesTo
|
||||
#define LV2_CORE__binary LV2_CORE_PREFIX "binary" ///< http://lv2plug.in/ns/lv2core#binary
|
||||
#define LV2_CORE__connectionOptional LV2_CORE_PREFIX "connectionOptional" ///< http://lv2plug.in/ns/lv2core#connectionOptional
|
||||
#define LV2_CORE__control LV2_CORE_PREFIX "control" ///< http://lv2plug.in/ns/lv2core#control
|
||||
#define LV2_CORE__default LV2_CORE_PREFIX "default" ///< http://lv2plug.in/ns/lv2core#default
|
||||
#define LV2_CORE__designation LV2_CORE_PREFIX "designation" ///< http://lv2plug.in/ns/lv2core#designation
|
||||
#define LV2_CORE__documentation LV2_CORE_PREFIX "documentation" ///< http://lv2plug.in/ns/lv2core#documentation
|
||||
#define LV2_CORE__enabled LV2_CORE_PREFIX "enabled" ///< http://lv2plug.in/ns/lv2core#enabled
|
||||
#define LV2_CORE__enumeration LV2_CORE_PREFIX "enumeration" ///< http://lv2plug.in/ns/lv2core#enumeration
|
||||
#define LV2_CORE__extensionData LV2_CORE_PREFIX "extensionData" ///< http://lv2plug.in/ns/lv2core#extensionData
|
||||
#define LV2_CORE__freeWheeling LV2_CORE_PREFIX "freeWheeling" ///< http://lv2plug.in/ns/lv2core#freeWheeling
|
||||
#define LV2_CORE__hardRTCapable LV2_CORE_PREFIX "hardRTCapable" ///< http://lv2plug.in/ns/lv2core#hardRTCapable
|
||||
#define LV2_CORE__inPlaceBroken LV2_CORE_PREFIX "inPlaceBroken" ///< http://lv2plug.in/ns/lv2core#inPlaceBroken
|
||||
#define LV2_CORE__index LV2_CORE_PREFIX "index" ///< http://lv2plug.in/ns/lv2core#index
|
||||
#define LV2_CORE__integer LV2_CORE_PREFIX "integer" ///< http://lv2plug.in/ns/lv2core#integer
|
||||
#define LV2_CORE__isLive LV2_CORE_PREFIX "isLive" ///< http://lv2plug.in/ns/lv2core#isLive
|
||||
#define LV2_CORE__latency LV2_CORE_PREFIX "latency" ///< http://lv2plug.in/ns/lv2core#latency
|
||||
#define LV2_CORE__maximum LV2_CORE_PREFIX "maximum" ///< http://lv2plug.in/ns/lv2core#maximum
|
||||
#define LV2_CORE__microVersion LV2_CORE_PREFIX "microVersion" ///< http://lv2plug.in/ns/lv2core#microVersion
|
||||
#define LV2_CORE__minimum LV2_CORE_PREFIX "minimum" ///< http://lv2plug.in/ns/lv2core#minimum
|
||||
#define LV2_CORE__minorVersion LV2_CORE_PREFIX "minorVersion" ///< http://lv2plug.in/ns/lv2core#minorVersion
|
||||
#define LV2_CORE__name LV2_CORE_PREFIX "name" ///< http://lv2plug.in/ns/lv2core#name
|
||||
#define LV2_CORE__optionalFeature LV2_CORE_PREFIX "optionalFeature" ///< http://lv2plug.in/ns/lv2core#optionalFeature
|
||||
#define LV2_CORE__port LV2_CORE_PREFIX "port" ///< http://lv2plug.in/ns/lv2core#port
|
||||
#define LV2_CORE__portProperty LV2_CORE_PREFIX "portProperty" ///< http://lv2plug.in/ns/lv2core#portProperty
|
||||
#define LV2_CORE__project LV2_CORE_PREFIX "project" ///< http://lv2plug.in/ns/lv2core#project
|
||||
#define LV2_CORE__prototype LV2_CORE_PREFIX "prototype" ///< http://lv2plug.in/ns/lv2core#prototype
|
||||
#define LV2_CORE__reportsLatency LV2_CORE_PREFIX "reportsLatency" ///< http://lv2plug.in/ns/lv2core#reportsLatency
|
||||
#define LV2_CORE__requiredFeature LV2_CORE_PREFIX "requiredFeature" ///< http://lv2plug.in/ns/lv2core#requiredFeature
|
||||
#define LV2_CORE__sampleRate LV2_CORE_PREFIX "sampleRate" ///< http://lv2plug.in/ns/lv2core#sampleRate
|
||||
#define LV2_CORE__scalePoint LV2_CORE_PREFIX "scalePoint" ///< http://lv2plug.in/ns/lv2core#scalePoint
|
||||
#define LV2_CORE__symbol LV2_CORE_PREFIX "symbol" ///< http://lv2plug.in/ns/lv2core#symbol
|
||||
#define LV2_CORE__toggled LV2_CORE_PREFIX "toggled" ///< http://lv2plug.in/ns/lv2core#toggled
|
||||
|
||||
// clang-format on
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/**
|
||||
Plugin Instance Handle.
|
||||
|
||||
This is a handle for one particular instance of a plugin. It is valid to
|
||||
compare to NULL (or 0 for C++) but otherwise the host MUST NOT attempt to
|
||||
interpret it.
|
||||
*/
|
||||
typedef void* LV2_Handle;
|
||||
|
||||
/**
|
||||
Feature.
|
||||
|
||||
Features allow hosts to make additional functionality available to plugins
|
||||
without requiring modification to the LV2 API. Extensions may define new
|
||||
features and specify the `URI` and `data` to be used if necessary.
|
||||
Some features, such as lv2:isLive, do not require the host to pass data.
|
||||
*/
|
||||
typedef struct {
|
||||
/**
|
||||
A globally unique, case-sensitive identifier (URI) for this feature.
|
||||
|
||||
This MUST be a valid URI string as defined by RFC 3986.
|
||||
*/
|
||||
const char* URI;
|
||||
|
||||
/**
|
||||
Pointer to arbitrary data.
|
||||
|
||||
The format of this data is defined by the extension which describes the
|
||||
feature with the given `URI`.
|
||||
*/
|
||||
void* data;
|
||||
} LV2_Feature;
|
||||
|
||||
/**
|
||||
Plugin Descriptor.
|
||||
|
||||
This structure provides the core functions necessary to instantiate and use
|
||||
a plugin.
|
||||
*/
|
||||
typedef struct LV2_Descriptor {
|
||||
/**
|
||||
A globally unique, case-sensitive identifier for this plugin.
|
||||
|
||||
This MUST be a valid URI string as defined by RFC 3986. All plugins with
|
||||
the same URI MUST be compatible to some degree, see
|
||||
http://lv2plug.in/ns/lv2core for details.
|
||||
*/
|
||||
const char* URI;
|
||||
|
||||
/**
|
||||
Instantiate the plugin.
|
||||
|
||||
Note that instance initialisation should generally occur in activate()
|
||||
rather than here. If a host calls instantiate(), it MUST call cleanup()
|
||||
at some point in the future.
|
||||
|
||||
@param descriptor Descriptor of the plugin to instantiate.
|
||||
|
||||
@param sample_rate Sample rate, in Hz, for the new plugin instance.
|
||||
|
||||
@param bundle_path Path to the LV2 bundle which contains this plugin
|
||||
binary. It MUST include the trailing directory separator so that simply
|
||||
appending a filename will yield the path to that file in the bundle.
|
||||
|
||||
@param features A NULL terminated array of LV2_Feature structs which
|
||||
represent the features the host supports. Plugins may refuse to
|
||||
instantiate if required features are not found here. However, hosts MUST
|
||||
NOT use this as a discovery mechanism: instead, use the RDF data to
|
||||
determine which features are required and do not attempt to instantiate
|
||||
unsupported plugins at all. This parameter MUST NOT be NULL, i.e. a host
|
||||
that supports no features MUST pass a single element array containing
|
||||
NULL.
|
||||
|
||||
@return A handle for the new plugin instance, or NULL if instantiation
|
||||
has failed.
|
||||
*/
|
||||
LV2_Handle (*instantiate)(const struct LV2_Descriptor* descriptor,
|
||||
double sample_rate,
|
||||
const char* bundle_path,
|
||||
const LV2_Feature* const* features);
|
||||
|
||||
/**
|
||||
Connect a port on a plugin instance to a memory location.
|
||||
|
||||
Plugin writers should be aware that the host may elect to use the same
|
||||
buffer for more than one port and even use the same buffer for both
|
||||
input and output (see lv2:inPlaceBroken in lv2.ttl).
|
||||
|
||||
If the plugin has the feature lv2:hardRTCapable then there are various
|
||||
things that the plugin MUST NOT do within the connect_port() function;
|
||||
see lv2core.ttl for details.
|
||||
|
||||
connect_port() MUST be called at least once for each port before run()
|
||||
is called, unless that port is lv2:connectionOptional. The plugin must
|
||||
pay careful attention to the block size passed to run() since the block
|
||||
allocated may only just be large enough to contain the data, and is not
|
||||
guaranteed to remain constant between run() calls.
|
||||
|
||||
connect_port() may be called more than once for a plugin instance to
|
||||
allow the host to change the buffers that the plugin is reading or
|
||||
writing. These calls may be made before or after activate() or
|
||||
deactivate() calls.
|
||||
|
||||
@param instance Plugin instance containing the port.
|
||||
|
||||
@param port Index of the port to connect. The host MUST NOT try to
|
||||
connect a port index that is not defined in the plugin's RDF data. If
|
||||
it does, the plugin's behaviour is undefined (a crash is likely).
|
||||
|
||||
@param data_location Pointer to data of the type defined by the port
|
||||
type in the plugin's RDF data (for example, an array of float for an
|
||||
lv2:AudioPort). This pointer must be stored by the plugin instance and
|
||||
used to read/write data when run() is called. Data present at the time
|
||||
of the connect_port() call MUST NOT be considered meaningful.
|
||||
*/
|
||||
void (*connect_port)(LV2_Handle instance, uint32_t port, void* data_location);
|
||||
|
||||
/**
|
||||
Initialise a plugin instance and activate it for use.
|
||||
|
||||
This is separated from instantiate() to aid real-time support and so
|
||||
that hosts can reinitialise a plugin instance by calling deactivate()
|
||||
and then activate(). In this case the plugin instance MUST reset all
|
||||
state information dependent on the history of the plugin instance except
|
||||
for any data locations provided by connect_port(). If there is nothing
|
||||
for activate() to do then this field may be NULL.
|
||||
|
||||
When present, hosts MUST call this function once before run() is called
|
||||
for the first time. This call SHOULD be made as close to the run() call
|
||||
as possible and indicates to real-time plugins that they are now live,
|
||||
however plugins MUST NOT rely on a prompt call to run() after
|
||||
activate().
|
||||
|
||||
The host MUST NOT call activate() again until deactivate() has been
|
||||
called first. If a host calls activate(), it MUST call deactivate() at
|
||||
some point in the future. Note that connect_port() may be called before
|
||||
or after activate().
|
||||
*/
|
||||
void (*activate)(LV2_Handle instance);
|
||||
|
||||
/**
|
||||
Run a plugin instance for a block.
|
||||
|
||||
Note that if an activate() function exists then it must be called before
|
||||
run(). If deactivate() is called for a plugin instance then run() may
|
||||
not be called until activate() has been called again.
|
||||
|
||||
If the plugin has the feature lv2:hardRTCapable then there are various
|
||||
things that the plugin MUST NOT do within the run() function (see
|
||||
lv2core.ttl for details).
|
||||
|
||||
As a special case, when `sample_count` is 0, the plugin should update
|
||||
any output ports that represent a single instant in time (for example,
|
||||
control ports, but not audio ports). This is particularly useful for
|
||||
latent plugins, which should update their latency output port so hosts
|
||||
can pre-roll plugins to compute latency. Plugins MUST NOT crash when
|
||||
`sample_count` is 0.
|
||||
|
||||
@param instance Instance to be run.
|
||||
|
||||
@param sample_count The block size (in samples) for which the plugin
|
||||
instance must run.
|
||||
*/
|
||||
void (*run)(LV2_Handle instance, uint32_t sample_count);
|
||||
|
||||
/**
|
||||
Deactivate a plugin instance (counterpart to activate()).
|
||||
|
||||
Hosts MUST deactivate all activated instances after they have been run()
|
||||
for the last time. This call SHOULD be made as close to the last run()
|
||||
call as possible and indicates to real-time plugins that they are no
|
||||
longer live, however plugins MUST NOT rely on prompt deactivation. If
|
||||
there is nothing for deactivate() to do then this field may be NULL
|
||||
|
||||
Deactivation is not similar to pausing since the plugin instance will be
|
||||
reinitialised by activate(). However, deactivate() itself MUST NOT fully
|
||||
reset plugin state. For example, the host may deactivate a plugin, then
|
||||
store its state (using some extension to do so).
|
||||
|
||||
Hosts MUST NOT call deactivate() unless activate() was previously
|
||||
called. Note that connect_port() may be called before or after
|
||||
deactivate().
|
||||
*/
|
||||
void (*deactivate)(LV2_Handle instance);
|
||||
|
||||
/**
|
||||
Clean up a plugin instance (counterpart to instantiate()).
|
||||
|
||||
Once an instance of a plugin has been finished with it must be deleted
|
||||
using this function. The instance handle passed ceases to be valid after
|
||||
this call.
|
||||
|
||||
If activate() was called for a plugin instance then a corresponding call
|
||||
to deactivate() MUST be made before cleanup() is called. Hosts MUST NOT
|
||||
call cleanup() unless instantiate() was previously called.
|
||||
*/
|
||||
void (*cleanup)(LV2_Handle instance);
|
||||
|
||||
/**
|
||||
Return additional plugin data defined by some extension.
|
||||
|
||||
A typical use of this facility is to return a struct containing function
|
||||
pointers to extend the LV2_Descriptor API.
|
||||
|
||||
The actual type and meaning of the returned object MUST be specified
|
||||
precisely by the extension. This function MUST return NULL for any
|
||||
unsupported URI. If a plugin does not support any extension data, this
|
||||
field may be NULL.
|
||||
|
||||
The host is never responsible for freeing the returned value.
|
||||
*/
|
||||
const void* (*extension_data)(const char* uri);
|
||||
} LV2_Descriptor;
|
||||
|
||||
/**
|
||||
Helper macro needed for LV2_SYMBOL_EXPORT when using C++.
|
||||
*/
|
||||
#ifdef __cplusplus
|
||||
# define LV2_SYMBOL_EXTERN extern "C"
|
||||
#else
|
||||
# define LV2_SYMBOL_EXTERN
|
||||
#endif
|
||||
|
||||
/**
|
||||
Put this (LV2_SYMBOL_EXPORT) before any functions that are to be loaded
|
||||
by the host as a symbol from the dynamic library.
|
||||
*/
|
||||
#ifdef _WIN32
|
||||
# define LV2_SYMBOL_EXPORT LV2_SYMBOL_EXTERN __declspec(dllexport)
|
||||
#else
|
||||
# define LV2_SYMBOL_EXPORT \
|
||||
LV2_SYMBOL_EXTERN __attribute__((visibility("default")))
|
||||
#endif
|
||||
|
||||
/**
|
||||
Prototype for plugin accessor function.
|
||||
|
||||
Plugins are discovered by hosts using RDF data (not by loading libraries).
|
||||
See http://lv2plug.in for details on the discovery process, though most
|
||||
hosts should use an existing library to implement this functionality.
|
||||
|
||||
This is the simple plugin discovery API, suitable for most statically
|
||||
defined plugins. Advanced plugins that need access to their bundle during
|
||||
discovery can use lv2_lib_descriptor() instead. Plugin libraries MUST
|
||||
include a function called "lv2_descriptor" or "lv2_lib_descriptor" with
|
||||
C-style linkage, but SHOULD provide "lv2_descriptor" wherever possible.
|
||||
|
||||
When it is time to load a plugin (designated by its URI), the host loads the
|
||||
plugin's library, gets the lv2_descriptor() function from it, and uses this
|
||||
function to find the LV2_Descriptor for the desired plugin. Plugins are
|
||||
accessed by index using values from 0 upwards. This function MUST return
|
||||
NULL for out of range indices, so the host can enumerate plugins by
|
||||
increasing `index` until NULL is returned.
|
||||
|
||||
Note that `index` has no meaning, hosts MUST NOT depend on it remaining
|
||||
consistent between loads of the plugin library.
|
||||
*/
|
||||
LV2_SYMBOL_EXPORT
|
||||
const LV2_Descriptor*
|
||||
lv2_descriptor(uint32_t index);
|
||||
|
||||
/**
|
||||
Type of the lv2_descriptor() function in a library (old discovery API).
|
||||
*/
|
||||
typedef const LV2_Descriptor* (*LV2_Descriptor_Function)(uint32_t index);
|
||||
|
||||
/**
|
||||
Handle for a library descriptor.
|
||||
*/
|
||||
typedef void* LV2_Lib_Handle;
|
||||
|
||||
/**
|
||||
Descriptor for a plugin library.
|
||||
|
||||
To access a plugin library, the host creates an LV2_Lib_Descriptor via the
|
||||
lv2_lib_descriptor() function in the shared object.
|
||||
*/
|
||||
typedef struct {
|
||||
/**
|
||||
Opaque library data which must be passed as the first parameter to all
|
||||
the methods of this struct.
|
||||
*/
|
||||
LV2_Lib_Handle handle;
|
||||
|
||||
/**
|
||||
The total size of this struct. This allows for this struct to be
|
||||
expanded in the future if necessary. This MUST be set by the library to
|
||||
sizeof(LV2_Lib_Descriptor). The host MUST NOT access any fields of this
|
||||
struct beyond get_plugin() unless this field indicates they are present.
|
||||
*/
|
||||
uint32_t size;
|
||||
|
||||
/**
|
||||
Destroy this library descriptor and free all related resources.
|
||||
*/
|
||||
void (*cleanup)(LV2_Lib_Handle handle);
|
||||
|
||||
/**
|
||||
Plugin accessor.
|
||||
|
||||
Plugins are accessed by index using values from 0 upwards. Out of range
|
||||
indices MUST result in this function returning NULL, so the host can
|
||||
enumerate plugins by increasing `index` until NULL is returned.
|
||||
*/
|
||||
const LV2_Descriptor* (*get_plugin)(LV2_Lib_Handle handle, uint32_t index);
|
||||
} LV2_Lib_Descriptor;
|
||||
|
||||
/**
|
||||
Prototype for library accessor function.
|
||||
|
||||
This is the more advanced discovery API, which allows plugin libraries to
|
||||
access their bundles during discovery, which makes it possible for plugins to
|
||||
be dynamically defined by files in their bundle. This API also has an
|
||||
explicit cleanup function, removing any need for non-portable shared library
|
||||
destructors. Simple plugins that do not require these features may use
|
||||
lv2_descriptor() instead.
|
||||
|
||||
This is the entry point for a plugin library. Hosts load this symbol from
|
||||
the library and call this function to obtain a library descriptor which can
|
||||
be used to access all the contained plugins. The returned object must not
|
||||
be destroyed (using LV2_Lib_Descriptor::cleanup()) until all plugins loaded
|
||||
from that library have been destroyed.
|
||||
*/
|
||||
LV2_SYMBOL_EXPORT
|
||||
const LV2_Lib_Descriptor*
|
||||
lv2_lib_descriptor(const char* bundle_path, const LV2_Feature* const* features);
|
||||
|
||||
/**
|
||||
Type of the lv2_lib_descriptor() function in an LV2 library.
|
||||
*/
|
||||
typedef const LV2_Lib_Descriptor* (*LV2_Lib_Descriptor_Function)(
|
||||
const char* bundle_path,
|
||||
const LV2_Feature* const* features);
|
||||
|
||||
#ifdef __cplusplus
|
||||
} /* extern "C" */
|
||||
#endif
|
||||
|
||||
/**
|
||||
@}
|
||||
@}
|
||||
*/
|
||||
|
||||
#endif /* LV2_H_INCLUDED */
|
187
mengubah_lv2.cpp
Normal file
187
mengubah_lv2.cpp
Normal file
|
@ -0,0 +1,187 @@
|
|||
#include <cstdint>
|
||||
#include "lv2.h"
|
||||
#include <array>
|
||||
|
||||
#include "common.h"
|
||||
#include "effect.h"
|
||||
#include "pitchshifter.h"
|
||||
#include "formantshifter.h"
|
||||
#include "timestretcher.h"
|
||||
|
||||
|
||||
|
||||
using namespace Mengu;
|
||||
using namespace dsp;
|
||||
|
||||
struct PluginHandler {
|
||||
std::array<PitchShifter *, 3> pitch_shifters;
|
||||
std::array<Effect *, 2> formant_shifters;
|
||||
const float *in_buffer;
|
||||
float *out_buffer;
|
||||
const float *pitch_shifter_ind;
|
||||
const float *pitch_shift;
|
||||
const float *formant_shifter_ind;
|
||||
const float *formant_shift;
|
||||
};
|
||||
|
||||
enum PitchShiftInd {
|
||||
WSOLAPitch = 0,
|
||||
PhaseVocoderPitch = 1,
|
||||
PhaseVocoderDoneRightPitch = 2,
|
||||
};
|
||||
enum FormantShiftInd {
|
||||
LPCFormant = 0,
|
||||
PSOLAFormant = 1,
|
||||
};
|
||||
|
||||
/* internal core methods */
|
||||
static LV2_Handle instantiate (const struct LV2_Descriptor *descriptor, double sample_rate, const char *bundle_path, const LV2_Feature *const *features) {
|
||||
PluginHandler *plugin = new PluginHandler;
|
||||
plugin->pitch_shifters = {
|
||||
new TimeStretchPitchShifter(new WSOLATimeStretcher(), 1),
|
||||
new TimeStretchPitchShifter(new PhaseVocoderTimeStretcher(), 1),
|
||||
new TimeStretchPitchShifter(new PhaseVocoderDoneRightTimeStretcher(), 1),
|
||||
};
|
||||
plugin->formant_shifters = {
|
||||
new LPCFormantShifter(),
|
||||
new TimeStretchPitchShifter(new PSOLATimeStretcher(), 1),
|
||||
};
|
||||
|
||||
return plugin;
|
||||
}
|
||||
|
||||
static void connect_port (LV2_Handle instance, uint32_t port, void *data_location) {
|
||||
PluginHandler* plugin = (PluginHandler*) instance;
|
||||
if (plugin == nullptr) return;
|
||||
|
||||
switch (port)
|
||||
{
|
||||
case 0:
|
||||
plugin->in_buffer = (const float*) data_location;
|
||||
break;
|
||||
|
||||
case 1:
|
||||
plugin->out_buffer = (float*) data_location;
|
||||
break;
|
||||
|
||||
case 2:
|
||||
plugin->pitch_shifter_ind = (const float*) data_location;
|
||||
|
||||
case 3:
|
||||
plugin->pitch_shift = (const float*) data_location;
|
||||
break;
|
||||
|
||||
case 4:
|
||||
plugin->formant_shifter_ind = (const float*) data_location;
|
||||
break;
|
||||
|
||||
case 5:
|
||||
plugin->formant_shift = (const float*) data_location;
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
static void activate (LV2_Handle instance)
|
||||
{
|
||||
/* not needed here */
|
||||
}
|
||||
|
||||
static void run (LV2_Handle instance, uint32_t sample_count)
|
||||
{
|
||||
PluginHandler* plugin = (PluginHandler*) instance;
|
||||
if (plugin == nullptr) return;
|
||||
if ((!plugin->in_buffer) || (!plugin->out_buffer) || (!plugin->pitch_shift)) return;
|
||||
|
||||
// apply effects
|
||||
Effect *pitch_shifter = plugin->pitch_shifters[static_cast<PitchShiftInd>(*plugin->pitch_shifter_ind)];
|
||||
Effect *formant_shifter = plugin->formant_shifters[static_cast<FormantShiftInd>(*plugin->formant_shifter_ind)];
|
||||
|
||||
pitch_shifter->set_property(0, EffectPropPayload {
|
||||
.type = Slider,
|
||||
.value = *plugin->pitch_shift,
|
||||
});
|
||||
formant_shifter->set_property(0, EffectPropPayload {
|
||||
.type = Slider,
|
||||
.value = *plugin->formant_shift,
|
||||
});
|
||||
|
||||
static constexpr uint32_t ProcSize = 1 << 10;
|
||||
Complex cbuffer[ProcSize];
|
||||
uint32_t num_processed = 0;
|
||||
|
||||
while (num_processed < sample_count) {
|
||||
uint32_t num_this_pass = MIN(ProcSize, sample_count - num_processed);
|
||||
for (uint32_t i = 0; i < num_this_pass; i++) {
|
||||
cbuffer[i] = (Complex) plugin->in_buffer[num_processed + i];
|
||||
}
|
||||
|
||||
pitch_shifter->push_signal(cbuffer, num_this_pass);
|
||||
pitch_shifter->pop_transformed_signal(cbuffer, num_this_pass);
|
||||
|
||||
formant_shifter->push_signal(cbuffer, num_this_pass);
|
||||
formant_shifter->pop_transformed_signal(cbuffer, num_this_pass);
|
||||
|
||||
|
||||
|
||||
for (uint32_t i = 0; i < num_this_pass; i++) {
|
||||
plugin->out_buffer[num_processed + i] = cbuffer[i].real();
|
||||
}
|
||||
|
||||
num_processed += num_this_pass;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
}
|
||||
|
||||
static void deactivate (LV2_Handle instance)
|
||||
{
|
||||
/* not needed here */
|
||||
}
|
||||
|
||||
static void cleanup (LV2_Handle instance) {
|
||||
PluginHandler *plugin = (PluginHandler *) instance;
|
||||
if (plugin == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
for (auto pitch_shifter: plugin->pitch_shifters) {
|
||||
delete pitch_shifter;
|
||||
}
|
||||
|
||||
for (auto formant_shifter: plugin->formant_shifters) {
|
||||
delete formant_shifter;
|
||||
}
|
||||
|
||||
delete plugin;
|
||||
}
|
||||
|
||||
static const void* extension_data (const char *uri)
|
||||
{
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
/* descriptor */
|
||||
static LV2_Descriptor const descriptor =
|
||||
{
|
||||
"https://github.com/9exa/Mengubah/Mengubah",
|
||||
instantiate,
|
||||
connect_port,
|
||||
activate /* or NULL */,
|
||||
run,
|
||||
deactivate /* or NULL */,
|
||||
cleanup,
|
||||
extension_data /* or NULL */
|
||||
};
|
||||
|
||||
/* interface */
|
||||
LV2_SYMBOL_EXPORT const LV2_Descriptor* lv2_descriptor (uint32_t index)
|
||||
{
|
||||
if (index == 0) return &descriptor;
|
||||
else return NULL;
|
||||
}
|
164
mengumath.h
Normal file
164
mengumath.h
Normal file
|
@ -0,0 +1,164 @@
|
|||
#ifndef MENGA_MATH
|
||||
#define MENGA_MATH
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
|
||||
|
||||
namespace Mengu {
|
||||
// Copied from Godot
|
||||
|
||||
#define MATH_PI 3.1415926535897932
|
||||
#define MATH_TAU 6.283185307179586
|
||||
|
||||
// Make room for our constexpr's below by overriding potential system-specific macros.
|
||||
#undef ABS
|
||||
#undef SIGN
|
||||
#undef MIN
|
||||
#undef MAX
|
||||
#undef CLAMP
|
||||
|
||||
// Generic ABS function, for math uses please use Math::abs.
|
||||
template <typename T>
|
||||
constexpr T ABS(T m_v) {
|
||||
return m_v < 0 ? -m_v : m_v;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr const T SIGN(const T m_v) {
|
||||
return m_v == 0 ? 0.0f : (m_v < 0 ? -1.0f : +1.0f);
|
||||
}
|
||||
|
||||
template <typename T, typename T2>
|
||||
constexpr auto MIN(const T m_a, const T2 m_b) {
|
||||
return m_a < m_b ? m_a : m_b;
|
||||
}
|
||||
|
||||
template <typename T, typename T2>
|
||||
constexpr auto MAX(const T m_a, const T2 m_b) {
|
||||
return m_a > m_b ? m_a : m_b;
|
||||
}
|
||||
|
||||
template <typename T, typename T2, typename T3>
|
||||
constexpr auto CLAMP(const T m_a, const T2 m_min, const T3 m_max) {
|
||||
return m_a < m_min ? m_min : (m_a > m_max ? m_max : m_a);
|
||||
}
|
||||
|
||||
//// #####
|
||||
|
||||
template <typename T>
|
||||
inline T min(T a, T b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T max(T a, T b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T sign(T x) {
|
||||
return static_cast<T>(SIGN(x));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T abs(T x) {
|
||||
return std::abs(x);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T pow(T x, T e) {
|
||||
return std::pow(x, e);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T exp2(T x) {
|
||||
return std::exp2(x);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T log2(T x) {
|
||||
return std::log2(x);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T log10(T x) {
|
||||
return std::log10(x);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T logb(T base, T x) {
|
||||
return std::log2(x) / std::log2(base);
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
inline T sqrt(T x) {
|
||||
return std::sqrt(x);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T lerp(T min_v, T max_v, float w) {
|
||||
return min_v + w * (max_v - min_v);
|
||||
}
|
||||
|
||||
inline float inverse_lerp(float min_v, float max_v, float v) {
|
||||
return (v - min_v) / (max_v - min_v);
|
||||
}
|
||||
|
||||
// linearly interpelates between the shortest path between 2 angles. Does NOT gaurentee th output be within [-pi, pi]
|
||||
inline float lerp_angle(float min_v, float max_v, float w) {
|
||||
if ((max_v - min_v) > MATH_PI) { min_v += MATH_TAU; }
|
||||
else if ((min_v - max_v) > MATH_PI) { max_v += MATH_TAU; }
|
||||
|
||||
return lerp(min_v, max_v, w);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline T modf(T x, T *iptr) {
|
||||
return std::modf(x, iptr);
|
||||
}
|
||||
|
||||
inline int posmod(int x, int y) {
|
||||
int v = x % y;
|
||||
if (v < 0) {
|
||||
v += y;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
inline float fposmod(float x, float y) {
|
||||
float v = std::fmod(x, y);
|
||||
if (v * y < 0.0f) {
|
||||
v += y;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
inline bool is_pow_2(uint32_t x) {
|
||||
return x != 0 && ((x - 1) & x) == 0;
|
||||
}
|
||||
|
||||
inline uint32_t last_pow_2(uint32_t x) {
|
||||
x |= (x >> 1);
|
||||
x |= (x >> 2);
|
||||
x |= (x >> 4);
|
||||
x |= (x >> 8);
|
||||
x |= (x >> 16);
|
||||
return x - (x >> 1);
|
||||
}
|
||||
|
||||
inline uint32_t next_pow_2(uint32_t x) {
|
||||
x |= (x >> 1);
|
||||
x |= (x >> 2);
|
||||
x |= (x >> 4);
|
||||
x |= (x >> 8);
|
||||
x |= (x >> 16);
|
||||
return (x << 1) & ~x;
|
||||
}
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
#endif
|
92536
miniaudio.h
Normal file
92536
miniaudio.h
Normal file
File diff suppressed because it is too large
Load diff
291
pitchshifter.cpp
Normal file
291
pitchshifter.cpp
Normal file
|
@ -0,0 +1,291 @@
|
|||
#include "common.h"
|
||||
#include "effect.h"
|
||||
#include "timestretcher.h"
|
||||
#include "sampling.h"
|
||||
#include "fft.h"
|
||||
#include "interpolation.h"
|
||||
#include "vecdeque.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cmath>
|
||||
#include <complex>
|
||||
#include <cstdint>
|
||||
#include "pitchshifter.h"
|
||||
#include "singletons.h"
|
||||
#include <iterator>
|
||||
#include "mengumath.h"
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
using namespace Mengu;
|
||||
using namespace dsp;
|
||||
|
||||
|
||||
std::vector<EffectPropDesc> PitchShifter::get_property_descs() const {
|
||||
return {
|
||||
EffectPropDesc {
|
||||
.type = EffectPropType::Slider,
|
||||
.name = "Pitch Shift",
|
||||
.desc = "Scales the pitch of pushed signals by this amount",
|
||||
.slider_data = {
|
||||
.min_value = 0.5,
|
||||
.max_value = 2,
|
||||
.scale = Exp,
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
void PitchShifter::set_property(uint32_t id, EffectPropPayload data) {
|
||||
if (id == 0) {
|
||||
if (data.type == Slider) {
|
||||
set_shift_factor(data.value);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
EffectPropPayload PitchShifter::get_property(uint32_t id) const {
|
||||
if (id == 0) {
|
||||
return EffectPropPayload {
|
||||
.type = Slider,
|
||||
.value = _shift_factor,
|
||||
};
|
||||
}
|
||||
|
||||
return EffectPropPayload {
|
||||
.type = Slider,
|
||||
.value = 0.0f,
|
||||
};
|
||||
}
|
||||
|
||||
PhaseVocoderPitchShifterV2::PhaseVocoderPitchShifterV2() {
|
||||
_transformed_buffer.resize(ProcSize);
|
||||
}
|
||||
|
||||
PhaseVocoderPitchShifterV2::~PhaseVocoderPitchShifterV2() {}
|
||||
|
||||
void PhaseVocoderPitchShifterV2::push_signal(const Complex *input, const uint32_t &size) {
|
||||
_raw_buffer.extend_back(input, size);
|
||||
}
|
||||
|
||||
uint32_t PhaseVocoderPitchShifterV2::pop_transformed_signal(Complex *output, const uint32_t &size) {
|
||||
while ((_transformed_buffer.size() < size + OverlapSize) && (_raw_buffer.size() >= ProcSize)) {
|
||||
std::array<Complex, ProcSize> samples;
|
||||
_raw_buffer.to_array(samples.data(), ProcSize);
|
||||
|
||||
|
||||
|
||||
_lpc.load_sample(samples.data());
|
||||
const std::array<float, ProcSize> &envelope = _lpc.get_envelope();
|
||||
const std::array<float, ProcSize> &residuals = _lpc.get_residuals();
|
||||
const std::array<Complex, ProcSize> &frequencies = _lpc.get_freq_spectrum();
|
||||
|
||||
|
||||
// std::array<float, ProcSize / 2> log_envelope{};
|
||||
std::array<float, ProcSize / 2> log_residuals{};
|
||||
std::transform(residuals.cbegin(), residuals.cend(), log_residuals.begin(), [] (float f) {
|
||||
return log2(f);
|
||||
});
|
||||
|
||||
std::array<float, ProcSize / 2> args{};
|
||||
std::transform(frequencies.cbegin(), frequencies.cend(), args.begin(), [] (Complex freq) {
|
||||
// shifted to be positive to make lerping easier
|
||||
return std::arg(freq);
|
||||
});
|
||||
/*
|
||||
// resample in the log-frequency domain
|
||||
std::array<Complex, ProcSize / 2> new_freq{};
|
||||
if (_shift_factor > 1.0f) {
|
||||
linear_resample_no_filter(log_residuals.data(), log_residuals.data(), ProcSize, _shift_factor, -2e5f);
|
||||
linear_resample_no_filter(args.data(), args.data(), ProcSize, _shift_factor, 0.0f);
|
||||
}
|
||||
else {
|
||||
linear_resample_no_filter(log_residuals.data(), log_residuals.data(), ProcSize, _shift_factor, -2e5f);
|
||||
linear_resample_no_filter(args.data(), args.data(), ProcSize, _shift_factor, 0.0f);
|
||||
// 0 the rest
|
||||
for (uint32_t i = ProcSize * _shift_factor; i < ProcSize; i++) {
|
||||
log_residuals[i] = -2e5f;
|
||||
args[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
std::transform(log_residuals.cbegin(), log_residuals.cend(), new_freq.begin(), [] (float f) {
|
||||
return exp2(f);
|
||||
});
|
||||
|
||||
std::transform(new_freq.cbegin(), new_freq.cend(), envelope.cbegin(), new_freq.begin(),
|
||||
[] (Complex resid, float env) {
|
||||
return resid * env;
|
||||
}
|
||||
);
|
||||
|
||||
|
||||
// rescale the frequencies
|
||||
float max_base_freq = 0.0f;
|
||||
float max_new_freq = 0.0f;
|
||||
for (uint32_t i = 0; i < ProcSize / 2; i++) {
|
||||
float freq_amp = std::norm(frequencies[i]);
|
||||
if (max_base_freq < freq_amp) { max_base_freq = freq_amp; }
|
||||
if (max_new_freq < new_freq[i].real()) { max_new_freq = new_freq[i].real(); }
|
||||
}
|
||||
max_base_freq = std::sqrt(max_base_freq); // rooting delayed until after the loop
|
||||
std::transform(new_freq.cbegin(), new_freq.cend(), new_freq.begin(),
|
||||
[max_base_freq, max_new_freq] (Complex freq) {
|
||||
return freq * max_base_freq / max_new_freq;
|
||||
}
|
||||
);
|
||||
|
||||
// adjust phases
|
||||
for (uint32_t i = 0; i < ProcSize / 2; i++) {
|
||||
// new_freq[i] = std::polar(std::sqrt(std::norm(frequencies[i])), std::arg(frequencies[i]));
|
||||
new_freq[i] = std::polar(new_freq[i].real(), args[i]);
|
||||
// new_freq[i] = std::polar(new_freq[i].real(), (float) -MATH_TAU * (_samples_processed * i) / ProcSize);
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
std::array<Complex, ProcSize / 2> new_freq{};
|
||||
std::array<float, ProcSize / 2> freq_mags{};
|
||||
std::transform(frequencies.cbegin(), frequencies.cend(), freq_mags.begin(), [] (Complex c) {
|
||||
return std::sqrt(std::norm(c));
|
||||
});
|
||||
if (_shift_factor > 1.0f) {
|
||||
linear_resample_no_filter(frequencies.data(), new_freq.data(), ProcSize / 2, _shift_factor);
|
||||
linear_resample_no_filter(freq_mags.data(), freq_mags.data(), ProcSize / 2, _shift_factor);
|
||||
// linear_resample_no_filter(args.data(), args.data(), ProcSize, _shift_factor);
|
||||
}
|
||||
else {
|
||||
linear_resample_no_filter(frequencies.data(), new_freq.data(), ProcSize / 2, _shift_factor);
|
||||
linear_resample_no_filter(freq_mags.data(), freq_mags.data(), ProcSize / 2, _shift_factor);
|
||||
// linear_resample_no_filter(args.data(), args.data(), ProcSize, _shift_factor);
|
||||
// 0 the rest
|
||||
for (uint32_t i = ProcSize * _shift_factor; i < ProcSize; i++) {
|
||||
freq_mags[i] = 0.0f;
|
||||
// args[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
// std::transform(freq_mags.cbegin(), freq_mags.cend(), new_freq.cbegin(), new_freq.begin(),
|
||||
// [] (float mag, Complex old_freq) { return old_freq / std::sqrt(std::norm(old_freq)) * mag; }
|
||||
// );
|
||||
|
||||
// scale by formants
|
||||
// float envelope_max = -2e5;
|
||||
// float new_freq_max = -2e5;
|
||||
// float scaled_freq_max = -2e5;
|
||||
// for (uint32_t i = 0; i < ProcSize / 2; i++) {
|
||||
// if (envelope_max < envelope[i]) { envelope_max = envelope[i]; }
|
||||
// if (new_freq_max < std::norm(new_freq[i])) { new_freq_max = std::norm(new_freq[i]); }
|
||||
// }
|
||||
// new_freq_max = std::sqrt(new_freq_max);
|
||||
// for (uint32_t i = 0; i < ProcSize / 2; i++) {
|
||||
// new_freq[i] = new_freq[i] * envelope[i] / envelope_max;
|
||||
// if (scaled_freq_max < std::norm(new_freq[i])) { scaled_freq_max = std::norm(new_freq[i]); }
|
||||
// }
|
||||
// scaled_freq_max = std::sqrt(scaled_freq_max);
|
||||
// for (uint32_t i = 0; i < ProcSize / 2; i++) {
|
||||
// new_freq[i] *= new_freq_max / scaled_freq_max;
|
||||
// }
|
||||
|
||||
|
||||
_lpc.get_fft().inverse_transform(new_freq.data(), samples.data());
|
||||
|
||||
mix_and_extend(_transformed_buffer, samples, OverlapSize, hann_window);
|
||||
|
||||
_samples_processed += ProcSize - OverlapSize;
|
||||
_raw_buffer.pop_front_many(nullptr, ProcSize - OverlapSize);
|
||||
}
|
||||
|
||||
uint32_t n = _transformed_buffer.pop_front_many(output, size);
|
||||
return n;
|
||||
}
|
||||
|
||||
uint32_t PhaseVocoderPitchShifterV2::n_transformed_ready() const {
|
||||
return _transformed_buffer.size() - ProcSize;
|
||||
}
|
||||
|
||||
void PhaseVocoderPitchShifterV2::reset() {
|
||||
_transformed_buffer.resize(ProcSize, Complex(0.0f));
|
||||
}
|
||||
|
||||
TimeStretchPitchShifter::TimeStretchPitchShifter(TimeStretcher *stretcher, uint32_t nchannels):
|
||||
_stretcher(stretcher),
|
||||
_resampler(nchannels, 1.0f) {
|
||||
_stretcher->set_stretch_factor(1.0f);
|
||||
_shift_factor = 1.0f;
|
||||
|
||||
// Complex zeros[MinResampleInputSize] = {Complex()};
|
||||
// _stretcher.push_signal(zeros, MinResampleInputSize);
|
||||
// _pitch_shifting_stretcher.push_signal(zeros, MinResampleInputSize);
|
||||
// _raw_buffer.resize(MinResampleInputSize * 2, 0);
|
||||
}
|
||||
|
||||
|
||||
TimeStretchPitchShifter::~TimeStretchPitchShifter() {
|
||||
delete _stretcher;
|
||||
}
|
||||
|
||||
void TimeStretchPitchShifter::push_signal(const Complex *input, const uint32_t &size) {
|
||||
// _raw_buffer.extend_back(input, size);
|
||||
_stretcher->push_signal(input, size);
|
||||
// _pitch_shifting_stretcher.push_signal(input, size);
|
||||
|
||||
|
||||
}
|
||||
|
||||
uint32_t TimeStretchPitchShifter::pop_transformed_signal(Complex *output, const uint32_t &size) {
|
||||
// do transform, eagerly
|
||||
// resample the time-stretch pitch shifted samples
|
||||
// while (_pitch_shifting_stretcher.n_transformed_ready() >= MinResampleInputSize) {
|
||||
bool can_still_process = true;
|
||||
while (can_still_process && n_transformed_ready() < size) {
|
||||
const uint32_t desired_stretched_size = size * _shift_factor;
|
||||
std::vector<Complex> stretched(desired_stretched_size);
|
||||
|
||||
const uint32_t actually_stretched = _stretcher->pop_transformed_signal(stretched.data(), desired_stretched_size);
|
||||
stretched.resize(actually_stretched);
|
||||
|
||||
can_still_process = actually_stretched > 0;
|
||||
|
||||
std::vector<Complex> unstretched = _resampler.resample(stretched);
|
||||
|
||||
_transformed_buffer.extend_back(unstretched.data(), unstretched.size());
|
||||
}
|
||||
uint32_t n = _transformed_buffer.pop_front_many(output, size);
|
||||
// std::cout << "n " << n << std::endl;
|
||||
|
||||
// compensate for drift
|
||||
if (n_transformed_ready() > IncreaseResampleThreshold) {
|
||||
static constexpr float ResampleHalflife = IncreaseResampleThreshold * 1.5;
|
||||
float resample_factor = exp2(-(int)(n_transformed_ready() - IncreaseResampleThreshold) / ResampleHalflife);
|
||||
_stretcher->set_stretch_factor(_shift_factor * resample_factor);
|
||||
}
|
||||
|
||||
else if (n_transformed_ready() < StandardResampleThreshold) {
|
||||
_stretcher->set_stretch_factor(_shift_factor);
|
||||
}
|
||||
|
||||
for (uint32_t i = n; i < size; i++) {
|
||||
output[i] = 0;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
uint32_t TimeStretchPitchShifter::n_transformed_ready() const {
|
||||
return _transformed_buffer.size();
|
||||
}
|
||||
|
||||
void TimeStretchPitchShifter::reset() {
|
||||
_raw_buffer.resize(0);
|
||||
_transformed_buffer.resize(0);
|
||||
|
||||
_stretcher->reset();
|
||||
|
||||
}
|
||||
|
||||
void TimeStretchPitchShifter::set_shift_factor(const float &shift_factor) {
|
||||
_shift_factor = shift_factor;
|
||||
_stretcher->set_stretch_factor(shift_factor);
|
||||
|
||||
_resampler.set_stretch_factor(shift_factor);
|
||||
}
|
137
pitchshifter.h
Normal file
137
pitchshifter.h
Normal file
|
@ -0,0 +1,137 @@
|
|||
/*
|
||||
* (Real time) Pitch shifting object implementations
|
||||
*/
|
||||
#ifndef MENGA_PITCH_SHIFTER
|
||||
#define MENGA_PITCH_SHIFTER
|
||||
|
||||
#include "correlation.h"
|
||||
#include "effect.h"
|
||||
#include "sampling.h"
|
||||
#include "timestretcher.h"
|
||||
#include "fft.h"
|
||||
#include <cstdint>
|
||||
#include "common.h"
|
||||
#include "cyclequeue.h"
|
||||
#include "vecdeque.h"
|
||||
#include <vector>
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
|
||||
class PitchShifter: public Effect {
|
||||
public:
|
||||
|
||||
~PitchShifter() {}
|
||||
virtual InputDomain get_input_domain() override {
|
||||
return InputDomain::Time;
|
||||
}
|
||||
|
||||
virtual void set_shift_factor(const float &factor) {
|
||||
_shift_factor = factor;
|
||||
};
|
||||
|
||||
virtual std::vector<EffectPropDesc> get_property_descs() const override;
|
||||
|
||||
virtual void set_property(uint32_t id, EffectPropPayload data) override;
|
||||
|
||||
virtual EffectPropPayload get_property(uint32_t id) const override;
|
||||
protected:
|
||||
float _shift_factor = 1.0f;
|
||||
};
|
||||
|
||||
// Shifter in the frequency domain that uses LPC to estimate formant preservation.
|
||||
class PhaseVocoderPitchShifterV2: public PitchShifter {
|
||||
public:
|
||||
PhaseVocoderPitchShifterV2();
|
||||
~PhaseVocoderPitchShifterV2();
|
||||
|
||||
virtual void push_signal(const Complex *input, const uint32_t &size) override;
|
||||
virtual uint32_t pop_transformed_signal(Complex *output, const uint32_t &size) override;
|
||||
|
||||
virtual uint32_t n_transformed_ready() const override;
|
||||
|
||||
virtual void reset() override;
|
||||
private:
|
||||
// raw time-domain data
|
||||
VecDeque<Complex> _raw_buffer;
|
||||
// time domain data after pitch_shift
|
||||
VecDeque<Complex> _transformed_buffer;
|
||||
|
||||
static constexpr uint32_t ProcSize = 1 << 9;
|
||||
static constexpr uint32_t OverlapSize = 1 << 6;
|
||||
|
||||
LPC<ProcSize, 30> _lpc;
|
||||
|
||||
uint32_t _samples_processed;
|
||||
};
|
||||
|
||||
// Shifts by resampling a time stretcher
|
||||
class TimeStretchPitchShifter: public PitchShifter {
|
||||
public:
|
||||
TimeStretchPitchShifter(TimeStretcher *stretcher, uint32_t nchannels);
|
||||
~TimeStretchPitchShifter();
|
||||
|
||||
virtual void push_signal(const Complex *input, const uint32_t &size) override;
|
||||
virtual uint32_t pop_transformed_signal(Complex *output, const uint32_t &size) override;
|
||||
|
||||
virtual uint32_t n_transformed_ready() const override;
|
||||
|
||||
virtual void reset() override;
|
||||
|
||||
virtual void set_shift_factor(const float &factor) override;
|
||||
|
||||
protected:
|
||||
float _formant_shift = 1.0f;
|
||||
private:
|
||||
static constexpr uint32_t MinResampleInputSize = 1 << 10;
|
||||
// Size of transformed buffer before we increase resampling to compensate for drift
|
||||
static constexpr uint32_t IncreaseResampleThreshold = 5000;
|
||||
static constexpr uint32_t StandardResampleThreshold = 3000;
|
||||
|
||||
// raw time-domain data
|
||||
VecDeque<Complex> _raw_buffer;
|
||||
// time domain data after pitch_shift
|
||||
VecDeque<Complex> _transformed_buffer;
|
||||
|
||||
|
||||
LinearResampler _resampler;
|
||||
TimeStretcher *_stretcher;
|
||||
|
||||
|
||||
};
|
||||
/*
|
||||
class PTimeStretchPitchShifter: public PitchShifter {
|
||||
public:
|
||||
PTimeStretchPitchShifter(uint32_t nchannels);
|
||||
~PTimeStretchPitchShifter();
|
||||
|
||||
virtual void push_signal(const Complex *input, const uint32_t &size) override;
|
||||
virtual uint32_t pop_transformed_signal(Complex *output, const uint32_t &size) override;
|
||||
|
||||
virtual uint32_t n_transformed_ready() override;
|
||||
|
||||
virtual void reset() override;
|
||||
|
||||
virtual void set_shift_factor(const float &factor) override;
|
||||
|
||||
private:
|
||||
static constexpr uint32_t MinResampleInputSize = 1 << 10;
|
||||
// Size of transformed buffer before we increase resampling to compensate for drift
|
||||
static constexpr uint32_t IncreaseResampleThreshold = 10000;
|
||||
static constexpr uint32_t StandardResampleThreshold = 4000;
|
||||
|
||||
// raw time-domain data
|
||||
VecDeque<Complex> _raw_buffer;
|
||||
// time domain data after pitch_shift
|
||||
VecDeque<Complex> _transformed_buffer;
|
||||
|
||||
LinearResampler _resampler;
|
||||
PSOLATimeStretcher _pitch_shifting_stretcher;
|
||||
|
||||
};
|
||||
*/
|
||||
}; // namespace dsp
|
||||
}; // namespace Mengu
|
||||
|
||||
|
||||
#endif
|
78
sampling.cpp
Normal file
78
sampling.cpp
Normal file
|
@ -0,0 +1,78 @@
|
|||
#include "sampling.h"
|
||||
#include "common.h"
|
||||
#include "mengumath.h"
|
||||
#include "miniaudio.h"
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdint>
|
||||
#include <iterator>
|
||||
#include <math.h>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
|
||||
using namespace Mengu;
|
||||
using namespace dsp;
|
||||
|
||||
constexpr uint32_t DefaultSampleRate = 44100;
|
||||
|
||||
// void Mengu::dsp::linear_resample_no_filter(const float *input, float *output, uint32_t size, float shift_factor, float def_val)
|
||||
|
||||
|
||||
LinearResampler::LinearResampler(uint32_t nchannels, float stretch_factor) :
|
||||
_stretch_factor(stretch_factor),
|
||||
_nchannels(nchannels) {
|
||||
|
||||
ma_linear_resampler_config resampler_config = ma_linear_resampler_config_init(
|
||||
ma_format_f32,
|
||||
nchannels,
|
||||
DefaultSampleRate,
|
||||
DefaultSampleRate * stretch_factor
|
||||
);
|
||||
|
||||
ma_result result = ma_linear_resampler_init(&resampler_config, nullptr, &_resampler);
|
||||
|
||||
if (result != MA_SUCCESS) {
|
||||
std::string err_msg ("Could not create resampler");
|
||||
err_msg += std::to_string(result);
|
||||
|
||||
throw std::runtime_error(err_msg);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
LinearResampler::~LinearResampler() {
|
||||
ma_linear_resampler_uninit(&_resampler, nullptr);
|
||||
}
|
||||
|
||||
void LinearResampler::set_stretch_factor(float stretch_factor) {
|
||||
_stretch_factor = stretch_factor;
|
||||
ma_linear_resampler_set_rate_ratio(&_resampler, stretch_factor);
|
||||
}
|
||||
|
||||
std::vector<Complex> LinearResampler::resample(const std::vector<Complex> &samples) {
|
||||
std::vector<float> fsamples;
|
||||
std::transform(samples.cbegin(), samples.cend(), std::back_inserter(fsamples),
|
||||
[] (Complex f) { return f.real(); }
|
||||
);
|
||||
|
||||
ma_uint64 input_size = fsamples.size();
|
||||
ma_uint64 output_size;
|
||||
ma_linear_resampler_get_expected_output_frame_count(&_resampler, samples.size(), &output_size);
|
||||
|
||||
std::vector<float> foutput(output_size);
|
||||
ma_result result = ma_linear_resampler_process_pcm_frames(&_resampler, fsamples.data(), &input_size, foutput.data(), &output_size);
|
||||
|
||||
if (result != MA_SUCCESS) {
|
||||
std::string err_msg ("Could not perform resample");
|
||||
err_msg += std::to_string(result);
|
||||
|
||||
throw std::runtime_error(err_msg);
|
||||
}
|
||||
|
||||
std::vector<Complex> output;
|
||||
std::transform(foutput.cbegin(), foutput.cend(), std::back_inserter(output),
|
||||
[] (float f) { return Complex(f); }
|
||||
);
|
||||
|
||||
return output;
|
||||
}
|
85
sampling.h
Normal file
85
sampling.h
Normal file
|
@ -0,0 +1,85 @@
|
|||
/**
|
||||
* @file sampling.h
|
||||
* @author 9exa
|
||||
* @brief Objects that resamples signal frames
|
||||
* @version 0.1
|
||||
* @date 2023-05-08
|
||||
*
|
||||
* @copyright Copyright (c) 2023
|
||||
*
|
||||
*/
|
||||
#ifndef MENGA_SAMPLING
|
||||
#define MENGA_SAMPLING
|
||||
|
||||
#include "miniaudio.h"
|
||||
#include "mengumath.h"
|
||||
#include "common.h"
|
||||
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
|
||||
// Performs linear resampling without any filtering. Useful for resampling frequency domain directly
|
||||
template<class T>
|
||||
inline void linear_resample_no_filter(const T *input,
|
||||
T *output,
|
||||
uint32_t size,
|
||||
float shift_factor,
|
||||
T interp(T a, T b, float w) = &lerp,
|
||||
T def_val = T()) {
|
||||
float shift_rep = 1 / shift_factor;
|
||||
// interpelate the positiobs in the input
|
||||
if (shift_factor > 1.0f) {
|
||||
// iterate from the back of the array to make the resample work in-place
|
||||
for (uint32_t j = 0; j < size; j++) {
|
||||
float inp_index = j * shift_rep;
|
||||
uint32_t lower = uint32_t(inp_index);
|
||||
float remainder = inp_index - lower;
|
||||
|
||||
output[j] = interp(input[lower], input[lower + 1], remainder);
|
||||
}
|
||||
}
|
||||
else {
|
||||
int j = size - 1;
|
||||
int resample_start = (int) (size * shift_factor);
|
||||
while (j >= resample_start) {
|
||||
output[j] = def_val;
|
||||
j -= 1;
|
||||
}
|
||||
while (j >= 0) {
|
||||
int inp_index = j * shift_rep;
|
||||
int lower = int(inp_index);
|
||||
float remainder = inp_index - lower;
|
||||
|
||||
output[j] = interp(input[lower], input[lower + 1], remainder);
|
||||
j -= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Just a wrapper around miniaudios resampler API, which uses linear resampling
|
||||
// with a 4th order lowpass filter by default
|
||||
class LinearResampler {
|
||||
public:
|
||||
LinearResampler(uint32_t nchannels, float stretch_factor);
|
||||
~LinearResampler();
|
||||
|
||||
void set_stretch_factor(float stretch_factor);
|
||||
|
||||
std::vector<Complex> resample(const std::vector<Complex> &samples);
|
||||
|
||||
private:
|
||||
ma_linear_resampler _resampler;
|
||||
|
||||
float _stretch_factor;
|
||||
uint32_t _nchannels;
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
42
singletons.h
Normal file
42
singletons.h
Normal file
|
@ -0,0 +1,42 @@
|
|||
/*
|
||||
Store large objects used by multiple dsp objects in one place (i.e. FFT Transforms)
|
||||
|
||||
*/
|
||||
#ifndef MENGA_SINGLETONS
|
||||
#define MENGA_SINGLETONS
|
||||
|
||||
#include <unordered_map>
|
||||
#include "common.h"
|
||||
#include "fft.h"
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
|
||||
struct Singletons {
|
||||
private:
|
||||
static Singletons *_singleton;
|
||||
std::unordered_map<uint32_t, FFT> _ffts;
|
||||
public:
|
||||
static Singletons *get_singleton() {
|
||||
if (_singleton = nullptr) {
|
||||
_singleton = new Singletons();
|
||||
}
|
||||
return _singleton;
|
||||
}
|
||||
// getters are gaurenteed to return a valid object. If none exists one will be created
|
||||
|
||||
// ffts initialized to process predetermined length of signal
|
||||
const FFT &get_fft(uint32_t size) {
|
||||
|
||||
if (_ffts.find(size) != _ffts.end()) {
|
||||
_ffts.emplace(size, FFT(size));
|
||||
}
|
||||
return _ffts.at(size);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
809
timestretcher.cpp
Normal file
809
timestretcher.cpp
Normal file
|
@ -0,0 +1,809 @@
|
|||
#include "timestretcher.h"
|
||||
#include "common.h"
|
||||
#include "correlation.h"
|
||||
#include "effect.h"
|
||||
#include "interpolation.h"
|
||||
#include "linalg.h"
|
||||
#include "mengumath.h"
|
||||
#include "vecdeque.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <complex>
|
||||
#include <cstdint>
|
||||
#include <iostream>
|
||||
#include <numeric>
|
||||
#include <vector>
|
||||
|
||||
using namespace Mengu;
|
||||
using namespace dsp;
|
||||
|
||||
void TimeStretcher::set_stretch_factor(const float &scale) {
|
||||
_stretch_factor = scale;
|
||||
}
|
||||
|
||||
Effect::InputDomain TimeStretcher::get_input_domain() {
|
||||
return InputDomain::Time;
|
||||
}
|
||||
|
||||
std::vector<EffectPropDesc> TimeStretcher::get_property_descs() const {
|
||||
return {
|
||||
EffectPropDesc {
|
||||
.type = EffectPropType::Slider,
|
||||
.name = "stretch_factor",
|
||||
.desc = "Scales the length of pushed signals by this amount",
|
||||
.slider_data = {
|
||||
.min_value = 0.5,
|
||||
.max_value = 2,
|
||||
.scale = Exp,
|
||||
}
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
void TimeStretcher::set_property(uint32_t id, EffectPropPayload data) {
|
||||
switch (id) {
|
||||
case 0:
|
||||
if (data.type == Slider) {
|
||||
set_stretch_factor(data.value);
|
||||
}
|
||||
break;
|
||||
};
|
||||
}
|
||||
|
||||
EffectPropPayload TimeStretcher::get_property(uint32_t id) const {
|
||||
switch (id) {
|
||||
case 0:
|
||||
return EffectPropPayload {
|
||||
.type = Slider,
|
||||
.value = _stretch_factor,
|
||||
};
|
||||
|
||||
};
|
||||
return EffectPropPayload {};
|
||||
}
|
||||
|
||||
|
||||
static float _wrap_phase(float phase) {
|
||||
return fposmod(phase + MATH_PI, MATH_TAU) - MATH_PI;
|
||||
}
|
||||
|
||||
// difference between 2 unwrapped phases. since, phases are preiodic, picks the closest one to the estimate
|
||||
static float _phase_diff(float next, float prev, float est = 0.0f) {
|
||||
return _wrap_phase(next - prev - est) + est;
|
||||
}
|
||||
|
||||
PhaseVocoderTimeStretcher::PhaseVocoderTimeStretcher(bool preserve_formants) {
|
||||
_preserve_formants = preserve_formants;
|
||||
reset();
|
||||
}
|
||||
|
||||
void PhaseVocoderTimeStretcher::push_signal(const Complex *input, const uint32_t &size) {
|
||||
_raw_buffer.extend_back(input, size);
|
||||
}
|
||||
|
||||
uint32_t PhaseVocoderTimeStretcher::pop_transformed_signal(Complex *output, const uint32_t &size) {
|
||||
while (n_transformed_ready() < size && _raw_buffer.size() >= WindowSize) {
|
||||
std::array<Complex, WindowSize> sample;
|
||||
_raw_buffer.to_array(sample.data(), WindowSize);
|
||||
_load_new_freq_window(sample);
|
||||
|
||||
std::array<Complex, WindowSize / 2> curr_freqs;
|
||||
std::copy(_lpc.get_freq_spectrum().cbegin(), _lpc.get_freq_spectrum().cbegin() + WindowSize / 2, curr_freqs.begin());
|
||||
|
||||
float analysis_hop_sizef = SynthesisHopSize / _stretch_factor;
|
||||
_stretched_sample_truncated += std::modf(analysis_hop_sizef, &analysis_hop_sizef);
|
||||
uint32_t analysis_hop_size = (uint32_t) analysis_hop_sizef;
|
||||
if (_stretched_sample_truncated) {
|
||||
analysis_hop_size += 1;
|
||||
_stretched_sample_truncated -= 1;
|
||||
}
|
||||
|
||||
std::array<float, WindowSize / 2> amplitudes = _calc_scaled_magnitudes();
|
||||
std::array<float, WindowSize / 2> new_phases = _calc_scaled_phases(curr_freqs, analysis_hop_size);
|
||||
|
||||
// std::array<Complex, WindowSize> new_samples = _calc_new_samples(amplitudes.data(), curr_raw_phases.data());
|
||||
std::array<Complex, WindowSize> new_samples = _calc_new_samples(sample, amplitudes.data(), new_phases.data());
|
||||
|
||||
mix_and_extend(_transformed_buffer, new_samples, WindowSize - SynthesisHopSize, hann_window);
|
||||
// _transformed_buffer.extend_back(new_samples.data(), WindowSize);
|
||||
|
||||
std::transform(new_phases.cbegin(), new_phases.cend(), _last_scaled_phases.begin(),
|
||||
[] (float unwrapped) { return _wrap_phase(unwrapped); }
|
||||
);
|
||||
|
||||
_raw_buffer.pop_front_many(nullptr, analysis_hop_size);
|
||||
|
||||
}
|
||||
|
||||
return _transformed_buffer.pop_front_many(output, MIN(n_transformed_ready(), size));
|
||||
}
|
||||
|
||||
uint32_t PhaseVocoderTimeStretcher::n_transformed_ready() const {
|
||||
return MAX(SynthesisHopSize, _transformed_buffer.size()) - (SynthesisHopSize);
|
||||
}
|
||||
|
||||
void PhaseVocoderTimeStretcher::reset() {
|
||||
_prev_raw_mag2s.fill(0.0f);
|
||||
_prev_raw_phases.fill(0.0f);
|
||||
|
||||
_last_scaled_phases.fill(0.0);
|
||||
|
||||
_raw_buffer.resize(0);
|
||||
_transformed_buffer.resize(SynthesisHopSize, 0);
|
||||
_stretched_sample_truncated = 0.0;
|
||||
}
|
||||
|
||||
// void PhaseVocoderTimeStretcher::set_stretch_factor(const float &stretch_factor) {
|
||||
// _stretch_factor = stretch_factor;
|
||||
// // _last_scaled_phases.fill(0.0f);
|
||||
// };
|
||||
|
||||
std::array<float, PhaseVocoderTimeStretcher::WindowSize / 2> PhaseVocoderTimeStretcher::_calc_scaled_magnitudes() {
|
||||
std::array<float, WindowSize / 2> mags;
|
||||
|
||||
if (_preserve_formants) {
|
||||
const std::array<float, WindowSize> &envelope = _lpc.get_envelope();
|
||||
const std::array<float, WindowSize> &residuals = _lpc.get_residuals();
|
||||
|
||||
for (uint32_t i = 0; i < WindowSize / 2; i++) {
|
||||
const uint32_t stretched_ind = i * _stretch_factor;
|
||||
if (stretched_ind < WindowSize / 2 && std::isfinite(residuals[i] * envelope[stretched_ind])) {
|
||||
mags[i] = residuals[i] * envelope[stretched_ind];
|
||||
}
|
||||
else {
|
||||
mags[i] = 0.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
const std::array<Complex, WindowSize> &freqs = _lpc.get_freq_spectrum();
|
||||
for (uint32_t i = 0; i < WindowSize / 2; i++) {
|
||||
mags[i] = sqrt(std::norm(freqs[i]));
|
||||
}
|
||||
}
|
||||
|
||||
return mags;
|
||||
}
|
||||
|
||||
std::array<float, PhaseVocoderTimeStretcher::WindowSize / 2> PhaseVocoderTimeStretcher::_calc_scaled_phases(
|
||||
const std::array<Complex, WindowSize / 2> &curr_freqs,
|
||||
const uint32_t hopsize) {
|
||||
std::array<float, WindowSize / 2> curr_mag2s;
|
||||
std::array<float, WindowSize / 2> curr_phases;
|
||||
std::transform(curr_freqs.cbegin(), curr_freqs.cend(), curr_mag2s.begin(),
|
||||
[] (Complex freq) { return std::norm(freq); }
|
||||
);
|
||||
std::transform(curr_freqs.cbegin(), curr_freqs.cend(), curr_phases.begin(),
|
||||
[] (Complex freq) { return std::arg(freq); }
|
||||
);
|
||||
|
||||
|
||||
std::array<float, WindowSize / 2> phase_deltas;
|
||||
float stretch_factor = (float) SynthesisHopSize / hopsize;
|
||||
for (int i = 0; i < WindowSize / 2; i++) {
|
||||
const float est = i * MATH_TAU * ((float) hopsize / WindowSize);// / stretch_factor;
|
||||
phase_deltas[i] = _phase_diff(curr_phases[i], _prev_raw_phases[i], est);
|
||||
}
|
||||
std::array<float, WindowSize / 2> new_phases;
|
||||
for (int i = 0; i < WindowSize / 2; i++) {
|
||||
new_phases[i] = _last_scaled_phases[i] + (phase_deltas[i] * stretch_factor);
|
||||
}
|
||||
|
||||
_replace_prev_freqs(curr_mag2s, curr_phases);
|
||||
|
||||
return new_phases;
|
||||
}
|
||||
|
||||
std::array<Complex, PhaseVocoderTimeStretcher::WindowSize / 2> PhaseVocoderTimeStretcher::_load_new_freq_window(const std::array<Complex, WindowSize> &sample) {
|
||||
_lpc.load_sample(sample.data());
|
||||
|
||||
std::array<Complex, WindowSize / 2> new_freqs;
|
||||
for (uint32_t i = 0; i < WindowSize / 2; i++) {
|
||||
new_freqs[i] = _lpc.get_freq_spectrum()[i];
|
||||
}
|
||||
|
||||
return new_freqs;
|
||||
}
|
||||
|
||||
void PhaseVocoderTimeStretcher::_replace_prev_freqs(const std::array<float, WindowSize / 2> &curr_mag2s, const std::array<float, WindowSize / 2> &curr_phases) {
|
||||
std::copy(curr_mag2s.cbegin(), curr_mag2s.cend(), _prev_raw_mag2s.begin());
|
||||
std::copy(curr_phases.cbegin(), curr_phases.cend(), _prev_raw_phases.begin());
|
||||
}
|
||||
|
||||
std::array<Complex, PhaseVocoderTimeStretcher::WindowSize> PhaseVocoderTimeStretcher::_calc_new_samples(
|
||||
const std::array<Complex, WindowSize> &raw_samples,
|
||||
const float *amplitudes,
|
||||
const float *phases) {
|
||||
std::array<Complex, WindowSize> freqs = {0.0};
|
||||
for (uint32_t i = 0; i < WindowSize / 2; i++) {
|
||||
freqs[i] = 2.0f * std::polar(amplitudes[i], phases[i]);
|
||||
}
|
||||
|
||||
std::array<Complex, WindowSize> new_samples;
|
||||
_lpc.get_fft().inverse_transform(freqs.data(), new_samples.data());
|
||||
|
||||
// Make shifted as loud as raw samples
|
||||
_loudness_norm.normalize(new_samples.data(), raw_samples.data(), new_samples.data());
|
||||
|
||||
return new_samples;
|
||||
}
|
||||
|
||||
PhaseVocoderDoneRightTimeStretcher::PhaseVocoderDoneRightTimeStretcher(bool preserve_formants) : PhaseVocoderTimeStretcher(preserve_formants) {}
|
||||
|
||||
std::array<float, PhaseVocoderTimeStretcher::WindowSize / 2> PhaseVocoderDoneRightTimeStretcher::_calc_scaled_phases(
|
||||
const std::array<Complex, WindowSize / 2> &curr_freqs,
|
||||
const uint32_t hopsize) {
|
||||
std::array<float, WindowSize / 2> curr_mag2s;
|
||||
std::array<float, WindowSize / 2> curr_phases;
|
||||
std::transform(curr_freqs.cbegin(), curr_freqs.cend(), curr_mag2s.begin(),
|
||||
[] (Complex freq) { return std::norm(freq); }
|
||||
);
|
||||
std::transform(curr_freqs.cbegin(), curr_freqs.cend(), curr_phases.begin(),
|
||||
[] (Complex freq) { return std::arg(freq); }
|
||||
);
|
||||
|
||||
float stretch_factor = (float) SynthesisHopSize / hopsize;
|
||||
std::array<float, WindowSize / 2> time_phase_deltas;
|
||||
for (int i = 0; i < WindowSize / 2; i++) {
|
||||
const float est = i * MATH_TAU * ((float) hopsize / WindowSize);
|
||||
time_phase_deltas[i] = _phase_diff(curr_phases[i], _prev_raw_phases[i], est);
|
||||
}
|
||||
|
||||
std::array<float, WindowSize / 2> freq_phase_deltas;
|
||||
for (uint32_t i = 1; i < WindowSize / 2 - 1; i++) {
|
||||
const float up_delta = _wrap_phase(curr_phases[i + 1] - curr_phases[i]);
|
||||
const float down_delta = _wrap_phase(curr_phases[i] - curr_phases[i - 1]);
|
||||
freq_phase_deltas[i] = 0.5f * (up_delta + down_delta);
|
||||
}
|
||||
freq_phase_deltas[0] = _wrap_phase(curr_phases[1] - curr_phases[0]);
|
||||
freq_phase_deltas[WindowSize / 2 - 1] = _wrap_phase(curr_phases[WindowSize / 2 - 1] - curr_phases[WindowSize / 2 - 2]);
|
||||
|
||||
std::array<float, WindowSize / 2> new_phases = _propagate_phase_gradients (
|
||||
time_phase_deltas,
|
||||
freq_phase_deltas,
|
||||
_last_scaled_phases,
|
||||
_prev_raw_mag2s,
|
||||
curr_mag2s,
|
||||
stretch_factor,
|
||||
1e-3f
|
||||
);
|
||||
|
||||
// for (int i = 0; i < WindowSize / 2; i++) {
|
||||
// new_phases[i] = _last_scaled_phases[i] + (time_phase_deltas[i] * stretch_factor);
|
||||
// }
|
||||
|
||||
_replace_prev_freqs(curr_mag2s, curr_phases);
|
||||
return new_phases;
|
||||
}
|
||||
|
||||
std::array<float, PhaseVocoderTimeStretcher::WindowSize / 2> PhaseVocoderDoneRightTimeStretcher::_propagate_phase_gradients(
|
||||
const std::array<float, WindowSize / 2> &phase_time_deltas,
|
||||
const std::array<float, WindowSize / 2> &phase_freq_deltas,
|
||||
const std::array<float, WindowSize / 2> &last_stretched_phases,
|
||||
const std::array<float, WindowSize / 2> &prev_freq_mags,
|
||||
const std::array<float, WindowSize / 2> &next_freq_mags,
|
||||
const float stretch_factor,
|
||||
const float tolerance) {
|
||||
// sort indexes to the next frequencies based on the magnitude of that bin, in descending order
|
||||
// also, bins with magnitude under the threshold do not propagate in the frequency domain
|
||||
float max_mag = 0.0f;
|
||||
for (uint32_t i = 0; i < WindowSize / 2; i++) {
|
||||
max_mag = MAX(MAX(max_mag, prev_freq_mags[i]), next_freq_mags[i]);
|
||||
}
|
||||
const float abs_tol = max_mag * (tolerance * tolerance);
|
||||
|
||||
// Used to store indexs to each frequencing in the propagation_queue
|
||||
struct FreqBin {
|
||||
enum {
|
||||
Prev,
|
||||
Next,
|
||||
};
|
||||
uint8_t frame;
|
||||
uint32_t bin;
|
||||
};
|
||||
const auto freq_bin_cmp = [&prev_freq_mags, &next_freq_mags] (FreqBin a, FreqBin b) {
|
||||
float a_mag = (a.frame == FreqBin::Prev) ? prev_freq_mags[a.bin] : next_freq_mags[a.bin];
|
||||
float b_mag = (b.frame == FreqBin::Prev) ? prev_freq_mags[b.bin] : next_freq_mags[b.bin];
|
||||
return a_mag < b_mag;
|
||||
};
|
||||
|
||||
// Max Heap of the frequency bins to propagate. (Listen I REALLY don't want allocate dynamically)
|
||||
std::array<FreqBin, WindowSize * 3> propagation_queue;
|
||||
uint32_t propagation_queue_size = WindowSize / 2;
|
||||
for (uint32_t i = 0; i < WindowSize / 2; i++) {
|
||||
propagation_queue[i] = FreqBin { .frame = FreqBin::Prev, .bin = i };
|
||||
}
|
||||
std::make_heap(propagation_queue.begin(), propagation_queue.begin() + propagation_queue_size, freq_bin_cmp);
|
||||
|
||||
// Set of frequency bins to propagate to
|
||||
bool can_recieve_propagation[WindowSize / 2];
|
||||
uint32_t n_can_recieve_propagation = WindowSize / 2;
|
||||
for (uint32_t i = 0; i < WindowSize / 2; i++) {
|
||||
if ((next_freq_mags[i] < abs_tol)) {
|
||||
can_recieve_propagation[i] = false;
|
||||
n_can_recieve_propagation -= 1;
|
||||
}
|
||||
else {
|
||||
can_recieve_propagation[i] = true;
|
||||
}
|
||||
}
|
||||
|
||||
// perform propagation in all dimension
|
||||
std::array<float, WindowSize / 2> new_phases {0};
|
||||
while (n_can_recieve_propagation > 0) {
|
||||
std::pop_heap(propagation_queue.begin(), propagation_queue.begin() + propagation_queue_size, freq_bin_cmp);
|
||||
FreqBin next_bin = propagation_queue[propagation_queue_size - 1];
|
||||
propagation_queue_size -= 1;
|
||||
|
||||
const uint32_t freq_ind = next_bin.bin;
|
||||
if (next_bin.frame == FreqBin::Prev) {
|
||||
if (can_recieve_propagation[freq_ind]) {
|
||||
new_phases[freq_ind] = last_stretched_phases[freq_ind] + (phase_time_deltas[freq_ind] * stretch_factor);
|
||||
|
||||
//remove from set
|
||||
can_recieve_propagation[freq_ind] = false;
|
||||
n_can_recieve_propagation -= 1;
|
||||
|
||||
// push to the heap
|
||||
propagation_queue[propagation_queue_size] = FreqBin {.frame = FreqBin::Next, .bin = freq_ind};
|
||||
propagation_queue_size += 1;
|
||||
std::push_heap(propagation_queue.begin(), propagation_queue.begin() + propagation_queue_size, freq_bin_cmp);
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (freq_ind > 0 && can_recieve_propagation[freq_ind - 1]) {
|
||||
const uint32_t freq_down = freq_ind - 1;
|
||||
|
||||
new_phases[freq_down] = new_phases[freq_ind] - (0.5 * (phase_freq_deltas[freq_down] + phase_freq_deltas[freq_ind]) * stretch_factor);
|
||||
|
||||
//remove from set
|
||||
can_recieve_propagation[freq_down] = false;
|
||||
n_can_recieve_propagation -= 1;
|
||||
|
||||
// push to the heap
|
||||
propagation_queue[propagation_queue_size] = FreqBin {.frame = FreqBin::Next, .bin = freq_down};
|
||||
propagation_queue_size += 1;
|
||||
std::push_heap(propagation_queue.begin(), propagation_queue.begin() + propagation_queue_size, freq_bin_cmp);
|
||||
}
|
||||
if ((freq_ind < WindowSize / 2 - 1) && can_recieve_propagation[freq_ind + 1]) {
|
||||
const uint32_t freq_up = freq_ind + 1;
|
||||
new_phases[freq_up] = new_phases[freq_ind] + (0.5 * (phase_freq_deltas[freq_up] + phase_freq_deltas[freq_ind]) * stretch_factor);
|
||||
|
||||
//remove from set
|
||||
can_recieve_propagation[freq_up] = false;
|
||||
n_can_recieve_propagation -= 1;
|
||||
|
||||
// push to the heap
|
||||
propagation_queue[propagation_queue_size] = FreqBin {.frame = FreqBin::Next, .bin = freq_up};
|
||||
propagation_queue_size += 1;
|
||||
std::push_heap(propagation_queue.begin(), propagation_queue.begin() + propagation_queue_size, freq_bin_cmp);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// std::array<float, WindowSize / 2> new_phases {0};
|
||||
// auto freq_ind_cmp = [next_freq_mags] (uint32_t a, uint32_t b) { return next_freq_mags[a] > next_freq_mags[b]; };
|
||||
// std::array<uint32_t, WindowSize / 2> freq_inds;
|
||||
// for (uint32_t i = 0; i < WindowSize / 2; i++) { freq_inds[i] = i;}
|
||||
// std::sort(freq_inds.begin(), freq_inds.end(), freq_ind_cmp);
|
||||
|
||||
// std::array<float, WindowSize / 2> prop_source_mag {0.0f};
|
||||
// for (uint32_t i = 0; i < WindowSize / 2; i++) {
|
||||
// new_phases[i] = last_stretched_phases[i] + phase_time_deltas[i] * stretch_factor;
|
||||
// prop_source_mag[i] = prev_freq_mags[i];
|
||||
// }
|
||||
// for (const uint32_t freq_ind: freq_inds) {
|
||||
// if (freq_ind > 0 && prop_source_mag[freq_ind - 1] < next_freq_mags[freq_ind]) {
|
||||
// const uint32_t freq_down = freq_ind - 1;
|
||||
// new_phases[freq_down] = new_phases[freq_ind] - 0.5 * stretch_factor * (phase_freq_deltas[freq_down] + phase_freq_deltas[freq_ind]);
|
||||
// prop_source_mag[freq_down] = next_freq_mags[freq_ind];
|
||||
// }
|
||||
// if (freq_ind < WindowSize / 2 && prop_source_mag[freq_ind + 1] < next_freq_mags[freq_ind]) {
|
||||
// const uint32_t freq_up = freq_ind + 1;
|
||||
// new_phases[freq_up] = new_phases[freq_ind] - 0.5 * stretch_factor * (phase_freq_deltas[freq_up] + phase_freq_deltas[freq_ind]);
|
||||
// prop_source_mag[freq_up] = next_freq_mags[freq_ind];
|
||||
// }
|
||||
|
||||
|
||||
// prop_source_mag[freq_ind] = 2e10;
|
||||
// }
|
||||
|
||||
return new_phases;
|
||||
}
|
||||
|
||||
OLATimeStretcher::OLATimeStretcher(uint32_t w_size) {
|
||||
_window_size = w_size;
|
||||
_overlap = _window_size / 5;
|
||||
_selection_window = _window_size / 2;
|
||||
|
||||
_transformed_buffer.resize(_window_size);
|
||||
}
|
||||
|
||||
template<class T>
|
||||
static void mix_into_extend_by_pointer(const Complex *new_data,
|
||||
T &output,
|
||||
const uint32_t &window_size,
|
||||
const uint32_t &overlap_size) {
|
||||
uint32_t i = 0;
|
||||
|
||||
for (; i < overlap_size; i++) {
|
||||
const float w = hann_window((float) i / overlap_size);
|
||||
const uint32_t output_ind = output.size() - overlap_size + i;
|
||||
|
||||
output[output_ind] = lerp(new_data[i], output[output_ind], w);
|
||||
}
|
||||
|
||||
for (; i < window_size; i++) {
|
||||
output.push_back(new_data[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void OLATimeStretcher::push_signal(const Complex *input, const uint32_t &size) {
|
||||
_raw_buffer.extend_back(input, size);
|
||||
|
||||
}
|
||||
|
||||
|
||||
uint32_t OLATimeStretcher::pop_transformed_signal(Complex *output, const uint32_t &size) {
|
||||
// Do stretchy
|
||||
// Theoretical interval between samples per process
|
||||
const uint32_t sample_skip = (_window_size - _overlap) / _stretch_factor;
|
||||
|
||||
// based on the example given by https://www.surina.net/article/time-and-pitch-scaling.html
|
||||
const uint32_t length_for_process = MAX(sample_skip, _window_size + _selection_window);
|
||||
|
||||
while (_raw_buffer.size() > length_for_process) {
|
||||
std::vector<Complex> new_data(_window_size + _selection_window);
|
||||
_raw_buffer.to_array(new_data.data(), _window_size + _selection_window);
|
||||
|
||||
std::vector<Complex> prev_tail(_overlap);
|
||||
_transformed_buffer.pop_back_many(prev_tail.data(), _overlap);
|
||||
|
||||
// find best start for overlap
|
||||
uint32_t overlap_ind = find_max_correlation_quad(prev_tail.data(), new_data.data(), _overlap, _selection_window);
|
||||
|
||||
mix_into_extend_by_pointer(new_data.data() + overlap_ind, prev_tail, _window_size, _overlap);
|
||||
|
||||
for (auto v: prev_tail) {
|
||||
_transformed_buffer.push_back(v);
|
||||
}
|
||||
|
||||
_raw_buffer.pop_front_many(nullptr, sample_skip);
|
||||
}
|
||||
|
||||
|
||||
uint32_t n = _transformed_buffer.pop_front_many(output, MIN(size, n_transformed_ready()));
|
||||
|
||||
for (uint32_t i = n; i < size; i++ ) {
|
||||
output[i] = 0;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
uint32_t OLATimeStretcher::n_transformed_ready() const {
|
||||
return _transformed_buffer.size() - _overlap;
|
||||
}
|
||||
|
||||
void OLATimeStretcher::reset() {
|
||||
_raw_buffer.resize(0);
|
||||
_transformed_buffer.resize(_window_size, 0);
|
||||
}
|
||||
|
||||
WSOLATimeStretcher::WSOLATimeStretcher() {
|
||||
// _transformed_buffer.resize(MaxBackWindowOverlap);
|
||||
}
|
||||
|
||||
void WSOLATimeStretcher::push_signal(const Complex *input, const uint32_t &size) {
|
||||
_raw_buffer.extend_back(input, size);
|
||||
|
||||
// perform the stretchy
|
||||
// if (_raw_buffer.size() > SampleProcSize) {
|
||||
// std::array<Complex, SampleProcSize> samples;
|
||||
|
||||
// _raw_buffer.to_array(samples.data(), SampleProcSize);
|
||||
|
||||
// // do the stretchy
|
||||
// uint32_t frames_used = _stretch_sample_and_add(samples.data());
|
||||
|
||||
// // delete everything used
|
||||
// _raw_buffer.pop_front_many(nullptr, frames_used);
|
||||
// _last_overlap_start -= frames_used;
|
||||
// _next_overlap_start -= frames_used;
|
||||
|
||||
|
||||
// }
|
||||
}
|
||||
|
||||
uint32_t WSOLATimeStretcher::pop_transformed_signal(Complex *output, const uint32_t &size) {
|
||||
// lazily perform the stretchy
|
||||
while ((_raw_buffer.size() > SampleProcSize) && (n_transformed_ready() < size)) {
|
||||
std::array<Complex, SampleProcSize> samples;
|
||||
|
||||
_raw_buffer.to_array(samples.data(), SampleProcSize);
|
||||
|
||||
// do the stretchy
|
||||
uint32_t frames_used = _stretch_sample_and_add(samples.data());
|
||||
|
||||
// delete everything used
|
||||
_raw_buffer.pop_front_many(nullptr, frames_used);
|
||||
_last_overlap_start -= frames_used;
|
||||
_next_overlap_start -= frames_used;
|
||||
}
|
||||
|
||||
uint32_t n = _transformed_buffer.pop_front_many(output, MIN(size, n_transformed_ready()));
|
||||
for (uint32_t i = n; i < size; i++) {
|
||||
output[i] = 0;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
uint32_t WSOLATimeStretcher::n_transformed_ready() const {
|
||||
return _transformed_buffer.size();
|
||||
}
|
||||
|
||||
void WSOLATimeStretcher::reset() {
|
||||
_raw_buffer.resize(0);
|
||||
_transformed_buffer.resize(0);
|
||||
|
||||
}
|
||||
|
||||
uint32_t WSOLATimeStretcher::_stretch_sample_and_add(const Complex *sample) {
|
||||
// base overlap
|
||||
const uint32_t overlap_size = WindowSize / 4;
|
||||
// search forward for better overlap point
|
||||
const uint32_t search_window = WindowSize / 5;
|
||||
const uint32_t flat_duration = WindowSize - 2 * overlap_size;
|
||||
|
||||
// consider te amount of frames skiped through truncation
|
||||
double sample_skipd;
|
||||
double dropped_per_window = std::modf((WindowSize - overlap_size) / _stretch_factor, &sample_skipd);
|
||||
|
||||
const uint32_t sample_skip = sample_skipd;
|
||||
|
||||
while (_next_overlap_start + WindowSize < SampleProcSize) {
|
||||
// Find insertion that best fits the new sample
|
||||
uint32_t prev_not_overlapped = find_max_correlation(
|
||||
sample + _next_overlap_start,
|
||||
sample + _last_overlap_start,
|
||||
overlap_size,
|
||||
search_window
|
||||
);
|
||||
|
||||
uint32_t actual_last_overlap = _last_overlap_start + prev_not_overlapped;
|
||||
const uint32_t actually_overlapped = overlap_size - prev_not_overlapped;
|
||||
|
||||
Complex overlap_buffer[SampleProcSize / 2];
|
||||
|
||||
overlap_add(
|
||||
sample + actual_last_overlap,
|
||||
sample + _next_overlap_start,
|
||||
overlap_buffer,
|
||||
actually_overlapped,
|
||||
hamming_window
|
||||
);
|
||||
|
||||
// append new data
|
||||
_transformed_buffer.extend_back(sample + _last_overlap_start, prev_not_overlapped);
|
||||
_transformed_buffer.extend_back(overlap_buffer, actually_overlapped);
|
||||
// take 2 * prev_not_overlapped from both sides of the flat duration
|
||||
_transformed_buffer.extend_back(sample + _next_overlap_start + actually_overlapped, flat_duration);
|
||||
|
||||
// set for next cycle
|
||||
_last_overlap_start = _next_overlap_start + actually_overlapped + flat_duration;
|
||||
_next_overlap_start = _next_overlap_start + sample_skip;
|
||||
|
||||
_stretched_sample_truncated += dropped_per_window;
|
||||
|
||||
if (_stretched_sample_truncated > 1.0) {
|
||||
_next_overlap_start += 1;
|
||||
_stretched_sample_truncated -= 1.0;
|
||||
}
|
||||
}
|
||||
|
||||
return MIN(_last_overlap_start, _next_overlap_start);
|
||||
}
|
||||
|
||||
PSOLATimeStretcher::PSOLATimeStretcher() {
|
||||
_transformed_buffer.resize(MaxBackWindowOverlap);
|
||||
}
|
||||
|
||||
|
||||
void PSOLATimeStretcher::push_signal(const Complex *input, const uint32_t &size) {
|
||||
_raw_buffer.extend_back(input, size);
|
||||
}
|
||||
|
||||
uint32_t PSOLATimeStretcher::pop_transformed_signal(Complex *output, const uint32_t &size) {
|
||||
// lazily perform the stretchy
|
||||
while ((_raw_buffer.size() > SampleProcSize) && (size > n_transformed_ready())) {
|
||||
std::array<Complex, SampleProcSize> samples;
|
||||
std::array<Complex, SampleProcSize> windowed_samples;
|
||||
|
||||
_raw_buffer.to_array(samples.data(), SampleProcSize);
|
||||
_raw_buffer.to_array(windowed_samples.data(), SampleProcSize);
|
||||
|
||||
window_ends(windowed_samples.data(), SampleProcSize, SampleProcSize / 10, hann_window);
|
||||
|
||||
int est_freq = _est_fund_frequency(windowed_samples.data());
|
||||
|
||||
uint32_t est_period = (1.0 / est_freq) * SampleProcSize / 2;
|
||||
|
||||
std::vector<uint32_t> est_peaks = _find_upcoming_peaks(samples.data(), est_period);
|
||||
|
||||
_stretch_peaks_and_add(samples.data(), est_peaks);
|
||||
|
||||
// delete everything used
|
||||
_raw_buffer.pop_front_many(nullptr, est_peaks.back() + 1); // +1 because est_peaks are the INDEX of the peaks, not the num of frames used
|
||||
}
|
||||
|
||||
uint32_t n = _transformed_buffer.pop_front_many(output, MIN(size, n_transformed_ready()));
|
||||
|
||||
for (uint32_t i = n; i < size; i++) {
|
||||
output[i] = 0;
|
||||
}
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
uint32_t PSOLATimeStretcher::n_transformed_ready() const {
|
||||
return _transformed_buffer.size() - MaxBackWindowOverlap;
|
||||
}
|
||||
|
||||
void PSOLATimeStretcher::reset() {
|
||||
_transformed_buffer.resize(MaxBackWindowOverlap, 0);
|
||||
_raw_buffer.resize(0);
|
||||
|
||||
}
|
||||
|
||||
int PSOLATimeStretcher::_est_fund_frequency(const Complex *samples) {
|
||||
// Todo: move all this to a PitchDetecter object or something
|
||||
|
||||
_lpc.load_sample(samples);
|
||||
const std::array<float, SampleProcSize> residuals = _lpc.get_residuals();
|
||||
|
||||
// find candidate from residual peaks (only use positive half of the spectrum)
|
||||
std::vector<float> srhs = calc_srhs(residuals.data(), residuals.size() / 2, MinFreqInd, MaxFreqInd, 10);
|
||||
|
||||
float max_srhs = -10e32;
|
||||
int max_pitch_ind = MaxFreqInd;
|
||||
for (int i = 0; i < srhs.size(); i++) {
|
||||
if (srhs[i] > max_srhs) {
|
||||
max_pitch_ind = MinFreqInd + i;
|
||||
max_srhs = srhs[i];
|
||||
}
|
||||
}
|
||||
|
||||
return max_pitch_ind;
|
||||
}
|
||||
|
||||
std::vector<uint32_t> PSOLATimeStretcher::_find_upcoming_peaks(const Complex *samples, const uint32_t est_period) {
|
||||
// assume that peaks are around est_period apart, but give some sllack as pitches change slightly
|
||||
const uint32_t search_start = 0.8 * est_period;
|
||||
const uint32_t search_end = 1.2 * est_period;
|
||||
|
||||
std::vector<uint32_t> peaks;
|
||||
uint32_t last_peak = 0;
|
||||
|
||||
while ((last_peak + est_period) < SampleProcSize) {
|
||||
uint32_t peak = last_peak + search_start;
|
||||
float peak_size = 0.0f;
|
||||
|
||||
for (uint32_t i = last_peak + search_start; i < MIN(SampleProcSize, last_peak + search_end); i++) {
|
||||
if (samples[i].real() > peak_size) {
|
||||
peak_size = samples[i].real();
|
||||
peak = i;
|
||||
}
|
||||
}
|
||||
|
||||
peaks.push_back(peak);
|
||||
last_peak = peak;
|
||||
}
|
||||
|
||||
return peaks;
|
||||
}
|
||||
|
||||
// // overlap and extend without applying a window function first
|
||||
// // overlap_size may be larger than new_data.size(), in which case only new_data.size() is added. the offset is the same
|
||||
template<class T, class NewT>
|
||||
static void _mix_and_extend_no_window(T &array, const NewT new_data, const uint32_t &overlap_size) {
|
||||
|
||||
uint32_t i = 0;
|
||||
|
||||
for(; i < MIN(overlap_size, new_data.size()); i++) {
|
||||
uint32_t ind = array.size() - overlap_size + i;
|
||||
array[ind] = array[ind] + new_data[i];
|
||||
}
|
||||
|
||||
for (; i < new_data.size(); i++) {
|
||||
array.push_back(new_data[i]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void PSOLATimeStretcher::_stretch_peaks_and_add(const Complex *samples, const std::vector<uint32_t> &est_peaks) {
|
||||
|
||||
// accumulate by collecting the left halves and right halves if each peak sepeartly
|
||||
std::vector<std::vector<Complex>> right_windows;
|
||||
std::vector<std::vector<Complex>> left_windows;
|
||||
|
||||
uint32_t last_peak = 0;
|
||||
for (uint32_t next_peak: est_peaks) {
|
||||
std::vector<Complex> left_window;
|
||||
std::vector<Complex> right_window;
|
||||
|
||||
for (uint32_t i = last_peak; i < next_peak; i++) {
|
||||
float w = (float) (i - last_peak) / (next_peak - last_peak);
|
||||
w = hann_window(w);
|
||||
|
||||
left_window.emplace_back(w * samples[i]);
|
||||
right_window.emplace_back((1.0f - w) * samples[i]);
|
||||
}
|
||||
|
||||
left_windows.push_back(std::move(left_window));
|
||||
right_windows.push_back(std::move(right_window));
|
||||
|
||||
last_peak = next_peak;
|
||||
}
|
||||
|
||||
// arrange the peaks together
|
||||
last_peak = 0;
|
||||
|
||||
|
||||
for (uint32_t i = 0; i < left_windows.size(); i++) {
|
||||
const std::vector<Complex> left_window = std::move(left_windows[i]);
|
||||
const std::vector<Complex> right_window = std::move(right_windows[i]);
|
||||
|
||||
// use overlapsize of previous period to make the right window continuous with the previous left window
|
||||
_mix_and_extend_no_window(_transformed_buffer, right_window, _next_right_window_overlap);
|
||||
|
||||
|
||||
// calculate the frames overlap taking the truncated part of previous processes into account
|
||||
int curr_period = est_peaks[i] - last_peak;
|
||||
double overlap_sized;
|
||||
_stretched_sample_truncated += std::abs(std::modf((2.0 - _stretch_factor) * curr_period, &overlap_sized));
|
||||
|
||||
uint32_t overlap_size = std::abs(overlap_sized);
|
||||
if (_stretched_sample_truncated > 1.0f) {
|
||||
overlap_size += 1;
|
||||
_stretched_sample_truncated -= 1.0f;
|
||||
}
|
||||
|
||||
|
||||
if (_stretch_factor >= 1.0f) {
|
||||
if (_stretch_factor > 2.0f) {
|
||||
|
||||
// pad the gap between each side with 0s
|
||||
uint32_t padding_size = std::move(overlap_size);
|
||||
|
||||
for (uint32_t j = 0; j < padding_size; j++) {
|
||||
_transformed_buffer.push_back(0);
|
||||
}
|
||||
|
||||
_transformed_buffer.extend_back(left_window.data(), left_window.size());
|
||||
}
|
||||
else {
|
||||
// some parts are overlapped
|
||||
// mix it with the left window of the next
|
||||
_mix_and_extend_no_window(_transformed_buffer, left_window, overlap_size);
|
||||
|
||||
}
|
||||
|
||||
// the end of the _transform buffer is the end of the left window, which is equivalenting to setting both of these values to 0
|
||||
_next_right_window_overlap = 0;
|
||||
}
|
||||
else {
|
||||
// since the left peak ends before the right peak ends, we have to overlap both the right and left peaks into the transformed data
|
||||
_mix_and_extend_no_window(_transformed_buffer, left_window, overlap_size);
|
||||
|
||||
_next_right_window_overlap = overlap_size - curr_period;
|
||||
}
|
||||
|
||||
|
||||
|
||||
last_peak = est_peaks[i];
|
||||
}
|
||||
}
|
226
timestretcher.h
Normal file
226
timestretcher.h
Normal file
|
@ -0,0 +1,226 @@
|
|||
#ifndef MENGA_TIME_STRETCHER
|
||||
#define MENGA_TIME_STRETCHER
|
||||
|
||||
#include "common.h"
|
||||
#include "correlation.h"
|
||||
#include "effect.h"
|
||||
#include "fft.h"
|
||||
#include "loudness.h"
|
||||
#include "vecdeque.h"
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
#include <vector>
|
||||
|
||||
namespace Mengu {
|
||||
namespace dsp {
|
||||
|
||||
class TimeStretcher: public Effect {
|
||||
public:
|
||||
virtual ~TimeStretcher() {}
|
||||
virtual InputDomain get_input_domain() override;
|
||||
|
||||
virtual void set_stretch_factor(const float &scale);
|
||||
|
||||
virtual std::vector<EffectPropDesc> get_property_descs() const override;
|
||||
|
||||
virtual void set_property(uint32_t id, EffectPropPayload data) override;
|
||||
|
||||
virtual EffectPropPayload get_property(uint32_t id) const override;
|
||||
|
||||
protected:
|
||||
float _stretch_factor = 1.0f;
|
||||
|
||||
|
||||
// keep track of resampled size error due to rounding errors
|
||||
double _stretched_sample_truncated = 0.0;
|
||||
};
|
||||
|
||||
// Classic timeshifter be scale the phases of frequency bins in the time dimension
|
||||
class PhaseVocoderTimeStretcher: public TimeStretcher {
|
||||
public:
|
||||
PhaseVocoderTimeStretcher(bool _preserve_formants = false);
|
||||
|
||||
virtual void push_signal(const Complex *input, const uint32_t &size) override;
|
||||
virtual uint32_t pop_transformed_signal(Complex *output, const uint32_t &size) override;
|
||||
|
||||
virtual uint32_t n_transformed_ready() const override;
|
||||
|
||||
// virtual void set_stretch_factor(const float &stretch_factor) override;
|
||||
|
||||
virtual void reset() override;
|
||||
protected:
|
||||
|
||||
static constexpr uint32_t WindowSize = 1 << 9;
|
||||
static constexpr uint32_t SynthesisHopSize = 400;
|
||||
|
||||
static constexpr uint32_t NStoredWindows = 2;
|
||||
|
||||
std::array<float, WindowSize / 2> _prev_raw_mag2s;
|
||||
std::array<float, WindowSize / 2> _prev_raw_phases;
|
||||
// phases of the last transformed samples
|
||||
std::array<float, WindowSize / 2> _last_scaled_phases;
|
||||
|
||||
VecDeque<Complex> _raw_buffer;
|
||||
VecDeque<Complex> _transformed_buffer;
|
||||
|
||||
virtual std::array<float, WindowSize / 2> _calc_scaled_magnitudes();
|
||||
// expects time_deltas to be scaled
|
||||
virtual std::array<float, WindowSize / 2> _calc_scaled_phases(const std::array<Complex, WindowSize / 2> &curr_freqs, const uint32_t hopsize);
|
||||
|
||||
std::array<Complex, WindowSize / 2> _load_new_freq_window(const std::array<Complex, WindowSize> &sample);
|
||||
void _replace_prev_freqs(const std::array<float, WindowSize / 2> &curr_mags, const std::array<float, WindowSize / 2> &curr_phases);
|
||||
private:
|
||||
|
||||
// FFT _fft;
|
||||
// for finding the envelope and doing fft
|
||||
LPC<WindowSize, 50> _lpc;
|
||||
|
||||
bool _preserve_formants = false;
|
||||
|
||||
// Used to make sure the percieved loudness of the sample is preserved
|
||||
LoudnessNormalizer<Complex, WindowSize, 1> _loudness_norm;
|
||||
|
||||
std::array<Complex, WindowSize> _calc_new_samples(const std::array<Complex, WindowSize> &raw_samples, const float *amplitudes, const float *phase_deltas);
|
||||
|
||||
};
|
||||
|
||||
// 'Phase vocoder done right' implementation
|
||||
class PhaseVocoderDoneRightTimeStretcher: public PhaseVocoderTimeStretcher {
|
||||
public:
|
||||
PhaseVocoderDoneRightTimeStretcher(bool _preserve_formants = false);
|
||||
protected:
|
||||
virtual std::array<float, WindowSize / 2> _calc_scaled_phases(const std::array<Complex, WindowSize / 2> &curr_phases, const uint32_t hopsize) override;
|
||||
private:
|
||||
// Phase propagation algorithm as described in the paper
|
||||
std::array<float, WindowSize / 2> _propagate_phase_gradients(const std::array<float, WindowSize / 2> &phase_time_deltas,
|
||||
const std::array<float, WindowSize / 2> &phase_freq_deltas,
|
||||
const std::array<float, WindowSize / 2> &last_stretched_phases,
|
||||
const std::array<float, WindowSize / 2> &prev_mag2s,
|
||||
const std::array<float, WindowSize / 2> &next_mag2s,
|
||||
const float stretch_factor,
|
||||
const float tolerance = 1e-5f);
|
||||
};
|
||||
|
||||
// Syncronised OverLap and Add time stretcher with fixed window size
|
||||
class OLATimeStretcher: public TimeStretcher {
|
||||
public:
|
||||
OLATimeStretcher(uint32_t w_size);
|
||||
|
||||
static inline const float MinScale = 0.05;
|
||||
|
||||
// std::vector<Complex> stretch_and_overlap_window2(const Complex *input);
|
||||
|
||||
virtual void push_signal(const Complex *input, const uint32_t &size) override;
|
||||
virtual uint32_t pop_transformed_signal(Complex *output, const uint32_t &size) override;
|
||||
|
||||
virtual uint32_t n_transformed_ready() const override;
|
||||
|
||||
virtual void reset() override;
|
||||
|
||||
private:
|
||||
uint32_t _window_size;
|
||||
|
||||
uint32_t _overlap;
|
||||
uint32_t _selection_window;
|
||||
// uint32_t _sample_skip;
|
||||
|
||||
float _desired_extension = 0.0f;
|
||||
|
||||
VecDeque<Complex> _raw_buffer;
|
||||
VecDeque<Complex> _transformed_buffer;
|
||||
|
||||
};
|
||||
|
||||
// timestrech where extensions are added to best match wave form with. Fixed window size. not fixed soutput size (may be slightly longer)
|
||||
class WSOLATimeStretcher: public TimeStretcher {
|
||||
public:
|
||||
WSOLATimeStretcher();
|
||||
|
||||
virtual void push_signal(const Complex *input, const uint32_t &size) override;
|
||||
virtual uint32_t pop_transformed_signal(Complex *output, const uint32_t &size) override;
|
||||
|
||||
virtual uint32_t n_transformed_ready() const override;
|
||||
|
||||
virtual void reset() override;
|
||||
private:
|
||||
VecDeque<Complex> _raw_buffer;
|
||||
VecDeque<Complex> _transformed_buffer;
|
||||
|
||||
// length of the the input buffer must be before transforming and size of arrays in intermediate calculations. Should catch up to 1000hz
|
||||
static constexpr uint32_t SampleProcSize = 1 << 11;
|
||||
|
||||
// length of a window
|
||||
static constexpr uint32_t WindowSize = 1 << 9;
|
||||
|
||||
// stretches the sample, and adds it to the transform buffer, tje position of each window is based on the autocorrelation
|
||||
// returns how many frames were used and can be discarded
|
||||
uint32_t _stretch_sample_and_add(const Complex *sample);
|
||||
|
||||
// Basically, the beginning of the next overlap(_left_tail_start) can be before the beggining of the last overlap(_right_tail_start)
|
||||
// and the size of the overlap can change on each process. So store both.
|
||||
uint32_t _last_overlap_start = 0;
|
||||
uint32_t _next_overlap_start = 0;
|
||||
|
||||
|
||||
};
|
||||
|
||||
// Formant preserving, pitch changing time stretch
|
||||
// Inherits a lot of algorithmic functionality from SOLA
|
||||
class PSOLATimeStretcher: public TimeStretcher {
|
||||
public:
|
||||
PSOLATimeStretcher();
|
||||
|
||||
virtual void push_signal(const Complex *input, const uint32_t &size) override;
|
||||
virtual uint32_t pop_transformed_signal(Complex *output, const uint32_t &size) override;
|
||||
|
||||
virtual uint32_t n_transformed_ready() const override;
|
||||
|
||||
virtual void reset() override;
|
||||
private:
|
||||
|
||||
VecDeque<Complex> _raw_buffer;
|
||||
VecDeque<Complex> _transformed_buffer;
|
||||
|
||||
static constexpr uint32_t SampleProcSize = 1 << 11;
|
||||
|
||||
// basically how accurate the reconstruction will be. Assumes ~44kHz input, good for operation in up to 16kHz
|
||||
static constexpr uint32_t LPCSize = (uint32_t) 1.25 * 16;
|
||||
|
||||
static constexpr uint32_t MinFreqHz = 50;
|
||||
static constexpr uint32_t MaxFreqHz = 800;
|
||||
|
||||
static constexpr uint32_t InputSampleRate = 44100;
|
||||
|
||||
static constexpr uint32_t MinFreqInd = MAX(MinFreqHz * SampleProcSize / InputSampleRate, 2);
|
||||
static constexpr uint32_t MaxFreqInd = MAX(MaxFreqHz * SampleProcSize / InputSampleRate, MinFreqInd * 2);
|
||||
|
||||
// the amount of frames in _transformed_buffer that need to remain in case of overlapping future samples
|
||||
static constexpr uint32_t MaxBackWindowOverlap = (1.0f / MinFreqHz * InputSampleRate) + 1;
|
||||
|
||||
// for finding fundemental frequency
|
||||
// FFT _fft;
|
||||
LPC<SampleProcSize, LPCSize> _lpc;
|
||||
|
||||
// returns the index of the fundemental frequency (pitch) in an fft of samples
|
||||
int _est_fund_frequency(const Complex *sample);
|
||||
// store the last estimated pitches. the median will be used
|
||||
VecDeque<int> _last_periods;
|
||||
|
||||
|
||||
//used to meld windows in the same sample of different length (peaks are not uniformly spaced)
|
||||
uint32_t _next_right_window_overlap = 0;
|
||||
|
||||
// estimate the peaks in the upcoming sample
|
||||
std::vector<uint32_t> _find_upcoming_peaks(const Complex *samples, const uint32_t est_period);
|
||||
|
||||
// stretches the sample, and adds it to the transform buffer;
|
||||
void _stretch_peaks_and_add(const Complex *samples, const std::vector<uint32_t> &est_peaks);
|
||||
|
||||
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
243
vecdeque.h
Normal file
243
vecdeque.h
Normal file
|
@ -0,0 +1,243 @@
|
|||
/**
|
||||
* @file vecdeque.h
|
||||
* @author 9exa
|
||||
* @brief An dynamically-sized array where elements can be added on either end. Useful for queues
|
||||
* Supposed to be like Rusts VecDeque, implemented with a ring_buffer
|
||||
* @version 0.1
|
||||
* @date 2023-04-22
|
||||
*
|
||||
* @copyright Copyright (c) 2023
|
||||
*
|
||||
*/
|
||||
#ifndef MENGA_VECDEQUE
|
||||
#define MENGA_VECDEQUE
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <iostream>
|
||||
#include "mengumath.h"
|
||||
|
||||
namespace Mengu {
|
||||
|
||||
template<class T>
|
||||
class VecDeque {
|
||||
private:
|
||||
T *_data = nullptr;
|
||||
|
||||
uint32_t _front = 0;
|
||||
// uint32_t _end = 0;
|
||||
uint32_t _size = 0;
|
||||
uint32_t _capacity = 0;
|
||||
|
||||
public:
|
||||
VecDeque() {}
|
||||
VecDeque(const VecDeque &from) {
|
||||
_front = from._front;
|
||||
_size = from._size;
|
||||
_capacity = from._capacity;
|
||||
|
||||
if (_capacity > 0) {
|
||||
_data = new T[_capacity];
|
||||
for (uint32_t i = 0; i < _capacity; i++) {
|
||||
_data[i] = from._data[i];
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
~VecDeque() {
|
||||
if (_data != nullptr) {
|
||||
delete[] _data;
|
||||
}
|
||||
}
|
||||
|
||||
inline uint32_t size() const {
|
||||
return _size;
|
||||
}
|
||||
|
||||
inline uint32_t capacity() const {
|
||||
return _capacity;
|
||||
}
|
||||
|
||||
inline const T *data() const {
|
||||
return _data;
|
||||
}
|
||||
|
||||
void reserve(const uint32_t &new_cap) {
|
||||
if (_capacity < new_cap) {
|
||||
T *new_data = new T[new_cap];
|
||||
|
||||
// copy and initialise new array
|
||||
uint32_t i = 0;
|
||||
if (_data != nullptr) {
|
||||
for (; i < _size; i++) {
|
||||
new_data[i] = std::move(_data[(_front + i) % _capacity]);
|
||||
}
|
||||
delete[] _data;
|
||||
_front = 0;
|
||||
}
|
||||
_data = new_data;
|
||||
_capacity = new_cap;
|
||||
if (_size > _capacity) {
|
||||
resize(_capacity);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void resize(const uint32_t &new_size) {
|
||||
if (_capacity < new_size) {
|
||||
uint32_t new_cap = MAX(_capacity, 1);
|
||||
while (new_cap < new_size) {
|
||||
new_cap = new_cap << 1; // if you leave out the new_cap = the optimizer just skips this loop.
|
||||
// Which makes this infinite loop bug hard to spot
|
||||
|
||||
}
|
||||
reserve(new_cap);
|
||||
}
|
||||
if (new_size > _size) {
|
||||
// expand from back
|
||||
if ( _size > 0) {
|
||||
for (uint32_t i = _size; i < new_size; i++) {
|
||||
_data[(_front + i) % _capacity] = _data[(_front + _size - 1) % _capacity];
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (uint32_t i = _size; i < new_size; i++) {
|
||||
_data[(_front + i) % _capacity] = T();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
_size = new_size;
|
||||
}
|
||||
|
||||
void resize(const uint32_t &new_size, const T &x) {
|
||||
resize(new_size);
|
||||
|
||||
for (uint32_t i = 0; i < new_size; i++) {
|
||||
_data[(_front + i) % _capacity] = x;
|
||||
}
|
||||
}
|
||||
|
||||
inline void push_back(const T &x) {
|
||||
resize(_size + 1);
|
||||
_data[(_front + _size - 1) % _capacity] = x;
|
||||
}
|
||||
|
||||
inline void push_front(const T &x) {
|
||||
resize(_size + 1);
|
||||
_front = (_front == 0) ? _capacity - 1 : _front - 1;
|
||||
_data[_front] = x;
|
||||
}
|
||||
|
||||
// adds elements to the end of the queue
|
||||
inline void extend_back(const T *array, const uint32_t n) {
|
||||
uint32_t old_size = _size;
|
||||
resize(_size + n);
|
||||
|
||||
for (uint32_t i = 0; i < n; i++) {
|
||||
_data[(_front + old_size + i) % _capacity] = array[i];
|
||||
}
|
||||
}
|
||||
// moves at most n elements from the front of the queue to the array output. outputs memory must be validated elsewhere
|
||||
inline uint32_t pop_front_many(T *output, uint32_t n) {
|
||||
n = MIN(n, _size);
|
||||
|
||||
if (output != nullptr) {
|
||||
for (uint32_t i = 0; i < n; i++) {
|
||||
output[i] = _data[(_front + i) % _capacity];
|
||||
}
|
||||
}
|
||||
|
||||
if (n != 0){
|
||||
_front = (_front + n) % _capacity;
|
||||
|
||||
resize(_size - n);
|
||||
}
|
||||
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
inline uint32_t pop_back_many(T *output, uint32_t n) {
|
||||
n = MIN(n, _size);
|
||||
if (output != nullptr) {
|
||||
for (uint32_t i = 0; i < n; i++) {
|
||||
output[i] = _data[(_front + _size - n + i) % _capacity];
|
||||
}
|
||||
}
|
||||
resize(_size - n);
|
||||
|
||||
return n;
|
||||
}
|
||||
|
||||
void make_contiguous() {
|
||||
if (_size > 0 && _front > 0) {
|
||||
T *new_data = new T[_capacity];
|
||||
for (uint32_t i = 0; i < _size; i++) {
|
||||
new_data[i] = std::move(_data[(_front + i) % _capacity]);
|
||||
}
|
||||
|
||||
delete[] _data;
|
||||
|
||||
_data = new_data;
|
||||
}
|
||||
}
|
||||
|
||||
//// Operators
|
||||
inline T &operator[](int i) {
|
||||
if (_size == 0) {
|
||||
resize(1);
|
||||
}
|
||||
return _data[(_front + posmod(i, _size)) % _capacity];
|
||||
}
|
||||
|
||||
inline const T &operator[](int i) const {
|
||||
if (_size == 0) {
|
||||
resize(1);
|
||||
}
|
||||
return _data[(_front + posmod(i, _size)) % _capacity];
|
||||
}
|
||||
|
||||
VecDeque &operator=(const VecDeque &from) {
|
||||
resize(from._size);
|
||||
_front = 0;
|
||||
|
||||
for (uint32_t i = 0; i < _size; i++) {
|
||||
_data[i] = from._data[(from._front + _size % from._capacity)];
|
||||
}
|
||||
|
||||
return *this;
|
||||
};
|
||||
|
||||
// converts the first 'size' items into a contiguous array. -1 does the whole queue
|
||||
uint32_t to_array(T *out, int size = -1) {
|
||||
if (size == -1) {
|
||||
size = _size;
|
||||
}
|
||||
|
||||
size = MIN(size, _size);
|
||||
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
out[i] = _data[(i + _front) % _capacity];
|
||||
}
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
// writes the last 'size' items into a contiguous array
|
||||
uint32_t to_array_back(T *out, int size) {
|
||||
size = MIN(size, _size);
|
||||
|
||||
for (uint32_t i = 0; i < size; i++) {
|
||||
out[i] = _data[(i + _front + _size - size) % _capacity];
|
||||
}
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
Loading…
Reference in a new issue