/* * Rufus: The Reliable USB Formatting Utility * Standard Windows function calls * Copyright © 2013-2017 Pete Batard * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifdef _CRTDBG_MAP_ALLOC #include #include #endif #include #include #include "rufus.h" #include "missing.h" #include "resource.h" #include "msapi_utf8.h" #include "localization.h" #include "settings.h" int nWindowsVersion = WINDOWS_UNDEFINED; int nWindowsBuildNumber = -1; char WindowsVersionStr[128] = "Windows "; PF_TYPE_DECL(WINAPI, int, LCIDToLocaleName, (LCID, LPWSTR, int, DWORD)); /* * Hash table functions - modified From glibc 2.3.2: * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 * [Knuth] The Art of Computer Programming, part 3 (6.4) */ /* * For the used double hash method the table size has to be a prime. To * correct the user given table size we need a prime test. This trivial * algorithm is adequate because the code is called only during init and * the number is likely to be small */ static uint32_t isprime(uint32_t number) { // no even number will be passed uint32_t divider = 3; while((divider * divider < number) && (number % divider != 0)) divider += 2; return (number % divider != 0); } /* * Before using the hash table we must allocate memory for it. * We allocate one element more as the found prime number says. * This is done for more effective indexing as explained in the * comment for the hash function. */ BOOL htab_create(uint32_t nel, htab_table* htab) { if (htab == NULL) { return FALSE; } if (htab->table != NULL) { uprintf("warning: htab_create() was called with a non empty table"); return FALSE; } // Change nel to the first prime number not smaller as nel. nel |= 1; while(!isprime(nel)) nel += 2; htab->size = nel; htab->filled = 0; // allocate memory and zero out. htab->table = (htab_entry*)calloc(htab->size + 1, sizeof(htab_entry)); if (htab->table == NULL) { uprintf("could not allocate space for hash table\n"); return FALSE; } return TRUE; } /* After using the hash table it has to be destroyed. */ void htab_destroy(htab_table* htab) { size_t i; if ((htab == NULL) || (htab->table == NULL)) { return; } for (i=0; isize+1; i++) { if (htab->table[i].used) { safe_free(htab->table[i].str); } } htab->filled = 0; htab->size = 0; safe_free(htab->table); htab->table = NULL; } /* * This is the search function. It uses double hashing with open addressing. * We use a trick to speed up the lookup. The table is created with one * more element available. This enables us to use the index zero special. * This index will never be used because we store the first hash index in * the field used where zero means not used. Every other value means used. * The used field can be used as a first fast comparison for equality of * the stored and the parameter value. This helps to prevent unnecessary * expensive calls of strcmp. */ uint32_t htab_hash(char* str, htab_table* htab) { uint32_t hval, hval2; uint32_t idx; uint32_t r = 0; int c; char* sz = str; if ((htab == NULL) || (htab->table == NULL) || (str == NULL)) { return 0; } // Compute main hash value using sdbm's algorithm (empirically // shown to produce half the collisions as djb2's). // See http://www.cse.yorku.ca/~oz/hash.html while ((c = *sz++) != 0) r = c + (r << 6) + (r << 16) - r; if (r == 0) ++r; // compute table hash: simply take the modulus hval = r % htab->size; if (hval == 0) ++hval; // Try the first index idx = hval; if (htab->table[idx].used) { if ( (htab->table[idx].used == hval) && (safe_strcmp(str, htab->table[idx].str) == 0) ) { // existing hash return idx; } // uprintf("hash collision ('%s' vs '%s')\n", str, htab->table[idx].str); // Second hash function, as suggested in [Knuth] hval2 = 1 + hval % (htab->size - 2); do { // Because size is prime this guarantees to step through all available indexes if (idx <= hval2) { idx = ((uint32_t)htab->size) + idx - hval2; } else { idx -= hval2; } // If we visited all entries leave the loop unsuccessfully if (idx == hval) { break; } // If entry is found use it. if ( (htab->table[idx].used == hval) && (safe_strcmp(str, htab->table[idx].str) == 0) ) { return idx; } } while (htab->table[idx].used); } // Not found => New entry // If the table is full return an error if (htab->filled >= htab->size) { uprintf("hash table is full (%d entries)", htab->size); return 0; } safe_free(htab->table[idx].str); htab->table[idx].used = hval; htab->table[idx].str = (char*) malloc(safe_strlen(str)+1); if (htab->table[idx].str == NULL) { uprintf("could not duplicate string for hash table\n"); return 0; } memcpy(htab->table[idx].str, str, safe_strlen(str)+1); ++htab->filled; return idx; } BOOL is_x64(void) { BOOL ret = FALSE; PF_TYPE_DECL(WINAPI, BOOL, IsWow64Process, (HANDLE, PBOOL)); // Detect if we're running a 32 or 64 bit system if (sizeof(uintptr_t) < 8) { PF_INIT(IsWow64Process, Kernel32); if (pfIsWow64Process != NULL) { (*pfIsWow64Process)(GetCurrentProcess(), &ret); } } else { ret = TRUE; } return ret; } // From smartmontools os_win32.cpp void GetWindowsVersion(void) { OSVERSIONINFOEXA vi, vi2; const char* w = 0; const char* w64 = "32 bit"; char *vptr, build_number[10] = ""; size_t vlen; unsigned major, minor; ULONGLONG major_equal, minor_equal; BOOL ws; nWindowsVersion = WINDOWS_UNDEFINED; safe_strcpy(WindowsVersionStr, sizeof(WindowsVersionStr), "Windows Undefined"); memset(&vi, 0, sizeof(vi)); vi.dwOSVersionInfoSize = sizeof(vi); if (!GetVersionExA((OSVERSIONINFOA *)&vi)) { memset(&vi, 0, sizeof(vi)); vi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOA); if (!GetVersionExA((OSVERSIONINFOA *)&vi)) return; } if (vi.dwPlatformId == VER_PLATFORM_WIN32_NT) { if (vi.dwMajorVersion > 6 || (vi.dwMajorVersion == 6 && vi.dwMinorVersion >= 2)) { // Starting with Windows 8.1 Preview, GetVersionEx() does no longer report the actual OS version // See: http://msdn.microsoft.com/en-us/library/windows/desktop/dn302074.aspx // And starting with Windows 10 Preview 2, Windows enforces the use of the application/supportedOS // manifest in order for VerSetConditionMask() to report the ACTUAL OS major and minor... major_equal = VerSetConditionMask(0, VER_MAJORVERSION, VER_EQUAL); for (major = vi.dwMajorVersion; major <= 9; major++) { memset(&vi2, 0, sizeof(vi2)); vi2.dwOSVersionInfoSize = sizeof(vi2); vi2.dwMajorVersion = major; if (!VerifyVersionInfoA(&vi2, VER_MAJORVERSION, major_equal)) continue; if (vi.dwMajorVersion < major) { vi.dwMajorVersion = major; vi.dwMinorVersion = 0; } minor_equal = VerSetConditionMask(0, VER_MINORVERSION, VER_EQUAL); for (minor = vi.dwMinorVersion; minor <= 9; minor++) { memset(&vi2, 0, sizeof(vi2)); vi2.dwOSVersionInfoSize = sizeof(vi2); vi2.dwMinorVersion = minor; if (!VerifyVersionInfoA(&vi2, VER_MINORVERSION, minor_equal)) continue; vi.dwMinorVersion = minor; break; } break; } } if (vi.dwMajorVersion <= 0xf && vi.dwMinorVersion <= 0xf) { ws = (vi.wProductType <= VER_NT_WORKSTATION); nWindowsVersion = vi.dwMajorVersion << 4 | vi.dwMinorVersion; switch (nWindowsVersion) { case 0x51: w = "XP"; break; case 0x52: w = (!GetSystemMetrics(89)?"2003":"2003_R2"); break; case 0x60: w = (ws?"Vista":"2008"); break; case 0x61: w = (ws?"7":"2008_R2"); break; case 0x62: w = (ws?"8":"2012"); break; case 0x63: w = (ws?"8.1":"2012_R2"); break; case 0x64: w = (ws?"10 (Preview 1)":"Server 10 (Preview 1)"); break; // Starting with Windows 10 Preview 2, the major is the same as the public-facing version case 0xA0: w = (ws?"10":"Server 10"); break; default: if (nWindowsVersion < 0x51) nWindowsVersion = WINDOWS_UNSUPPORTED; else w = "11 or later"; break; } } } if (is_x64()) w64 = "64-bit"; vptr = &WindowsVersionStr[sizeof("Windows ") - 1]; vlen = sizeof(WindowsVersionStr) - sizeof("Windows ") - 1; if (!w) safe_sprintf(vptr, vlen, "%s %u.%u %s", (vi.dwPlatformId==VER_PLATFORM_WIN32_NT?"NT":"??"), (unsigned)vi.dwMajorVersion, (unsigned)vi.dwMinorVersion, w64); else if (vi.wServicePackMinor) safe_sprintf(vptr, vlen, "%s SP%u.%u %s", w, vi.wServicePackMajor, vi.wServicePackMinor, w64); else if (vi.wServicePackMajor) safe_sprintf(vptr, vlen, "%s SP%u %s", w, vi.wServicePackMajor, w64); else safe_sprintf(vptr, vlen, "%s %s", w, w64); // Add the build number for Windows 8.0 and later if (nWindowsVersion >= 0x62) { GetRegistryKeyStr(REGKEY_HKLM, "Microsoft\\Windows NT\\CurrentVersion\\CurrentBuildNumber", build_number, sizeof(build_number)); if (build_number[0] != 0) { nWindowsBuildNumber = atoi(build_number); // Keep a global copy safe_strcat(WindowsVersionStr, sizeof(WindowsVersionStr), " (Build "); safe_strcat(WindowsVersionStr, sizeof(WindowsVersionStr), build_number); safe_strcat(WindowsVersionStr, sizeof(WindowsVersionStr), ")"); } } } /* * String array manipulation */ void StrArrayCreate(StrArray* arr, uint32_t initial_size) { if (arr == NULL) return; arr->Max = initial_size; arr->Index = 0; arr->String = (char**)calloc(arr->Max, sizeof(char*)); if (arr->String == NULL) uprintf("Could not allocate string array\n"); } int32_t StrArrayAdd(StrArray* arr, const char* str, BOOL duplicate) { char** old_table; if ((arr == NULL) || (arr->String == NULL) || (str == NULL)) return -1; if (arr->Index == arr->Max) { arr->Max *= 2; old_table = arr->String; arr->String = (char**)realloc(arr->String, arr->Max*sizeof(char*)); if (arr->String == NULL) { free(old_table); uprintf("Could not reallocate string array\n"); return -1; } } arr->String[arr->Index] = (duplicate)?safe_strdup(str):(char*)str; if (arr->String[arr->Index] == NULL) { uprintf("Could not store string in array\n"); return -1; } return arr->Index++; } void StrArrayClear(StrArray* arr) { size_t i; if ((arr == NULL) || (arr->String == NULL)) return; for (i=0; iIndex; i++) { safe_free(arr->String[i]); } arr->Index = 0; } void StrArrayDestroy(StrArray* arr) { StrArrayClear(arr); if (arr != NULL) safe_free(arr->String); } /* * Retrieve the SID of the current user. The returned PSID must be freed by the caller using LocalFree() */ static PSID GetSID(void) { TOKEN_USER* tu = NULL; DWORD len; HANDLE token; PSID ret = NULL; char* psid_string = NULL; if (!OpenProcessToken(GetCurrentProcess(), TOKEN_QUERY, &token)) { uprintf("OpenProcessToken failed: %s\n", WindowsErrorString()); return NULL; } if (!GetTokenInformation(token, TokenUser, tu, 0, &len)) { if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) { uprintf("GetTokenInformation (pre) failed: %s\n", WindowsErrorString()); return NULL; } tu = (TOKEN_USER*)calloc(1, len); } if (tu == NULL) { return NULL; } if (GetTokenInformation(token, TokenUser, tu, len, &len)) { /* * now of course, the interesting thing is that if you return tu->User.Sid * but free tu, the PSID pointer becomes invalid after a while. * The workaround? Convert to string then back to PSID */ if (!ConvertSidToStringSidA(tu->User.Sid, &psid_string)) { uprintf("Unable to convert SID to string: %s\n", WindowsErrorString()); ret = NULL; } else { if (!ConvertStringSidToSidA(psid_string, &ret)) { uprintf("Unable to convert string back to SID: %s\n", WindowsErrorString()); ret = NULL; } // MUST use LocalFree() LocalFree(psid_string); } } else { ret = NULL; uprintf("GetTokenInformation (real) failed: %s\n", WindowsErrorString()); } free(tu); return ret; } /* * read or write I/O to a file * buffer is allocated by the procedure. path is UTF-8 */ BOOL FileIO(BOOL save, char* path, char** buffer, DWORD* size) { SECURITY_ATTRIBUTES s_attr, *ps = NULL; SECURITY_DESCRIPTOR s_desc; PSID sid = NULL; HANDLE handle; BOOL r; BOOL ret = FALSE; // Change the owner from admin to regular user sid = GetSID(); if ( (sid != NULL) && InitializeSecurityDescriptor(&s_desc, SECURITY_DESCRIPTOR_REVISION) && SetSecurityDescriptorOwner(&s_desc, sid, FALSE) ) { s_attr.nLength = sizeof(SECURITY_ATTRIBUTES); s_attr.bInheritHandle = FALSE; s_attr.lpSecurityDescriptor = &s_desc; ps = &s_attr; } else { uprintf("Could not set security descriptor: %s\n", WindowsErrorString()); } if (!save) { *buffer = NULL; } handle = CreateFileU(path, save?GENERIC_WRITE:GENERIC_READ, FILE_SHARE_READ, ps, save?CREATE_ALWAYS:OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (handle == INVALID_HANDLE_VALUE) { uprintf("Could not %s file '%s'\n", save?"create":"open", path); goto out; } if (save) { r = WriteFile(handle, *buffer, *size, size, NULL); } else { *size = GetFileSize(handle, NULL); *buffer = (char*)malloc(*size); if (*buffer == NULL) { uprintf("Could not allocate buffer for reading file\n"); goto out; } r = ReadFile(handle, *buffer, *size, size, NULL); } if (!r) { uprintf("I/O Error: %s\n", WindowsErrorString()); goto out; } PrintInfoDebug(0, save?MSG_216:MSG_215, path); ret = TRUE; out: CloseHandle(handle); if (!ret) { // Only leave a buffer allocated if successful *size = 0; if (!save) { safe_free(*buffer); } } return ret; } unsigned char* GetResource(HMODULE module, char* name, char* type, const char* desc, DWORD* len, BOOL duplicate) { HGLOBAL res_handle; HRSRC res; unsigned char* p = NULL; res = FindResourceA(module, name, type); if (res == NULL) { uprintf("Could not locate resource '%s': %s\n", desc, WindowsErrorString()); goto out; } res_handle = LoadResource(module, res); if (res_handle == NULL) { uprintf("Could not load resource '%s': %s\n", desc, WindowsErrorString()); goto out; } *len = SizeofResource(module, res); if (duplicate) { p = (unsigned char*)malloc(*len); if (p == NULL) { uprintf("Coult not allocate resource '%s'\n", desc); goto out; } memcpy(p, LockResource(res_handle), *len); } else { p = (unsigned char*)LockResource(res_handle); } out: return p; } DWORD GetResourceSize(HMODULE module, char* name, char* type, const char* desc) { DWORD len = 0; return (GetResource(module, name, type, desc, &len, FALSE) == NULL)?0:len; } // Run a console command, with optional redirection of stdout and stderr to our log DWORD RunCommand(const char* cmd, const char* dir, BOOL log) { DWORD ret, dwRead, dwAvail, dwPipeSize = 4096; STARTUPINFOA si = {0}; PROCESS_INFORMATION pi = {0}; HANDLE hOutputRead = INVALID_HANDLE_VALUE, hOutputWrite = INVALID_HANDLE_VALUE; HANDLE hDupOutputWrite = INVALID_HANDLE_VALUE; static char* output; si.cb = sizeof(si); if (log) { // NB: The size of a pipe is a suggestion, NOT an absolute guarantee // This means that you may get a pipe of 4K even if you requested 1K if (!CreatePipe(&hOutputRead, &hOutputWrite, NULL, dwPipeSize)) { ret = GetLastError(); uprintf("Could not set commandline pipe: %s", WindowsErrorString()); goto out; } // We need an inheritable pipe endpoint handle DuplicateHandle(GetCurrentProcess(), hOutputWrite, GetCurrentProcess(), &hDupOutputWrite, 0L, TRUE, DUPLICATE_CLOSE_SOURCE | DUPLICATE_SAME_ACCESS); si.dwFlags = STARTF_USESHOWWINDOW | STARTF_USESTDHANDLES; si.wShowWindow = SW_HIDE; si.hStdOutput = hDupOutputWrite; si.hStdError = hDupOutputWrite; } if (!CreateProcessU(NULL, cmd, NULL, NULL, TRUE, NORMAL_PRIORITY_CLASS | CREATE_NO_WINDOW, NULL, dir, &si, &pi)) { ret = GetLastError(); uprintf("Unable to launch command '%s': %s", cmd, WindowsErrorString()); goto out; } if (log) { while (1) { // coverity[string_null] if (PeekNamedPipe(hOutputRead, NULL, dwPipeSize, NULL, &dwAvail, NULL)) { if (dwAvail != 0) { output = malloc(dwAvail + 1); if ((output != NULL) && (ReadFile(hOutputRead, output, dwAvail, &dwRead, NULL)) && (dwRead != 0)) { output[dwAvail] = 0; // coverity[tainted_string] uprintf(output); } free(output); } } if (WaitForSingleObject(pi.hProcess, 0) == WAIT_OBJECT_0) break; Sleep(100); }; } else { WaitForSingleObject(pi.hProcess, INFINITE); } if (!GetExitCodeProcess(pi.hProcess, &ret)) ret = GetLastError(); CloseHandle(pi.hProcess); CloseHandle(pi.hThread); out: safe_closehandle(hDupOutputWrite); safe_closehandle(hOutputRead); return ret; } BOOL CompareGUID(const GUID *guid1, const GUID *guid2) { if ((guid1 != NULL) && (guid2 != NULL)) { return (memcmp(guid1, guid2, sizeof(GUID)) == 0); } return FALSE; } static BOOL CALLBACK EnumFontFamExProc(const LOGFONTA *lpelfe, const TEXTMETRICA *lpntme, DWORD FontType, LPARAM lParam) { return TRUE; } BOOL IsFontAvailable(const char* font_name) { LOGFONTA lf = { 0 }; HDC hDC = GetDC(hMainDialog); if (font_name == NULL) return FALSE; lf.lfCharSet = DEFAULT_CHARSET; safe_strcpy(lf.lfFaceName, LF_FACESIZE, font_name); return EnumFontFamiliesExA(hDC, &lf, EnumFontFamExProc, 0, 0); } /* * Set or restore a Local Group Policy DWORD key indexed by szPath/SzPolicy */ #pragma push_macro("INTERFACE") #undef INTERFACE #define INTERFACE IGroupPolicyObject #define REGISTRY_EXTENSION_GUID { 0x35378EACL, 0x683F, 0x11D2, {0xA8, 0x9A, 0x00, 0xC0, 0x4F, 0xBB, 0xCF, 0xA2} } #define GPO_OPEN_LOAD_REGISTRY 1 #define GPO_SECTION_MACHINE 2 typedef enum _GROUP_POLICY_OBJECT_TYPE { GPOTypeLocal = 0, GPOTypeRemote, GPOTypeDS } GROUP_POLICY_OBJECT_TYPE, *PGROUP_POLICY_OBJECT_TYPE; DECLARE_INTERFACE_(IGroupPolicyObject, IUnknown) { STDMETHOD(QueryInterface) (THIS_ REFIID riid, LPVOID *ppvObj) PURE; STDMETHOD_(ULONG, AddRef) (THIS) PURE; STDMETHOD_(ULONG, Release) (THIS) PURE; STDMETHOD(New) (THIS_ LPOLESTR pszDomainName, LPOLESTR pszDisplayName, DWORD dwFlags) PURE; STDMETHOD(OpenDSGPO) (THIS_ LPOLESTR pszPath, DWORD dwFlags) PURE; STDMETHOD(OpenLocalMachineGPO) (THIS_ DWORD dwFlags) PURE; STDMETHOD(OpenRemoteMachineGPO) (THIS_ LPOLESTR pszComputerName, DWORD dwFlags) PURE; STDMETHOD(Save) (THIS_ BOOL bMachine, BOOL bAdd,GUID *pGuidExtension, GUID *pGuid) PURE; STDMETHOD(Delete) (THIS) PURE; STDMETHOD(GetName) (THIS_ LPOLESTR pszName, int cchMaxLength) PURE; STDMETHOD(GetDisplayName) (THIS_ LPOLESTR pszName, int cchMaxLength) PURE; STDMETHOD(SetDisplayName) (THIS_ LPOLESTR pszName) PURE; STDMETHOD(GetPath) (THIS_ LPOLESTR pszPath, int cchMaxPath) PURE; STDMETHOD(GetDSPath) (THIS_ DWORD dwSection, LPOLESTR pszPath ,int cchMaxPath) PURE; STDMETHOD(GetFileSysPath) (THIS_ DWORD dwSection, LPOLESTR pszPath, int cchMaxPath) PURE; STDMETHOD(GetRegistryKey) (THIS_ DWORD dwSection, HKEY *hKey) PURE; STDMETHOD(GetOptions) (THIS_ DWORD *dwOptions) PURE; STDMETHOD(SetOptions) (THIS_ DWORD dwOptions, DWORD dwMask) PURE; STDMETHOD(GetType) (THIS_ GROUP_POLICY_OBJECT_TYPE *gpoType) PURE; STDMETHOD(GetMachineName) (THIS_ LPOLESTR pszName, int cchMaxLength) PURE; STDMETHOD(GetPropertySheetPages) (THIS_ HPROPSHEETPAGE **hPages, UINT *uPageCount) PURE; }; typedef IGroupPolicyObject *LPGROUPPOLICYOBJECT; // I've seen rare cases where pLGPO->lpVtbl->Save(...) gets stuck, which prevents the // application from launching altogether. To alleviate this, use a thread that we can // terminate if needed... typedef struct { BOOL bRestore; BOOL* bExistingKey; const char* szPath; const char* szPolicy; DWORD dwValue; } SetLGP_Params; DWORD WINAPI SetLGPThread(LPVOID param) { SetLGP_Params* p = (SetLGP_Params*)param; LONG r; DWORD disp, regtype, val=0, val_size=sizeof(DWORD); HRESULT hr; IGroupPolicyObject* pLGPO; // Along with global 'existing_key', this static value is used to restore initial state static DWORD original_val; HKEY path_key = NULL, policy_key = NULL; // MSVC is finicky about these ones => redefine them const IID my_IID_IGroupPolicyObject = { 0xea502723L, 0xa23d, 0x11d1, { 0xa7, 0xd3, 0x0, 0x0, 0xf8, 0x75, 0x71, 0xe3 } }; const IID my_CLSID_GroupPolicyObject = { 0xea502722L, 0xa23d, 0x11d1, { 0xa7, 0xd3, 0x0, 0x0, 0xf8, 0x75, 0x71, 0xe3 } }; GUID ext_guid = REGISTRY_EXTENSION_GUID; // Can be anything really GUID snap_guid = { 0x3D271CFCL, 0x2BC6, 0x4AC2, {0xB6, 0x33, 0x3B, 0xDF, 0xF5, 0xBD, 0xAB, 0x2A} }; // Reinitialize COM since it's not shared between threads IGNORE_RETVAL(CoInitializeEx(NULL, COINIT_APARTMENTTHREADED)); // We need an IGroupPolicyObject instance to set a Local Group Policy hr = CoCreateInstance(&my_CLSID_GroupPolicyObject, NULL, CLSCTX_INPROC_SERVER, &my_IID_IGroupPolicyObject, (LPVOID*)&pLGPO); if (FAILED(hr)) { ubprintf("SetLGP: CoCreateInstance failed; hr = %lx", hr); goto error; } hr = pLGPO->lpVtbl->OpenLocalMachineGPO(pLGPO, GPO_OPEN_LOAD_REGISTRY); if (FAILED(hr)) { ubprintf("SetLGP: OpenLocalMachineGPO failed - error %lx", hr); goto error; } hr = pLGPO->lpVtbl->GetRegistryKey(pLGPO, GPO_SECTION_MACHINE, &path_key); if (FAILED(hr)) { ubprintf("SetLGP: GetRegistryKey failed - error %lx", hr); goto error; } // The DisableSystemRestore is set in Software\Policies\Microsoft\Windows\DeviceInstall\Settings r = RegCreateKeyExA(path_key, p->szPath, 0, NULL, 0, KEY_SET_VALUE | KEY_QUERY_VALUE, NULL, &policy_key, &disp); if (r != ERROR_SUCCESS) { ubprintf("SetLGP: Failed to open LGPO path %s - error %lx", p->szPath, hr); policy_key = NULL; goto error; } if ((disp == REG_OPENED_EXISTING_KEY) && (!p->bRestore) && (!(*(p->bExistingKey)))) { // backup existing value for restore *(p->bExistingKey) = TRUE; regtype = REG_DWORD; r = RegQueryValueExA(policy_key, p->szPolicy, NULL, ®type, (LPBYTE)&original_val, &val_size); if (r == ERROR_FILE_NOT_FOUND) { // The Key exists but not its value, which is OK *(p->bExistingKey) = FALSE; } else if (r != ERROR_SUCCESS) { ubprintf("SetLGP: Failed to read original %s policy value - error %lx", p->szPolicy, r); } } if ((!p->bRestore) || (*(p->bExistingKey))) { val = (p->bRestore)?original_val:p->dwValue; r = RegSetValueExA(policy_key, p->szPolicy, 0, REG_DWORD, (BYTE*)&val, sizeof(val)); } else { r = RegDeleteValueA(policy_key, p->szPolicy); } if (r != ERROR_SUCCESS) { ubprintf("SetLGP: RegSetValueEx / RegDeleteValue failed - error %lx", r); } RegCloseKey(policy_key); policy_key = NULL; // Apply policy hr = pLGPO->lpVtbl->Save(pLGPO, TRUE, (p->bRestore)?FALSE:TRUE, &ext_guid, &snap_guid); if (hr != S_OK) { ubprintf("SetLGP: Unable to apply %s policy - error %lx", p->szPolicy, hr); goto error; } else { if ((!p->bRestore) || (*(p->bExistingKey))) { ubprintf("SetLGP: Successfully %s %s policy to 0x%08lX", (p->bRestore)?"restored":"set", p->szPolicy, val); } else { ubprintf("SetLGP: Successfully removed %s policy key", p->szPolicy); } } RegCloseKey(path_key); pLGPO->lpVtbl->Release(pLGPO); return TRUE; error: if (path_key != NULL) RegCloseKey(path_key); if (pLGPO != NULL) pLGPO->lpVtbl->Release(pLGPO); return FALSE; } #pragma pop_macro("INTERFACE") BOOL SetLGP(BOOL bRestore, BOOL* bExistingKey, const char* szPath, const char* szPolicy, DWORD dwValue) { SetLGP_Params params = {bRestore, bExistingKey, szPath, szPolicy, dwValue}; DWORD r = FALSE; HANDLE thread_id; if (ReadSettingBool(SETTING_DISABLE_LGP)) { ubprintf("LPG handling disabled, per settings"); return FALSE; } thread_id = CreateThread(NULL, 0, SetLGPThread, (LPVOID)¶ms, 0, NULL); if (thread_id == NULL) { ubprintf("SetLGP: Unable to start thread"); return FALSE; } if (WaitForSingleObject(thread_id, 5000) != WAIT_OBJECT_0) { ubprintf("SetLGP: Killing stuck thread!"); TerminateThread(thread_id, 0); CloseHandle(thread_id); return FALSE; } if (!GetExitCodeThread(thread_id, &r)) return FALSE; return (BOOL) r; } /* * This call tries to evenly balance the affinities for an array of * num_threads, according to the number of cores at our disposal... */ BOOL SetThreadAffinity(DWORD_PTR* thread_affinity, size_t num_threads) { size_t i, j, pc; DWORD_PTR affinity, dummy; memset(thread_affinity, 0, num_threads * sizeof(DWORD_PTR)); if (!GetProcessAffinityMask(GetCurrentProcess(), &affinity, &dummy)) return FALSE; uuprintf("\r\nThread affinities:"); uuprintf(" avail:\t%s", printbitslz(affinity)); // If we don't have enough virtual cores to evenly spread our load forget it pc = popcnt64(affinity); if (pc < num_threads) return FALSE; // Spread the affinity as evenly as we can thread_affinity[num_threads - 1] = affinity; for (i = 0; i < num_threads - 1; i++) { for (j = 0; j < pc / num_threads; j++) { thread_affinity[i] |= affinity & (-1LL * affinity); affinity ^= affinity & (-1LL * affinity); } uuprintf(" thr_%d:\t%s", i, printbitslz(thread_affinity[i])); thread_affinity[num_threads - 1] ^= thread_affinity[i]; } uuprintf(" thr_%d:\t%s", i, printbitslz(thread_affinity[i])); return TRUE; } /* * Returns true if: * 1. The OS supports UAC, UAC is on, and the current process runs elevated, or * 2. The OS doesn't support UAC or UAC is off, and the process is being run by a member of the admin group */ BOOL IsCurrentProcessElevated(void) { BOOL r = FALSE; DWORD size; HANDLE token = INVALID_HANDLE_VALUE; TOKEN_ELEVATION te; SID_IDENTIFIER_AUTHORITY auth = { SECURITY_NT_AUTHORITY }; PSID psid; if (ReadRegistryKey32(REGKEY_HKLM, "Software\\Microsoft\\Windows\\CurrentVersion\\Policies\\System\\EnableLUA") == 1) { uprintf("Note: UAC is active"); if (!OpenProcessToken(GetCurrentProcess(), TOKEN_QUERY, &token)) { uprintf("Could not get current process token: %s", WindowsErrorString()); goto out; } if (!GetTokenInformation(token, TokenElevation, &te, sizeof(te), &size)) { uprintf("Could not get token information: %s", WindowsErrorString()); goto out; } r = (te.TokenIsElevated != 0); } else { uprintf("Note: UAC is either disabled or not available"); if (!AllocateAndInitializeSid(&auth, 2, SECURITY_BUILTIN_DOMAIN_RID, DOMAIN_ALIAS_RID_ADMINS, 0, 0, 0, 0, 0, 0, &psid)) goto out; if (!CheckTokenMembership(NULL, psid, &r)) r = FALSE; FreeSid(psid); } out: safe_closehandle(token); return r; } char* GetCurrentMUI(void) { static char mui_str[LOCALE_NAME_MAX_LENGTH]; wchar_t wmui_str[LOCALE_NAME_MAX_LENGTH]; // Of course LCIDToLocaleName() is not available on XP... grrrr! PF_INIT(LCIDToLocaleName, kernel32); if ( (pfLCIDToLocaleName != NULL) && (pfLCIDToLocaleName(GetUserDefaultUILanguage(), wmui_str, LOCALE_NAME_MAX_LENGTH, 0) > 0) ) { wchar_to_utf8_no_alloc(wmui_str, mui_str, LOCALE_NAME_MAX_LENGTH); } else { safe_strcpy(mui_str, LOCALE_NAME_MAX_LENGTH, "en-US"); } return mui_str; }