rufus/src/format.c

2034 lines
71 KiB
C

/*
* Rufus: The Reliable USB Formatting Utility
* Formatting function calls
* Copyright © 2011-2024 Pete Batard <pete@akeo.ie>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#endif
#include <windows.h>
#include <windowsx.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <process.h>
#include <stddef.h>
#include <ctype.h>
#include <locale.h>
#include <assert.h>
#if !defined(__MINGW32__)
#include <vds.h>
#endif
#include "rufus.h"
#include "format.h"
#include "missing.h"
#include "resource.h"
#include "settings.h"
#include "winio.h"
#include "msapi_utf8.h"
#include "localization.h"
#include "br.h"
#include "vhd.h"
#include "wue.h"
#include "fat16.h"
#include "fat32.h"
#include "ntfs.h"
#include "partition_info.h"
#include "file.h"
#include "drive.h"
#include "format.h"
#include "badblocks.h"
#include "bled/bled.h"
#include "../res/grub/grub_version.h"
/* Numbers of buffer used for asynchronous DD reads */
#define NUM_BUFFERS 2
/*
* Globals
*/
const char* FileSystemLabel[FS_MAX] = { "FAT", "FAT32", "NTFS", "UDF", "exFAT", "ReFS", "ext2", "ext3", "ext4" };
DWORD ErrorStatus = 0, LastWriteError = 0;
badblocks_report report = { 0 };
static float format_percent = 0.0f;
static int task_number = 0, actual_fs_type;
static unsigned int sec_buf_pos = 0;
extern const int nb_steps[FS_MAX];
extern const char* md5sum_name[2];
extern uint32_t dur_mins, dur_secs;
extern uint32_t wim_nb_files, wim_proc_files, wim_extra_files;
extern BOOL force_large_fat32, enable_ntfs_compression, lock_drive, zero_drive, fast_zeroing, enable_file_indexing;
extern BOOL write_as_image, use_vds, write_as_esp, is_vds_available, has_ffu_support, use_rufus_mbr;
extern char* archive_path;
uint8_t *grub2_buf = NULL, *sec_buf = NULL;
long grub2_len;
/*
* Convert the fmifs outputs messages (that use an OEM code page) to UTF-8
*/
static void OutputUTF8Message(const char* src)
{
int len;
wchar_t* wdst = NULL;
if (src == NULL)
goto out;
len = (int)safe_strlen(src);
while ((len > 0) && ((src[len-1] == 0x0A) || (src[len-1] == 0x0D) || (src[len-1] == ' ')))
len--;
if (len == 0)
goto out;
len = MultiByteToWideChar(CP_OEMCP, 0, src, len, NULL, 0);
if (len == 0)
goto out;
wdst = (wchar_t*)calloc(len+1, sizeof(wchar_t));
if ((wdst == NULL) || (MultiByteToWideChar(CP_OEMCP, 0, src, len, wdst, len+1) == 0))
goto out;
uprintf("%S", wdst);
out:
safe_free(wdst);
}
/*
* FormatEx callback. Return FALSE to halt operations
*/
static BOOLEAN __stdcall FormatExCallback(FILE_SYSTEM_CALLBACK_COMMAND Command, DWORD Action, PVOID pData)
{
char percent_str[8];
if (IS_ERROR(ErrorStatus))
return FALSE;
assert((actual_fs_type >= 0) && (actual_fs_type < FS_MAX));
if ((actual_fs_type < 0) || (actual_fs_type >= FS_MAX))
return FALSE;
switch(Command) {
case FCC_PROGRESS:
static_sprintf(percent_str, "%lu%%", *((DWORD*)pData));
PrintInfo(0, MSG_217, percent_str);
UpdateProgress(OP_FORMAT, 1.0f * (*((DWORD*)pData)));
break;
case FCC_STRUCTURE_PROGRESS: // No progress on quick format
if (task_number < nb_steps[actual_fs_type] - 1) {
if (task_number == 0)
uprintf("Creating file system...");
PrintInfo(0, MSG_218, ++task_number, nb_steps[actual_fs_type]);
format_percent += 100.0f / (1.0f * nb_steps[actual_fs_type]);
UpdateProgress(OP_CREATE_FS, format_percent);
}
break;
case FCC_DONE:
PrintInfo(0, MSG_218, nb_steps[actual_fs_type], nb_steps[actual_fs_type]);
UpdateProgress(OP_CREATE_FS, 100.0f);
if(*(BOOLEAN*)pData == FALSE) {
uprintf("Error while formatting");
ErrorStatus = RUFUS_ERROR(ERROR_GEN_FAILURE);
}
break;
case FCC_DONE_WITH_STRUCTURE:
break;
case FCC_INCOMPATIBLE_FILE_SYSTEM:
uprintf("Incompatible File System");
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_INCOMPATIBLE_FS));
break;
case FCC_ACCESS_DENIED:
uprintf("Access denied");
ErrorStatus = RUFUS_ERROR(ERROR_ACCESS_DENIED);
break;
case FCC_MEDIA_WRITE_PROTECTED:
uprintf("Media is write protected");
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_PROTECT);
break;
case FCC_VOLUME_IN_USE:
uprintf("Volume is in use");
ErrorStatus = RUFUS_ERROR(ERROR_DEVICE_IN_USE);
break;
case FCC_DEVICE_NOT_READY:
uprintf("The device is not ready");
ErrorStatus = RUFUS_ERROR(ERROR_NOT_READY);
break;
case FCC_CANT_QUICK_FORMAT:
uprintf("Cannot quick format this volume");
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_QUICK_FORMAT));
break;
case FCC_BAD_LABEL:
uprintf("Bad label");
ErrorStatus = RUFUS_ERROR(ERROR_LABEL_TOO_LONG);
break;
case FCC_OUTPUT:
OutputUTF8Message(((PTEXTOUTPUT)pData)->Output);
break;
case FCC_CLUSTER_SIZE_TOO_BIG:
case FCC_CLUSTER_SIZE_TOO_SMALL:
uprintf("Unsupported cluster size");
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_INVALID_CLUSTER_SIZE));
break;
case FCC_VOLUME_TOO_BIG:
case FCC_VOLUME_TOO_SMALL:
uprintf("Volume is too %s", (Command == FCC_VOLUME_TOO_BIG) ? "big" : "small");
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_INVALID_VOLUME_SIZE));
break;
case FCC_NO_MEDIA_IN_DRIVE:
uprintf("No media in drive");
ErrorStatus = RUFUS_ERROR(ERROR_NO_MEDIA_IN_DRIVE);
break;
case FCC_ALIGNMENT_VIOLATION:
uprintf("Partition start offset is not aligned to the cluster size");
ErrorStatus = RUFUS_ERROR(ERROR_OFFSET_ALIGNMENT_VIOLATION);
break;
default:
uprintf("FormatExCallback: Received unhandled command 0x%02X - aborting", Command);
ErrorStatus = RUFUS_ERROR(ERROR_NOT_SUPPORTED);
break;
}
return (!IS_ERROR(ErrorStatus));
}
/*
* Chkdsk callback. Return FALSE to halt operations
*/
static BOOLEAN __stdcall ChkdskCallback(FILE_SYSTEM_CALLBACK_COMMAND Command, DWORD Action, PVOID pData)
{
DWORD* percent;
if (IS_ERROR(ErrorStatus))
return FALSE;
switch (Command) {
case FCC_PROGRESS:
case FCC_CHECKDISK_PROGRESS:
percent = (DWORD*)pData;
PrintInfo(0, MSG_219, *percent);
break;
case FCC_DONE:
if (*(BOOLEAN*)pData == FALSE) {
uprintf("Error while checking disk");
return FALSE;
}
break;
case FCC_UNKNOWN1A:
case FCC_DONE_WITH_STRUCTURE:
// Silence these specific calls
break;
case FCC_INCOMPATIBLE_FILE_SYSTEM:
uprintf("Incompatible File System");
return FALSE;
case FCC_ACCESS_DENIED:
uprintf("Access denied");
return FALSE;
case FCC_MEDIA_WRITE_PROTECTED:
uprintf("Media is write protected");
return FALSE;
case FCC_VOLUME_IN_USE:
uprintf("Volume is in use");
return FALSE;
case FCC_OUTPUT:
OutputUTF8Message(((PTEXTOUTPUT)pData)->Output);
break;
case FCC_NO_MEDIA_IN_DRIVE:
uprintf("No media in drive");
return FALSE;
case FCC_READ_ONLY_MODE:
uprintf("Media has been switched to read-only - Leaving checkdisk");
break;
default:
uprintf("ChkdskExCallback: received unhandled command %X", Command);
// Assume the command isn't an error
break;
}
return TRUE;
}
/*
* Converts an UTF-8 label to a valid FAT/NTFS one
* TODO: Use IVdsService::QueryFileSystemTypes -> VDS_FILE_SYSTEM_TYPE_PROP
* to get the list of unauthorised and max length for each FS.
*/
static void ToValidLabel(char* Label, BOOL bFAT)
{
size_t i, j, k;
BOOL found;
const WCHAR unauthorized[] = L"*?,;:/\\|+=<>[]\"";
const WCHAR to_underscore[] = L"\t.";
char label[16] = { 0 };
WCHAR *wLabel = utf8_to_wchar(Label);
if (wLabel == NULL)
return;
for (i = 0, k = 0; i < wcslen(wLabel); i++) {
if (bFAT) { // NTFS does allows all the FAT unauthorized above
found = FALSE;
for (j = 0; j < wcslen(unauthorized); j++) {
if (wLabel[i] == unauthorized[j]) {
found = TRUE;
break;
}
}
// A FAT label that contains extended chars will be rejected
if (wLabel[i] >= 0x80) {
wLabel[k++] = L'_';
found = TRUE;
}
if (found)
continue;
}
found = FALSE;
for (j = 0; j < wcslen(to_underscore); j++) {
if (wLabel[i] == to_underscore[j]) {
wLabel[k++] = '_';
found = TRUE;
break;
}
}
if (found)
continue;
wLabel[k++] = bFAT ? toupper(wLabel[i]) : wLabel[i];
}
wLabel[k] = 0;
if (bFAT) {
if (wcslen(wLabel) > 11)
wLabel[11] = 0;
for (i = 0, j = 0; wLabel[i] != 0 ; i++)
if (wLabel[i] == '_')
j++;
if (i < 2*j) {
// If the final label is mostly underscore, use an alternate label according to the
// size (eg: "256 MB", "7.9 GB"). Note that we can't use SelectedDrive.proposed_label
// here as it may contain localized character for GB or MB, so make sure that the
// effective label we use is an English one, and also make sure we convert the dot.
static_sprintf(label, "%s", SizeToHumanReadable(SelectedDrive.DiskSize, TRUE, FALSE));
for (i = 0; label[i] != 0; i++)
wLabel[i] = (label[i] == '.') ? '_' : label[i];
wLabel[i] = 0;
uprintf("FAT label is mostly underscores. Using '%S' label instead.", wLabel);
}
} else if (wcslen(wLabel) > 32) {
wLabel[32] = 0;
}
// Needed for disk by label isolinux.cfg workaround
wchar_to_utf8_no_alloc(wLabel, img_report.usb_label, sizeof(img_report.usb_label));
safe_strcpy(Label, strlen(Label) + 1, img_report.usb_label);
free(wLabel);
}
/*
* Call on VDS to format a partition
*/
static BOOL FormatNativeVds(DWORD DriveIndex, uint64_t PartitionOffset, DWORD ClusterSize, LPCSTR FSName, LPCSTR Label, DWORD Flags)
{
BOOL r = FALSE, bFoundVolume = FALSE;
HRESULT hr;
ULONG ulFetched;
IVdsServiceLoader *pLoader;
IVdsService *pService;
IEnumVdsObject *pEnum;
IUnknown *pUnk;
char* VolumeName = NULL;
WCHAR *wVolumeName = NULL, *wLabel = utf8_to_wchar(Label), *wFSName = utf8_to_wchar(FSName);
if ((strcmp(FSName, FileSystemLabel[FS_EXFAT]) == 0) && !((dur_mins == 0) && (dur_secs == 0))) {
PrintInfo(0, MSG_220, FSName, dur_mins, dur_secs);
} else {
PrintInfo(0, MSG_222, FSName);
}
uprintf("Formatting to %s (using VDS)", FSName);
UpdateProgressWithInfoInit(NULL, TRUE);
VolumeName = GetLogicalName(DriveIndex, PartitionOffset, TRUE, TRUE);
wVolumeName = utf8_to_wchar(VolumeName);
if (wVolumeName == NULL) {
uprintf("Could not read volume name");
ErrorStatus = RUFUS_ERROR(ERROR_GEN_FAILURE);
goto out;
}
// Initialize COM
IGNORE_RETVAL(CoInitializeEx(NULL, COINIT_APARTMENTTHREADED | COINIT_DISABLE_OLE1DDE));
IGNORE_RETVAL(CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_CONNECT,
RPC_C_IMP_LEVEL_IMPERSONATE, NULL, 0, NULL));
// Create a VDS Loader Instance
hr = CoCreateInstance(&CLSID_VdsLoader, NULL, CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,
&IID_IVdsServiceLoader, (void **)&pLoader);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not create VDS Loader Instance: %s", WindowsErrorString());
goto out;
}
// Load the VDS Service
hr = IVdsServiceLoader_LoadService(pLoader, L"", &pService);
IVdsServiceLoader_Release(pLoader);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not load VDS Service: %s", WindowsErrorString());
goto out;
}
// Wait for the Service to become ready if needed
hr = IVdsService_WaitForServiceReady(pService);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("VDS Service is not ready: %s", WindowsErrorString());
goto out;
}
// Query the VDS Service Providers
hr = IVdsService_QueryProviders(pService, VDS_QUERY_SOFTWARE_PROVIDERS, &pEnum);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not query VDS Service Providers: %s", WindowsErrorString());
goto out;
}
while (IEnumVdsObject_Next(pEnum, 1, &pUnk, &ulFetched) == S_OK) {
IVdsProvider *pProvider;
IVdsSwProvider *pSwProvider;
IEnumVdsObject *pEnumPack;
IUnknown *pPackUnk;
CHECK_FOR_USER_CANCEL;
// Get VDS Provider
hr = IUnknown_QueryInterface(pUnk, &IID_IVdsProvider, (void **)&pProvider);
IUnknown_Release(pUnk);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not get VDS Provider: %s", WindowsErrorString());
goto out;
}
// Get VDS Software Provider
hr = IVdsSwProvider_QueryInterface(pProvider, &IID_IVdsSwProvider, (void **)&pSwProvider);
IVdsProvider_Release(pProvider);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not get VDS Software Provider: %s", WindowsErrorString());
goto out;
}
// Get VDS Software Provider Packs
hr = IVdsSwProvider_QueryPacks(pSwProvider, &pEnumPack);
IVdsSwProvider_Release(pSwProvider);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not get VDS Software Provider Packs: %s", WindowsErrorString());
goto out;
}
// Enumerate Provider Packs
while (IEnumVdsObject_Next(pEnumPack, 1, &pPackUnk, &ulFetched) == S_OK) {
IVdsPack *pPack;
IEnumVdsObject *pEnumVolume;
IUnknown *pVolumeUnk;
CHECK_FOR_USER_CANCEL;
hr = IUnknown_QueryInterface(pPackUnk, &IID_IVdsPack, (void **)&pPack);
IUnknown_Release(pPackUnk);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not query VDS Software Provider Pack: %s", WindowsErrorString());
goto out;
}
// Use the pack interface to access the volumes
hr = IVdsPack_QueryVolumes(pPack, &pEnumVolume);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not query VDS volumes: %s", WindowsErrorString());
goto out;
}
// List volumes
while (IEnumVdsObject_Next(pEnumVolume, 1, &pVolumeUnk, &ulFetched) == S_OK) {
BOOL match;
HRESULT hr2 = E_FAIL;
VDS_VOLUME_PROP VolumeProps;
LPWSTR *wszPathArray;
ULONG ulPercentCompleted, ulNumberOfPaths;
USHORT usFsVersion = 0;
IVdsVolume *pVolume;
IVdsAsync* pAsync;
IVdsVolumeMF3 *pVolumeMF3;
CHECK_FOR_USER_CANCEL;
// Get the volume interface.
hr = IUnknown_QueryInterface(pVolumeUnk, &IID_IVdsVolume, (void **)&pVolume);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not query VDS Volume Interface: %s", WindowsErrorString());
goto out;
}
hr = IVdsVolume_GetProperties(pVolume, &VolumeProps);
if ((hr != S_OK) && (hr != VDS_S_PROPERTIES_INCOMPLETE)) {
VDS_SET_ERROR(hr);
IVdsVolume_Release(pVolume);
uprintf("Could not query VDS Volume Properties: %s", WindowsErrorString());
continue;
}
CoTaskMemFree(VolumeProps.pwszName);
// Instantiate the IVdsVolumeMF3 interface for our volume.
hr = IVdsVolume_QueryInterface(pVolume, &IID_IVdsVolumeMF3, (void **)&pVolumeMF3);
IVdsVolume_Release(pVolume);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not access VDS VolumeMF3 interface: %s", WindowsErrorString());
continue;
}
// Query the volume GUID
hr = IVdsVolumeMF3_QueryVolumeGuidPathnames(pVolumeMF3, &wszPathArray, &ulNumberOfPaths);
if (hr != S_OK) {
VDS_SET_ERROR(hr);
uprintf("Could not query VDS VolumeGuidPathnames: %s", WindowsErrorString());
continue;
}
if (ulNumberOfPaths > 1)
uprintf("Notice: Volume %S has more than one GUID...", wszPathArray[0]);
match = (wcscmp(wVolumeName, wszPathArray[0]) == 0);
CoTaskMemFree(wszPathArray);
if (!match)
continue;
bFoundVolume = TRUE;
if (strcmp(Label, FileSystemLabel[FS_UDF]) == 0)
usFsVersion = ReadSetting32(SETTING_USE_UDF_VERSION);
if (ClusterSize < 0x200) {
ClusterSize = 0;
uprintf("Using default cluster size");
} else {
uprintf("Using cluster size: %d bytes", ClusterSize);
}
format_percent = 0.0f;
uprintf("%s format was selected", (Flags & FP_QUICK) ? "Quick" : "Slow");
if (Flags & FP_COMPRESSION)
uprintf("NTFS compression is enabled");
hr = IVdsVolumeMF3_FormatEx2(pVolumeMF3, wFSName, usFsVersion, ClusterSize, wLabel, Flags, &pAsync);
while (SUCCEEDED(hr)) {
if (IS_ERROR(ErrorStatus)) {
IVdsAsync_Cancel(pAsync);
break;
}
hr = IVdsAsync_QueryStatus(pAsync, &hr2, &ulPercentCompleted);
if (SUCCEEDED(hr)) {
if (Flags & FP_QUICK) {
// Progress report on quick format is useless, so we'll just pretend we have 2 tasks
PrintInfo(0, MSG_218, (ulPercentCompleted < 100) ? 1 : 2, 2);
UpdateProgress(OP_CREATE_FS, (float)ulPercentCompleted);
} else {
UpdateProgressWithInfo(OP_FORMAT, MSG_217, ulPercentCompleted, 100);
}
hr = hr2;
if (hr == S_OK)
break;
if (hr == VDS_E_OPERATION_PENDING)
hr = S_OK;
}
Sleep(500);
}
if (!SUCCEEDED(hr)) {
VDS_SET_ERROR(hr);
uprintf("Could not format drive: %s", WindowsErrorString());
goto out;
}
IVdsAsync_Release(pAsync);
IVdsVolumeMF3_Release(pVolumeMF3);
if (!IS_ERROR(ErrorStatus)) {
uprintf("Format completed.");
r = TRUE;
}
goto out;
}
}
}
out:
if ((!bFoundVolume) && (ErrorStatus == 0))
ErrorStatus = RUFUS_ERROR(ERROR_PATH_NOT_FOUND);
safe_free(VolumeName);
safe_free(wVolumeName);
safe_free(wLabel);
safe_free(wFSName);
CoUninitialize();
return r;
}
/*
* Call on fmifs.dll's FormatEx() to format the drive
*/
static BOOL FormatNative(DWORD DriveIndex, uint64_t PartitionOffset, DWORD ClusterSize, LPCSTR FSName, LPCSTR Label, DWORD Flags)
{
BOOL r = FALSE;
PF_DECL(FormatEx);
PF_DECL(EnableVolumeCompression);
char *locale, *VolumeName = NULL;
WCHAR* wVolumeName = NULL, *wLabel = utf8_to_wchar(Label), *wFSName = utf8_to_wchar(FSName);
size_t i;
if ((strcmp(FSName, FileSystemLabel[FS_EXFAT]) == 0) && !((dur_mins == 0) && (dur_secs == 0))) {
PrintInfo(0, MSG_220, FSName, dur_mins, dur_secs);
} else {
PrintInfo(0, MSG_222, FSName);
}
uprintf("Formatting to %s (using IFS)", FSName);
VolumeName = GetLogicalName(DriveIndex, PartitionOffset, TRUE, TRUE);
wVolumeName = utf8_to_wchar(VolumeName);
if (wVolumeName == NULL) {
uprintf("Could not read volume name (%s)", VolumeName);
ErrorStatus = RUFUS_ERROR(ERROR_GEN_FAILURE);
goto out;
}
// Hey, nice consistency here, Microsoft! - FormatEx() fails if wVolumeName has
// a trailing backslash, but EnableCompression() fails without...
wVolumeName[wcslen(wVolumeName)-1] = 0; // Remove trailing backslash
// LoadLibrary("fmifs.dll") appears to changes the locale, which can lead to
// problems with tolower(). Make sure we restore the locale. For more details,
// see https://sourceforge.net/p/mingw/mailman/message/29269040/
locale = setlocale(LC_ALL, NULL);
PF_INIT_OR_OUT(FormatEx, fmifs);
PF_INIT(EnableVolumeCompression, fmifs);
setlocale(LC_ALL, locale);
if (ClusterSize < 0x200) {
// 0 is FormatEx's value for default, which we need to use for UDF
ClusterSize = 0;
uprintf("Using default cluster size");
} else {
uprintf("Using cluster size: %d bytes", ClusterSize);
}
format_percent = 0.0f;
task_number = 0;
uprintf("%s format was selected", (Flags & FP_QUICK) ? "Quick" : "Slow");
for (i = 0; i < WRITE_RETRIES; i++) {
pfFormatEx(wVolumeName, SelectedDrive.MediaType, wFSName, wLabel,
(Flags & FP_QUICK), ClusterSize, FormatExCallback);
if (!IS_ERROR(ErrorStatus) || (HRESULT_CODE(ErrorStatus) == ERROR_CANCELLED))
break;
uprintf("%s - Retrying...", WindowsErrorString());
Sleep(WRITE_TIMEOUT);
}
if (IS_ERROR(ErrorStatus))
goto out;
if (Flags & FP_COMPRESSION) {
wVolumeName[wcslen(wVolumeName)] = '\\'; // Add trailing backslash back again
if (pfEnableVolumeCompression(wVolumeName, FPF_COMPRESSED)) {
uprintf("Enabled NTFS compression");
} else {
uprintf("Could not enable NTFS compression: %s", WindowsErrorString());
}
}
if (!IS_ERROR(ErrorStatus)) {
uprintf("Format completed.");
r = TRUE;
}
out:
if (!r && !IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(SCODE_CODE(GetLastError()));
safe_free(VolumeName);
safe_free(wVolumeName);
safe_free(wLabel);
safe_free(wFSName);
return r;
}
BOOL FormatPartition(DWORD DriveIndex, uint64_t PartitionOffset, DWORD UnitAllocationSize, USHORT FSType, LPCSTR Label, DWORD Flags)
{
if ((DriveIndex < 0x80) || (DriveIndex > 0x100) || (FSType >= FS_MAX) ||
((UnitAllocationSize != 0) && (!IS_POWER_OF_2(UnitAllocationSize)))) {
ErrorStatus = RUFUS_ERROR(ERROR_INVALID_PARAMETER);
return FALSE;
}
actual_fs_type = FSType;
if ((FSType == FS_FAT32) && ((SelectedDrive.DiskSize > LARGE_FAT32_SIZE) || (force_large_fat32) || (Flags & FP_LARGE_FAT32)))
return FormatLargeFAT32(DriveIndex, PartitionOffset, UnitAllocationSize, FileSystemLabel[FSType], Label, Flags);
else if (IS_EXT(FSType))
return FormatExtFs(DriveIndex, PartitionOffset, UnitAllocationSize, FileSystemLabel[FSType], Label, Flags);
else if (use_vds)
return FormatNativeVds(DriveIndex, PartitionOffset, UnitAllocationSize, FileSystemLabel[FSType], Label, Flags);
else
return FormatNative(DriveIndex, PartitionOffset, UnitAllocationSize, FileSystemLabel[FSType], Label, Flags);
}
/*
* Call on fmifs.dll's Chkdsk() to fixup the filesystem
*/
static BOOL CheckDisk(char DriveLetter)
{
BOOL r = FALSE;
PF_DECL(Chkdsk);
WCHAR wDriveRoot[] = L"?:\\";
WCHAR wFSType[32];
size_t i;
wDriveRoot[0] = (WCHAR)DriveLetter;
PrintInfoDebug(0, MSG_223);
PF_INIT_OR_OUT(Chkdsk, Fmifs);
GetWindowTextW(hFileSystem, wFSType, ARRAYSIZE(wFSType));
// We may have a " (Default)" trail
for (i=0; i<wcslen(wFSType); i++) {
if (wFSType[i] == ' ') {
wFSType[i] = 0;
break;
}
}
pfChkdsk(wDriveRoot, wFSType, FALSE, FALSE, FALSE, FALSE, NULL, NULL, ChkdskCallback);
if (!IS_ERROR(ErrorStatus)) {
uprintf("NTFS Fixup completed.");
r = TRUE;
}
out:
return r;
}
static BOOL ClearMBRGPT(HANDLE hPhysicalDrive, LONGLONG DiskSize, DWORD SectorSize, BOOL add1MB)
{
BOOL r = FALSE;
LARGE_INTEGER liFilePointer;
uint64_t num_sectors_to_clear;
unsigned char* pZeroBuf = NULL;
PrintInfoDebug(0, MSG_224);
// http://en.wikipedia.org/wiki/GUID_Partition_Table tells us we should clear 34 sectors at the
// beginning and 33 at the end. We bump these values to MAX_SECTORS_TO_CLEAR each end to help
// with reluctant access to large drive.
// We try to clear at least 1MB + the VBR when Large FAT32 is selected (add1MB), but
// don't do it otherwise, as it seems unnecessary and may take time for slow drives.
// Also, for various reasons (one of which being that Windows seems to have issues
// with GPT drives that contain a lot of small partitions) we try not not to clear
// sectors further than the lowest partition already residing on the disk.
num_sectors_to_clear = min(SelectedDrive.FirstDataSector, (DWORD)((add1MB ? 2048 : 0) + MAX_SECTORS_TO_CLEAR));
// Special case for big floppy disks (FirstDataSector = 0)
if (num_sectors_to_clear < 4)
num_sectors_to_clear = (DWORD)((add1MB ? 2048 : 0) + MAX_SECTORS_TO_CLEAR);
uprintf("Erasing %llu sectors", num_sectors_to_clear);
pZeroBuf = calloc(SectorSize, (size_t)num_sectors_to_clear);
if (pZeroBuf == NULL) {
ErrorStatus = RUFUS_ERROR(ERROR_NOT_ENOUGH_MEMORY);
goto out;
}
liFilePointer.QuadPart = 0ULL;
if (!SetFilePointerEx(hPhysicalDrive, liFilePointer, &liFilePointer, FILE_BEGIN) || (liFilePointer.QuadPart != 0ULL))
uprintf("Warning: Could not reset disk position");
if (!WriteFileWithRetry(hPhysicalDrive, pZeroBuf, (DWORD)(SectorSize * num_sectors_to_clear), NULL, WRITE_RETRIES))
goto out;
CHECK_FOR_USER_CANCEL;
liFilePointer.QuadPart = DiskSize - (LONGLONG)SectorSize * MAX_SECTORS_TO_CLEAR;
// Windows seems to be an ass about keeping a lock on a backup GPT,
// so we try to be lenient about not being able to clear it.
if (SetFilePointerEx(hPhysicalDrive, liFilePointer, &liFilePointer, FILE_BEGIN)) {
IGNORE_RETVAL(WriteFileWithRetry(hPhysicalDrive, pZeroBuf,
SectorSize * MAX_SECTORS_TO_CLEAR, NULL, WRITE_RETRIES));
}
r = TRUE;
out:
safe_free(pZeroBuf);
return r;
}
/*
* Process the Master Boot Record
*/
static BOOL WriteMBR(HANDLE hPhysicalDrive)
{
BOOL r = FALSE;
BOOL needs_masquerading = HAS_WINPE(img_report) && (!img_report.uses_minint);
uint8_t* buffer = NULL;
FAKE_FD fake_fd = { 0 };
FILE* fp = (FILE*)&fake_fd;
const char* using_msg = "Using %s MBR";
if (SelectedDrive.SectorSize < 512)
goto out;
if (partition_type == PARTITION_STYLE_GPT) {
// Add a notice with a protective MBR
fake_fd._handle = (char*)hPhysicalDrive;
set_bytes_per_sector(SelectedDrive.SectorSize);
uprintf(using_msg, "Rufus protective");
r = write_rufus_msg_mbr(fp);
goto notify;
}
// FormatEx rewrites the MBR and removes the LBA attribute of FAT16
// and FAT32 partitions - we need to correct this in the MBR
buffer = (uint8_t*)_mm_malloc(SelectedDrive.SectorSize, 16);
if (buffer == NULL) {
uprintf("Could not allocate memory for MBR");
ErrorStatus = RUFUS_ERROR(ERROR_NOT_ENOUGH_MEMORY);
goto out;
}
if (!read_sectors(hPhysicalDrive, SelectedDrive.SectorSize, 0, 1, buffer)) {
uprintf("Could not read MBR");
ErrorStatus = RUFUS_ERROR(ERROR_READ_FAULT);
goto out;
}
switch (ComboBox_GetCurItemData(hFileSystem)) {
case FS_FAT16:
if (buffer[0x1c2] == 0x0e) {
uprintf("Partition is already FAT16 LBA...");
} else if ((buffer[0x1c2] != 0x04) && (buffer[0x1c2] != 0x06)) {
uprintf("Warning: converting a non FAT16 partition to FAT16 LBA: FS type=0x%02x", buffer[0x1c2]);
}
buffer[0x1c2] = 0x0e;
break;
case FS_FAT32:
if (buffer[0x1c2] == 0x0c) {
uprintf("Partition is already FAT32 LBA...");
} else if (buffer[0x1c2] != 0x0b) {
uprintf("Warning: converting a non FAT32 partition to FAT32 LBA: FS type=0x%02x", buffer[0x1c2]);
}
buffer[0x1c2] = 0x0c;
break;
}
if ((boot_type != BT_NON_BOOTABLE) && (target_type == TT_BIOS)) {
// Set first partition bootable or masquerade as second disk
buffer[0x1be] = needs_masquerading ? 0x81 : 0x80;
uprintf("Set bootable USB partition as 0x%02X", buffer[0x1be]);
}
if (!write_sectors(hPhysicalDrive, SelectedDrive.SectorSize, 0, 1, buffer)) {
uprintf("Could not write MBR");
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_FAULT);
goto out;
}
fake_fd._handle = (char*)hPhysicalDrive;
set_bytes_per_sector(SelectedDrive.SectorSize);
// What follows is really a case statement with complex conditions listed
// by order of preference
if ((boot_type == BT_IMAGE) && HAS_WINDOWS(img_report) && (allow_dual_uefi_bios) && (target_type == TT_BIOS))
goto windows_mbr;
// Non bootable or forced UEFI (zeroed MBR)
if ((boot_type == BT_NON_BOOTABLE) || (target_type == TT_UEFI)) {
uprintf(using_msg, "Zeroed");
r = write_zero_mbr(fp);
goto notify;
}
// Syslinux
if ( (boot_type == BT_SYSLINUX_V4) || (boot_type == BT_SYSLINUX_V6) ||
((boot_type == BT_IMAGE) && HAS_SYSLINUX(img_report)) ) {
uprintf(using_msg, "Syslinux");
r = write_syslinux_mbr(fp);
goto notify;
}
// Grub 2.0
if ( ((boot_type == BT_IMAGE) && (img_report.has_grub2)) || (boot_type == BT_GRUB2) ) {
uprintf(using_msg, "Grub 2.0");
r = write_grub2_mbr(fp);
goto notify;
}
// Grub4DOS
if ( ((boot_type == BT_IMAGE) && (img_report.has_grub4dos)) || (boot_type == BT_GRUB4DOS) ) {
uprintf(using_msg, "Grub4DOS");
r = write_grub4dos_mbr(fp);
goto notify;
}
// ReactOS
if (boot_type == BT_REACTOS) {
uprintf(using_msg, "ReactOS");
r = write_reactos_mbr(fp);
goto notify;
}
// KolibriOS
if ( (boot_type == BT_IMAGE) && HAS_KOLIBRIOS(img_report) && (IS_FAT(fs_type))) {
uprintf(using_msg, "KolibriOS");
r = write_kolibrios_mbr(fp);
goto notify;
}
// If everything else failed, fall back to a conventional Windows/Rufus MBR
windows_mbr:
if (needs_masquerading || use_rufus_mbr) {
uprintf(using_msg, APPLICATION_NAME);
r = write_rufus_mbr(fp);
} else {
uprintf(using_msg, "Windows 7");
r = write_win7_mbr(fp);
}
notify:
// Tell the system we've updated the disk properties
if (!DeviceIoControl(hPhysicalDrive, IOCTL_DISK_UPDATE_PROPERTIES, NULL, 0, NULL, 0, NULL, NULL))
uprintf("Failed to notify system about disk properties update: %s", WindowsErrorString());
out:
safe_mm_free(buffer);
return r;
}
/*
* Write Secondary Boot Record (usually right after the MBR)
*/
static BOOL WriteSBR(HANDLE hPhysicalDrive)
{
// TODO: Do we need anything special for 4K sectors?
DWORD size, max_size, br_size = 0x200;
int r, sub_type = boot_type;
uint8_t *buf = NULL;
FAKE_FD fake_fd = { 0 };
FILE* fp = (FILE*)&fake_fd;
fake_fd._handle = (char*)hPhysicalDrive;
set_bytes_per_sector(SelectedDrive.SectorSize);
// Syslinux has precedence over Grub
if ((boot_type == BT_IMAGE) && (!HAS_SYSLINUX(img_report))) {
if (img_report.has_grub4dos)
sub_type = BT_GRUB4DOS;
if (img_report.has_grub2)
sub_type = BT_GRUB2;
}
// Use BT_MAX for the protective message
if ((boot_type != BT_NON_BOOTABLE) && (partition_type == PARTITION_STYLE_GPT))
sub_type = BT_MAX;
switch (sub_type) {
case BT_GRUB4DOS:
uprintf("Writing Grub4Dos SBR");
buf = GetResource(hMainInstance, MAKEINTRESOURCEA(IDR_GR_GRUB_GRLDR_MBR), _RT_RCDATA, "grldr.mbr", &size, FALSE);
if ((buf == NULL) || (size <= br_size)) {
uprintf("grldr.mbr is either not present or too small");
return FALSE;
}
buf = &buf[br_size];
size -= br_size;
break;
case BT_GRUB2:
if (grub2_buf != NULL) {
uprintf("Writing Grub 2.0 SBR (from download) %s",
IsBufferInDB(grub2_buf, grub2_len)?"":"");
buf = grub2_buf;
size = (DWORD)grub2_len;
} else {
uprintf("Writing Grub 2.0 SBR (from embedded)");
buf = GetResource(hMainInstance, MAKEINTRESOURCEA(IDR_GR_GRUB2_CORE_IMG), _RT_RCDATA, "core.img", &size, FALSE);
if (buf == NULL) {
uprintf("Could not access core.img");
return FALSE;
}
}
break;
case BT_MAX:
uprintf("Writing protective message SBR");
size = 4 * KB;
br_size = 17 * KB; // 34 sectors are reserved for protective MBR + primary GPT
buf = GetResource(hMainInstance, MAKEINTRESOURCEA(IDR_SBR_MSG), _RT_RCDATA, "msg.txt", &size, TRUE);
if (buf == NULL) {
uprintf("Could not access message");
return FALSE;
}
break;
default:
// No need to write secondary block
return TRUE;
}
// Ensure that we have sufficient space for the SBR
max_size = (DWORD)SelectedDrive.Partition[0].Offset;
if (br_size + size > max_size) {
uprintf(" SBR size is too large - You may need to uncheck 'Add fixes for old BIOSes'.");
if (sub_type == BT_MAX)
safe_free(buf);
return FALSE;
}
r = write_data(fp, br_size, buf, (uint64_t)size);
safe_free(grub2_buf);
if (sub_type == BT_MAX)
safe_free(buf);
return (r != 0);
}
/*
* Process the Partition Boot Record
*/
static __inline const char* bt_to_name(void) {
switch (boot_type) {
case BT_FREEDOS: return "FreeDOS";
case BT_REACTOS: return "ReactOS";
default:
return ((boot_type == BT_IMAGE) && HAS_KOLIBRIOS(img_report)) ? "KolibriOS" : "Standard";
}
}
BOOL WritePBR(HANDLE hLogicalVolume)
{
int i;
FAKE_FD fake_fd = { 0 };
FILE* fp = (FILE*)&fake_fd;
const char* using_msg = "Using %s %s partition boot record";
fake_fd._handle = (char*)hLogicalVolume;
set_bytes_per_sector(SelectedDrive.SectorSize);
switch (actual_fs_type) {
case FS_FAT16:
uprintf(using_msg, bt_to_name(), "FAT16");
if (!is_fat_16_fs(fp)) {
uprintf("New volume does not have a FAT16 boot sector - aborting");
break;
}
uprintf("Confirmed new volume has a FAT16 boot sector");
if (boot_type == BT_FREEDOS) {
if (!write_fat_16_fd_br(fp, 0)) break;
} else if (boot_type == BT_REACTOS) {
if (!write_fat_16_ros_br(fp, 0)) break;
} else if ((boot_type == BT_IMAGE) && HAS_KOLIBRIOS(img_report)) {
uprintf("FAT16 is not supported for KolibriOS"); break;
} else {
if (!write_fat_16_br(fp, 0)) break;
}
// Disk Drive ID needs to be corrected on XP
if (!write_partition_physical_disk_drive_id_fat16(fp))
break;
return TRUE;
case FS_FAT32:
uprintf(using_msg, bt_to_name(), "FAT32");
for (i = 0; i < 2; i++) {
if (!is_fat_32_fs(fp)) {
uprintf("New volume does not have a %s FAT32 boot sector - aborting", i ? "secondary" : "primary");
break;
}
uprintf("Confirmed new volume has a %s FAT32 boot sector", i ? "secondary" : "primary");
uprintf("Setting %s FAT32 boot sector for boot...", i ? "secondary" : "primary");
if (boot_type == BT_FREEDOS) {
if (!write_fat_32_fd_br(fp, 0)) break;
} else if (boot_type == BT_REACTOS) {
if (!write_fat_32_ros_br(fp, 0)) break;
} else if ((boot_type == BT_IMAGE) && HAS_KOLIBRIOS(img_report)) {
if (!write_fat_32_kos_br(fp, 0)) break;
} else if ((boot_type == BT_IMAGE) && HAS_BOOTMGR(img_report)) {
if (!write_fat_32_pe_br(fp, 0)) break;
} else if ((boot_type == BT_IMAGE) && HAS_WINPE(img_report)) {
if (!write_fat_32_nt_br(fp, 0)) break;
} else {
if (!write_fat_32_br(fp, 0)) break;
}
// Disk Drive ID needs to be corrected on XP
if (!write_partition_physical_disk_drive_id_fat32(fp))
break;
fake_fd._offset += 6 * SelectedDrive.SectorSize;
}
return TRUE;
case FS_NTFS:
uprintf(using_msg, bt_to_name(), "NTFS");
if (!is_ntfs_fs(fp)) {
uprintf("New volume does not have an NTFS boot sector - aborting");
break;
}
uprintf("Confirmed new volume has an NTFS boot sector");
if (!write_ntfs_br(fp)) break;
// Note: NTFS requires a full remount after writing the PBR. We dismount when we lock
// and also go through a forced remount, so that shouldn't be an issue.
// But with NTFS, if you don't remount, you don't boot!
return TRUE;
case FS_EXT2:
case FS_EXT3:
case FS_EXT4:
return TRUE;
default:
uprintf("Unsupported FS for FS BR processing - aborting");
break;
}
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_FAULT);
return FALSE;
}
static void update_progress(const uint64_t processed_bytes)
{
// NB: We don't really care about resetting this value to UINT64_MAX for a new pass.
static uint64_t last_value = UINT64_MAX;
uint64_t cur_value;
UpdateProgressWithInfo(OP_FORMAT, MSG_261, processed_bytes, img_report.image_size);
cur_value = (processed_bytes * min(80, img_report.image_size)) / img_report.image_size;
if (cur_value != last_value) {
last_value = cur_value;
uprintfs("+");
}
}
// Some compressed images use streams that aren't multiple of the sector
// size and cause write failures => Use a write override that alleviates
// the problem. See GitHub issue #1422 for details.
static int sector_write(int fd, const void* _buf, unsigned int count)
{
const uint8_t* buf = (const uint8_t*)_buf;
unsigned int sec_size = (unsigned int)SelectedDrive.SectorSize;
int written, fill_size = 0;
if (sec_size == 0)
sec_size = 512;
// If we are on a sector boundary and count is multiple of the
// sector size, just issue a regular write
if ((sec_buf_pos == 0) && (count % sec_size == 0))
return _write(fd, buf, count);
// If we have an existing partial sector, fill and write it
if (sec_buf_pos > 0) {
fill_size = min(sec_size - sec_buf_pos, count);
memcpy(&sec_buf[sec_buf_pos], buf, fill_size);
sec_buf_pos += fill_size;
// If we don't have a full sector just buffer it for next call
if (sec_buf_pos < sec_size)
return (int)count;
sec_buf_pos = 0;
written = _write(fd, sec_buf, sec_size);
if (written != sec_size)
return written;
}
// Now write as many full sectors as we can
uint32_t sec_num = (count - fill_size) / sec_size;
written = _write(fd, &buf[fill_size], sec_num * sec_size);
if (written < 0)
return written;
else if (written != sec_num * sec_size)
return fill_size + written;
sec_buf_pos = count - fill_size - written;
assert(sec_buf_pos < sec_size);
// Keep leftover bytes, if any, in the sector buffer
if (sec_buf_pos != 0)
memcpy(sec_buf, &buf[fill_size + written], sec_buf_pos);
return (int)count;
}
/* Write an image file or zero a drive */
static BOOL WriteDrive(HANDLE hPhysicalDrive, BOOL bZeroDrive)
{
BOOL s, ret = FALSE;
LARGE_INTEGER li;
HANDLE hSourceImage = INVALID_HANDLE_VALUE;
DWORD i, read_size[NUM_BUFFERS], write_size, comp_size, buf_size;
uint64_t wb, target_size = bZeroDrive ? SelectedDrive.DiskSize : img_report.image_size;
uint64_t cur_value, last_value = 0;
int64_t bled_ret;
uint8_t* buffer = NULL;
uint32_t zero_data, *cmp_buffer = NULL;
char* vhd_path = NULL;
int throttle_fast_zeroing = 0, read_bufnum = 0, proc_bufnum = 1;
if (SelectedDrive.SectorSize < 512) {
uprintf("Unexpected sector size (%d) - Aborting", SelectedDrive.SectorSize);
return FALSE;
}
// We poked the MBR and other stuff, so we need to rewind
li.QuadPart = 0;
if (!SetFilePointerEx(hPhysicalDrive, li, NULL, FILE_BEGIN))
uprintf("Warning: Unable to rewind image position - wrong data might be copied!");
UpdateProgressWithInfoInit(NULL, FALSE);
if (bZeroDrive) {
uprintf(fast_zeroing ? "Fast-zeroing drive:" : "Zeroing drive:");
// Our buffer size must be a multiple of the sector size and *ALIGNED* to the sector size
buf_size = ((DD_BUFFER_SIZE + SelectedDrive.SectorSize - 1) / SelectedDrive.SectorSize) * SelectedDrive.SectorSize;
buffer = (uint8_t*)_mm_malloc(buf_size, SelectedDrive.SectorSize);
if (buffer == NULL) {
ErrorStatus = RUFUS_ERROR(ERROR_NOT_ENOUGH_MEMORY);
uprintf("Could not allocate disk zeroing buffer");
goto out;
}
assert((uintptr_t)buffer % SelectedDrive.SectorSize == 0);
// Clear buffer
memset(buffer, fast_zeroing ? 0xff : 0x00, buf_size);
if (fast_zeroing) {
cmp_buffer = (uint32_t*)_mm_malloc(buf_size, SelectedDrive.SectorSize);
if (cmp_buffer == NULL) {
ErrorStatus = RUFUS_ERROR(ERROR_NOT_ENOUGH_MEMORY);
uprintf("Could not allocate disk comparison buffer");
goto out;
}
assert((uintptr_t)cmp_buffer % SelectedDrive.SectorSize == 0);
}
read_size[0] = buf_size;
for (wb = 0, write_size = 0; wb < target_size; wb += write_size) {
UpdateProgressWithInfo(OP_FORMAT, fast_zeroing ? MSG_306 : MSG_286, wb, target_size);
cur_value = (wb * 80) / target_size;
for (; cur_value > last_value && last_value < 80; last_value++)
uprintfs("+");
// Don't overflow our projected size (mostly for VHDs)
if (wb + read_size[0] > target_size)
read_size[0] = (DWORD)(target_size - wb);
// WriteFile fails unless the size is a multiple of sector size
if (read_size[0] % SelectedDrive.SectorSize != 0)
read_size[0] = ((read_size[0] + SelectedDrive.SectorSize - 1) / SelectedDrive.SectorSize) * SelectedDrive.SectorSize;
// Fast-zeroing: Depending on your hardware, reading from flash may be much faster than writing, so
// we might speed things up by skipping empty blocks, or skipping the write if the data is the same.
// Notes: A block is declared empty when all bits are either 0 (zeros) or 1 (flash block erased).
// Also, a back-off strategy is used to limit reading.
if (throttle_fast_zeroing) {
throttle_fast_zeroing--;
} else if (fast_zeroing) {
CHECK_FOR_USER_CANCEL;
// Read block and compare against the block that needs to be written
s = ReadFile(hPhysicalDrive, cmp_buffer, read_size[0], &comp_size, NULL);
if ((!s) || (comp_size != read_size[0])) {
uprintf("\r\nRead error: Could not read data for fast zeroing comparison - %s", WindowsErrorString());
goto out;
}
// Check for an empty block by comparing with the first element
zero_data = cmp_buffer[0];
// Check all bits are the same
if ((zero_data == 0) || (zero_data == 0xffffffff)) {
// Compare the rest of the block against the first element
for (i = 1; (i < read_size[0] / sizeof(uint32_t)) && (cmp_buffer[i] == zero_data); i++);
if (i >= read_size[0] / sizeof(uint32_t)) {
// Block is empty, skip write
write_size = read_size[0];
continue;
}
}
// Move the file pointer position back for writing
li.QuadPart = wb;
if (!SetFilePointerEx(hPhysicalDrive, li, NULL, FILE_BEGIN)) {
uprintf("\r\nError: Could not reset position - %s", WindowsErrorString());
goto out;
}
// Throttle read operations
throttle_fast_zeroing = 15;
}
for (i = 1; i <= WRITE_RETRIES; i++) {
CHECK_FOR_USER_CANCEL;
s = WriteFile(hPhysicalDrive, buffer, read_size[0], &write_size, NULL);
if ((s) && (write_size == read_size[0]))
break;
if (s)
uprintf("\r\nWrite error: Wrote %d bytes, expected %d bytes", write_size, read_size[0]);
else
uprintf("\r\nWrite error at sector %lld: %s", wb / SelectedDrive.SectorSize, WindowsErrorString());
if (i < WRITE_RETRIES) {
li.QuadPart = wb;
uprintf("Retrying in %d seconds...", WRITE_TIMEOUT / 1000);
Sleep(WRITE_TIMEOUT);
if (!SetFilePointerEx(hPhysicalDrive, li, NULL, FILE_BEGIN)) {
uprintf("Write error: Could not reset position - %s", WindowsErrorString());
goto out;
}
} else {
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_FAULT);
goto out;
}
Sleep(200);
}
if (i > WRITE_RETRIES)
goto out;
}
uprintfs("\r\n");
} else if (img_report.compression_type != BLED_COMPRESSION_NONE && img_report.compression_type < BLED_COMPRESSION_MAX) {
uprintf("Writing compressed image:");
hSourceImage = CreateFileU(image_path, GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, NULL);
if (hSourceImage == INVALID_HANDLE_VALUE) {
uprintf("Could not open image '%s': %s", image_path, WindowsErrorString());
ErrorStatus = RUFUS_ERROR(ERROR_OPEN_FAILED);
goto out;
}
sec_buf = (uint8_t*)_mm_malloc(SelectedDrive.SectorSize, SelectedDrive.SectorSize);
if (sec_buf == NULL) {
ErrorStatus = RUFUS_ERROR(ERROR_NOT_ENOUGH_MEMORY);
uprintf("Could not allocate disk write buffer");
goto out;
}
assert((uintptr_t)sec_buf % SelectedDrive.SectorSize == 0);
sec_buf_pos = 0;
bled_init(256 * KB, uprintf, NULL, sector_write, update_progress, NULL, &ErrorStatus);
bled_ret = bled_uncompress_with_handles(hSourceImage, hPhysicalDrive, img_report.compression_type);
bled_exit();
uprintfs("\r\n");
if ((bled_ret >= 0) && (sec_buf_pos != 0)) {
// A disk image that doesn't end up on disk boundary should be a rare
// enough case, so we dont bother checking the write operation and
// just issue a notice about it in the log.
uprintf("Notice: Compressed image data didn't end on block boundary.");
// Gonna assert that WriteFile() and _write() share the same file offset
WriteFile(hPhysicalDrive, sec_buf, SelectedDrive.SectorSize, &write_size, NULL);
}
safe_mm_free(sec_buf);
if ((bled_ret < 0) && (SCODE_CODE(ErrorStatus) != ERROR_CANCELLED)) {
// Unfortunately, different compression backends return different negative error codes
uprintf("Could not write compressed image: %lld", bled_ret);
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_FAULT);
goto out;
}
} else {
assert(img_report.compression_type != IMG_COMPRESSION_FFU);
// VHD/VHDX require mounting the image first
if (img_report.compression_type == IMG_COMPRESSION_VHD ||
img_report.compression_type == IMG_COMPRESSION_VHDX) {
// Since VHDX images are compressed, we need to obtain the actual size
vhd_path = VhdMountImageAndGetSize(image_path, &target_size);
if (vhd_path == NULL || target_size == 0)
goto out;
}
hSourceImage = CreateFileAsync(vhd_path != NULL ? vhd_path : image_path, GENERIC_READ,
FILE_SHARE_READ, OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN);
if (hSourceImage == NULL) {
uprintf("Could not open image '%s': %s", image_path, WindowsErrorString());
ErrorStatus = RUFUS_ERROR(ERROR_OPEN_FAILED);
goto out;
}
// Our buffer size must be a multiple of the sector size and *ALIGNED* to the sector size
buf_size = ((DD_BUFFER_SIZE + SelectedDrive.SectorSize - 1) / SelectedDrive.SectorSize) * SelectedDrive.SectorSize;
buffer = (uint8_t*)_mm_malloc(buf_size * NUM_BUFFERS, SelectedDrive.SectorSize);
if (buffer == NULL) {
ErrorStatus = RUFUS_ERROR(ERROR_NOT_ENOUGH_MEMORY);
uprintf("Could not allocate disk write buffer");
goto out;
}
assert((uintptr_t)buffer % SelectedDrive.SectorSize == 0);
// Start the initial read
ReadFileAsync(hSourceImage, &buffer[read_bufnum * buf_size], buf_size);
read_size[proc_bufnum] = 1; // To avoid early loop exit
for (wb = 0; read_size[proc_bufnum] != 0; wb += read_size[proc_bufnum]) {
// 0. Update the progress
UpdateProgressWithInfo(OP_FORMAT, MSG_261, wb, target_size);
cur_value = (wb * 80) / target_size;
for ( ; cur_value > last_value && last_value < 80; last_value++)
uprintfs("+");
if (wb >= target_size)
break;
// 1. Wait for the current read operation to complete (and update the read size)
if ((!WaitFileAsync(hSourceImage, DRIVE_ACCESS_TIMEOUT)) ||
(!GetSizeAsync(hSourceImage, &read_size[read_bufnum]))) {
uprintf("\r\nRead error: %s", WindowsErrorString());
ErrorStatus = RUFUS_ERROR(ERROR_READ_FAULT);
goto out;
}
// 2. Update the read size
// 2a) Don't overflow our projected size (mostly for VHDs)
if (wb + read_size[read_bufnum] > target_size)
read_size[read_bufnum] = (DWORD)(target_size - wb);
// 2b) WriteFile fails unless the size is a multiple of sector size
if (read_size[read_bufnum] % SelectedDrive.SectorSize != 0)
read_size[read_bufnum] = ((read_size[read_bufnum] + SelectedDrive.SectorSize - 1) /
SelectedDrive.SectorSize) * SelectedDrive.SectorSize;
// 3. Switch to the next reading buffer
proc_bufnum = read_bufnum;
read_bufnum = (read_bufnum + 1) % NUM_BUFFERS;
// 3. Launch the next asynchronous read operation
ReadFileAsync(hSourceImage, &buffer[read_bufnum * buf_size], buf_size);
// 4. Synchronously write the current data buffer
for (i = 1; i <= WRITE_RETRIES; i++) {
CHECK_FOR_USER_CANCEL;
s = WriteFile(hPhysicalDrive, &buffer[proc_bufnum * buf_size], read_size[proc_bufnum], &write_size, NULL);
if ((s) && (write_size == read_size[proc_bufnum]))
break;
if (s)
uprintf("\r\nWrite error: Wrote %d bytes, expected %d bytes", write_size, read_size[proc_bufnum]);
else
uprintf("\r\nWrite error at sector %lld: %s", wb / SelectedDrive.SectorSize, WindowsErrorString());
if (i < WRITE_RETRIES) {
li.QuadPart = wb;
uprintf("Retrying in %d seconds...", WRITE_TIMEOUT / 1000);
Sleep(WRITE_TIMEOUT);
if (!SetFilePointerEx(hPhysicalDrive, li, NULL, FILE_BEGIN)) {
uprintf("Write error: Could not reset position - %s", WindowsErrorString());
goto out;
}
} else {
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_FAULT);
goto out;
}
Sleep(200);
}
if (i > WRITE_RETRIES)
goto out;
}
uprintfs("\r\n");
}
RefreshDriveLayout(hPhysicalDrive);
ret = TRUE;
out:
if (img_report.compression_type != BLED_COMPRESSION_NONE && img_report.compression_type < BLED_COMPRESSION_MAX)
safe_closehandle(hSourceImage);
else
CloseFileAsync(hSourceImage);
if (vhd_path != NULL)
VhdUnmountImage();
safe_mm_free(buffer);
safe_mm_free(cmp_buffer);
return ret;
}
/*
* Standalone thread for the formatting operation
* According to https://learn.microsoft.com/windows/win32/api/winioctl/ni-winioctl-fsctl_dismount_volume
* To change a volume file system
* Open a volume.
* Lock the volume.
* Format the volume.
* Dismount the volume.
* Unlock the volume.
* Close the volume handle.
*/
DWORD WINAPI FormatThread(void* param)
{
int r;
BOOL ret, use_large_fat32, windows_to_go, actual_lock_drive = lock_drive, write_as_ext = FALSE;
// Windows 11 and VDS (which I suspect is what fmifs.dll's FormatEx() is now calling behind the scenes)
// require us to unlock the physical drive to format the drive, else access denied is returned.
BOOL need_logical = FALSE, must_unlock_physical = (use_vds || WindowsVersion.Version >= WINDOWS_11);
DWORD cr, DriveIndex = (DWORD)(uintptr_t)param, ClusterSize, Flags;
HANDLE hPhysicalDrive = INVALID_HANDLE_VALUE;
HANDLE hLogicalVolume = INVALID_HANDLE_VALUE;
SYSTEMTIME lt;
uint8_t *buffer = NULL, extra_partitions = 0;
char *bb_msg, *volume_name = NULL;
char drive_name[] = "?:\\";
char drive_letters[27], fs_name[32], label[64];
char logfile[MAX_PATH], *userdir;
char efi_dst[] = "?:\\efi\\boot\\bootx64.efi";
char kolibri_dst[] = "?:\\MTLD_F32";
char grub4dos_dst[] = "?:\\grldr";
use_large_fat32 = (fs_type == FS_FAT32) && ((SelectedDrive.DiskSize > LARGE_FAT32_SIZE) || (force_large_fat32));
windows_to_go = (image_options & IMOP_WINTOGO) && (boot_type == BT_IMAGE) && HAS_WINTOGO(img_report) &&
(ComboBox_GetCurItemData(hImageOption) == IMOP_WIN_TO_GO);
large_drive = (SelectedDrive.DiskSize > (1*TB));
if (large_drive)
uprintf("Notice: Large drive detected (may produce short writes)");
// Find out if we need to add any extra partitions
extra_partitions = 0;
if ((boot_type == BT_IMAGE) && !write_as_image && HAS_PERSISTENCE(img_report) && persistence_size)
extra_partitions |= XP_PERSISTENCE;
// According to Microsoft, every GPT disk (we RUN Windows from) must have an MSR due to not having hidden sectors
// https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/windows-and-gpt-faq#disks-that-require-an-msr
if ((windows_to_go) && (target_type == TT_UEFI) && (partition_type == PARTITION_STYLE_GPT))
extra_partitions |= XP_ESP | XP_MSR;
// If we have a bootable image with UEFI bootloaders and the target file system is NTFS or exFAT
// or the UEFI:NTFS option is selected, we add the UEFI:NTFS partition...
else if ((((boot_type == BT_IMAGE) && IS_EFI_BOOTABLE(img_report)) && ((fs_type == FS_NTFS) || (fs_type == FS_EXFAT))) ||
(boot_type == BT_UEFI_NTFS)) {
extra_partitions |= XP_UEFI_NTFS;
// ...but only if we're not dealing with a Windows image in installer mode with target
// system set to BIOS and without dual BIOS+UEFI boot enabled.
if ((boot_type == BT_IMAGE) && HAS_BOOTMGR_BIOS(img_report) && (!windows_to_go) &&
(target_type == TT_BIOS) && (!allow_dual_uefi_bios))
extra_partitions &= ~XP_UEFI_NTFS;
}
if (IsChecked(IDC_OLD_BIOS_FIXES))
extra_partitions |= XP_COMPAT;
// On pre 1703 platforms (and even on later ones), anything with ext2/ext3 doesn't sit
// too well with Windows. Same with ESPs. Relaxing our locking rules seems to help...
if ((extra_partitions & (XP_ESP | XP_PERSISTENCE)) || IS_EXT(fs_type))
actual_lock_drive = FALSE;
// Windows 11 is a lot more proactive in locking ESPs and MSRs than previous versions
// were, meaning that we also can't lock the drive without incurring errors...
if ((WindowsVersion.Version >= WINDOWS_11) && extra_partitions)
actual_lock_drive = FALSE;
// Fixed drives + ext2/ext3 don't play nice and require the same handling as ESPs
write_as_ext = IS_EXT(fs_type) && (GetDriveTypeFromIndex(DriveIndex) == DRIVE_FIXED);
PrintInfoDebug(0, MSG_225);
hPhysicalDrive = GetPhysicalHandle(DriveIndex, actual_lock_drive, FALSE, !actual_lock_drive);
if (hPhysicalDrive == INVALID_HANDLE_VALUE) {
ErrorStatus = RUFUS_ERROR(ERROR_OPEN_FAILED);
goto out;
}
// At this stage we have both a handle and a lock to the physical drive
if (!GetDriveLetters(DriveIndex, drive_letters)) {
uprintf("Failed to get a drive letter");
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_ASSIGN_LETTER));
goto out;
}
// Unassign all drives letters
drive_name[0] = RemoveDriveLetters(DriveIndex, TRUE, FALSE);
if (drive_name[0] == 0) {
uprintf("Unable to find a drive letter to use");
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_ASSIGN_LETTER));
goto out;
}
uprintf("Will use '%c:' as volume mountpoint", toupper(drive_name[0]));
// It kind of blows, but we have to relinquish access to the physical drive
// for VDS to be able to delete the partitions that reside on it...
safe_unlockclose(hPhysicalDrive);
PrintInfo(0, MSG_239, lmprintf(MSG_307));
if (!is_vds_available || !DeletePartition(DriveIndex, 0, TRUE)) {
uprintf("Warning: Could not delete partition(s): %s", is_vds_available ? WindowsErrorString() : "VDS is not available");
SetLastError(ErrorStatus);
ErrorStatus = 0;
// If we couldn't delete partitions, Windows give us trouble unless we
// request access to the logical drive. Don't ask me why!
need_logical = TRUE;
// Also, since we couldn't clean the disk, we need to disable drive locking
actual_lock_drive = FALSE;
}
// An extra refresh of the (now empty) partition data here appears to be helpful
GetDrivePartitionData(SelectedDrive.DeviceNumber, fs_name, sizeof(fs_name), TRUE);
// Now get RW access to the physical drive
hPhysicalDrive = GetPhysicalHandle(DriveIndex, actual_lock_drive, TRUE, !actual_lock_drive);
if (hPhysicalDrive == INVALID_HANDLE_VALUE) {
ErrorStatus = RUFUS_ERROR(ERROR_OPEN_FAILED);
goto out;
}
RefreshDriveLayout(hPhysicalDrive);
// If we write an image that contains an ESP, Windows forcibly reassigns/removes the target
// drive, which causes a write error. To work around this, we must lock the logical drive.
// Also need to lock logical drive if we couldn't delete partitions, to keep Windows happy...
if (((boot_type == BT_IMAGE) && write_as_image) || (need_logical)) {
uprintf("Requesting logical volume handle...");
hLogicalVolume = GetLogicalHandle(DriveIndex, 0, TRUE, FALSE, !actual_lock_drive);
if (hLogicalVolume == INVALID_HANDLE_VALUE) {
uprintf("Could not access logical volume");
ErrorStatus = RUFUS_ERROR(ERROR_OPEN_FAILED);
goto out;
// If the call succeeds (and we don't get a NULL logical handle as returned for
// unpartitioned drives), try to unmount the volume.
} else if ((hLogicalVolume != NULL) && (!UnmountVolume(hLogicalVolume))) {
uprintf("Trying to continue regardless...");
}
}
CHECK_FOR_USER_CANCEL;
if (!zero_drive && !write_as_image) {
PrintInfoDebug(0, MSG_226);
AnalyzeMBR(hPhysicalDrive, "Drive", FALSE);
UpdateProgress(OP_ANALYZE_MBR, -1.0f);
}
if (zero_drive) {
WriteDrive(hPhysicalDrive, TRUE);
goto out;
}
// Zap partition records. This helps prevent access errors.
// Note, Microsoft's way of cleaning partitions (IOCTL_DISK_CREATE_DISK, which is what we apply
// in InitializeDisk) is *NOT ENOUGH* to reset a disk and can render it inoperable for partitioning
// or formatting under Windows. See https://github.com/pbatard/rufus/issues/759 for details.
if ((boot_type != BT_IMAGE) || (img_report.is_iso && !write_as_image)) {
if ((!ClearMBRGPT(hPhysicalDrive, SelectedDrive.DiskSize, SelectedDrive.SectorSize, use_large_fat32)) ||
(!InitializeDisk(hPhysicalDrive))) {
uprintf("Could not reset partitions");
ErrorStatus = (LastWriteError != 0) ? LastWriteError : RUFUS_ERROR(ERROR_PARTITION_FAILURE);
goto out;
}
}
if (IsChecked(IDC_BAD_BLOCKS)) {
do {
FILE* log_fd;
int sel = ComboBox_GetCurSel(hNBPasses);
// create a log file for bad blocks report. Since %USERPROFILE% may
// have localized characters, we use the UTF-8 API.
userdir = getenvU("USERPROFILE");
static_strcpy(logfile, userdir);
safe_free(userdir);
GetLocalTime(&lt);
safe_sprintf(&logfile[strlen(logfile)], sizeof(logfile) - strlen(logfile) - 1,
"\\rufus_%04d%02d%02d_%02d%02d%02d.log",
lt.wYear, lt.wMonth, lt.wDay, lt.wHour, lt.wMinute, lt.wSecond);
log_fd = fopenU(logfile, "w+");
if (log_fd == NULL) {
uprintf("Error: Could not create log file for bad blocks check");
goto out;
} else {
fprintf(log_fd, APPLICATION_NAME " bad blocks check started on: %04d.%02d.%02d %02d:%02d:%02d",
lt.wYear, lt.wMonth, lt.wDay, lt.wHour, lt.wMinute, lt.wSecond);
fflush(log_fd);
}
if (!BadBlocks(hPhysicalDrive, SelectedDrive.DiskSize, (sel >= 2) ? 4 : sel +1, sel, &report, log_fd)) {
uprintf("Bad blocks: Check failed.");
if (!IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_BADBLOCKS_FAILURE));
ClearMBRGPT(hPhysicalDrive, SelectedDrive.DiskSize, SelectedDrive.SectorSize, FALSE);
fclose(log_fd);
DeleteFileU(logfile);
goto out;
}
uprintf("Bad Blocks: Check completed, %d bad block%s found. (%d/%d/%d errors)",
report.bb_count, (report.bb_count==1)?"":"s",
report.num_read_errors, report.num_write_errors, report.num_corruption_errors);
r = IDOK;
if (report.bb_count) {
bb_msg = lmprintf(MSG_011, report.bb_count, report.num_read_errors, report.num_write_errors,
report.num_corruption_errors);
fprintf(log_fd, "%s", bb_msg);
GetLocalTime(&lt);
fprintf(log_fd, APPLICATION_NAME " bad blocks check ended on: %04d.%02d.%02d %02d:%02d:%02d",
lt.wYear, lt.wMonth, lt.wDay, lt.wHour, lt.wMinute, lt.wSecond);
fclose(log_fd);
r = MessageBoxExU(hMainDialog, lmprintf(MSG_012, bb_msg, logfile),
lmprintf(MSG_010), MB_ABORTRETRYIGNORE | MB_ICONWARNING | MB_IS_RTL, selected_langid);
} else {
// We didn't get any errors => delete the log file
fclose(log_fd);
DeleteFileU(logfile);
}
} while (r == IDRETRY);
if (r == IDABORT) {
ErrorStatus = RUFUS_ERROR(ERROR_CANCELLED);
goto out;
}
// Especially after destructive badblocks test, you must zero the MBR/GPT completely
// before repartitioning. Else, all kind of bad things happen.
if (!ClearMBRGPT(hPhysicalDrive, SelectedDrive.DiskSize, SelectedDrive.SectorSize, use_large_fat32)) {
uprintf("unable to zero MBR/GPT");
if (!IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_FAULT);
goto out;
}
}
// Write an image file
if ((boot_type == BT_IMAGE) && write_as_image) {
// Special case for FFU images
if (img_report.compression_type == IMG_COMPRESSION_FFU) {
char cmd[MAX_PATH + 128], *physical = NULL;
// Should have been filtered out beforehand
assert(has_ffu_support);
safe_unlockclose(hPhysicalDrive);
physical = GetPhysicalName(SelectedDrive.DeviceNumber);
static_sprintf(cmd, "dism /Apply-Ffu /ApplyDrive:%s /ImageFile:\"%s\"", physical, image_path);
safe_free(physical);
uprintf("Running command: '%s", cmd);
cr = RunCommandWithProgress(cmd, sysnative_dir, TRUE, MSG_261);
if (cr != 0 && !IS_ERROR(ErrorStatus)) {
SetLastError(cr);
uprintf("Failed to apply FFU image: %s", WindowsErrorString());
ErrorStatus = RUFUS_ERROR(SCODE_CODE(cr));
}
} else {
WriteDrive(hPhysicalDrive, FALSE);
}
goto out;
}
UpdateProgress(OP_ZERO_MBR, -1.0f);
CHECK_FOR_USER_CANCEL;
if (!CreatePartition(hPhysicalDrive, partition_type, fs_type, (partition_type == PARTITION_STYLE_MBR)
&& (target_type == TT_UEFI), extra_partitions)) {
ErrorStatus = (LastWriteError != 0) ? LastWriteError : RUFUS_ERROR(ERROR_PARTITION_FAILURE);
goto out;
}
UpdateProgress(OP_PARTITION, -1.0f);
// Close the (unmounted) volume before formatting
if ((hLogicalVolume != NULL) && (hLogicalVolume != INVALID_HANDLE_VALUE)) {
PrintInfoDebug(0, MSG_227);
if (!CloseHandle(hLogicalVolume)) {
hLogicalVolume = INVALID_HANDLE_VALUE;
uprintf("Could not close volume: %s", WindowsErrorString());
ErrorStatus = RUFUS_ERROR(ERROR_ACCESS_DENIED);
goto out;
}
}
hLogicalVolume = INVALID_HANDLE_VALUE;
if (must_unlock_physical)
safe_unlockclose(hPhysicalDrive);
if (use_vds) {
uprintf("Refreshing drive layout...");
// Note: This may leave the device disabled on re-plug or reboot
// so only do this for the experimental VDS path for now...
cr = CycleDevice(ComboBox_GetCurSel(hDeviceList));
if (cr == ERROR_DEVICE_REINITIALIZATION_NEEDED) {
uprintf("Zombie device detected, trying again...");
Sleep(1000);
cr = CycleDevice(ComboBox_GetCurSel(hDeviceList));
}
if (cr == 0)
uprintf("Successfully cycled device");
else
uprintf("Cycling device failed!");
RefreshLayout(DriveIndex);
}
// Wait for the logical drive we just created to appear
uprintf("Waiting for logical drive to reappear...");
Sleep(200);
if (write_as_esp || write_as_ext) {
// Can't format ESPs or ext2/ext3 partitions unless we mount them ourselves
volume_name = AltMountVolume(DriveIndex, SelectedDrive.Partition[partition_index[PI_MAIN]].Offset, FALSE);
if (volume_name == NULL) {
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_ASSIGN_LETTER));
goto out;
}
} else {
if (!WaitForLogical(DriveIndex, SelectedDrive.Partition[partition_index[PI_MAIN]].Offset)) {
uprintf("Logical drive was not found - aborting");
if (!IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(ERROR_TIMEOUT);
goto out;
}
}
CHECK_FOR_USER_CANCEL;
// Format Casper partition if required. Do it before we format anything with
// a file system that Windows will recognize, to avoid concurrent access.
if (extra_partitions & XP_PERSISTENCE) {
uint32_t ext_version = ReadSetting32(SETTING_USE_EXT_VERSION);
if ((ext_version < 2) || (ext_version > 4))
ext_version = 3;
uprintf("Using %s-like method to enable persistence", img_report.uses_casper ? "Ubuntu" : "Debian");
if (!FormatPartition(DriveIndex, SelectedDrive.Partition[partition_index[PI_CASPER]].Offset, 0, FS_EXT2 + (ext_version - 2),
img_report.uses_casper ? "casper-rw" : "persistence",
(img_report.uses_casper ? 0 : FP_CREATE_PERSISTENCE_CONF) |
(IsChecked(IDC_QUICK_FORMAT) ? FP_QUICK : 0))) {
if (!IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_FAULT);
goto out;
}
}
GetWindowTextU(hLabel, label, sizeof(label));
if (fs_type < FS_EXT2)
ToValidLabel(label, (fs_type == FS_FAT16) || (fs_type == FS_FAT32) || (fs_type == FS_EXFAT));
ClusterSize = (DWORD)ComboBox_GetCurItemData(hClusterSize);
if ((ClusterSize < 0x200) || (write_as_esp))
ClusterSize = 0; // 0 = default cluster size
Flags = FP_FORCE;
if (IsChecked(IDC_QUICK_FORMAT))
Flags |= FP_QUICK;
if ((fs_type == FS_NTFS) && (enable_ntfs_compression))
Flags |= FP_COMPRESSION;
if (write_as_esp)
Flags |= FP_LARGE_FAT32;
ret = FormatPartition(DriveIndex, SelectedDrive.Partition[partition_index[PI_MAIN]].Offset, ClusterSize, fs_type, label, Flags);
if (!ret) {
// Error will be set by FormatPartition() in ErrorStatus
uprintf("Format error: %s", StrError(ErrorStatus, TRUE));
goto out;
}
if (must_unlock_physical) {
// Get RW access back to the physical drive...
hPhysicalDrive = GetPhysicalHandle(DriveIndex, actual_lock_drive, TRUE, !actual_lock_drive);
if (hPhysicalDrive == INVALID_HANDLE_VALUE) {
ErrorStatus = RUFUS_ERROR(ERROR_OPEN_FAILED);
goto out;
}
}
// Thanks to Microsoft, we must fix the MBR AFTER the drive has been formatted
if ((partition_type == PARTITION_STYLE_MBR) || ((boot_type != BT_NON_BOOTABLE) && (partition_type == PARTITION_STYLE_GPT))) {
PrintInfoDebug(0, MSG_228); // "Writing master boot record..."
if ((!WriteMBR(hPhysicalDrive)) || (!WriteSBR(hPhysicalDrive))) {
if (!IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_FAULT);
goto out;
}
UpdateProgress(OP_FIX_MBR, -1.0f);
}
Sleep(200);
if (!write_as_esp && !write_as_ext) {
WaitForLogical(DriveIndex, 0);
// Try to continue
CHECK_FOR_USER_CANCEL;
volume_name = GetLogicalName(DriveIndex, SelectedDrive.Partition[partition_index[PI_MAIN]].Offset, TRUE, TRUE);
if (volume_name == NULL) {
uprintf("Could not get volume name");
ErrorStatus = RUFUS_ERROR(ERROR_NO_VOLUME_ID);
goto out;
}
uprintf("Found volume %s", volume_name);
// Windows is really finicky with regards to reassigning drive letters even after
// we forcibly removed them, so add yet another explicit call to RemoveDriveLetters()
RemoveDriveLetters(DriveIndex, FALSE, TRUE);
if (!MountVolume(drive_name, volume_name)) {
uprintf("Could not remount %s as %c: %s", volume_name, toupper(drive_name[0]), WindowsErrorString());
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_MOUNT_VOLUME));
goto out;
}
CHECK_FOR_USER_CANCEL;
// Disable file indexing, unless it was force-enabled by the user
if ((!enable_file_indexing) && ((fs_type == FS_NTFS) || (fs_type == FS_UDF) || (fs_type == FS_REFS))) {
uprintf("Disabling file indexing...");
if (!SetFileAttributesA(volume_name, FILE_ATTRIBUTE_NOT_CONTENT_INDEXED))
uprintf("Could not disable file indexing: %s", WindowsErrorString());
}
}
// Refresh the drive label - This is needed as Windows may have altered it from
// the name we proposed, and we require an exact label, to patch config files.
if ((fs_type < FS_EXT2) && !GetVolumeInformationU(drive_name, img_report.usb_label,
ARRAYSIZE(img_report.usb_label), NULL, NULL, NULL, NULL, 0)) {
uprintf("Warning: Failed to refresh label: %s", WindowsErrorString());
} else if (IS_EXT(fs_type)) {
const char* ext_label = GetExtFsLabel(DriveIndex, 0);
if (ext_label != NULL)
static_strcpy(img_report.usb_label, label);
}
if (boot_type != BT_NON_BOOTABLE) {
if (boot_type == BT_UEFI_NTFS) {
// All good
} else if (target_type == TT_UEFI) {
// For once, no need to do anything - just check our sanity
assert((boot_type == BT_IMAGE) && IS_EFI_BOOTABLE(img_report) && (fs_type <= FS_NTFS));
if ( (boot_type != BT_IMAGE) || !IS_EFI_BOOTABLE(img_report) || (fs_type > FS_NTFS) ) {
ErrorStatus = RUFUS_ERROR(ERROR_INSTALL_FAILURE);
goto out;
}
} else if ( (boot_type == BT_SYSLINUX_V4) || (boot_type == BT_SYSLINUX_V6) ||
((boot_type == BT_IMAGE) && (HAS_SYSLINUX(img_report) || HAS_REACTOS(img_report)) &&
(!HAS_WINDOWS(img_report) || !allow_dual_uefi_bios)) ) {
if (!InstallSyslinux(DriveIndex, drive_name[0], fs_type)) {
ErrorStatus = RUFUS_ERROR(ERROR_INSTALL_FAILURE);
goto out;
}
} else {
// We still have a lock, which we need to modify the volume boot record
// => no need to reacquire the lock...
hLogicalVolume = GetLogicalHandle(DriveIndex, SelectedDrive.Partition[partition_index[PI_MAIN]].Offset, FALSE, TRUE, FALSE);
if ((hLogicalVolume == INVALID_HANDLE_VALUE) || (hLogicalVolume == NULL)) {
uprintf("Could not re-mount volume for partition boot record access");
ErrorStatus = RUFUS_ERROR(ERROR_OPEN_FAILED);
goto out;
}
// NB: if you unmount the logical volume here, XP will report error:
// [0x00000456] The media in the drive may have changed
PrintInfoDebug(0, MSG_229);
if (!WritePBR(hLogicalVolume)) {
if (!IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(ERROR_WRITE_FAULT);
goto out;
}
// We must close and unlock the volume to write files to it
safe_unlockclose(hLogicalVolume);
}
} else {
if (IsChecked(IDC_EXTENDED_LABEL))
SetAutorun(drive_name);
}
CHECK_FOR_USER_CANCEL;
// We issue a complete remount of the filesystem on account of:
// - Ensuring the file explorer properly detects that the volume was updated
// - Ensuring that an NTFS system will be reparsed so that it becomes bootable
if (!RemountVolume(drive_name, FALSE))
goto out;
CHECK_FOR_USER_CANCEL;
if (boot_type != BT_NON_BOOTABLE) {
if ((boot_type == BT_MSDOS) || (boot_type == BT_FREEDOS)) {
UpdateProgress(OP_FILE_COPY, -1.0f);
PrintInfoDebug(0, MSG_230);
if (!ExtractDOS(drive_name)) {
if (!IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(ERROR_CANNOT_COPY);
goto out;
}
} else if (boot_type == BT_GRUB4DOS) {
grub4dos_dst[0] = drive_name[0];
IGNORE_RETVAL(_chdirU(app_data_dir));
uprintf("Installing: %s (Grub4DOS loader) %s", grub4dos_dst,
IsFileInDB(FILES_DIR "\\grub4dos-" GRUB4DOS_VERSION "\\grldr")?"":"");
if (!CopyFileU(FILES_DIR "\\grub4dos-" GRUB4DOS_VERSION "\\grldr", grub4dos_dst, FALSE))
uprintf("Failed to copy file: %s", WindowsErrorString());
} else if ((boot_type == BT_IMAGE) && (image_path != NULL) && (img_report.is_iso || img_report.is_windows_img)) {
UpdateProgress(OP_FILE_COPY, 0.0f);
drive_name[2] = 0; // Ensure our drive is something like 'D:'
if (windows_to_go) {
PrintInfoDebug(0, MSG_268);
if (!SetupWinToGo(DriveIndex, drive_name, (extra_partitions & XP_ESP))) {
if (!IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_ISO_EXTRACT));
goto out;
}
if (unattend_xml_path != NULL) {
if (!ApplyWindowsCustomization(drive_name[0], unattend_xml_flags | UNATTEND_WINDOWS_TO_GO))
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_PATCH));
}
} else {
assert(!img_report.is_windows_img);
if (!ExtractISO(image_path, drive_name, FALSE)) {
if (!IS_ERROR(ErrorStatus))
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_ISO_EXTRACT));
goto out;
}
if (HAS_KOLIBRIOS(img_report)) {
kolibri_dst[0] = drive_name[0];
uprintf("Installing: %s (KolibriOS loader)", kolibri_dst);
if (ExtractISOFile(image_path, "HD_Load/USB_Boot/MTLD_F32", kolibri_dst,
FILE_ATTRIBUTE_HIDDEN | FILE_ATTRIBUTE_SYSTEM) == 0) {
uprintf("Warning: loader installation failed - KolibriOS will not boot!");
}
}
// EFI mode selected, with no 'boot###.efi' but Windows 7 x64's 'bootmgr.efi' (bit #0)
if (((target_type == TT_UEFI) || allow_dual_uefi_bios) && HAS_WIN7_EFI(img_report)) {
PrintInfo(0, MSG_232, lmprintf(MSG_307));
uprintf("Win7 EFI boot setup");
img_report.wininst_path[0][0] = drive_name[0];
efi_dst[0] = drive_name[0];
efi_dst[sizeof(efi_dst) - sizeof("\\bootx64.efi")] = 0;
if (!CreateDirectoryA(efi_dst, 0)) {
uprintf("Could not create directory '%s': %s", efi_dst, WindowsErrorString());
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_PATCH));
} else {
efi_dst[sizeof(efi_dst) - sizeof("\\bootx64.efi")] = '\\';
if (!WimExtractFile(img_report.wininst_path[0], 1, "Windows\\Boot\\EFI\\bootmgfw.efi", efi_dst, FALSE)) {
uprintf("Failed to setup Win7 EFI boot");
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_PATCH));
}
}
}
CopySKUSiPolicy(drive_name);
if ( (target_type == TT_BIOS) && HAS_WINPE(img_report) ) {
// Apply WinPE fixup
if (!SetupWinPE(drive_name[0]))
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_PATCH));
}
if (unattend_xml_path != NULL) {
if (!ApplyWindowsCustomization(drive_name[0], unattend_xml_flags))
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_PATCH));
}
}
}
UpdateProgress(OP_FINALIZE, -1.0f);
PrintInfoDebug(0, MSG_233);
if ((boot_type == BT_IMAGE) && (image_path != NULL) && (img_report.is_iso) && (!windows_to_go))
UpdateMD5Sum(drive_name, md5sum_name[img_report.has_md5sum ? img_report.has_md5sum - 1 : 0]);
if (IsChecked(IDC_EXTENDED_LABEL))
SetAutorun(drive_name);
// Issue another complete remount before we exit, to ensure we're clean
RemountVolume(drive_name, TRUE);
// NTFS fixup (WinPE/AIK images don't seem to boot without an extra checkdisk)
if ((boot_type == BT_IMAGE) && (img_report.is_iso) && (fs_type == FS_NTFS)) {
// Try to ensure that all messages from Checkdisk will be in English
if (PRIMARYLANGID(GetThreadUILanguage()) != LANG_ENGLISH) {
SetThreadUILanguage(MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US));
if (PRIMARYLANGID(GetThreadUILanguage()) != LANG_ENGLISH)
uprintf("Note: CheckDisk messages may be localized");
}
CheckDisk(drive_name[0]);
UpdateProgress(OP_FINALIZE, -1.0f);
}
}
// Copy any additonal files from an optional zip archive selected by the user
if (!IS_ERROR(ErrorStatus)) {
UpdateProgress(OP_EXTRACT_ZIP, 0.0f);
drive_name[2] = 0;
if (archive_path != NULL && fs_type < FS_EXT2 && !ExtractZip(archive_path, drive_name) && !IS_ERROR(ErrorStatus))
uprintf("Warning: Could not copy additional files");
}
out:
if ((write_as_esp || write_as_ext) && volume_name != NULL)
AltUnmountVolume(volume_name, TRUE);
else
safe_free(volume_name);
safe_free(buffer);
safe_unlockclose(hLogicalVolume);
safe_unlockclose(hPhysicalDrive); // This can take a while
if ((boot_type == BT_IMAGE) && write_as_image) {
PrintInfo(0, MSG_320, lmprintf(MSG_307));
Sleep(200);
VdsRescan(VDS_RESCAN_REFRESH, 0, TRUE);
// Trying to mount accessible partitions after writing an image leads to the
// creation of the infamous 'System Volume Information' folder on ESPs, which
// in turn leads to checksum errors for Ubuntu's boot/grub/efi.img (that maps
// to the Ubuntu ESP). So we only call the code below if there are no ESPs or
// if we're running a Ventoy image.
if ((GetEspOffset(DriveIndex) == 0) || (img_report.compression_type == BLED_COMPRESSION_VTSI)) {
WaitForLogical(DriveIndex, 0);
if (GetDrivePartitionData(SelectedDrive.DeviceNumber, fs_name, sizeof(fs_name), TRUE)) {
volume_name = GetLogicalName(DriveIndex, 0, TRUE, TRUE);
if ((volume_name != NULL) && (MountVolume(drive_name, volume_name)))
uprintf("Remounted %s as %c:", volume_name, toupper(drive_name[0]));
}
}
}
if (IS_ERROR(ErrorStatus)) {
volume_name = GetLogicalName(DriveIndex, SelectedDrive.Partition[partition_index[PI_MAIN]].Offset, TRUE, TRUE);
if (volume_name != NULL) {
if (MountVolume(drive_name, volume_name))
uprintf("Re-mounted volume as %c: after error", toupper(drive_name[0]));
free(volume_name);
}
}
PostMessage(hMainDialog, UM_FORMAT_COMPLETED, (WPARAM)TRUE, 0);
ExitThread(0);
}