battleloom-engine/src/ai.c

134 lines
4.7 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <math.h>
#include "data.h"
#define MAX_UNITS 100
#define MAX_BUILDINGS 50
typedef struct Node {
int x, y;
int gCost; // Cost from start node
int hCost; // Heuristic cost to target node
struct Node* parent;
} Node;
// Function to calculate the distance between two points using Manhattan distance
int calculateDistance(int x1, int y1, int x2, int y2) {
return abs(x1 - x2) + abs(y1 - y2);
}
bool isUnitOrBuildingAtPosition(GameData* data, int x, int y) {
for (int i = 0; i < MAX_UNITS; i++) {
if (data->units[i].unitID != -1 && data->units[i].x == x && data->units[i].y == y) {
// Found a unit at the position
return true;
}
}
for (int i = 0; i < MAX_BUILDINGS; i++) {
if (data->buildings[i].buildingID != -1 && data->buildings[i].x == x && data->buildings[i].y == y) {
// Found a building at the position
return true;
}
}
// No unit or building found at the position
return false;
}
// A* algorithm implementation
void aStarPathfinding(GameData* map, int startX, int startY, int targetX, int targetY) {
// Create start and target nodes
Node startNode = {startX, startY, 0, 0, NULL};
Node targetNode = {targetX, targetY, 0, 0, NULL};
// Create open and closed lists
Node* openList = malloc(sizeof(Node) * MAP_SIZE * MAP_SIZE);
Node* closedList = malloc(sizeof(Node) * MAP_SIZE * MAP_SIZE);
int openListCount = 0;
int closedListCount = 0;
// Add start node to open list
openList[openListCount++] = startNode;
while (openListCount > 0) {
// Find the node with the lowest fCost in the open list
int currentIndex = 0;
for (int i = 0; i < openListCount; i++) {
if (openList[i].gCost + openList[i].hCost < openList[currentIndex].gCost + openList[currentIndex].hCost) {
currentIndex = i;
}
}
// Move current node to the closed list
Node currentNode = openList[currentIndex];
openList[currentIndex] = openList[--openListCount];
closedList[closedListCount++] = currentNode;
// Check if we have reached the target node
if (currentNode.x == targetNode.x && currentNode.y == targetNode.y) {
// Path found, reconstruct and print the path
while (currentNode.parent != NULL) {
printf("(%d, %d) -> ", currentNode.x, currentNode.y);
currentNode = *currentNode.parent;
}
printf("(%d, %d)\n", startX, startY);
break;
}
// Generate neighboring nodes
for (int i = -1; i <= 1; i++) {
for (int j = -1; j <= 1; j++) {
if (i == 0 && j == 0) continue;
int neighborX = currentNode.x + i;
int neighborY = currentNode.y + j;
// Ignore invalid neighbors or obstacles
if (neighborX < 0 || neighborX >= MAP_SIZE || neighborY < 0 || neighborY >= MAP_SIZE ||
map->currentMap.tileData[neighborX][neighborY] == 1 || isUnitOrBuildingAtPosition(map, neighborX, neighborY)) {
continue;
}
// Calculate neighbor costs
int gCost = currentNode.gCost + 1; // Assuming uniform movement cost
int hCost = calculateDistance(neighborX, neighborY, targetNode.x, targetNode.y);
// Check if neighbor is in the closed list
bool inClosedList = false;
for (int k = 0; k < closedListCount; k++) {
if (closedList[k].x == neighborX && closedList[k].y == neighborY) {
inClosedList = true;
break;
}
}
if (!inClosedList) {
// Check if neighbor is in the open list
bool inOpenList = false;
for (int k = 0; k < openListCount; k++) {
if (openList[k].x == neighborX && openList[k].y == neighborY) {
inOpenList = true;
if (gCost < openList[k].gCost) {
openList[k].gCost = gCost;
openList[k].parent = &currentNode;
}
break;
}
}
if (!inOpenList) {
// Add neighbor to open list
openList[openListCount++] = (Node){neighborX, neighborY, gCost, hCost, &currentNode};
}
}
}
}
}
free(openList);
free(closedList);
}