rufus/src/drive.c

2639 lines
98 KiB
C

/*
* Rufus: The Reliable USB Formatting Utility
* Drive access function calls
* Copyright © 2011-2024 Pete Batard <pete@akeo.ie>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#endif
#include <windows.h>
#include <windowsx.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
#if !defined(__MINGW32__)
#include <initguid.h>
#include <vds.h>
#endif
#include "rufus.h"
#include "missing.h"
#include "resource.h"
#include "settings.h"
#include "msapi_utf8.h"
#include "localization.h"
#include "file.h"
#include "drive.h"
#include "mbr_types.h"
#include "gpt_types.h"
#include "br.h"
#include "fat16.h"
#include "fat32.h"
#include "ntfs.h"
#define GLOBALROOT_NAME "\\\\?\\GLOBALROOT"
const char* sfd_name = "Super Floppy Disk";
const char* groot_name = GLOBALROOT_NAME;
const size_t groot_len = sizeof(GLOBALROOT_NAME) - 1;
#if defined(__MINGW32__)
const IID CLSID_VdsLoader = { 0x9c38ed61, 0xd565, 0x4728, { 0xae, 0xee, 0xc8, 0x09, 0x52, 0xf0, 0xec, 0xde } };
const IID IID_IVdsServiceLoader = { 0xe0393303, 0x90d4, 0x4a97, { 0xab, 0x71, 0xe9, 0xb6, 0x71, 0xee, 0x27, 0x29 } };
const IID IID_IVdsProvider = { 0x10c5e575, 0x7984, 0x4e81, { 0xa5, 0x6b, 0x43, 0x1f, 0x5f, 0x92, 0xae, 0x42 } };
const IID IID_IVdsSwProvider = { 0x9aa58360, 0xce33, 0x4f92, { 0xb6, 0x58, 0xed, 0x24, 0xb1, 0x44, 0x25, 0xb8 } };
const IID IID_IVdsPack = { 0x3b69d7f5, 0x9d94, 0x4648, { 0x91, 0xca, 0x79, 0x93, 0x9b, 0xa2, 0x63, 0xbf } };
const IID IID_IVdsDisk = { 0x07e5c822, 0xf00c, 0x47a1, { 0x8f, 0xce, 0xb2, 0x44, 0xda, 0x56, 0xfd, 0x06 } };
const IID IID_IVdsAdvancedDisk = { 0x6e6f6b40, 0x977c, 0x4069, { 0xbd, 0xdd, 0xac, 0x71, 0x00, 0x59, 0xf8, 0xc0 } };
const IID IID_IVdsVolume = { 0x88306BB2, 0xE71F, 0x478C, { 0x86, 0xA2, 0x79, 0xDA, 0x20, 0x0A, 0x0F, 0x11} };
const IID IID_IVdsVolumeMF3 = { 0x6788FAF9, 0x214E, 0x4B85, { 0xBA, 0x59, 0x26, 0x69, 0x53, 0x61, 0x6E, 0x09 } };
#endif
PF_TYPE_DECL(NTAPI, NTSTATUS, NtQueryVolumeInformationFile, (HANDLE, PIO_STATUS_BLOCK, PVOID, ULONG, FS_INFORMATION_CLASS));
/*
* Globals
*/
RUFUS_DRIVE_INFO SelectedDrive;
extern BOOL write_as_esp;
extern windows_version_t WindowsVersion;
int partition_index[PI_MAX];
uint64_t persistence_size = 0;
/*
* The following methods get or set the AutoMount setting (which is different from AutoRun)
* Rufus needs AutoMount to be set as the format process may fail for fixed drives otherwise.
* See https://github.com/pbatard/rufus/issues/386.
*
* Reverse engineering diskpart and mountvol indicates that the former uses the IVdsService
* ClearFlags()/SetFlags() to set VDS_SVF_AUTO_MOUNT_OFF whereas mountvol on uses
* IOCTL_MOUNTMGR_SET_AUTO_MOUNT on "\\\\.\\MountPointManager".
* As the latter is MUCH simpler this is what we'll use too
*/
BOOL SetAutoMount(BOOL enable)
{
HANDLE hMountMgr;
BOOL ret = FALSE;
hMountMgr = CreateFileA(MOUNTMGR_DOS_DEVICE_NAME, 0, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hMountMgr == INVALID_HANDLE_VALUE)
return FALSE;
ret = DeviceIoControl(hMountMgr, IOCTL_MOUNTMGR_SET_AUTO_MOUNT, &enable, sizeof(enable), NULL, 0, NULL, NULL);
CloseHandle(hMountMgr);
return ret;
}
BOOL GetAutoMount(BOOL* enabled)
{
HANDLE hMountMgr;
DWORD size;
BOOL ret = FALSE;
if (enabled == NULL)
return FALSE;
hMountMgr = CreateFileA(MOUNTMGR_DOS_DEVICE_NAME, 0, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hMountMgr == INVALID_HANDLE_VALUE)
return FALSE;
ret = DeviceIoControl(hMountMgr, IOCTL_MOUNTMGR_QUERY_AUTO_MOUNT, NULL, 0, enabled, sizeof(*enabled), &size, NULL);
CloseHandle(hMountMgr);
return ret;
}
/*
* Working with drive indexes quite risky (left unchecked,inadvertently passing 0 as
* index would return a handle to C:, which we might then proceed to unknowingly
* clear the MBR of!), so we mitigate the risk by forcing our indexes to belong to
* the specific range [DRIVE_INDEX_MIN; DRIVE_INDEX_MAX].
*/
#define CheckDriveIndex(DriveIndex) do { \
if ((int)DriveIndex < 0) goto out; \
assert((DriveIndex >= DRIVE_INDEX_MIN) && (DriveIndex <= DRIVE_INDEX_MAX)); \
if ((DriveIndex < DRIVE_INDEX_MIN) || (DriveIndex > DRIVE_INDEX_MAX)) goto out; \
DriveIndex -= DRIVE_INDEX_MIN; } while (0)
/*
* Open a drive or volume with optional write and lock access
* Return INVALID_HANDLE_VALUE (/!\ which is DIFFERENT from NULL /!\) on failure.
*/
static HANDLE GetHandle(char* Path, BOOL bLockDrive, BOOL bWriteAccess, BOOL bWriteShare)
{
int i;
BYTE access_mask = 0;
uint64_t EndTime;
HANDLE hDrive = INVALID_HANDLE_VALUE;
char DevPath[MAX_PATH];
if ((safe_strlen(Path) < 5) || (Path[0] != '\\') || (Path[1] != '\\') || (Path[3] != '\\'))
goto out;
// Resolve a device path, so that we can look for that handle in case of access issues.
if (safe_strncmp(Path, groot_name, groot_len) == 0)
static_strcpy(DevPath, &Path[groot_len]);
else if (QueryDosDeviceA(&Path[4], DevPath, sizeof(DevPath)) == 0)
strcpy(DevPath, "???");
for (i = 0; i < DRIVE_ACCESS_RETRIES; i++) {
// Try without FILE_SHARE_WRITE (unless specifically requested) so that
// we won't be bothered by the OS or other apps when we set up our data.
// However this means we might have to wait for an access gap...
// We keep FILE_SHARE_READ though, as this shouldn't hurt us any, and is
// required for enumeration.
hDrive = CreateFileA(Path, GENERIC_READ|(bWriteAccess?GENERIC_WRITE:0),
FILE_SHARE_READ|(bWriteShare?FILE_SHARE_WRITE:0),
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hDrive != INVALID_HANDLE_VALUE)
break;
if ((GetLastError() != ERROR_SHARING_VIOLATION) && (GetLastError() != ERROR_ACCESS_DENIED))
break;
if (i == 0) {
uprintf("Notice: Volume Device Path is %s", DevPath);
uprintf("Waiting for access on %s...", Path);
} else if (!bWriteShare && (i > DRIVE_ACCESS_RETRIES/3)) {
// If we can't seem to get a hold of the drive for some time, try to enable FILE_SHARE_WRITE...
uprintf("Warning: Could not obtain exclusive rights. Retrying with write sharing enabled...");
bWriteShare = TRUE;
// Try to report the process that is locking the drive
access_mask = GetProcessSearch(SEARCH_PROCESS_TIMEOUT, 0x07, FALSE);
}
Sleep(DRIVE_ACCESS_TIMEOUT / DRIVE_ACCESS_RETRIES);
}
if (hDrive == INVALID_HANDLE_VALUE) {
uprintf("Could not open %s: %s", Path, WindowsErrorString());
goto out;
}
if (bWriteAccess) {
uprintf("Opened %s for %s write access", Path, bWriteShare?"shared":"exclusive");
}
if (bLockDrive) {
if (DeviceIoControl(hDrive, FSCTL_ALLOW_EXTENDED_DASD_IO, NULL, 0, NULL, 0, NULL, NULL)) {
uprintf("I/O boundary checks disabled");
}
EndTime = GetTickCount64() + DRIVE_ACCESS_TIMEOUT;
do {
if (DeviceIoControl(hDrive, FSCTL_LOCK_VOLUME, NULL, 0, NULL, 0, NULL, NULL))
goto out;
if (IS_ERROR(ErrorStatus)) // User cancel
break;
Sleep(DRIVE_ACCESS_TIMEOUT / DRIVE_ACCESS_RETRIES);
} while (GetTickCount64() < EndTime);
// If we reached this section, either we didn't manage to get a lock or the user cancelled
uprintf("Could not lock access to %s: %s", Path, WindowsErrorString());
// See if we can report the processes are accessing the drive
if (!IS_ERROR(ErrorStatus) && (access_mask == 0))
access_mask = GetProcessSearch(SEARCH_PROCESS_TIMEOUT, 0x07, FALSE);
// Try to continue if the only access rights we saw were for read-only
if ((access_mask & 0x07) != 0x01)
safe_closehandle(hDrive);
}
out:
return hDrive;
}
/*
* Return the path to access the physical drive, or NULL on error.
* The string is allocated and must be freed (to ensure concurrent access)
*/
char* GetPhysicalName(DWORD DriveIndex)
{
BOOL success = FALSE;
char physical_name[24];
CheckDriveIndex(DriveIndex);
static_sprintf(physical_name, "\\\\.\\PhysicalDrive%lu", DriveIndex);
success = TRUE;
out:
return (success)?safe_strdup(physical_name):NULL;
}
/*
* Return a handle to the physical drive identified by DriveIndex
*/
HANDLE GetPhysicalHandle(DWORD DriveIndex, BOOL bLockDrive, BOOL bWriteAccess, BOOL bWriteShare)
{
HANDLE hPhysical = INVALID_HANDLE_VALUE;
char* PhysicalPath = GetPhysicalName(DriveIndex);
hPhysical = GetHandle(PhysicalPath, bLockDrive, bWriteAccess, bWriteShare);
safe_free(PhysicalPath);
return hPhysical;
}
/*
* Return the GUID volume name for the disk and partition specified, or NULL if not found.
* See http://msdn.microsoft.com/en-us/library/cc542456.aspx
* If PartitionOffset is 0, the offset is ignored and the first partition found is returned.
* The returned string is allocated and must be freed.
*/
char* GetLogicalName(DWORD DriveIndex, uint64_t PartitionOffset, BOOL bKeepTrailingBackslash, BOOL bSilent)
{
static const char* ignore_device[] = { "\\Device\\CdRom", "\\Device\\Floppy" };
static const char* volume_start = "\\\\?\\";
char *ret = NULL, volume_name[MAX_PATH], path[MAX_PATH];
BOOL r, bPrintHeader = TRUE;
HANDLE hDrive = INVALID_HANDLE_VALUE, hVolume = INVALID_HANDLE_VALUE;
VOLUME_DISK_EXTENTS_REDEF DiskExtents;
DWORD size = 0;
UINT drive_type;
StrArray found_name;
uint64_t found_offset[MAX_PARTITIONS] = { 0 };
uint32_t i, j;
size_t len;
StrArrayCreate(&found_name, MAX_PARTITIONS);
CheckDriveIndex(DriveIndex);
for (i = 0; hDrive == INVALID_HANDLE_VALUE; i++) {
if (i == 0) {
hVolume = FindFirstVolumeA(volume_name, sizeof(volume_name));
if (hVolume == INVALID_HANDLE_VALUE) {
suprintf("Could not access first GUID volume: %s", WindowsErrorString());
goto out;
}
} else {
if (!FindNextVolumeA(hVolume, volume_name, sizeof(volume_name))) {
if (GetLastError() != ERROR_NO_MORE_FILES) {
suprintf("Could not access next GUID volume: %s", WindowsErrorString());
}
break;
}
}
// Sanity checks
len = safe_strlen(volume_name);
assert(len > 4);
assert(safe_strnicmp(volume_name, volume_start, 4) == 0);
assert(volume_name[len - 1] == '\\');
drive_type = GetDriveTypeA(volume_name);
if ((drive_type != DRIVE_REMOVABLE) && (drive_type != DRIVE_FIXED))
continue;
volume_name[len-1] = 0;
if (QueryDosDeviceA(&volume_name[4], path, sizeof(path)) == 0) {
suprintf("Failed to get device path for GUID volume '%s': %s", volume_name, WindowsErrorString());
continue;
}
for (j=0; (j<ARRAYSIZE(ignore_device)) &&
(_strnicmp(path, ignore_device[j], safe_strlen(ignore_device[j])) != 0); j++);
if (j < ARRAYSIZE(ignore_device)) {
suprintf("Skipping GUID volume for '%s'", path);
continue;
}
hDrive = CreateFileWithTimeout(volume_name, GENERIC_READ, FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL, 3000);
if (hDrive == INVALID_HANDLE_VALUE) {
suprintf("Could not open GUID volume '%s': %s", volume_name, WindowsErrorString());
continue;
}
r = DeviceIoControl(hDrive, IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS, NULL, 0, &DiskExtents, sizeof(DiskExtents), &size, NULL);
if ((!r) || (size == 0)) {
suprintf("Could not get Disk Extents: %s", r ? "(empty data)" : WindowsErrorString());
safe_closehandle(hDrive);
continue;
}
safe_closehandle(hDrive);
if (DiskExtents.NumberOfDiskExtents == 0) {
suprintf("Ignoring volume '%s' because it has no extents...", volume_name);
continue;
}
if (DiskExtents.NumberOfDiskExtents != 1) {
// If we have more than one extent for a volume, it means that someone
// is using RAID-1 or something => Stay well away from such a volume!
suprintf("Ignoring volume '%s' because it has more than one extent (RAID?)...", volume_name);
continue;
}
if (DiskExtents.Extents[0].DiskNumber != DriveIndex)
// Not on our disk
continue;
if (found_name.Index == MAX_PARTITIONS) {
uprintf("Error: Trying to process a disk with more than %d partitions!", MAX_PARTITIONS);
goto out;
}
if (bKeepTrailingBackslash)
volume_name[len - 1] = '\\';
found_offset[found_name.Index] = DiskExtents.Extents[0].StartingOffset.QuadPart;
StrArrayAdd(&found_name, volume_name, TRUE);
if (!bSilent) {
if (bPrintHeader) {
bPrintHeader = FALSE;
uuprintf("Windows volumes from this device:");
}
uuprintf("● %s @%lld", volume_name, DiskExtents.Extents[0].StartingOffset.QuadPart);
}
}
if (found_name.Index == 0)
goto out;
// Now process all the volumes we found, and try to match one with our partition offset
for (i = 0; (i < found_name.Index) && (PartitionOffset != 0) && (PartitionOffset != found_offset[i]); i++);
if (i < found_name.Index) {
ret = safe_strdup(found_name.String[i]);
} else {
// NB: We need to re-add DRIVE_INDEX_MIN for this call since CheckDriveIndex() subtracted it
ret = AltGetLogicalName(DriveIndex + DRIVE_INDEX_MIN, PartitionOffset, bKeepTrailingBackslash, bSilent);
if ((ret != NULL) && (strchr(ret, ' ') != NULL))
uprintf("Warning: Using physical device to access partition data");
}
out:
if (hVolume != INVALID_HANDLE_VALUE)
FindVolumeClose(hVolume);
StrArrayDestroy(&found_name);
return ret;
}
/*
* Alternative version of the above, needed because some volumes, such as ESPs, are not listed
* by Windows, be it with VDS or other APIs.
* For these, we return the "\\?\GLOBALROOT\Device\HarddiskVolume#" identifier that matches
* our "Harddisk#Partition#", as reported by QueryDosDevice().
* The returned string is allocated and must be freed.
*/
char* AltGetLogicalName(DWORD DriveIndex, uint64_t PartitionOffset, BOOL bKeepTrailingBackslash, BOOL bSilent)
{
BOOL matching_drive = (DriveIndex == SelectedDrive.DeviceNumber);
DWORD i;
char *ret = NULL, volume_name[MAX_PATH], path[64];
CheckDriveIndex(DriveIndex);
// Match the offset to a partition index
if (PartitionOffset == 0) {
i = 0;
} else if (matching_drive) {
for (i = 0; (i < MAX_PARTITIONS) && (PartitionOffset != SelectedDrive.Partition[i].Offset); i++);
if (i >= MAX_PARTITIONS) {
suprintf("Error: Could not find a partition at offset %lld on this disk", PartitionOffset);
goto out;
}
} else {
suprintf("Error: Searching for a partition on a non matching disk");
goto out;
}
static_sprintf(path, "Harddisk%luPartition%lu", DriveIndex, i + 1);
static_strcpy(volume_name, groot_name);
if (!QueryDosDeviceA(path, &volume_name[groot_len], (DWORD)(MAX_PATH - groot_len)) || (strlen(volume_name) < 20)) {
suprintf("Could not find a DOS volume name for '%s': %s", path, WindowsErrorString());
goto out;
} else if (bKeepTrailingBackslash) {
static_strcat(volume_name, "\\");
}
ret = safe_strdup(volume_name);
out:
return ret;
}
/*
* Custom volume name for extfs formatting (that includes partition offset and partition size)
* so that these can be created and accessed on pre 1703 versions of Windows.
*/
char* GetExtPartitionName(DWORD DriveIndex, uint64_t PartitionOffset)
{
DWORD i;
char* ret = NULL, volume_name[MAX_PATH];
// Can't operate if we're not on the selected drive
if (DriveIndex != SelectedDrive.DeviceNumber)
goto out;
CheckDriveIndex(DriveIndex);
for (i = 0; (i < MAX_PARTITIONS) && (PartitionOffset != SelectedDrive.Partition[i].Offset); i++);
if (i >= MAX_PARTITIONS)
goto out;
static_sprintf(volume_name, "\\\\.\\PhysicalDrive%lu %I64u %I64u", DriveIndex,
SelectedDrive.Partition[i].Offset, SelectedDrive.Partition[i].Size);
ret = safe_strdup(volume_name);
out:
return ret;
}
static const char* VdsErrorString(HRESULT hr) {
SetLastError(hr);
return WindowsErrorString();
}
/*
* Per https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cocreateinstance
* and even though we aren't a UWP app, Windows Store prevents the ability to use of VDS when the
* Store version of Rufus is running (the call to IVdsServiceLoader_LoadService() will return
* E_ACCESSDENIED).
*/
BOOL IsVdsAvailable(BOOL bSilent)
{
HRESULT hr = S_FALSE;
IVdsService* pService = NULL;
IVdsServiceLoader* pLoader = NULL;
// Initialize COM
IGNORE_RETVAL(CoInitializeEx(NULL, COINIT_APARTMENTTHREADED | COINIT_DISABLE_OLE1DDE));
IGNORE_RETVAL(CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_CONNECT,
RPC_C_IMP_LEVEL_IMPERSONATE, NULL, 0, NULL));
// Create a VDS Loader Instance
hr = CoCreateInstance(&CLSID_VdsLoader, NULL, CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,
&IID_IVdsServiceLoader, (void**)&pLoader);
if (hr != S_OK) {
suprintf("Notice: Disabling VDS (Could not create VDS Loader Instance: %s)", VdsErrorString(hr));
goto out;
}
hr = IVdsServiceLoader_LoadService(pLoader, L"", &pService);
if (hr != S_OK) {
suprintf("Notice: Disabling VDS (Could not load VDS Service: %s)", VdsErrorString(hr));
goto out;
}
out:
if (pService != NULL)
IVdsService_Release(pService);
if (pLoader != NULL)
IVdsServiceLoader_Release(pLoader);
VDS_SET_ERROR(hr);
return (hr == S_OK);
}
/*
* Call on VDS to refresh the drive layout
*/
BOOL RefreshLayout(DWORD DriveIndex)
{
HRESULT hr = S_FALSE;
wchar_t wPhysicalName[24];
IVdsServiceLoader* pLoader = NULL;
IVdsService* pService = NULL;
IEnumVdsObject *pEnum;
CheckDriveIndex(DriveIndex);
wnsprintf(wPhysicalName, ARRAYSIZE(wPhysicalName), L"\\\\?\\PhysicalDrive%lu", DriveIndex);
// Initialize COM
IGNORE_RETVAL(CoInitializeEx(NULL, COINIT_APARTMENTTHREADED | COINIT_DISABLE_OLE1DDE));
IGNORE_RETVAL(CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_CONNECT,
RPC_C_IMP_LEVEL_IMPERSONATE, NULL, 0, NULL));
// Create a VDS Loader Instance
hr = CoCreateInstance(&CLSID_VdsLoader, NULL, CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,
&IID_IVdsServiceLoader, (void **)&pLoader);
if (hr != S_OK) {
uprintf("Could not create VDS Loader Instance: %s", VdsErrorString(hr));
goto out;
}
// Load the VDS Service
hr = IVdsServiceLoader_LoadService(pLoader, L"", &pService);
if (hr != S_OK) {
uprintf("Could not load VDS Service: %s", VdsErrorString(hr));
goto out;
}
// Wait for the Service to become ready if needed
hr = IVdsService_WaitForServiceReady(pService);
if (hr != S_OK) {
uprintf("VDS Service is not ready: %s", VdsErrorString(hr));
goto out;
}
// Query the VDS Service Providers
hr = IVdsService_QueryProviders(pService, VDS_QUERY_SOFTWARE_PROVIDERS, &pEnum);
if (hr != S_OK) {
uprintf("Could not query VDS Service Providers: %s", VdsErrorString(hr));
goto out;
}
// Remove mountpoints
hr = IVdsService_CleanupObsoleteMountPoints(pService);
if (hr != S_OK) {
uprintf("Could not clean up VDS mountpoints: %s", VdsErrorString(hr));
goto out;
}
// Invoke layout refresh
hr = IVdsService_Refresh(pService);
if (hr != S_OK) {
uprintf("Could not refresh VDS layout: %s", VdsErrorString(hr));
goto out;
}
// Force re-enum
hr = IVdsService_Reenumerate(pService);
if (hr != S_OK) {
uprintf("Could not refresh VDS layout: %s", VdsErrorString(hr));
goto out;
}
out:
if (pService != NULL)
IVdsService_Release(pService);
if (pLoader != NULL)
IVdsServiceLoader_Release(pLoader);
VDS_SET_ERROR(hr);
return (hr == S_OK);
}
/*
* Generic call to instantiate a VDS Disk Interface. Mostly copied from:
* https://social.msdn.microsoft.com/Forums/vstudio/en-US/b90482ae-4e44-4b08-8731-81915030b32a/createpartition-using-vds-interface-throw-error-enointerface-dcom?forum=vcgeneral
* See also: https://docs.microsoft.com/en-us/windows/win32/vds/working-with-enumeration-objects
*/
static BOOL GetVdsDiskInterface(DWORD DriveIndex, const IID* InterfaceIID, void** pInterfaceInstance, BOOL bSilent)
{
HRESULT hr = S_FALSE;
ULONG ulFetched;
wchar_t wPhysicalName[24];
IVdsServiceLoader* pLoader;
IVdsService* pService;
IEnumVdsObject* pEnum;
IUnknown* pUnk;
*pInterfaceInstance = NULL;
CheckDriveIndex(DriveIndex);
wnsprintf(wPhysicalName, ARRAYSIZE(wPhysicalName), L"\\\\?\\PhysicalDrive%lu", DriveIndex);
// Initialize COM
IGNORE_RETVAL(CoInitializeEx(NULL, COINIT_APARTMENTTHREADED | COINIT_DISABLE_OLE1DDE));
IGNORE_RETVAL(CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_CONNECT,
RPC_C_IMP_LEVEL_IMPERSONATE, NULL, 0, NULL));
// Create a VDS Loader Instance
hr = CoCreateInstance(&CLSID_VdsLoader, NULL, CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,
&IID_IVdsServiceLoader, (void**)&pLoader);
if (hr != S_OK) {
suprintf("Could not create VDS Loader Instance: %s", VdsErrorString(hr));
goto out;
}
// Load the VDS Service
hr = IVdsServiceLoader_LoadService(pLoader, L"", &pService);
IVdsServiceLoader_Release(pLoader);
if (hr != S_OK) {
suprintf("Could not load VDS Service: %s", VdsErrorString(hr));
goto out;
}
// Wait for the Service to become ready if needed
hr = IVdsService_WaitForServiceReady(pService);
if (hr != S_OK) {
suprintf("VDS Service is not ready: %s", VdsErrorString(hr));
goto out;
}
// Query the VDS Service Providers
hr = IVdsService_QueryProviders(pService, VDS_QUERY_SOFTWARE_PROVIDERS, &pEnum);
IVdsService_Release(pService);
if (hr != S_OK) {
suprintf("Could not query VDS Service Providers: %s", VdsErrorString(hr));
goto out;
}
while (IEnumVdsObject_Next(pEnum, 1, &pUnk, &ulFetched) == S_OK) {
IVdsProvider* pProvider;
IVdsSwProvider* pSwProvider;
IEnumVdsObject* pEnumPack;
IUnknown* pPackUnk;
// Get VDS Provider
hr = IUnknown_QueryInterface(pUnk, &IID_IVdsProvider, (void**)&pProvider);
IUnknown_Release(pUnk);
if (hr != S_OK) {
suprintf("Could not get VDS Provider: %s", VdsErrorString(hr));
break;
}
// Get VDS Software Provider
hr = IVdsSwProvider_QueryInterface(pProvider, &IID_IVdsSwProvider, (void**)&pSwProvider);
IVdsProvider_Release(pProvider);
if (hr != S_OK) {
suprintf("Could not get VDS Software Provider: %s", VdsErrorString(hr));
break;
}
// Get VDS Software Provider Packs
hr = IVdsSwProvider_QueryPacks(pSwProvider, &pEnumPack);
IVdsSwProvider_Release(pSwProvider);
if (hr != S_OK) {
suprintf("Could not get VDS Software Provider Packs: %s", VdsErrorString(hr));
break;
}
// Enumerate Provider Packs
while (IEnumVdsObject_Next(pEnumPack, 1, &pPackUnk, &ulFetched) == S_OK) {
IVdsPack* pPack;
IEnumVdsObject* pEnumDisk;
IUnknown* pDiskUnk;
hr = IUnknown_QueryInterface(pPackUnk, &IID_IVdsPack, (void**)&pPack);
IUnknown_Release(pPackUnk);
if (hr != S_OK) {
suprintf("Could not query VDS Software Provider Pack: %s", VdsErrorString(hr));
break;
}
// Use the pack interface to access the disks
hr = IVdsPack_QueryDisks(pPack, &pEnumDisk);
IVdsPack_Release(pPack);
if (hr != S_OK) {
suprintf("Could not query VDS disks: %s", VdsErrorString(hr));
break;
}
// List disks
while (IEnumVdsObject_Next(pEnumDisk, 1, &pDiskUnk, &ulFetched) == S_OK) {
VDS_DISK_PROP prop;
IVdsDisk* pDisk;
// Get the disk interface.
hr = IUnknown_QueryInterface(pDiskUnk, &IID_IVdsDisk, (void**)&pDisk);
IUnknown_Release(pDiskUnk);
if (hr != S_OK) {
suprintf("Could not query VDS Disk Interface: %s", VdsErrorString(hr));
break;
}
// Get the disk properties
hr = IVdsDisk_GetProperties(pDisk, &prop);
if ((hr != S_OK) && (hr != VDS_S_PROPERTIES_INCOMPLETE)) {
IVdsDisk_Release(pDisk);
suprintf("Could not query VDS Disk Properties: %s", VdsErrorString(hr));
break;
}
// Check if we are on the target disk
// uprintf("GetVdsDiskInterface: Seeking %S found %S", wPhysicalName, prop.pwszName);
hr = (HRESULT)_wcsicmp(wPhysicalName, prop.pwszName);
CoTaskMemFree(prop.pwszName);
if (hr != S_OK) {
hr = S_OK;
continue;
}
// Instantiate the requested VDS disk interface
hr = IVdsDisk_QueryInterface(pDisk, InterfaceIID, pInterfaceInstance);
IVdsDisk_Release(pDisk);
if (hr != S_OK)
suprintf("Could not access the requested Disk interface: %s", VdsErrorString(hr));
// With the interface found, we should be able to return
break;
}
IEnumVdsObject_Release(pEnumDisk);
}
IEnumVdsObject_Release(pEnumPack);
}
IEnumVdsObject_Release(pEnum);
out:
VDS_SET_ERROR(hr);
return (hr == S_OK);
}
/*
* Invoke IVdsService::Refresh() and/or IVdsService::Reenumerate() to force a
* rescan of the VDS disks. This can become necessary after writing an image
* such as Ubuntu 20.10, as Windows may "lose" the active disk otherwise...
*/
BOOL VdsRescan(DWORD dwRescanType, DWORD dwSleepTime, BOOL bSilent)
{
BOOL ret = TRUE;
HRESULT hr = S_FALSE;
IVdsServiceLoader* pLoader;
IVdsService* pService;
IGNORE_RETVAL(CoInitializeEx(NULL, COINIT_APARTMENTTHREADED | COINIT_DISABLE_OLE1DDE));
IGNORE_RETVAL(CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_CONNECT,
RPC_C_IMP_LEVEL_IMPERSONATE, NULL, 0, NULL));
hr = CoCreateInstance(&CLSID_VdsLoader, NULL, CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,
&IID_IVdsServiceLoader, (void**)&pLoader);
if (hr != S_OK) {
suprintf("Could not create VDS Loader Instance: %s", VdsErrorString(hr));
return FALSE;
}
hr = IVdsServiceLoader_LoadService(pLoader, L"", &pService);
IVdsServiceLoader_Release(pLoader);
if (hr != S_OK) {
suprintf("Could not load VDS Service: %s", VdsErrorString(hr));
return FALSE;
}
hr = IVdsService_WaitForServiceReady(pService);
if (hr != S_OK) {
suprintf("VDS Service is not ready: %s", VdsErrorString(hr));
return FALSE;
}
// https://docs.microsoft.com/en-us/windows/win32/api/vds/nf-vds-ivdsservice-refresh
// This method synchronizes the disk layout to the layout known to the disk driver.
// It does not force the driver to read the layout from the disk.
// Additionally, this method refreshes the view of all objects in the VDS cache.
if (dwRescanType & VDS_RESCAN_REFRESH) {
hr = IVdsService_Refresh(pService);
if (hr != S_OK) {
suprintf("VDS Refresh failed: %s", VdsErrorString(hr));
ret = FALSE;
}
}
// https://docs.microsoft.com/en-us/windows/win32/api/vds/nf-vds-ivdsservice-reenumerate
// This method returns immediately after a bus rescan request is issued.
// The operation might be incomplete when the method returns.
if (dwRescanType & VDS_RESCAN_REENUMERATE) {
hr = IVdsService_Reenumerate(pService);
if (hr != S_OK) {
suprintf("VDS Re-enumeration failed: %s", VdsErrorString(hr));
ret = FALSE;
}
}
if (dwSleepTime != 0)
Sleep(dwSleepTime);
return ret;
}
/*
* Delete one partition at offset PartitionOffset, or all partitions if the offset is 0.
*/
BOOL DeletePartition(DWORD DriveIndex, ULONGLONG PartitionOffset, BOOL bSilent)
{
HRESULT hr = S_FALSE;
VDS_PARTITION_PROP* prop_array = NULL;
LONG i, prop_array_size;
IVdsAdvancedDisk *pAdvancedDisk = NULL;
if (!GetVdsDiskInterface(DriveIndex, &IID_IVdsAdvancedDisk, (void**)&pAdvancedDisk, bSilent))
return FALSE;
if (pAdvancedDisk == NULL) {
suprintf("Looks like Windows has \"lost\" our disk - Forcing a VDS rescan...");
VdsRescan(VDS_RESCAN_REFRESH | VDS_RESCAN_REENUMERATE, 1000, bSilent);
if (!GetVdsDiskInterface(DriveIndex, &IID_IVdsAdvancedDisk, (void**)&pAdvancedDisk, bSilent) ||
(pAdvancedDisk == NULL)) {
suprintf("Could not locate disk - Aborting.");
return FALSE;
}
}
// Query the partition data, so we can get the start offset, which we need for deletion
hr = IVdsAdvancedDisk_QueryPartitions(pAdvancedDisk, &prop_array, &prop_array_size);
if (hr == S_OK) {
suprintf("Deleting partition%s:", (PartitionOffset == 0) ? "s" : "");
// Now go through each partition
for (i = 0; i < prop_array_size; i++) {
if ((PartitionOffset != 0) && (prop_array[i].ullOffset != PartitionOffset))
continue;
suprintf("● Partition %d (offset: %lld, size: %s)", prop_array[i].ulPartitionNumber,
prop_array[i].ullOffset, SizeToHumanReadable(prop_array[i].ullSize, FALSE, FALSE));
hr = IVdsAdvancedDisk_DeletePartition(pAdvancedDisk, prop_array[i].ullOffset, TRUE, TRUE);
if (hr != S_OK)
suprintf("Could not delete partition: %s", VdsErrorString(hr));
}
} else {
suprintf("No partition to delete on disk");
hr = S_OK;
}
CoTaskMemFree(prop_array);
IVdsAdvancedDisk_Release(pAdvancedDisk);
VDS_SET_ERROR(hr);
return (hr == S_OK);
}
/*
* Count on Microsoft for *COMPLETELY CRIPPLING* an API when allegedly upgrading it...
* As illustrated when you do so with diskpart (which uses VDS behind the scenes), VDS
* simply *DOES NOT* list all the volumes that the system can see, especially compared
* to what mountvol (which uses FindFirstVolume()/FindNextVolume()) and other APIs do.
* Also for reference, if you want to list volumes through WMI in PowerShell:
* Get-WmiObject win32_volume | Format-Table -Property DeviceID,Name,Label,Capacity
*/
BOOL ListVdsVolumes(BOOL bSilent)
{
HRESULT hr = S_FALSE;
ULONG ulFetched;
IVdsServiceLoader* pLoader;
IVdsService* pService;
IEnumVdsObject* pEnum;
IUnknown* pUnk;
// Initialize COM
IGNORE_RETVAL(CoInitializeEx(NULL, COINIT_APARTMENTTHREADED | COINIT_DISABLE_OLE1DDE));
IGNORE_RETVAL(CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_CONNECT,
RPC_C_IMP_LEVEL_IMPERSONATE, NULL, 0, NULL));
// Create a VDS Loader Instance
hr = CoCreateInstance(&CLSID_VdsLoader, NULL, CLSCTX_LOCAL_SERVER | CLSCTX_REMOTE_SERVER,
&IID_IVdsServiceLoader, (void**)&pLoader);
if (hr != S_OK) {
suprintf("Could not create VDS Loader Instance: %s", VdsErrorString(hr));
goto out;
}
// Load the VDS Service
hr = IVdsServiceLoader_LoadService(pLoader, L"", &pService);
IVdsServiceLoader_Release(pLoader);
if (hr != S_OK) {
suprintf("Could not load VDS Service: %s", VdsErrorString(hr));
goto out;
}
// Wait for the Service to become ready if needed
hr = IVdsService_WaitForServiceReady(pService);
if (hr != S_OK) {
suprintf("VDS Service is not ready: %s", VdsErrorString(hr));
goto out;
}
// Query the VDS Service Providers
hr = IVdsService_QueryProviders(pService, VDS_QUERY_SOFTWARE_PROVIDERS, &pEnum);
IVdsService_Release(pService);
if (hr != S_OK) {
suprintf("Could not query VDS Service Providers: %s", VdsErrorString(hr));
goto out;
}
while (IEnumVdsObject_Next(pEnum, 1, &pUnk, &ulFetched) == S_OK) {
IVdsProvider* pProvider;
IVdsSwProvider* pSwProvider;
IEnumVdsObject* pEnumPack;
IUnknown* pPackUnk;
// Get VDS Provider
hr = IUnknown_QueryInterface(pUnk, &IID_IVdsProvider, (void**)&pProvider);
IUnknown_Release(pUnk);
if (hr != S_OK) {
suprintf("Could not get VDS Provider: %s", VdsErrorString(hr));
break;
}
// Get VDS Software Provider
hr = IVdsSwProvider_QueryInterface(pProvider, &IID_IVdsSwProvider, (void**)&pSwProvider);
IVdsProvider_Release(pProvider);
if (hr != S_OK) {
suprintf("Could not get VDS Software Provider: %s", VdsErrorString(hr));
break;
}
// Get VDS Software Provider Packs
hr = IVdsSwProvider_QueryPacks(pSwProvider, &pEnumPack);
IVdsSwProvider_Release(pSwProvider);
if (hr != S_OK) {
suprintf("Could not get VDS Software Provider Packs: %s", VdsErrorString(hr));
break;
}
// Enumerate Provider Packs
while (IEnumVdsObject_Next(pEnumPack, 1, &pPackUnk, &ulFetched) == S_OK) {
IVdsPack* pPack;
IEnumVdsObject* pEnumVolume;
IUnknown* pVolumeUnk;
hr = IUnknown_QueryInterface(pPackUnk, &IID_IVdsPack, (void**)&pPack);
IUnknown_Release(pPackUnk);
if (hr != S_OK) {
suprintf("Could not query VDS Software Provider Pack: %s", VdsErrorString(hr));
break;
}
// Use the pack interface to access the disks
hr = IVdsPack_QueryVolumes(pPack, &pEnumVolume);
if (hr != S_OK) {
suprintf("Could not query VDS volumes: %s", VdsErrorString(hr));
break;
}
// List volumes
while (IEnumVdsObject_Next(pEnumVolume, 1, &pVolumeUnk, &ulFetched) == S_OK) {
IVdsVolume* pVolume;
IVdsVolumeMF3* pVolumeMF3;
VDS_VOLUME_PROP prop;
LPWSTR* wszPathArray;
ULONG i, ulNumberOfPaths;
// Get the volume interface.
hr = IUnknown_QueryInterface(pVolumeUnk, &IID_IVdsVolume, (void**)&pVolume);
if (hr != S_OK) {
suprintf("Could not query VDS Volume Interface: %s", VdsErrorString(hr));
break;
}
// Get the volume properties
hr = IVdsVolume_GetProperties(pVolume, &prop);
if ((hr != S_OK) && (hr != VDS_S_PROPERTIES_INCOMPLETE)) {
suprintf("Could not query VDS Volume Properties: %s", VdsErrorString(hr));
break;
}
uprintf("FOUND VOLUME: '%S'", prop.pwszName);
CoTaskMemFree(prop.pwszName);
IVdsVolume_Release(pVolume);
// Get the volume MF3 interface.
hr = IUnknown_QueryInterface(pVolumeUnk, &IID_IVdsVolumeMF3, (void**)&pVolumeMF3);
if (hr != S_OK) {
suprintf("Could not query VDS VolumeMF3 Interface: %s", VdsErrorString(hr));
break;
}
// Get the volume properties
hr = IVdsVolumeMF3_QueryVolumeGuidPathnames(pVolumeMF3, &wszPathArray, &ulNumberOfPaths);
if ((hr != S_OK) && (hr != VDS_S_PROPERTIES_INCOMPLETE)) {
suprintf("Could not query VDS VolumeMF3 GUID PathNames: %s", VdsErrorString(hr));
break;
}
hr = S_OK;
for (i = 0; i < ulNumberOfPaths; i++)
uprintf(" VOL GUID: '%S'", wszPathArray[i]);
CoTaskMemFree(wszPathArray);
IVdsVolume_Release(pVolumeMF3);
IUnknown_Release(pVolumeUnk);
}
IEnumVdsObject_Release(pEnumVolume);
}
IEnumVdsObject_Release(pEnumPack);
}
IEnumVdsObject_Release(pEnum);
out:
VDS_SET_ERROR(hr);
return (hr == S_OK);
}
/* Wait for a logical drive to reappear - Used when a drive has just been repartitioned */
BOOL WaitForLogical(DWORD DriveIndex, uint64_t PartitionOffset)
{
uint64_t EndTime;
char* LogicalPath = NULL;
// GetLogicalName() calls may be slow, so use the system time to
// make sure we don't spend more than DRIVE_ACCESS_TIMEOUT in wait.
EndTime = GetTickCount64() + DRIVE_ACCESS_TIMEOUT;
do {
LogicalPath = GetLogicalName(DriveIndex, PartitionOffset, FALSE, TRUE);
// Need to filter out GlobalRoot devices as we don't want to wait on those
if ((LogicalPath != NULL) && (strncmp(LogicalPath, groot_name, groot_len) != 0)) {
free(LogicalPath);
return TRUE;
}
free(LogicalPath);
if (IS_ERROR(ErrorStatus)) // User cancel
return FALSE;
Sleep(DRIVE_ACCESS_TIMEOUT / DRIVE_ACCESS_RETRIES);
} while (GetTickCount64() < EndTime);
uprintf("Timeout while waiting for logical drive");
return FALSE;
}
/*
* Obtain a handle to the volume identified by DriveIndex + PartitionIndex
* Returns INVALID_HANDLE_VALUE on error or NULL if no logical path exists (typical
* of unpartitioned drives)
*/
HANDLE GetLogicalHandle(DWORD DriveIndex, uint64_t PartitionOffset, BOOL bLockDrive, BOOL bWriteAccess, BOOL bWriteShare)
{
HANDLE hLogical = INVALID_HANDLE_VALUE;
char* LogicalPath = GetLogicalName(DriveIndex, PartitionOffset, FALSE, FALSE);
if (LogicalPath == NULL) {
uprintf("No logical drive found (unpartitioned?)");
return NULL;
}
hLogical = GetHandle(LogicalPath, bLockDrive, bWriteAccess, bWriteShare);
free(LogicalPath);
return hLogical;
}
/* Alternate version of the above, for ESPs */
HANDLE AltGetLogicalHandle(DWORD DriveIndex, uint64_t PartitionOffset, BOOL bLockDrive, BOOL bWriteAccess, BOOL bWriteShare)
{
HANDLE hLogical = INVALID_HANDLE_VALUE;
char* LogicalPath = AltGetLogicalName(DriveIndex, PartitionOffset, FALSE, FALSE);
if (LogicalPath == NULL) {
uprintf("No logical drive found");
return NULL;
}
hLogical = GetHandle(LogicalPath, bLockDrive, bWriteAccess, bWriteShare);
free(LogicalPath);
return hLogical;
}
/*
* Who would have thought that Microsoft would make it so unbelievably hard to
* get the frickin' device number for a drive? You have to use TWO different
* methods to have a chance to get it!
*/
int GetDriveNumber(HANDLE hDrive, char* path)
{
STORAGE_DEVICE_NUMBER_REDEF DeviceNumber;
VOLUME_DISK_EXTENTS_REDEF DiskExtents;
DWORD size = 0;
BOOL s;
int r = -1;
if (!DeviceIoControl(hDrive, IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS, NULL, 0, &DiskExtents, sizeof(DiskExtents), &size, NULL) ||
(size <= 0) || (DiskExtents.NumberOfDiskExtents < 1)) {
// DiskExtents are NO_GO (which is the case for external USB HDDs...)
s = DeviceIoControl(hDrive, IOCTL_STORAGE_GET_DEVICE_NUMBER, NULL, 0, &DeviceNumber, sizeof(DeviceNumber), &size, NULL);
if ((!s) || (size == 0)) {
uprintf("Could not get device number for device %s %s", path, s ? "(empty data)" : WindowsErrorString());
return -1;
}
r = (int)DeviceNumber.DeviceNumber;
} else if (DiskExtents.NumberOfDiskExtents >= 2) {
uprintf("Ignoring drive '%s' as it spans multiple disks (RAID?)", path);
return -1;
} else {
r = (int)DiskExtents.Extents[0].DiskNumber;
}
if (r >= MAX_DRIVES) {
uprintf("Device Number for device %s is too big (%d) - ignoring device", path, r);
uprintf("NOTE: This may be due to an excess of Virtual Drives, such as hidden ones created by the XBox PC app");
return -1;
}
return r;
}
/*
* Returns the drive letters for all volumes located on the drive identified by DriveIndex,
* as well as the drive type. This is used as base for the 2 function calls that follow.
*/
static BOOL _GetDriveLettersAndType(DWORD DriveIndex, char* drive_letters, UINT* drive_type)
{
DWORD size;
BOOL r = FALSE;
HANDLE hDrive = INVALID_HANDLE_VALUE, hPhysical = INVALID_HANDLE_VALUE;
UINT _drive_type;
IO_STATUS_BLOCK io_status_block;
FILE_FS_DEVICE_INFORMATION file_fs_device_info;
BYTE geometry[256] = { 0 };
PDISK_GEOMETRY_EX DiskGeometry = (PDISK_GEOMETRY_EX)(void*)geometry;
int i = 0, drives_found = 0, drive_number;
char *drive, drives[26*4 + 1]; /* "D:\", "E:\", etc., plus one NUL */
char logical_drive[] = "\\\\.\\#:";
PF_INIT(NtQueryVolumeInformationFile, Ntdll);
if (drive_letters != NULL)
drive_letters[0] = 0;
if (drive_type != NULL)
*drive_type = DRIVE_UNKNOWN;
CheckDriveIndex(DriveIndex);
// This call is weird... The buffer needs to have an extra NUL, but you're
// supposed to provide the size without the extra NUL. And the returned size
// does not include the NUL either *EXCEPT* if your buffer is too small...
// But then again, this doesn't hold true if you have a 105 byte buffer and
// pass a 4*26=104 size, as the the call will return 105 (i.e. *FAILURE*)
// instead of 104 as it should => screw Microsoft: We'll include the NUL
// always, as each drive string is at least 4 chars long anyway.
size = GetLogicalDriveStringsA(sizeof(drives), drives);
if (size == 0) {
uprintf("GetLogicalDriveStrings failed: %s", WindowsErrorString());
goto out;
}
if (size > sizeof(drives)) {
uprintf("GetLogicalDriveStrings: Buffer too small (required %lu vs. %zu)", size, sizeof(drives));
goto out;
}
r = TRUE; // Required to detect drives that don't have volumes assigned
for (drive = drives ;*drive; drive += safe_strlen(drive) + 1) {
if (!isalpha(*drive))
continue;
*drive = (char)toupper((int)*drive);
// IOCTL_STORAGE_GET_DEVICE_NUMBER's STORAGE_DEVICE_NUMBER.DeviceNumber is
// not unique! An HDD, a DVD and probably other drives can have the same
// value there => Use GetDriveType() to filter out unwanted devices.
// See https://github.com/pbatard/rufus/issues/32#issuecomment-3785956
_drive_type = GetDriveTypeA(drive);
if ((_drive_type != DRIVE_REMOVABLE) && (_drive_type != DRIVE_FIXED))
continue;
static_sprintf(logical_drive, "\\\\.\\%c:", toupper(drive[0]));
// This call appears to freeze on some systems and we don't want to spend more
// time than needed waiting for unresponsive drives, so use a 3 seconds timeout.
hDrive = CreateFileWithTimeout(logical_drive, GENERIC_READ, FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL, 3000);
if (hDrive == INVALID_HANDLE_VALUE) {
if (GetLastError() == WAIT_TIMEOUT)
uprintf("Warning: Time-out while trying to query drive %c", toupper(drive[0]));
continue;
}
// Eliminate floppy drives
if ((pfNtQueryVolumeInformationFile != NULL) &&
(pfNtQueryVolumeInformationFile(hDrive, &io_status_block, &file_fs_device_info,
sizeof(file_fs_device_info), FileFsDeviceInformation) == NO_ERROR) &&
(file_fs_device_info.Characteristics & FILE_FLOPPY_DISKETTE) ) {
continue;
}
drive_number = GetDriveNumber(hDrive, logical_drive);
safe_closehandle(hDrive);
if (drive_number == DriveIndex) {
r = TRUE;
drives_found++;
if (drive_letters != NULL)
drive_letters[i++] = *drive;
// The drive type should be the same for all volumes, so we can overwrite
if (drive_type != NULL)
*drive_type = _drive_type;
}
}
// Devices that don't have mounted partitions require special
// handling to determine if they are fixed or removable.
if ((drives_found == 0) && (drive_type != NULL)) {
hPhysical = GetPhysicalHandle(DriveIndex + DRIVE_INDEX_MIN, FALSE, FALSE, FALSE);
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, geometry, sizeof(geometry), &size, NULL);
safe_closehandle(hPhysical);
if (r && size > 0) {
if (DiskGeometry->Geometry.MediaType == FixedMedia)
*drive_type = DRIVE_FIXED;
else if (DiskGeometry->Geometry.MediaType == RemovableMedia)
*drive_type = DRIVE_REMOVABLE;
}
}
out:
if (drive_letters != NULL)
drive_letters[i] = 0;
return r;
}
// Could have used a #define, but this is clearer
BOOL GetDriveLetters(DWORD DriveIndex, char* drive_letters)
{
return _GetDriveLettersAndType(DriveIndex, drive_letters, NULL);
}
// There's already a GetDriveType in the Windows API
UINT GetDriveTypeFromIndex(DWORD DriveIndex)
{
UINT drive_type;
_GetDriveLettersAndType(DriveIndex, NULL, &drive_type);
return drive_type;
}
// Removes all drive letters associated with the specific drive, and return
// either the first or last letter that was removed, according to bReturnLast.
char RemoveDriveLetters(DWORD DriveIndex, BOOL bReturnLast, BOOL bSilent)
{
int i, len;
char drive_letters[27] = { 0 }, drive_name[4] = "#:\\";
if (!GetDriveLetters(DriveIndex, drive_letters)) {
suprintf("Failed to get a drive letter");
return 0;
}
if (drive_letters[0] == 0) {
suprintf("No drive letter was assigned...");
return GetUnusedDriveLetter();
}
len = (int)strlen(drive_letters);
if (len == 0)
return 0;
// Unmount all mounted volumes that belong to this drive
for (i = 0; i < len; i++) {
// Check that the current image isn't located on a drive we are trying to dismount
if ((boot_type == BT_IMAGE) && (drive_letters[i] == (PathGetDriveNumberU(image_path) + 'A'))) {
if ((PathGetDriveNumberU(image_path) + 'A') == drive_letters[i]) {
suprintf("ABORTED: Cannot use an image that is located on the target drive!");
return 0;
}
}
drive_name[0] = drive_letters[i];
// DefineDosDevice() cannot have a trailing backslash...
drive_name[2] = 0;
DefineDosDeviceA(DDD_REMOVE_DEFINITION, drive_name, NULL);
// ... but DeleteVolumeMountPoint() requires one. Go figure...
drive_name[2] = '\\';
if (!DeleteVolumeMountPointA(drive_name))
suprintf("Failed to delete mountpoint %s: %s", drive_name, WindowsErrorString());
}
return drive_letters[bReturnLast ? (len - 1) : 0];
}
/*
* Return the next unused drive letter from the system or NUL on error.
*/
char GetUnusedDriveLetter(void)
{
DWORD size;
char drive_letter, *drive, drives[26*4 + 1]; /* "D:\", "E:\", etc., plus one NUL */
size = GetLogicalDriveStringsA(sizeof(drives), drives);
if (size == 0) {
uprintf("GetLogicalDriveStrings failed: %s", WindowsErrorString());
return 0;
}
if (size > sizeof(drives)) {
uprintf("GetLogicalDriveStrings: Buffer too small (required %lu vs. %zu)", size, sizeof(drives));
return 0;
}
for (drive_letter = 'C'; drive_letter <= 'Z'; drive_letter++) {
for (drive = drives ; *drive; drive += safe_strlen(drive) + 1) {
if (!isalpha(*drive))
continue;
if (drive_letter == (char)toupper((int)*drive))
break;
}
if (!*drive)
break;
}
return (drive_letter > 'Z') ? 0 : drive_letter;
}
BOOL IsDriveLetterInUse(const char drive_letter)
{
DWORD size;
char *drive, drives[26 * 4 + 1];
size = GetLogicalDriveStringsA(sizeof(drives), drives);
if (size == 0) {
uprintf("GetLogicalDriveStrings failed: %s", WindowsErrorString());
return TRUE;
}
if (size > sizeof(drives)) {
uprintf("GetLogicalDriveStrings: Buffer too small (required %lu vs. %zu)", size, sizeof(drives));
return TRUE;
}
for (drive = drives; *drive; drive += safe_strlen(drive) + 1) {
if (drive_letter == (char)toupper((int)*drive))
return TRUE;
}
return FALSE;
}
/*
* Return the drive letter and volume label
* If the drive doesn't have a volume assigned, space is returned for the letter
*/
BOOL GetDriveLabel(DWORD DriveIndex, char* letters, char** label, BOOL bSilent)
{
HANDLE hPhysical;
DWORD error;
static char VolumeLabel[MAX_PATH + 1] = { 0 };
char DrivePath[] = "#:\\", AutorunPath[] = "#:\\autorun.inf", *AutorunLabel = NULL;
WCHAR VolumeName[MAX_PATH + 1] = { 0 }, FileSystemName[64];
DWORD VolumeSerialNumber, MaximumComponentLength, FileSystemFlags;
*label = STR_NO_LABEL;
if (!GetDriveLetters(DriveIndex, letters))
return FALSE;
if (letters[0] == 0) {
// Even if we don't have a letter, try to obtain the label of the first partition
HANDLE h = GetLogicalHandle(DriveIndex, 0, FALSE, FALSE, FALSE);
if (GetVolumeInformationByHandleW(h, VolumeName, 64, &VolumeSerialNumber,
&MaximumComponentLength, &FileSystemFlags, FileSystemName, 64)) {
wchar_to_utf8_no_alloc(VolumeName, VolumeLabel, sizeof(VolumeLabel));
*label = (VolumeLabel[0] != 0) ? VolumeLabel : STR_NO_LABEL;
}
safe_closehandle(h);
// Drive without volume assigned - always enabled
return TRUE;
}
// We only care about an autorun.inf if we have a single volume
AutorunPath[0] = letters[0];
DrivePath[0] = letters[0];
// Try to read an extended label from autorun first. Fallback to regular label if not found.
// In the case of card readers with no card, users can get an annoying popup asking them
// to insert media. Use IOCTL_STORAGE_CHECK_VERIFY to prevent this
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE, TRUE);
if (DeviceIoControl(hPhysical, IOCTL_STORAGE_CHECK_VERIFY, NULL, 0, NULL, 0, NULL, NULL))
AutorunLabel = get_token_data_file("label", AutorunPath);
else if (GetLastError() == ERROR_NOT_READY)
suprintf("Ignoring 'autorun.inf' label for drive %c: No media", toupper(letters[0]));
safe_closehandle(hPhysical);
if (AutorunLabel != NULL) {
suprintf("Using 'autorun.inf' label for drive %c: '%s'", toupper(letters[0]), AutorunLabel);
static_strcpy(VolumeLabel, AutorunLabel);
safe_free(AutorunLabel);
*label = VolumeLabel;
} else if (GetVolumeInformationU(DrivePath, VolumeLabel, ARRAYSIZE(VolumeLabel),
NULL, NULL, NULL, NULL, 0) && (VolumeLabel[0] != 0)) {
*label = VolumeLabel;
} else {
// Might be an extfs label
error = GetLastError();
*label = (char*)GetExtFsLabel(DriveIndex, 0);
if (*label == NULL) {
SetLastError(error);
if (error != ERROR_UNRECOGNIZED_VOLUME)
duprintf("Failed to read label: %s", WindowsErrorString());
*label = STR_NO_LABEL;
}
}
return TRUE;
}
/*
* Return the drive size
*/
uint64_t GetDriveSize(DWORD DriveIndex)
{
BOOL r;
HANDLE hPhysical;
DWORD size;
BYTE geometry[256];
PDISK_GEOMETRY_EX DiskGeometry = (PDISK_GEOMETRY_EX)(void*)geometry;
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE, TRUE);
if (hPhysical == INVALID_HANDLE_VALUE)
return FALSE;
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, geometry, sizeof(geometry), &size, NULL);
safe_closehandle(hPhysical);
if (!r || size <= 0)
return 0;
return DiskGeometry->DiskSize.QuadPart;
}
/*
* GET_DRIVE_GEOMETRY is used to tell if there is an actual media
*/
BOOL IsMediaPresent(DWORD DriveIndex)
{
BOOL r;
HANDLE hPhysical;
DWORD size;
BYTE geometry[128];
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE, TRUE);
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, geometry, sizeof(geometry), &size, NULL) && (size > 0);
safe_closehandle(hPhysical);
return r;
}
const struct {int (*fn)(FILE *fp); char* str;} known_mbr[] = {
{ is_dos_mbr, "DOS/NT/95A" },
{ is_dos_f2_mbr, "DOS/NT/95A (F2)" },
{ is_95b_mbr, "Windows 95B/98/98SE/ME" },
{ is_2000_mbr, "Windows 2000/XP/2003" },
{ is_vista_mbr, "Windows Vista" },
{ is_win7_mbr, "Windows 7" },
{ is_rufus_mbr, "Rufus" },
{ is_syslinux_mbr, "Syslinux" },
{ is_reactos_mbr, "ReactOS" },
{ is_kolibrios_mbr, "KolibriOS" },
{ is_grub4dos_mbr, "Grub4DOS" },
{ is_grub2_mbr, "Grub 2.0" },
{ is_zero_mbr_not_including_disk_signature_or_copy_protect, "Zeroed" },
};
// Returns TRUE if the drive seems bootable, FALSE otherwise
BOOL AnalyzeMBR(HANDLE hPhysicalDrive, const char* TargetName, BOOL bSilent)
{
FAKE_FD fake_fd = { 0 };
FILE* fp = (FILE*)&fake_fd;
int i;
fake_fd._handle = (char*)hPhysicalDrive;
set_bytes_per_sector(SelectedDrive.SectorSize);
if (!is_br(fp)) {
suprintf("%s does not have a Boot Marker", TargetName);
return FALSE;
}
for (i=0; i<ARRAYSIZE(known_mbr); i++) {
if (known_mbr[i].fn(fp)) {
suprintf("%s has a %s Master Boot Record", TargetName, known_mbr[i].str);
return TRUE;
}
}
suprintf("%s has an unknown Master Boot Record", TargetName);
return TRUE;
}
const struct {int (*fn)(FILE *fp); char* str;} known_pbr[] = {
{ entire_fat_16_br_matches, "FAT16 DOS" },
{ entire_fat_16_fd_br_matches, "FAT16 FreeDOS" },
{ entire_fat_16_ros_br_matches, "FAT16 ReactOS" },
{ entire_fat_32_br_matches, "FAT32 DOS" },
{ entire_fat_32_nt_br_matches, "FAT32 NT" },
{ entire_fat_32_fd_br_matches, "FAT32 FreeDOS" },
{ entire_fat_32_ros_br_matches, "FAT32 ReactOS" },
{ entire_fat_32_kos_br_matches, "FAT32 KolibriOS" },
};
BOOL AnalyzePBR(HANDLE hLogicalVolume)
{
const char* pbr_name = "Partition Boot Record";
FAKE_FD fake_fd = { 0 };
FILE* fp = (FILE*)&fake_fd;
int i;
fake_fd._handle = (char*)hLogicalVolume;
set_bytes_per_sector(SelectedDrive.SectorSize);
if (!is_br(fp)) {
uprintf("Volume does not have an x86 %s", pbr_name);
return FALSE;
}
if (is_fat_16_br(fp) || is_fat_32_br(fp)) {
for (i=0; i<ARRAYSIZE(known_pbr); i++) {
if (known_pbr[i].fn(fp)) {
uprintf("Drive has a %s %s", known_pbr[i].str, pbr_name);
return TRUE;
}
}
uprintf("Volume has an unknown FAT16 or FAT32 %s", pbr_name);
} else {
uprintf("Volume has an unknown %s", pbr_name);
}
return TRUE;
}
/*
* This call returns the offset of the first ESP partition found
* on the relevant drive, or 0ULL if no ESP was found.
*/
uint64_t GetEspOffset(DWORD DriveIndex)
{
uint64_t ret = 0ULL;
BOOL r;
HANDLE hPhysical;
DWORD size, i;
BYTE layout[4096] = { 0 };
PDRIVE_LAYOUT_INFORMATION_EX DriveLayout = (PDRIVE_LAYOUT_INFORMATION_EX)(void*)layout;
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, TRUE, TRUE);
if (hPhysical == INVALID_HANDLE_VALUE)
return FALSE;
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_LAYOUT_EX, NULL, 0, layout, sizeof(layout), &size, NULL);
if (!r || size <= 0) {
uprintf("Could not get layout for drive 0x%02x: %s", DriveIndex, WindowsErrorString());
goto out;
}
for (i = 0; i < DriveLayout->PartitionCount; i++) {
if (((DriveLayout->PartitionStyle == PARTITION_STYLE_MBR) && (DriveLayout->PartitionEntry[i].Mbr.PartitionType == 0xef)) ||
((DriveLayout->PartitionStyle == PARTITION_STYLE_GPT) && CompareGUID(&DriveLayout->PartitionEntry[i].Gpt.PartitionType, &PARTITION_GENERIC_ESP))) {
ret = DriveLayout->PartitionEntry[i].StartingOffset.QuadPart;
break;
}
}
out:
safe_closehandle(hPhysical);
return ret;
}
static BOOL StoreEspInfo(GUID* guid)
{
uint8_t j;
char key_name[2][16], *str;
// Look for an empty slot and use that if available
for (j = 1; j <= MAX_ESP_TOGGLE; j++) {
static_sprintf(key_name[0], "ToggleEsp%02u", j);
str = ReadSettingStr(key_name[0]);
if ((str == NULL) || (str[0] == 0))
return WriteSettingStr(key_name[0], GuidToString(guid, TRUE));
}
// All slots are used => Move every key down and add to last slot
// NB: No, we don't care that the slot we remove may not be the oldest.
for (j = 1; j < MAX_ESP_TOGGLE; j++) {
static_sprintf(key_name[0], "ToggleEsp%02u", j);
static_sprintf(key_name[1], "ToggleEsp%02u", j + 1);
WriteSettingStr(key_name[0], ReadSettingStr(key_name[1]));
}
return WriteSettingStr(key_name[1], GuidToString(guid, TRUE));
}
static GUID* GetEspGuid(uint8_t index)
{
char key_name[16];
static_sprintf(key_name, "ToggleEsp%02u", index);
return StringToGuid(ReadSettingStr(key_name));
}
static BOOL ClearEspInfo(uint8_t index)
{
char key_name[16];
static_sprintf(key_name, "ToggleEsp%02u", index);
return WriteSettingStr(key_name, "");
}
/*
* This calls changes the type of a GPT ESP back and forth to Basic Data.
* Needed because Windows 10 doesn't mount ESPs by default, and also
* doesn't let usermode apps (such as File Explorer) access mounted ESPs.
*/
BOOL ToggleEsp(DWORD DriveIndex, uint64_t PartitionOffset)
{
char *volume_name, mount_point[] = DEFAULT_ESP_MOUNT_POINT;
int i, j, esp_index = -1;
BOOL r, ret = FALSE, delete_data = FALSE;
HANDLE hPhysical;
DWORD dl_size, size, offset;
BYTE layout[4096] = { 0 }, buf[512];
GUID *guid = NULL, *stored_guid = NULL, mbr_guid;
PDRIVE_LAYOUT_INFORMATION_EX DriveLayout = (PDRIVE_LAYOUT_INFORMATION_EX)(void*)layout;
typedef struct {
const uint8_t mbr_type;
const uint8_t magic[8];
} fat_mbr_type;
const fat_mbr_type fat_mbr_types[] = {
{ 0x0b, { 'F', 'A', 'T', ' ', ' ', ' ', ' ', ' ' } },
{ 0x01, { 'F', 'A', 'T', '1', '2', ' ', ' ', ' ' } },
{ 0x0e, { 'F', 'A', 'T', '1', '6', ' ', ' ', ' ' } },
{ 0x0c, { 'F', 'A', 'T', '3', '2', ' ', ' ', ' ' } },
};
if ((PartitionOffset == 0) && (WindowsVersion.Version < WINDOWS_10)) {
uprintf("ESP toggling is only available for Windows 10 or later");
return FALSE;
}
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, TRUE, TRUE);
if (hPhysical == INVALID_HANDLE_VALUE)
return FALSE;
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_LAYOUT_EX, NULL, 0, layout, sizeof(layout), &dl_size, NULL);
if (!r || dl_size <= 0) {
uprintf("Could not get layout for drive 0x%02x: %s", DriveIndex, WindowsErrorString());
goto out;
}
if (PartitionOffset == 0) {
// See if the current drive contains an ESP
for (i = 0; i < (int)DriveLayout->PartitionCount; i++) {
if (((DriveLayout->PartitionStyle == PARTITION_STYLE_MBR) && (DriveLayout->PartitionEntry[i].Mbr.PartitionType == 0xef)) ||
((DriveLayout->PartitionStyle == PARTITION_STYLE_GPT) && CompareGUID(&DriveLayout->PartitionEntry[i].Gpt.PartitionType, &PARTITION_GENERIC_ESP))) {
esp_index = i;
break;
}
}
if (esp_index >= 0) {
// ESP -> Basic Data
if (DriveLayout->PartitionStyle == PARTITION_STYLE_GPT) {
uprintf("ESP name: '%S'", DriveLayout->PartitionEntry[esp_index].Gpt.Name);
guid = &DriveLayout->PartitionEntry[esp_index].Gpt.PartitionId;
} else {
// For MBR we create a GUID from the disk signature and the offset
mbr_guid.Data1 = DriveLayout->Mbr.Signature;
mbr_guid.Data2 = 0; mbr_guid.Data3 = 0;
*((uint64_t*)&mbr_guid.Data4) = DriveLayout->PartitionEntry[i].StartingOffset.QuadPart;
guid = &mbr_guid;
}
if (!StoreEspInfo(guid)) {
uprintf("ESP toggling data could not be stored");
goto out;
}
if (DriveLayout->PartitionStyle == PARTITION_STYLE_GPT) {
DriveLayout->PartitionEntry[esp_index].Gpt.PartitionType = PARTITION_MICROSOFT_DATA;
} else if (DriveLayout->PartitionStyle == PARTITION_STYLE_MBR) {
// Default to FAT32 (non LBA) if we can't determine anything better
DriveLayout->PartitionEntry[esp_index].Mbr.PartitionType = 0x0b;
// Now detect if we're dealing with FAT12/16/32
if (SetFilePointerEx(hPhysical, DriveLayout->PartitionEntry[esp_index].StartingOffset, NULL, FILE_BEGIN) &&
ReadFile(hPhysical, buf, 512, &size, NULL) && size == 512) {
for (offset = 0x36; offset <= 0x52; offset += 0x1c) {
for (i = 0; i < ARRAYSIZE(fat_mbr_types); i++) {
if (memcmp(&buf[offset], fat_mbr_types[i].magic, 8) == 0) {
DriveLayout->PartitionEntry[esp_index].Mbr.PartitionType = fat_mbr_types[i].mbr_type;
break;
}
}
}
}
}
} else {
// Basic Data -> ESP
for (i = 1; i <= MAX_ESP_TOGGLE && esp_index < 0; i++) {
stored_guid = GetEspGuid((uint8_t)i);
if (stored_guid != NULL) {
for (j = 0; j < (int)DriveLayout->PartitionCount && esp_index < 0; j++) {
if (DriveLayout->PartitionStyle == PARTITION_STYLE_GPT) {
guid = &DriveLayout->PartitionEntry[j].Gpt.PartitionId;
} else if (DriveLayout->PartitionStyle == PARTITION_STYLE_MBR) {
mbr_guid.Data1 = DriveLayout->Mbr.Signature;
mbr_guid.Data2 = 0; mbr_guid.Data3 = 0;
*((uint64_t*)&mbr_guid.Data4) = DriveLayout->PartitionEntry[j].StartingOffset.QuadPart;
guid = &mbr_guid;
}
if (CompareGUID(stored_guid, guid)) {
esp_index = j;
delete_data = TRUE;
if (DriveLayout->PartitionStyle == PARTITION_STYLE_GPT)
DriveLayout->PartitionEntry[esp_index].Gpt.PartitionType = PARTITION_GENERIC_ESP;
else if (DriveLayout->PartitionStyle == PARTITION_STYLE_MBR)
DriveLayout->PartitionEntry[esp_index].Mbr.PartitionType = 0xef;
}
}
}
}
}
} else {
for (i = 0; i < (int)DriveLayout->PartitionCount; i++) {
if (DriveLayout->PartitionEntry[i].StartingOffset.QuadPart == PartitionOffset) {
esp_index = i;
if (DriveLayout->PartitionStyle == PARTITION_STYLE_GPT)
DriveLayout->PartitionEntry[esp_index].Gpt.PartitionType = PARTITION_GENERIC_ESP;
else if (DriveLayout->PartitionStyle == PARTITION_STYLE_MBR)
DriveLayout->PartitionEntry[esp_index].Mbr.PartitionType = 0xef;
break;
}
}
}
if (esp_index < 0) {
uprintf("No partition to toggle");
goto out;
}
DriveLayout->PartitionEntry[esp_index].RewritePartition = TRUE; // Just in case
r = DeviceIoControl(hPhysical, IOCTL_DISK_SET_DRIVE_LAYOUT_EX, (BYTE*)DriveLayout, dl_size, NULL, 0, NULL, NULL);
if (!r) {
uprintf("Could not set drive layout: %s", WindowsErrorString());
goto out;
}
RefreshDriveLayout(hPhysical);
if (PartitionOffset == 0) {
if (delete_data) {
// We successfully reverted ESP from Basic Data -> Delete stored ESP info
ClearEspInfo((uint8_t)j);
} else if (!IsDriveLetterInUse(*mount_point)) {
// We successfully switched ESP to Basic Data -> Try to mount it
volume_name = GetLogicalName(DriveIndex, DriveLayout->PartitionEntry[esp_index].StartingOffset.QuadPart, TRUE, FALSE);
IGNORE_RETVAL(MountVolume(mount_point, volume_name));
free(volume_name);
}
}
ret = TRUE;
out:
safe_closehandle(hPhysical);
return ret;
}
// This is a crude attempt at detecting file systems through their superblock magic.
// Note that we only attempt to detect the file systems that Rufus can format as
// well as a couple other maintsream ones.
const char* GetFsName(HANDLE hPhysical, LARGE_INTEGER StartingOffset)
{
typedef struct {
const char* name;
const uint8_t magic[8];
} win_fs_type;
const win_fs_type win_fs_types[] = {
{ "exFAT", { 'E', 'X', 'F', 'A', 'T', ' ', ' ', ' ' } },
{ "NTFS", { 'N', 'T', 'F', 'S', ' ', ' ', ' ', ' ' } },
{ "ReFS", { 'R', 'e', 'F', 'S', 0, 0, 0, 0 } }
};
const win_fs_type fat_fs_types[] = {
{ "FAT", { 'F', 'A', 'T', ' ', ' ', ' ', ' ', ' ' } },
{ "FAT12", { 'F', 'A', 'T', '1', '2', ' ', ' ', ' ' } },
{ "FAT16", { 'F', 'A', 'T', '1', '6', ' ', ' ', ' ' } },
{ "FAT32", { 'F', 'A', 'T', '3', '2', ' ', ' ', ' ' } },
};
const uint32_t ext_feature[3][3] = {
// feature_compat
{ 0x0000017B, 0x00000004, 0x00000E00 },
// feature_ro_compat
{ 0x00000003, 0x00000000, 0x00008FF8 },
// feature_incompat
{ 0x00000013, 0x0000004C, 0x0003F780 }
};
const char* ext_names[] = { "ext", "ext2", "ext3", "ext4" };
const char* ret = "(Unrecognized)";
DWORD i, j, offset, size, sector_size = 512;
uint8_t* buf = calloc(sector_size, 1);
if (buf == NULL)
goto out;
// 1. Try to detect ISO9660/FAT/exFAT/NTFS/ReFS through the 512 bytes superblock at offset 0
if (!SetFilePointerEx(hPhysical, StartingOffset, NULL, FILE_BEGIN))
goto out;
if (!ReadFile(hPhysical, buf, sector_size, &size, NULL) || size != sector_size)
goto out;
if (strncmp("CD001", &buf[0x01], 5) == 0) {
ret = "ISO9660";
goto out;
}
// The beginning of a superblock for FAT/exFAT/NTFS/ReFS is pretty much always the same:
// There are 3 bytes potentially used for a jump instruction, and then are 8 bytes of
// OEM Name which, even if *not* technically correct, we are going to assume hold an
// immutable file system magic for exFAT/NTFS/ReFS (but not for FAT, see below).
for (i = 0; i < ARRAYSIZE(win_fs_types); i++)
if (memcmp(&buf[0x03], win_fs_types[i].magic, 8) == 0)
break;
if (i < ARRAYSIZE(win_fs_types)) {
ret = win_fs_types[i].name;
goto out;
}
// For FAT, because the OEM Name may actually be set to something else than what we
// expect, we poke the FAT12/16 Extended BIOS Parameter Block:
// https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#Extended_BIOS_Parameter_Block
// or FAT32 Extended BIOS Parameter Block:
// https://en.wikipedia.org/wiki/Design_of_the_FAT_file_system#FAT32_Extended_BIOS_Parameter_Block
for (offset = 0x36; offset <= 0x52; offset += 0x1C) {
for (i = 0; i < ARRAYSIZE(fat_fs_types); i++)
if (memcmp(&buf[offset], fat_fs_types[i].magic, 8) == 0)
break;
if (i < ARRAYSIZE(fat_fs_types)) {
ret = fat_fs_types[i].name;
goto out;
}
}
// 2. Try to detect Apple AFS/HFS/HFS+ through the 512 bytes superblock at either offset 0 or 1024
// "NXSB" at offset 0x20 => APFS
if (strncmp("NXSB", &buf[0x20], 4) == 0) {
ret = "APFS";
goto out;
}
// Switch to offset 1024
memset(buf, 0, sector_size);
StartingOffset.QuadPart += 0x0400ULL;
if (!SetFilePointerEx(hPhysical, StartingOffset, NULL, FILE_BEGIN))
goto out;
if (!ReadFile(hPhysical, buf, sector_size, &size, NULL) || size != sector_size)
goto out;
// "HX" or "H+" at offset 0x00 => HFS/HFS+
if (buf[0] == 'H' && (buf[1] == 'X' || buf[1] == '+')) {
ret = "HFS/HFS+";
goto out;
}
// 3. Try to detect ext2/ext3/ext4 through the 512 bytes superblock at offset 1024
// We're already at the right offset
if (!SetFilePointerEx(hPhysical, StartingOffset, NULL, FILE_BEGIN))
goto out;
if (!ReadFile(hPhysical, buf, sector_size, &size, NULL) || size != sector_size)
goto out;
if (buf[0x38] == 0x53 && buf[0x39] == 0xEF) {
uint32_t rev = 0;
for (i = 0; i < 3; i++) {
uint32_t feature = *((uint32_t*)&buf[0x5C + 4 * i]);
for (j = 0; j < 3; j++) {
if (feature & ext_feature[i][j] && rev <= j)
rev = j + 1;
}
}
assert(rev < ARRAYSIZE(ext_names));
ret = ext_names[rev];
goto out;
}
// 4. Try to detect UDF through by looking for a "BEA01\0" string at offset 0xC001
// NB: This is not thorough UDF detection but good enough for our purpose.
// For the full specs see: http://www.osta.org/specs/pdf/udf260.pdf
memset(buf, 0, sector_size);
StartingOffset.QuadPart += 0x8000ULL - 0x0400ULL;
if (!SetFilePointerEx(hPhysical, StartingOffset, NULL, FILE_BEGIN))
goto out;
if (!ReadFile(hPhysical, buf, sector_size, &size, NULL) || size != sector_size)
goto out;
if (strncmp("BEA01", &buf[1], 5) == 0) {
ret = "UDF";
goto out;
}
out:
free(buf);
return ret;
}
/*
* Fill the drive properties (size, FS, etc)
* Returns TRUE if the drive has a partition that can be mounted in Windows, FALSE otherwise
*/
BOOL GetDrivePartitionData(DWORD DriveIndex, char* FileSystemName, DWORD FileSystemNameSize, BOOL bSilent)
{
// MBR partition types that can be mounted in Windows
const uint8_t mbr_mountable[] = { 0x01, 0x04, 0x06, 0x07, 0x0b, 0x0c, 0x0e, 0xef };
BOOL r, ret = FALSE, isUefiNtfs;
HANDLE hPhysical;
DWORD size, i, j, super_floppy_disk = FALSE;
BYTE geometry[256] = {0}, layout[4096] = {0}, part_type;
PDISK_GEOMETRY_EX DiskGeometry = (PDISK_GEOMETRY_EX)(void*)geometry;
PDRIVE_LAYOUT_INFORMATION_EX DriveLayout = (PDRIVE_LAYOUT_INFORMATION_EX)(void*)layout;
char *volume_name, *buf;
if (FileSystemName == NULL)
return FALSE;
SelectedDrive.nPartitions = 0;
memset(SelectedDrive.Partition, 0, sizeof(SelectedDrive.Partition));
// Populate the filesystem data
FileSystemName[0] = 0;
volume_name = GetLogicalName(DriveIndex, 0, TRUE, FALSE);
if ((volume_name == NULL) || (!GetVolumeInformationA(volume_name, NULL, 0, NULL, NULL, NULL, FileSystemName, FileSystemNameSize))) {
suprintf("No volume information for drive 0x%02x", DriveIndex);
}
safe_free(volume_name);
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE, TRUE);
if (hPhysical == INVALID_HANDLE_VALUE)
return FALSE;
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, geometry, sizeof(geometry), &size, NULL);
if (!r || size <= 0) {
suprintf("Could not get geometry for drive 0x%02x: %s", DriveIndex, WindowsErrorString());
safe_closehandle(hPhysical);
return FALSE;
}
SelectedDrive.DiskSize = DiskGeometry->DiskSize.QuadPart;
SelectedDrive.SectorSize = DiskGeometry->Geometry.BytesPerSector;
SelectedDrive.FirstDataSector = MAXDWORD;
if (SelectedDrive.SectorSize < 512) {
suprintf("Warning: Drive 0x%02x reports a sector size of %d - Correcting to 512 bytes.",
DriveIndex, SelectedDrive.SectorSize);
SelectedDrive.SectorSize = 512;
}
SelectedDrive.SectorsPerTrack = DiskGeometry->Geometry.SectorsPerTrack;
SelectedDrive.MediaType = DiskGeometry->Geometry.MediaType;
suprintf("Disk type: %s, Disk size: %s, Sector size: %d bytes", (SelectedDrive.MediaType == FixedMedia)?"FIXED":"Removable",
SizeToHumanReadable(SelectedDrive.DiskSize, FALSE, TRUE), SelectedDrive.SectorSize);
suprintf("Cylinders: %" PRIi64 ", Tracks per cylinder: %d, Sectors per track: %d",
DiskGeometry->Geometry.Cylinders, DiskGeometry->Geometry.TracksPerCylinder, DiskGeometry->Geometry.SectorsPerTrack);
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_LAYOUT_EX, NULL, 0, layout, sizeof(layout), &size, NULL );
if (!r || size <= 0) {
suprintf("Could not get layout for drive 0x%02x: %s", DriveIndex, WindowsErrorString());
safe_closehandle(hPhysical);
return FALSE;
}
switch (DriveLayout->PartitionStyle) {
case PARTITION_STYLE_MBR:
SelectedDrive.PartitionStyle = PARTITION_STYLE_MBR;
for (i = 0; i < DriveLayout->PartitionCount; i++) {
if (DriveLayout->PartitionEntry[i].Mbr.PartitionType != PARTITION_ENTRY_UNUSED) {
SelectedDrive.nPartitions++;
}
}
// Detect drives that are using the whole disk as a single partition
if ((DriveLayout->PartitionEntry[0].Mbr.PartitionType != PARTITION_ENTRY_UNUSED) &&
(DriveLayout->PartitionEntry[0].StartingOffset.QuadPart == 0LL)) {
suprintf("Partition type: SFD (%s) or unpartitioned", sfd_name);
super_floppy_disk = TRUE;
} else {
suprintf("Partition type: MBR, NB Partitions: %d", SelectedDrive.nPartitions);
SelectedDrive.has_mbr_uefi_marker = (DriveLayout->Mbr.Signature == MBR_UEFI_MARKER);
suprintf("Disk ID: 0x%08X %s", DriveLayout->Mbr.Signature, SelectedDrive.has_mbr_uefi_marker?"(UEFI target)":"");
AnalyzeMBR(hPhysical, "Drive", bSilent);
}
for (i = 0; i < DriveLayout->PartitionCount; i++) {
isUefiNtfs = FALSE;
if (DriveLayout->PartitionEntry[i].Mbr.PartitionType != PARTITION_ENTRY_UNUSED) {
part_type = DriveLayout->PartitionEntry[i].Mbr.PartitionType;
// Microsoft will have to explain why they completely ignore the actual MBR partition
// type for zeroed drive (which *IS* 0x00) and fill in Small FAT16 instead (0x04).
// This means that if we detect a Small FAT16 "partition", that "starts" at offset 0
// and that is larger than 16 MB, our drive is actually unpartitioned.
if (part_type == 0x04 && super_floppy_disk && SelectedDrive.DiskSize > 16 * MB)
break;
if (part_type == 0xef) {
// Check the FAT label to see if we're dealing with an UEFI_NTFS partition
buf = calloc(SelectedDrive.SectorSize, 1);
if (buf != NULL) {
if (SetFilePointerEx(hPhysical, DriveLayout->PartitionEntry[i].StartingOffset, NULL, FILE_BEGIN) &&
ReadFile(hPhysical, buf, SelectedDrive.SectorSize, &size, NULL)) {
isUefiNtfs = (strncmp(&buf[0x2B], "UEFI_NTFS", 9) == 0);
}
free(buf);
}
}
suprintf("Partition %d%s:", i + (super_floppy_disk ? 0 : 1), isUefiNtfs ? " (UEFI:NTFS)" : "");
for (j = 0; j < ARRAYSIZE(mbr_mountable); j++) {
if (part_type == mbr_mountable[j]) {
ret = TRUE;
break;
}
}
if (i < MAX_PARTITIONS) {
SelectedDrive.Partition[i].Offset = DriveLayout->PartitionEntry[i].StartingOffset.QuadPart;
SelectedDrive.Partition[i].Size = DriveLayout->PartitionEntry[i].PartitionLength.QuadPart;
}
suprintf(" Type: %s (0x%02x)\r\n Detected File System: %s\r\n"
" Size: %s (%lld bytes)\r\n Start Sector: %lld, Boot: %s",
((part_type == 0x07 || super_floppy_disk) && (FileSystemName[0] != 0)) ?
FileSystemName : GetMBRPartitionType(part_type), super_floppy_disk ? 0: part_type,
GetFsName(hPhysical, DriveLayout->PartitionEntry[i].StartingOffset),
SizeToHumanReadable(DriveLayout->PartitionEntry[i].PartitionLength.QuadPart, TRUE, FALSE),
DriveLayout->PartitionEntry[i].PartitionLength.QuadPart,
DriveLayout->PartitionEntry[i].StartingOffset.QuadPart / SelectedDrive.SectorSize,
DriveLayout->PartitionEntry[i].Mbr.BootIndicator?"Yes":"No");
// suprintf(" GUID: %s", GuidToString(&DriveLayout->PartitionEntry[i].Mbr.PartitionId));
SelectedDrive.FirstDataSector = min(SelectedDrive.FirstDataSector,
(DWORD)(DriveLayout->PartitionEntry[i].StartingOffset.QuadPart / SelectedDrive.SectorSize));
if ((part_type == RUFUS_EXTRA_PARTITION_TYPE) || (isUefiNtfs))
// This is a partition Rufus created => we can safely ignore it
--SelectedDrive.nPartitions;
if (part_type == 0xee) // Flag a protective MBR for non GPT platforms (XP)
SelectedDrive.has_protective_mbr = TRUE;
}
}
break;
case PARTITION_STYLE_GPT:
SelectedDrive.PartitionStyle = PARTITION_STYLE_GPT;
suprintf("Partition type: GPT, NB Partitions: %d", DriveLayout->PartitionCount);
suprintf("Disk GUID: %s", GuidToString(&DriveLayout->Gpt.DiskId, TRUE));
suprintf("Max parts: %d, Start Offset: %" PRIi64 ", Usable = %" PRIi64 " bytes",
DriveLayout->Gpt.MaxPartitionCount, DriveLayout->Gpt.StartingUsableOffset.QuadPart, DriveLayout->Gpt.UsableLength.QuadPart);
for (i = 0; i < DriveLayout->PartitionCount; i++) {
if (i < MAX_PARTITIONS) {
SelectedDrive.Partition[i].Offset = DriveLayout->PartitionEntry[i].StartingOffset.QuadPart;
SelectedDrive.Partition[i].Size = DriveLayout->PartitionEntry[i].PartitionLength.QuadPart;
wcscpy(SelectedDrive.Partition[i].Name, DriveLayout->PartitionEntry[i].Gpt.Name);
}
SelectedDrive.nPartitions++;
isUefiNtfs = (wcscmp(DriveLayout->PartitionEntry[i].Gpt.Name, L"UEFI:NTFS") == 0);
suprintf("Partition %d%s:\r\n Type: %s", i + 1, isUefiNtfs ? " (UEFI:NTFS)" : "",
GetGPTPartitionType(&DriveLayout->PartitionEntry[i].Gpt.PartitionType));
if (DriveLayout->PartitionEntry[i].Gpt.Name[0] != 0)
suprintf(" Name: '%S'", DriveLayout->PartitionEntry[i].Gpt.Name);
suprintf(" Detected File System: %s", GetFsName(hPhysical, DriveLayout->PartitionEntry[i].StartingOffset));
suprintf(" ID: %s\r\n Size: %s (%" PRIi64 " bytes)\r\n Start Sector: %" PRIi64 ", Attributes: 0x%016" PRIX64,
GuidToString(&DriveLayout->PartitionEntry[i].Gpt.PartitionId, TRUE),
SizeToHumanReadable(DriveLayout->PartitionEntry[i].PartitionLength.QuadPart, TRUE, FALSE),
DriveLayout->PartitionEntry[i].PartitionLength,
DriveLayout->PartitionEntry[i].StartingOffset.QuadPart / SelectedDrive.SectorSize,
DriveLayout->PartitionEntry[i].Gpt.Attributes);
SelectedDrive.FirstDataSector = min(SelectedDrive.FirstDataSector,
(DWORD)(DriveLayout->PartitionEntry[i].StartingOffset.QuadPart / SelectedDrive.SectorSize));
// Don't register the partitions that we don't care about destroying
if ( isUefiNtfs ||
(CompareGUID(&DriveLayout->PartitionEntry[i].Gpt.PartitionType, &PARTITION_MICROSOFT_RESERVED)) ||
(CompareGUID(&DriveLayout->PartitionEntry[i].Gpt.PartitionType, &PARTITION_GENERIC_ESP)) )
--SelectedDrive.nPartitions;
if (CompareGUID(&DriveLayout->PartitionEntry[i].Gpt.PartitionType, &PARTITION_MICROSOFT_DATA))
ret = TRUE;
}
break;
default:
SelectedDrive.PartitionStyle = PARTITION_STYLE_MBR;
suprintf("Partition type: RAW");
break;
}
#if defined(__GNUC__)
#pragma GCC diagnostic warning "-Warray-bounds"
#endif
safe_closehandle(hPhysical);
return ret;
}
/*
* Flush file data
*/
static BOOL FlushDrive(char drive_letter)
{
HANDLE hDrive = INVALID_HANDLE_VALUE;
BOOL r = FALSE;
char logical_drive[] = "\\\\.\\#:";
logical_drive[4] = drive_letter;
hDrive = CreateFileA(logical_drive, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hDrive == INVALID_HANDLE_VALUE) {
uprintf("Failed to open %c: for flushing: %s", toupper(drive_letter), WindowsErrorString());
goto out;
}
r = FlushFileBuffers(hDrive);
if (r == FALSE)
uprintf("Failed to flush %c: %s", toupper(drive_letter), WindowsErrorString());
out:
safe_closehandle(hDrive);
return r;
}
/*
* Unmount of volume using the DISMOUNT_VOLUME ioctl
*/
BOOL UnmountVolume(HANDLE hDrive)
{
if (!DeviceIoControl(hDrive, FSCTL_DISMOUNT_VOLUME, NULL, 0, NULL, 0, NULL, NULL)) {
uprintf("Could not unmount drive: %s", WindowsErrorString());
return FALSE;
}
return TRUE;
}
/*
* Mount the volume identified by drive_guid to mountpoint drive_name.
* If volume_name is already mounted, but with a different letter than the
* one requested then drive_name is updated to use that letter.
*/
BOOL MountVolume(char* drive_name, char *volume_name)
{
char mounted_guid[52], dos_name[] = "?:";
#if defined(WINDOWS_IS_NOT_BUGGY)
char mounted_letter[27] = { 0 };
DWORD size;
#endif
if ((drive_name == NULL) || (volume_name == NULL) || (drive_name[0] == '?')) {
SetLastError(ERROR_INVALID_PARAMETER);
return FALSE;
}
// If we are working with a "\\?\GLOBALROOT" device, SetVolumeMountPoint()
// is useless, so try with DefineDosDevice() instead.
if (_strnicmp(volume_name, groot_name, groot_len) == 0) {
dos_name[0] = drive_name[0];
// Microsoft will also have to explain why "In no case is a trailing backslash allowed" [1] in
// DefineDosDevice(), instead of just checking if the driver parameter is "X:\" and remove the
// backslash from a copy of the parameter in the bloody API call. *THIS* really tells a lot
// about the level of thought and foresight that actually goes into the Windows APIs...
// [1] https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-definedosdevicew
if (!DefineDosDeviceA(DDD_RAW_TARGET_PATH | DDD_NO_BROADCAST_SYSTEM, dos_name, &volume_name[14])) {
uprintf("Could not mount %s as %c:", volume_name, toupper(drive_name[0]));
return FALSE;
}
uprintf("%s was successfully mounted as %c:", volume_name, toupper(drive_name[0]));
return TRUE;
}
// Great: Windows has a *MAJOR BUG* whereas, in some circumstances, GetVolumePathNamesForVolumeName()
// can return the *WRONG* drive letter. And yes, we validated that this is *NOT* an issue like stack
// or buffer corruption and whatnot. It *IS* a Windows bug. So just drop the idea of updating the
// drive letter if already mounted and use the passed target always.
#if defined(WINDOWS_IS_NOT_BUGGY)
// Windows may already have the volume mounted but under a different letter.
// If that is the case, update drive_name to that letter.
if ( (GetVolumePathNamesForVolumeNameA(volume_name, mounted_letter, sizeof(mounted_letter), &size))
&& (size > 1) && (mounted_letter[0] != drive_name[0]) ) {
uprintf("%s is already mounted as %c: instead of %c: - Will now use this target instead...",
volume_name, toupper(mounted_letter[0]), toupper(drive_name[0]));
drive_name[0] = mounted_letter[0];
return TRUE;
}
#endif
if (!SetVolumeMountPointA(drive_name, volume_name)) {
if (GetLastError() == ERROR_DIR_NOT_EMPTY) {
if (!GetVolumeNameForVolumeMountPointA(drive_name, mounted_guid, sizeof(mounted_guid))) {
uprintf("%s is already mounted, but volume GUID could not be checked: %s",
drive_name, WindowsErrorString());
} else if (safe_strcmp(volume_name, mounted_guid) != 0) {
uprintf("%s is mounted, but volume GUID doesn't match:\r\n expected %s, got %s",
drive_name, volume_name, mounted_guid);
} else {
duprintf("%s is already mounted as %c:", volume_name, toupper(drive_name[0]));
return TRUE;
}
uprintf("Retrying after dismount...");
if (!DeleteVolumeMountPointA(drive_name))
uprintf("Warning: Could not delete volume mountpoint '%s': %s", drive_name, WindowsErrorString());
if (SetVolumeMountPointA(drive_name, volume_name))
return TRUE;
if ((GetLastError() == ERROR_DIR_NOT_EMPTY) &&
GetVolumeNameForVolumeMountPointA(drive_name, mounted_guid, sizeof(mounted_guid)) &&
(safe_strcmp(volume_name, mounted_guid) == 0)) {
uprintf("%s was remounted as %c: (second time lucky!)", volume_name, toupper(drive_name[0]));
return TRUE;
}
}
return FALSE;
}
return TRUE;
}
/*
* Alternate version of MountVolume required for ESP's, since Windows (including VDS) does
* *NOT* provide any means of mounting these volume but through DefineDosDevice(). Also
* note that bcdboot is very finicky about what it may or may not handle, even if the
* mount was successful (e.g. '\Device\HarddiskVolume###' vs 'Device\HarddiskVolume###').
* Returned string is static (no concurrency) and must not be freed.
*/
char* AltMountVolume(DWORD DriveIndex, uint64_t PartitionOffset, BOOL bSilent)
{
char* ret = NULL, *volume_name = NULL;
static char mounted_drive[] = "?:";
mounted_drive[0] = GetUnusedDriveLetter();
if (mounted_drive[0] == 0) {
suprintf("Could not find an unused drive letter");
goto out;
}
// Can't use a regular volume GUID for ESPs...
volume_name = AltGetLogicalName(DriveIndex, PartitionOffset, FALSE, FALSE);
if ((volume_name == NULL) || (strncmp(volume_name, groot_name, groot_len) != 0)) {
suprintf("Unexpected volume name: '%s'", volume_name);
goto out;
}
suprintf("Mounting '%s' as '%s'", &volume_name[14], mounted_drive);
// bcdboot doesn't like it if you forget the starting '\'
if (!DefineDosDeviceA(DDD_RAW_TARGET_PATH | DDD_NO_BROADCAST_SYSTEM, mounted_drive, &volume_name[14])) {
suprintf("Mount operation failed: %s", WindowsErrorString());
goto out;
}
ret = mounted_drive;
out:
free(volume_name);
return ret;
}
/*
* Unmount a volume that was mounted by AltmountVolume()
*/
BOOL AltUnmountVolume(const char* drive_name, BOOL bSilent)
{
if (drive_name == NULL)
return FALSE;
if (!DefineDosDeviceA(DDD_REMOVE_DEFINITION | DDD_NO_BROADCAST_SYSTEM, drive_name, NULL)) {
suprintf("Could not unmount '%s': %s", drive_name, WindowsErrorString());
return FALSE;
}
suprintf("Successfully unmounted '%s'", drive_name);
return TRUE;
}
/*
* Issue a complete remount of the volume.
* Note that drive_name *may* be altered when the volume gets remounted.
*/
BOOL RemountVolume(char* drive_name, BOOL bSilent)
{
char volume_name[51];
// UDF requires a sync/flush, and it's also a good idea for other FS's
FlushDrive(drive_name[0]);
if (GetVolumeNameForVolumeMountPointA(drive_name, volume_name, sizeof(volume_name))) {
if (MountVolume(drive_name, volume_name)) {
suprintf("Successfully remounted %s as %c:", volume_name, toupper(drive_name[0]));
} else {
suprintf("Could not remount %s as %c: %s", volume_name, toupper(drive_name[0]), WindowsErrorString());
// This will leave the drive inaccessible and must be flagged as an error
ErrorStatus = RUFUS_ERROR(APPERR(ERROR_CANT_REMOUNT_VOLUME));
return FALSE;
}
}
return TRUE;
}
/*
* Zero the first 'size' bytes of a partition. This is needed because we haven't found a way to
* properly reset Windows's cached view of a drive partitioning short of cycling the USB port
* (especially IOCTL_DISK_UPDATE_PROPERTIES is *USELESS*), and therefore the OS will try to
* read the file system data at an old location, even if the partition has just been deleted.
*/
static BOOL ClearPartition(HANDLE hDrive, uint64_t offset, DWORD size)
{
BOOL r = FALSE;
uint8_t* buffer = calloc(size, 1);
LARGE_INTEGER li_offset;
if (buffer == NULL)
return FALSE;
li_offset.QuadPart = offset;
if (!SetFilePointerEx(hDrive, li_offset, NULL, FILE_BEGIN)) {
free(buffer);
return FALSE;
}
r = WriteFileWithRetry(hDrive, buffer, size, &size, WRITE_RETRIES);
free(buffer);
return r;
}
/*
* Create a partition table
* See http://technet.microsoft.com/en-us/library/cc739412.aspx for some background info
* NB: if you modify the MBR outside of using the Windows API, Windows still uses the cached
* copy it got from the last IOCTL, and ignores your changes until you replug the drive
* or issue an IOCTL_DISK_UPDATE_PROPERTIES.
*/
BOOL CreatePartition(HANDLE hDrive, int partition_style, int file_system, BOOL mbr_uefi_marker, uint8_t extra_partitions)
{
const char* PartitionTypeName[] = { "MBR", "GPT", "SFD" };
const LONGLONG bytes_per_track = ((LONGLONG)SelectedDrive.SectorsPerTrack) * SelectedDrive.SectorSize;
const DWORD size_to_clear = MAX_SECTORS_TO_CLEAR * SelectedDrive.SectorSize;
uint8_t* buffer;
uint64_t last_offset = SelectedDrive.DiskSize;
size_t uefi_ntfs_size = 0;
DWORD pi = 0, mi, i, size, bufsize;
CREATE_DISK CreateDisk = { PARTITION_STYLE_RAW, { { 0 } } };
DRIVE_LAYOUT_INFORMATION_EX4 DriveLayoutEx = { 0 };
// Go for a 260 MB sized ESP by default to keep everyone happy, including 4K sector users:
// https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/configure-uefigpt-based-hard-drive-partitions
// and folks using MacOS: https://github.com/pbatard/rufus/issues/979
LONGLONG esp_size = 260 * MB;
LONGLONG ClusterSize = (LONGLONG)ComboBox_GetCurItemData(hClusterSize);
PrintInfoDebug(0, MSG_238, PartitionTypeName[partition_style]);
if (ClusterSize == 0)
ClusterSize = 0x200;
if (partition_style == PARTITION_STYLE_SFD)
// Nothing to do
return TRUE;
if (extra_partitions & XP_UEFI_NTFS) {
uefi_ntfs_size = GetResourceSize(hMainInstance, MAKEINTRESOURCEA(IDR_UEFI_NTFS), _RT_RCDATA, "uefi-ntfs.img");
if (uefi_ntfs_size == 0) {
uprintf("Could not access embedded 'uefi-ntfs.img'");
return FALSE;
}
}
memset(partition_index, 0, sizeof(partition_index));
memset(SelectedDrive.Partition, 0, sizeof(SelectedDrive.Partition));
// Compute the starting offset of the first partition
if ((partition_style == PARTITION_STYLE_GPT) || (!IsChecked(IDC_OLD_BIOS_FIXES))) {
// Go with the MS 1 MB wastage at the beginning...
SelectedDrive.Partition[pi].Offset = 1 * MB;
} else {
// Some folks appear to think that 'Fixes for old BIOSes' is some kind of magic
// wand and are adamant to try to apply them when creating *MODERN* VHD drives.
// This, however, wrecks havok on MS' internal format calls because, as opposed
// to what is the case for regular drives, VHDs require each cluster block to
// be aligned to the cluster size, and that may not be the case with the stupid
// CHS sizes that IBM imparted upon us. Long story short, we now align to a
// cylinder size that is itself aligned to the cluster size.
// If this actually breaks old systems, please send your complaints to IBM.
SelectedDrive.Partition[pi].Offset = HI_ALIGN_X_TO_Y(bytes_per_track, ClusterSize);
// GRUB2 no longer fits in the usual 31½ KB that the above computation provides
// so just unconditionally double that size and get on with it.
SelectedDrive.Partition[pi].Offset *= 2;
}
// Having the ESP up front may help (and is the Microsoft recommended way) but this
// is only achievable if we can mount more than one partition at once, which means
// either fixed drive or Windows 10 1703 or later.
if (((SelectedDrive.MediaType == FixedMedia) || (WindowsVersion.BuildNumber > 15000)) &&
(extra_partitions & XP_ESP)) {
assert(partition_style == PARTITION_STYLE_GPT);
partition_index[PI_ESP] = pi;
wcscpy(SelectedDrive.Partition[pi].Name, L"EFI System Partition");
SelectedDrive.Partition[pi].Size = esp_size;
SelectedDrive.Partition[pi + 1].Offset = SelectedDrive.Partition[pi].Offset + SelectedDrive.Partition[pi].Size;
// Align next partition to track and cluster
SelectedDrive.Partition[pi + 1].Offset = HI_ALIGN_X_TO_Y(SelectedDrive.Partition[pi + 1].Offset, bytes_per_track);
if (ClusterSize % SelectedDrive.SectorSize == 0)
SelectedDrive.Partition[pi + 1].Offset = LO_ALIGN_X_TO_Y(SelectedDrive.Partition[pi + 1].Offset, ClusterSize);
assert(SelectedDrive.Partition[pi + 1].Offset >= SelectedDrive.Partition[pi].Offset + SelectedDrive.Partition[pi].Size);
pi++;
// Clear the extra partition we processed
extra_partitions &= ~(XP_ESP);
}
// If required, set the MSR partition (GPT only - must be created before the data part)
if (extra_partitions & XP_MSR) {
assert(partition_style == PARTITION_STYLE_GPT);
wcscpy(SelectedDrive.Partition[pi].Name, L"Microsoft Reserved Partition");
SelectedDrive.Partition[pi].Size = 128 * MB;
SelectedDrive.Partition[pi + 1].Offset = SelectedDrive.Partition[pi].Offset + SelectedDrive.Partition[pi].Size;
SelectedDrive.Partition[pi + 1].Offset = HI_ALIGN_X_TO_Y(SelectedDrive.Partition[pi + 1].Offset, bytes_per_track);
if (ClusterSize % SelectedDrive.SectorSize == 0)
SelectedDrive.Partition[pi + 1].Offset = LO_ALIGN_X_TO_Y(SelectedDrive.Partition[pi + 1].Offset, ClusterSize);
assert(SelectedDrive.Partition[pi + 1].Offset >= SelectedDrive.Partition[pi].Offset + SelectedDrive.Partition[pi].Size);
pi++;
extra_partitions &= ~(XP_MSR);
}
// Reserve an entry for the main partition
partition_index[PI_MAIN] = pi++;
// Shorthand for the main index.
mi = partition_index[PI_MAIN];
wcscpy(SelectedDrive.Partition[mi].Name, write_as_esp ? L"EFI System Partition" : L"Main Data Partition");
if (extra_partitions) {
// Adjust the size according to extra partitions (which we always align to a track)
// TODO: Should we align these to cluster as well?
if (extra_partitions & XP_PERSISTENCE) {
assert(persistence_size != 0);
partition_index[PI_CASPER] = pi;
wcscpy(SelectedDrive.Partition[pi].Name, L"Linux Persistence");
SelectedDrive.Partition[pi++].Size = HI_ALIGN_X_TO_Y(persistence_size, bytes_per_track);
}
if (extra_partitions & XP_ESP) {
partition_index[PI_ESP] = pi;
wcscpy(SelectedDrive.Partition[pi].Name, L"EFI System Partition");
SelectedDrive.Partition[pi++].Size = HI_ALIGN_X_TO_Y(esp_size, bytes_per_track);
} else if (extra_partitions & XP_UEFI_NTFS) {
partition_index[PI_UEFI_NTFS] = pi;
wcscpy(SelectedDrive.Partition[pi].Name, L"UEFI:NTFS");
SelectedDrive.Partition[pi++].Size = HI_ALIGN_X_TO_Y(uefi_ntfs_size, bytes_per_track);
} else if (extra_partitions & XP_COMPAT) {
wcscpy(SelectedDrive.Partition[pi].Name, L"BIOS Compatibility");
SelectedDrive.Partition[pi++].Size = bytes_per_track; // One track for the extra partition
}
}
assert(pi <= MAX_PARTITIONS);
if (pi > MAX_PARTITIONS)
return FALSE;
// Compute the offsets of the extra partitions (which we always align to a track)
last_offset = SelectedDrive.DiskSize;
if (partition_style == PARTITION_STYLE_GPT)
last_offset -= 33ULL * SelectedDrive.SectorSize;
for (i = pi - 1; i > mi; i--) {
assert(SelectedDrive.Partition[i].Size < last_offset);
SelectedDrive.Partition[i].Offset = LO_ALIGN_X_TO_Y(last_offset - SelectedDrive.Partition[i].Size, bytes_per_track);
last_offset = SelectedDrive.Partition[i].Offset;
}
// With the above, Compute the main partition size (which we align to a track)
assert(last_offset > SelectedDrive.Partition[mi].Offset);
SelectedDrive.Partition[mi].Size = LO_ALIGN_X_TO_Y(last_offset - SelectedDrive.Partition[mi].Offset, bytes_per_track);
// Try to make sure that the main partition size is a multiple of the cluster size
// This can be especially important when trying to capture an NTFS partition as FFU, as, when
// the NTFS partition is aligned to cluster size, the FFU capture parses the NTFS allocated
// map to only record clusters that are in use, whereas, if not aligned, the FFU capture uses
// a full sector by sector scan of the NTFS partition and records any non-zero garbage, which
// may include garbage leftover data from a previous reformat...
if (ClusterSize % SelectedDrive.SectorSize == 0)
SelectedDrive.Partition[mi].Size = LO_ALIGN_X_TO_Y(SelectedDrive.Partition[mi].Size, ClusterSize);
if (SelectedDrive.Partition[mi].Size <= 0) {
uprintf("Error: Invalid %S size", SelectedDrive.Partition[mi].Name);
return FALSE;
}
// Build the DriveLayoutEx table
for (i = 0; i < pi; i++) {
uprintf("● Creating %S%s (offset: %lld, size: %s)", SelectedDrive.Partition[i].Name,
(wcsstr(SelectedDrive.Partition[i].Name, L"Partition") == NULL) ? " Partition" : "",
SelectedDrive.Partition[i].Offset,
SizeToHumanReadable(SelectedDrive.Partition[i].Size, TRUE, FALSE));
// Zero the first sectors of the partition to avoid file system caching issues
if (!ClearPartition(hDrive, SelectedDrive.Partition[i].Offset,
(DWORD)MIN(size_to_clear, SelectedDrive.Partition[i].Size)))
uprintf("Could not zero %S: %s", SelectedDrive.Partition[i].Name, WindowsErrorString());
DriveLayoutEx.PartitionEntry[i].PartitionStyle = partition_style;
DriveLayoutEx.PartitionEntry[i].StartingOffset.QuadPart = SelectedDrive.Partition[i].Offset;
DriveLayoutEx.PartitionEntry[i].PartitionLength.QuadPart = SelectedDrive.Partition[i].Size;
DriveLayoutEx.PartitionEntry[i].PartitionNumber = i + 1;
DriveLayoutEx.PartitionEntry[i].RewritePartition = TRUE;
if (partition_style == PARTITION_STYLE_MBR) {
if (i == mi) {
DriveLayoutEx.PartitionEntry[i].Mbr.BootIndicator = (boot_type != BT_NON_BOOTABLE);
switch (file_system) {
case FS_FAT16:
DriveLayoutEx.PartitionEntry[i].Mbr.PartitionType = 0x0e; // FAT16 LBA
break;
case FS_NTFS:
case FS_EXFAT:
case FS_UDF:
case FS_REFS:
DriveLayoutEx.PartitionEntry[i].Mbr.PartitionType = 0x07;
break;
case FS_EXT2:
case FS_EXT3:
case FS_EXT4:
DriveLayoutEx.PartitionEntry[i].Mbr.PartitionType = 0x83;
break;
case FS_FAT32:
DriveLayoutEx.PartitionEntry[i].Mbr.PartitionType = 0x0c; // FAT32 LBA
break;
default:
uprintf("Unsupported file system");
return FALSE;
}
}
// May override the the type of main partition if write_as_esp is active
if ((wcscmp(SelectedDrive.Partition[i].Name, L"EFI System Partition") == 0) ||
(wcscmp(SelectedDrive.Partition[i].Name, L"UEFI:NTFS") == 0))
DriveLayoutEx.PartitionEntry[i].Mbr.PartitionType = 0xef;
else if (wcscmp(SelectedDrive.Partition[i].Name, L"Linux Persistence") == 0)
DriveLayoutEx.PartitionEntry[i].Mbr.PartitionType = 0x83;
else if (wcscmp(SelectedDrive.Partition[i].Name, L"BIOS Compatibility") == 0)
DriveLayoutEx.PartitionEntry[i].Mbr.PartitionType = RUFUS_EXTRA_PARTITION_TYPE;
} else {
assert(partition_style == PARTITION_STYLE_GPT);
if (wcscmp(SelectedDrive.Partition[i].Name, L"UEFI:NTFS") == 0) {
DriveLayoutEx.PartitionEntry[i].Gpt.PartitionType = PARTITION_GENERIC_ESP;
// Prevent a drive letter from being assigned to the UEFI:NTFS partition
DriveLayoutEx.PartitionEntry[i].Gpt.Attributes = GPT_BASIC_DATA_ATTRIBUTE_NO_DRIVE_LETTER;
#if !defined(_DEBUG)
// Also make the partition read-only for release versions
DriveLayoutEx.PartitionEntry[i].Gpt.Attributes += GPT_BASIC_DATA_ATTRIBUTE_READ_ONLY;
#endif
} else if (wcscmp(SelectedDrive.Partition[i].Name, L"EFI System Partition") == 0)
DriveLayoutEx.PartitionEntry[i].Gpt.PartitionType = PARTITION_GENERIC_ESP;
else if (wcscmp(SelectedDrive.Partition[i].Name, L"Linux Persistence") == 0)
DriveLayoutEx.PartitionEntry[i].Gpt.PartitionType = PARTITION_LINUX_DATA;
else if (wcscmp(SelectedDrive.Partition[i].Name, L"Microsoft Reserved Partition") == 0)
DriveLayoutEx.PartitionEntry[i].Gpt.PartitionType = PARTITION_MICROSOFT_RESERVED;
else
DriveLayoutEx.PartitionEntry[i].Gpt.PartitionType = PARTITION_MICROSOFT_DATA;
IGNORE_RETVAL(CoCreateGuid(&DriveLayoutEx.PartitionEntry[i].Gpt.PartitionId));
wcscpy(DriveLayoutEx.PartitionEntry[i].Gpt.Name, SelectedDrive.Partition[i].Name);
}
}
// We need to write the UEFI:NTFS partition before we refresh the disk
if (extra_partitions & XP_UEFI_NTFS) {
LARGE_INTEGER li;
uprintf("Writing UEFI:NTFS data...", SelectedDrive.Partition[partition_index[PI_UEFI_NTFS]].Name);
li.QuadPart = SelectedDrive.Partition[partition_index[PI_UEFI_NTFS]].Offset;
if (!SetFilePointerEx(hDrive, li, NULL, FILE_BEGIN)) {
uprintf(" Could not set position");
return FALSE;
}
buffer = GetResource(hMainInstance, MAKEINTRESOURCEA(IDR_UEFI_NTFS), _RT_RCDATA,
"uefi-ntfs.img", &bufsize, FALSE);
if (buffer == NULL) {
uprintf(" Could not access source image");
return FALSE;
}
if(!WriteFileWithRetry(hDrive, buffer, bufsize, NULL, WRITE_RETRIES)) {
uprintf(" Write error: %s", WindowsErrorString());
return FALSE;
}
}
switch (partition_style) {
case PARTITION_STYLE_MBR:
CreateDisk.PartitionStyle = PARTITION_STYLE_MBR;
// If MBR+UEFI is selected, write an UEFI marker in lieu of the regular MBR signature.
// This helps us reselect the partition scheme option that was used when creating the
// drive in Rufus. As far as I can tell, Windows doesn't care much if this signature
// isn't unique for USB drives.
CreateDisk.Mbr.Signature = mbr_uefi_marker ? MBR_UEFI_MARKER : (DWORD)GetTickCount64();
DriveLayoutEx.PartitionStyle = PARTITION_STYLE_MBR;
DriveLayoutEx.PartitionCount = 4; // Must be multiple of 4 for MBR
DriveLayoutEx.Type.Mbr.Signature = CreateDisk.Mbr.Signature;
// TODO: CHS fixup (32 sectors/track) through a cheat mode, if requested
// NB: disk geometry is computed by BIOS & co. by finding a match between LBA and CHS value of first partition
// ms-sys's write_partition_number_of_heads() and write_partition_start_sector_number() can be used if needed
break;
case PARTITION_STYLE_GPT:
// TODO: (HOW?!?!?) As per MSDN: "When specifying a GUID partition table (GPT) as the PARTITION_STYLE of the CREATE_DISK
// structure, an application should wait for the MSR partition arrival before sending the IOCTL_DISK_SET_DRIVE_LAYOUT_EX
// control code. For more information about device notification, see RegisterDeviceNotification."
CreateDisk.PartitionStyle = PARTITION_STYLE_GPT;
IGNORE_RETVAL(CoCreateGuid(&CreateDisk.Gpt.DiskId));
CreateDisk.Gpt.MaxPartitionCount = MAX_PARTITIONS;
DriveLayoutEx.PartitionStyle = PARTITION_STYLE_GPT;
DriveLayoutEx.PartitionCount = pi;
// At the very least, a GPT disk has 34 reserved sectors at the beginning and 33 at the end.
DriveLayoutEx.Type.Gpt.StartingUsableOffset.QuadPart = 34 * SelectedDrive.SectorSize;
DriveLayoutEx.Type.Gpt.UsableLength.QuadPart = SelectedDrive.DiskSize - (34 + 33) * SelectedDrive.SectorSize;
DriveLayoutEx.Type.Gpt.MaxPartitionCount = MAX_PARTITIONS;
DriveLayoutEx.Type.Gpt.DiskId = CreateDisk.Gpt.DiskId;
break;
}
// If you don't call IOCTL_DISK_CREATE_DISK, the IOCTL_DISK_SET_DRIVE_LAYOUT_EX call will fail
size = sizeof(CreateDisk);
if (!DeviceIoControl(hDrive, IOCTL_DISK_CREATE_DISK, (BYTE*)&CreateDisk, size, NULL, 0, NULL, NULL)) {
uprintf("Could not reset disk: %s", WindowsErrorString());
return FALSE;
}
// "The goggles, they do nothing!"
RefreshDriveLayout(hDrive);
size = sizeof(DriveLayoutEx) - ((partition_style == PARTITION_STYLE_GPT) ?
((MAX_PARTITIONS - pi) * sizeof(PARTITION_INFORMATION_EX)) : 0);
// The DRIVE_LAYOUT_INFORMATION_EX used by Microsoft, with its 1-sized array, is designed to overrun...
// coverity[overrun-buffer-arg]
if (!DeviceIoControl(hDrive, IOCTL_DISK_SET_DRIVE_LAYOUT_EX, (BYTE*)&DriveLayoutEx, size, NULL, 0, NULL, NULL)) {
uprintf("Could not set drive layout: %s", WindowsErrorString());
return FALSE;
}
if (!RefreshDriveLayout(hDrive))
return FALSE;
return TRUE;
}
BOOL RefreshDriveLayout(HANDLE hDrive)
{
BOOL r;
// Diskpart does call the following IOCTL this after updating the partition table, so we do too
r = DeviceIoControl(hDrive, IOCTL_DISK_UPDATE_PROPERTIES, NULL, 0, NULL, 0, NULL, NULL);
if (!r)
uprintf("Could not refresh drive layout: %s", WindowsErrorString());
return r;
}
/* Initialize disk for partitioning */
BOOL InitializeDisk(HANDLE hDrive)
{
BOOL r;
CREATE_DISK CreateDisk = {PARTITION_STYLE_RAW, {{0}}};
uprintf("Initializing disk...");
r = DeviceIoControl(hDrive, IOCTL_DISK_CREATE_DISK, (BYTE*)&CreateDisk, sizeof(CreateDisk), NULL, 0, NULL, NULL);
if (!r) {
uprintf("Could not delete drive layout: %s", WindowsErrorString());
return FALSE;
}
r = DeviceIoControl(hDrive, IOCTL_DISK_UPDATE_PROPERTIES, NULL, 0, NULL, 0, NULL, NULL);
if (!r) {
uprintf("Could not refresh drive layout: %s", WindowsErrorString());
return FALSE;
}
return TRUE;
}
/*
* Convert MBR or GPT partition types to their human readable forms
*/
const char* GetMBRPartitionType(const uint8_t type)
{
int i;
for (i = 0; (i < ARRAYSIZE(mbr_type)) && (mbr_type[i].type != type); i++);
return (i < ARRAYSIZE(mbr_type)) ? mbr_type[i].name : "Unknown";
}
const char* GetGPTPartitionType(const GUID* guid)
{
int i;
for (i = 0; (i < ARRAYSIZE(gpt_type)) && !CompareGUID(guid, gpt_type[i].guid); i++);
return (i < ARRAYSIZE(gpt_type)) ? gpt_type[i].name : GuidToString(guid, TRUE);
}
/*
* Detect Microsoft Dev Drives, which are VHDs consisting of a small MSR followed by a large
* (50 GB or more) ReFS partition. See https://learn.microsoft.com/en-us/windows/dev-drive/.
* NB: Despite the option being proposed, I have *NOT* been able to create MBR-based Dev Drives.
*/
BOOL IsMsDevDrive(DWORD DriveIndex)
{
BOOL r, ret = FALSE;
DWORD size = 0;
HANDLE hPhysical = INVALID_HANDLE_VALUE;
BYTE layout[4096] = { 0 };
PDRIVE_LAYOUT_INFORMATION_EX DriveLayout = (PDRIVE_LAYOUT_INFORMATION_EX)(void*)layout;
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE, TRUE);
if (hPhysical == INVALID_HANDLE_VALUE)
goto out;
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_LAYOUT_EX, NULL, 0, layout, sizeof(layout), &size, NULL);
if (!r || size <= 0)
goto out;
if (DriveLayout->PartitionStyle != PARTITION_STYLE_GPT)
goto out;
if (DriveLayout->PartitionCount != 2)
goto out;
if (!CompareGUID(&DriveLayout->PartitionEntry[0].Gpt.PartitionType, &PARTITION_MICROSOFT_RESERVED))
goto out;
if (!CompareGUID(&DriveLayout->PartitionEntry[1].Gpt.PartitionType, &PARTITION_MICROSOFT_DATA))
goto out;
if (DriveLayout->PartitionEntry[1].PartitionLength.QuadPart < 20 * GB)
goto out;
ret = (strcmp(GetFsName(hPhysical, DriveLayout->PartitionEntry[1].StartingOffset), "ReFS") == 0);
out:
safe_closehandle(hPhysical);
return ret;
}