/* * Rufus: The Reliable USB Formatting Utility * Drive access function calls * Copyright © 2011-2015 Pete Batard * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifdef _CRTDBG_MAP_ALLOC #include #include #endif #include #include #include #include #include "msapi_utf8.h" #include "rufus.h" #include "file.h" #include "drive.h" #include "resource.h" #include "sys_types.h" #include "br.h" #include "fat16.h" #include "fat32.h" #include "ntfs.h" #include "localization.h" #if !defined(PARTITION_BASIC_DATA_GUID) const GUID PARTITION_BASIC_DATA_GUID = { 0xebd0a0a2L, 0xb9e5, 0x4433, {0x87, 0xc0, 0x68, 0xb6, 0xb7, 0x26, 0x99, 0xc7} }; #endif #if !defined(PARTITION_MSFT_RESERVED_GUID) const GUID PARTITION_MSFT_RESERVED_GUID = { 0xe3c9e316L, 0x0b5c, 0x4db8, {0x81, 0x7d, 0xf9, 0x2d, 0xf0, 0x02, 0x15, 0xae} }; #endif #if !defined(PARTITION_SYSTEM_GUID) const GUID PARTITION_SYSTEM_GUID = { 0xc12a7328L, 0xf81f, 0x11d2, {0xba, 0x4b, 0x00, 0xa0, 0xc9, 0x3e, 0xc9, 0x3b} }; #endif /* * Globals */ RUFUS_DRIVE_INFO SelectedDrive; size_t uefi_ntfs_size = 0; /* * The following methods get or set the AutoMount setting (which is different from AutoRun) * Rufus needs AutoMount to be set as the format process may fail for fixed drives otherwise. * See https://github.com/pbatard/rufus/issues/386. * * Reverse engineering diskpart and mountvol indicates that the former uses the IVdsService * ClearFlags()/SetFlags() to set VDS_SVF_AUTO_MOUNT_OFF whereas mountvol on uses * IOCTL_MOUNTMGR_SET_AUTO_MOUNT on "\\\\.\\MountPointManager". * As the latter is MUCH simpler this is what we'll use too */ BOOL SetAutoMount(BOOL enable) { HANDLE hMountMgr; DWORD size; BOOL ret = FALSE; hMountMgr = CreateFileA(MOUNTMGR_DOS_DEVICE_NAME, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hMountMgr == NULL) return FALSE; ret = DeviceIoControl(hMountMgr, IOCTL_MOUNTMGR_SET_AUTO_MOUNT, &enable, sizeof(enable), NULL, 0, &size, NULL); CloseHandle(hMountMgr); return ret; } BOOL GetAutoMount(BOOL* enabled) { HANDLE hMountMgr; DWORD size; BOOL ret = FALSE; if (enabled == NULL) return FALSE; hMountMgr = CreateFileA(MOUNTMGR_DOS_DEVICE_NAME, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hMountMgr == NULL) return FALSE; ret = DeviceIoControl(hMountMgr, IOCTL_MOUNTMGR_QUERY_AUTO_MOUNT, NULL, 0, enabled, sizeof(*enabled), &size, NULL); CloseHandle(hMountMgr); return ret; } /* * Working with drive indexes quite risky (left unchecked,inadvertently passing 0 as * index would return a handle to C:, which we might then proceed to unknowingly * clear the MBR of!), so we mitigate the risk by forcing our indexes to belong to * the specific range [DRIVE_INDEX_MIN; DRIVE_INDEX_MAX]. */ #define CheckDriveIndex(DriveIndex) do { \ if ((DriveIndex < DRIVE_INDEX_MIN) || (DriveIndex > DRIVE_INDEX_MAX)) { \ uprintf("ERROR: Bad index value. Please check the code!\n"); \ goto out; \ } \ DriveIndex -= DRIVE_INDEX_MIN; } while (0) /* * Open a drive or volume with optional write and lock access * Return INVALID_HANDLE_VALUE (/!\ which is DIFFERENT from NULL /!\) on failure. */ static HANDLE GetHandle(char* Path, BOOL bWriteAccess, BOOL bLockDrive) { int i; DWORD size; HANDLE hDrive = INVALID_HANDLE_VALUE; if (Path == NULL) goto out; hDrive = CreateFileA(Path, GENERIC_READ|(bWriteAccess?GENERIC_WRITE:0), FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hDrive == INVALID_HANDLE_VALUE) { uprintf("Could not open drive %s: %s\n", Path, WindowsErrorString()); goto out; } if (bWriteAccess) { uprintf("Opened drive %s for write access\n", Path); } if (bLockDrive) { if (DeviceIoControl(hDrive, FSCTL_ALLOW_EXTENDED_DASD_IO, NULL, 0, NULL, 0, &size, NULL)) { uprintf("I/O boundary checks disabled\n"); } for (i = 0; i < DRIVE_ACCESS_RETRIES; i++) { if (DeviceIoControl(hDrive, FSCTL_LOCK_VOLUME, NULL, 0, NULL, 0, &size, NULL)) goto out; if (IS_ERROR(FormatStatus)) // User cancel break; Sleep(DRIVE_ACCESS_TIMEOUT/DRIVE_ACCESS_RETRIES); } // If we reached this section, either we didn't manage to get a lock or the user cancelled uprintf("Could not get exclusive access to device %s: %s\n", Path, WindowsErrorString()); safe_closehandle(hDrive); } out: return hDrive; } /* * Return the path to access the physical drive, or NULL on error. * The string is allocated and must be freed (to ensure concurrent access) */ char* GetPhysicalName(DWORD DriveIndex) { BOOL success = FALSE; char physical_name[24]; CheckDriveIndex(DriveIndex); safe_sprintf(physical_name, sizeof(physical_name), "\\\\.\\PHYSICALDRIVE%d", DriveIndex); success = TRUE; out: return (success)?safe_strdup(physical_name):NULL; } /* * Return a handle to the physical drive identified by DriveIndex */ HANDLE GetPhysicalHandle(DWORD DriveIndex, BOOL bWriteAccess, BOOL bLockDrive) { HANDLE hPhysical = INVALID_HANDLE_VALUE; char* PhysicalPath = GetPhysicalName(DriveIndex); hPhysical = GetHandle(PhysicalPath, bWriteAccess, bLockDrive); safe_free(PhysicalPath); return hPhysical; } /* * Return the first GUID volume name for the associated drive or NULL if not found * See http://msdn.microsoft.com/en-us/library/cc542456.aspx * The returned string is allocated and must be freed */ char* GetLogicalName(DWORD DriveIndex, BOOL bKeepTrailingBackslash, BOOL bSilent) { BOOL success = FALSE; char volume_name[MAX_PATH]; HANDLE hDrive = INVALID_HANDLE_VALUE, hVolume = INVALID_HANDLE_VALUE; size_t len; char path[MAX_PATH]; VOLUME_DISK_EXTENTS DiskExtents; DWORD size; UINT drive_type; int i, j; static const char* ignore_device[] = { "\\Device\\CdRom", "\\Device\\Floppy" }; static const char* volume_start = "\\\\?\\"; CheckDriveIndex(DriveIndex); for (i=0; hDrive == INVALID_HANDLE_VALUE; i++) { if (i == 0) { hVolume = FindFirstVolumeA(volume_name, sizeof(volume_name)); if (hVolume == INVALID_HANDLE_VALUE) { suprintf("Could not access first GUID volume: %s\n", WindowsErrorString()); goto out; } } else { if (!FindNextVolumeA(hVolume, volume_name, sizeof(volume_name))) { if (GetLastError() != ERROR_NO_MORE_FILES) { suprintf("Could not access next GUID volume: %s\n", WindowsErrorString()); } goto out; } } // Sanity checks len = safe_strlen(volume_name); if ((len <= 1) || (safe_strnicmp(volume_name, volume_start, 4) != 0) || (volume_name[len-1] != '\\')) { suprintf("'%s' is not a GUID volume name\n", volume_name); continue; } drive_type = GetDriveTypeA(volume_name); if ((drive_type != DRIVE_REMOVABLE) && (drive_type != DRIVE_FIXED)) continue; volume_name[len-1] = 0; if (QueryDosDeviceA(&volume_name[4], path, sizeof(path)) == 0) { suprintf("Failed to get device path for GUID volume '%s': %s\n", volume_name, WindowsErrorString()); continue; } for (j=0; (j= 1) && (DiskExtents.Extents[0].DiskNumber == DriveIndex)) { if (bKeepTrailingBackslash) volume_name[len-1] = '\\'; success = TRUE; break; } } out: if (hVolume != INVALID_HANDLE_VALUE) FindVolumeClose(hVolume); return (success)?safe_strdup(volume_name):NULL; } /* Wait for a logical drive to reappear - Used when a drive has just been repartitioned */ BOOL WaitForLogical(DWORD DriveIndex) { DWORD i; char* LogicalPath = NULL; for (i = 0; i < DRIVE_ACCESS_RETRIES; i++) { LogicalPath = GetLogicalName(DriveIndex, FALSE, TRUE); if (LogicalPath != NULL) { free(LogicalPath); return TRUE; } if (IS_ERROR(FormatStatus)) // User cancel return FALSE; Sleep(DRIVE_ACCESS_TIMEOUT/DRIVE_ACCESS_RETRIES); } uprintf("Timeout while waiting for logical drive\n"); return FALSE; } /* * Obtain a handle to the first logical volume on the disk identified by DriveIndex * Returns INVALID_HANDLE_VALUE on error or NULL if no logical path exists (typical * of unpartitioned drives) */ HANDLE GetLogicalHandle(DWORD DriveIndex, BOOL bWriteAccess, BOOL bLockDrive) { HANDLE hLogical = INVALID_HANDLE_VALUE; char* LogicalPath = GetLogicalName(DriveIndex, FALSE, FALSE); if (LogicalPath == NULL) { uprintf("No logical drive found (unpartitioned?)\n"); return NULL; } hLogical = GetHandle(LogicalPath, bWriteAccess, bLockDrive); free(LogicalPath); return hLogical; } /* * Who would have thought that Microsoft would make it so unbelievably hard to * get the frickin' device number for a drive? You have to use TWO different * methods to have a chance to get it! */ int GetDriveNumber(HANDLE hDrive, char* path) { STORAGE_DEVICE_NUMBER_REDEF DeviceNumber; VOLUME_DISK_EXTENTS_REDEF DiskExtents; DWORD size; int r = -1; if (!DeviceIoControl(hDrive, IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS, NULL, 0, &DiskExtents, sizeof(DiskExtents), &size, NULL) || (size <= 0) || (DiskExtents.NumberOfDiskExtents < 1) ) { // DiskExtents are NO_GO (which is the case for external USB HDDs...) if(!DeviceIoControl(hDrive, IOCTL_STORAGE_GET_DEVICE_NUMBER, NULL, 0, &DeviceNumber, sizeof(DeviceNumber), &size, NULL ) || (size <= 0)) { uprintf("Could not get device number for device %s: %s", path, WindowsErrorString()); return -1; } r = (int)DeviceNumber.DeviceNumber; } else if (DiskExtents.NumberOfDiskExtents >= 2) { uprintf("Ignoring drive '%s' as it spans multiple disks (RAID?)", path); return -1; } else { r = (int)DiskExtents.Extents[0].DiskNumber; } if (r >= MAX_DRIVES) { uprintf("Device Number for device %s is too big (%d) - ignoring device", path, r); return -1; } return r; } /* * Returns the drive letters for all volumes located on the drive identified by DriveIndex, * as well as the drive type. This is used as base for the 2 function calls that follow. */ static BOOL _GetDriveLettersAndType(DWORD DriveIndex, char* drive_letters, UINT* drive_type) { DWORD size; BOOL r = FALSE; HANDLE hDrive = INVALID_HANDLE_VALUE; UINT _drive_type; int i = 0, drive_number; char *drive, drives[26*4 + 1]; /* "D:\", "E:\", etc., plus one NUL */ char logical_drive[] = "\\\\.\\#:"; if (drive_letters != NULL) drive_letters[0] = 0; if (drive_type != NULL) *drive_type = DRIVE_UNKNOWN; CheckDriveIndex(DriveIndex); // This call is weird... The buffer needs to have an extra NUL, but you're // supposed to provide the size without the extra NUL. And the returned size // does not include the NUL either *EXCEPT* if your buffer is too small... // But then again, this doesn't hold true if you have a 105 byte buffer and // pass a 4*26=104 size, as the the call will return 105 (i.e. *FAILURE*) // instead of 104 as it should => screw Microsoft: We'll include the NUL // always, as each drive string is at least 4 chars long anyway. size = GetLogicalDriveStringsA(sizeof(drives), drives); if (size == 0) { uprintf("GetLogicalDriveStrings failed: %s\n", WindowsErrorString()); goto out; } if (size > sizeof(drives)) { uprintf("GetLogicalDriveStrings: Buffer too small (required %d vs. %d)\n", size, sizeof(drives)); goto out; } r = TRUE; // Required to detect drives that don't have volumes assigned for (drive = drives ;*drive; drive += safe_strlen(drive)+1) { if (!isalpha(*drive)) continue; *drive = (char)toupper((int)*drive); if (*drive < 'C') { continue; } /* IOCTL_STORAGE_GET_DEVICE_NUMBER's STORAGE_DEVICE_NUMBER.DeviceNumber is not unique! An HDD, a DVD and probably other drives can have the same value there => Use GetDriveType() to filter out unwanted devices. See https://github.com/pbatard/rufus/issues/32 for details. */ _drive_type = GetDriveTypeA(drive); if ((_drive_type != DRIVE_REMOVABLE) && (_drive_type != DRIVE_FIXED)) continue; safe_sprintf(logical_drive, sizeof(logical_drive), "\\\\.\\%c:", drive[0]); hDrive = CreateFileA(logical_drive, GENERIC_READ, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hDrive == INVALID_HANDLE_VALUE) { // uprintf("Warning: could not open drive %c: %s\n", drive[0], WindowsErrorString()); continue; } drive_number = GetDriveNumber(hDrive, logical_drive); safe_closehandle(hDrive); if (drive_number == DriveIndex) { r = TRUE; if (drive_letters != NULL) drive_letters[i++] = *drive; // The drive type should be the same for all volumes, so we can overwrite if (drive_type != NULL) *drive_type = _drive_type; } } out: if (drive_letters != NULL) drive_letters[i] = 0; return r; } // Could have used a #define, but this is clearer BOOL GetDriveLetters(DWORD DriveIndex, char* drive_letters) { return _GetDriveLettersAndType(DriveIndex, drive_letters, NULL); } // There's already a GetDriveType in the Windows API UINT GetDriveTypeFromIndex(DWORD DriveIndex) { UINT drive_type; _GetDriveLettersAndType(DriveIndex, NULL, &drive_type); return drive_type; } /* * Return the next unused drive letter from the system */ char GetUnusedDriveLetter(void) { DWORD size; char drive_letter = 'Z'+1, *drive, drives[26*4 + 1]; /* "D:\", "E:\", etc., plus one NUL */ size = GetLogicalDriveStringsA(sizeof(drives), drives); if (size == 0) { uprintf("GetLogicalDriveStrings failed: %s\n", WindowsErrorString()); goto out; } if (size > sizeof(drives)) { uprintf("GetLogicalDriveStrings: Buffer too small (required %d vs. %d)\n", size, sizeof(drives)); goto out; } for (drive_letter = 'C'; drive_letter < 'Z'; drive_letter++) { for (drive = drives ;*drive; drive += safe_strlen(drive)+1) { if (!isalpha(*drive)) continue; if (drive_letter == (char)toupper((int)*drive)) break; } if (!*drive) break; } out: return (drive_letter>'Z')?0:drive_letter; } /* * Return the drive letter and volume label * If the drive doesn't have a volume assigned, space is returned for the letter */ BOOL GetDriveLabel(DWORD DriveIndex, char* letters, char** label) { HANDLE hPhysical; DWORD size; char AutorunPath[] = "#:\\autorun.inf", *AutorunLabel = NULL; wchar_t wDrivePath[] = L"#:\\"; wchar_t wVolumeLabel[MAX_PATH+1]; static char VolumeLabel[MAX_PATH+1]; *label = STR_NO_LABEL; if (!GetDriveLetters(DriveIndex, letters)) return FALSE; if (letters[0] == 0) { // Drive without volume assigned - always enabled return TRUE; } // We only care about an autorun.inf if we have a single volume AutorunPath[0] = letters[0]; wDrivePath[0] = letters[0]; // Try to read an extended label from autorun first. Fallback to regular label if not found. // In the case of card readers with no card, users can get an annoying popup asking them // to insert media. Use IOCTL_STORAGE_CHECK_VERIFY to prevent this hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE); if (DeviceIoControl(hPhysical, IOCTL_STORAGE_CHECK_VERIFY, NULL, 0, NULL, 0, &size, NULL)) AutorunLabel = get_token_data_file("label", AutorunPath); else if (GetLastError() == ERROR_NOT_READY) uprintf("Ignoring autorun.inf label for drive %c: %s\n", letters[0], (HRESULT_CODE(GetLastError()) == ERROR_NOT_READY)?"No media":WindowsErrorString()); safe_closehandle(hPhysical); if (AutorunLabel != NULL) { uprintf("Using autorun.inf label for drive %c: '%s'\n", letters[0], AutorunLabel); safe_strcpy(VolumeLabel, sizeof(VolumeLabel), AutorunLabel); safe_free(AutorunLabel); *label = VolumeLabel; } else if (GetVolumeInformationW(wDrivePath, wVolumeLabel, ARRAYSIZE(wVolumeLabel), NULL, NULL, NULL, NULL, 0) && *wVolumeLabel) { wchar_to_utf8_no_alloc(wVolumeLabel, VolumeLabel, sizeof(VolumeLabel)); *label = VolumeLabel; } return TRUE; } /* * Return the drive size */ uint64_t GetDriveSize(DWORD DriveIndex) { BOOL r; HANDLE hPhysical; DWORD size; BYTE geometry[256]; PDISK_GEOMETRY_EX DiskGeometry = (PDISK_GEOMETRY_EX)(void*)geometry; hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE); if (hPhysical == INVALID_HANDLE_VALUE) return FALSE; r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, geometry, sizeof(geometry), &size, NULL); safe_closehandle(hPhysical); if (!r || size <= 0) return 0; return DiskGeometry->DiskSize.QuadPart; } /* * GET_DRIVE_GEOMETRY is used to tell if there is an actual media */ BOOL IsMediaPresent(DWORD DriveIndex) { BOOL r; HANDLE hPhysical; DWORD size; BYTE geometry[128]; hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE); r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX, NULL, 0, geometry, sizeof(geometry), &size, NULL) || (size <= 0); safe_closehandle(hPhysical); return r; } const struct {int (*fn)(FILE *fp); char* str;} known_mbr[] = { { is_dos_mbr, "DOS/NT/95A" }, { is_dos_f2_mbr, "DOS/NT/95A (F2)" }, { is_95b_mbr, "Windows 95B/98/98SE/ME" }, { is_2000_mbr, "Windows 2000/XP/2003" }, { is_vista_mbr, "Windows Vista" }, { is_win7_mbr, "Windows 7" }, { is_rufus_mbr, "Rufus" }, { is_syslinux_mbr, "Syslinux" }, { is_reactos_mbr, "ReactOS" }, { is_kolibri_mbr, "KolibriOS" }, { is_grub_mbr, "Grub4DOS" }, { is_grub2_mbr, "Grub 2.0" }, { is_zero_mbr, "Zeroed" }, }; // Returns TRUE if the drive seems bootable, FALSE otherwise BOOL AnalyzeMBR(HANDLE hPhysicalDrive, const char* TargetName) { const char* mbr_name = "Master Boot Record"; FAKE_FD fake_fd = { 0 }; FILE* fp = (FILE*)&fake_fd; int i; fake_fd._handle = (char*)hPhysicalDrive; fake_fd._sector_size = SelectedDrive.Geometry.BytesPerSector; // Might need correction, as we use this method for images and we may not have a target UFD yet if (fake_fd._sector_size < 512) fake_fd._sector_size = 512; if (!is_br(fp)) { uprintf("%s does not have an x86 %s\n", TargetName, mbr_name); return FALSE; } for (i=0; iGeometry.BytesPerSector < 512) { suprintf("Warning: Drive 0x%02x reports a sector size of %d - Correcting to 512 bytes.\n", DriveIndex, DiskGeometry->Geometry.BytesPerSector); DiskGeometry->Geometry.BytesPerSector = 512; } SelectedDrive.DiskSize = DiskGeometry->DiskSize.QuadPart; memcpy(&SelectedDrive.Geometry, &DiskGeometry->Geometry, sizeof(DISK_GEOMETRY)); suprintf("Disk type: %s, Sector Size: %d bytes\n", (DiskGeometry->Geometry.MediaType == FixedMedia)?"Fixed":"Removable", DiskGeometry->Geometry.BytesPerSector); suprintf("Cylinders: %" PRIi64 ", TracksPerCylinder: %d, SectorsPerTrack: %d\n", DiskGeometry->Geometry.Cylinders, DiskGeometry->Geometry.TracksPerCylinder, DiskGeometry->Geometry.SectorsPerTrack); r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_LAYOUT_EX, NULL, 0, layout, sizeof(layout), &size, NULL ); if (!r || size <= 0) { suprintf("Could not get layout for drive 0x%02x: %s\n", DriveIndex, WindowsErrorString()); safe_closehandle(hPhysical); return 0; } #if defined(__GNUC__) // GCC 4.9 bug us about the fact that MS defined an expandable array as array[1] #pragma GCC diagnostic ignored "-Warray-bounds" #endif switch (DriveLayout->PartitionStyle) { case PARTITION_STYLE_MBR: SelectedDrive.PartitionType = PARTITION_STYLE_MBR; for (i=0; iPartitionCount; i++) { if (DriveLayout->PartitionEntry[i].Mbr.PartitionType != PARTITION_ENTRY_UNUSED) { SelectedDrive.nPartitions++; } } suprintf("Partition type: MBR, NB Partitions: %d\n", SelectedDrive.nPartitions); SelectedDrive.has_mbr_uefi_marker = (DriveLayout->Mbr.Signature == MBR_UEFI_MARKER); suprintf("Disk ID: 0x%08X %s\n", DriveLayout->Mbr.Signature, SelectedDrive.has_mbr_uefi_marker?"(UEFI target)":""); AnalyzeMBR(hPhysical, "Drive"); for (i=0; iPartitionCount; i++) { if (DriveLayout->PartitionEntry[i].Mbr.PartitionType != PARTITION_ENTRY_UNUSED) { part_type = DriveLayout->PartitionEntry[i].Mbr.PartitionType; isUefiNtfs = (i == 1) && (part_type == 0xef) && (DriveLayout->PartitionEntry[i].PartitionLength.QuadPart == uefi_ntfs_size); suprintf("Partition %d%s:\n", i+1, isUefiNtfs?" (UEFI:NTFS)":""); for (j=0; jPartitionEntry[i].PartitionLength.QuadPart, TRUE, FALSE), DriveLayout->PartitionEntry[i].PartitionLength.QuadPart, DriveLayout->PartitionEntry[i].Mbr.HiddenSectors, DriveLayout->PartitionEntry[i].Mbr.BootIndicator?"Yes":"No", DriveLayout->PartitionEntry[i].Mbr.RecognizedPartition?"Yes":"No"); if ((part_type == RUFUS_EXTRA_PARTITION_TYPE) || (isUefiNtfs)) // This is a partition Rufus created => we can safely ignore it --SelectedDrive.nPartitions; if (part_type == 0xee) // Flag a protective MBR for non GPT platforms (XP) SelectedDrive.has_protective_mbr = TRUE; } } break; case PARTITION_STYLE_GPT: SelectedDrive.PartitionType = PARTITION_STYLE_GPT; suprintf("Partition type: GPT, NB Partitions: %d\n", DriveLayout->PartitionCount); suprintf("Disk GUID: %s\n", GuidToString(&DriveLayout->Gpt.DiskId)); suprintf("Max parts: %d, Start Offset: %" PRIi64 ", Usable = %" PRIi64 " bytes\n", DriveLayout->Gpt.MaxPartitionCount, DriveLayout->Gpt.StartingUsableOffset.QuadPart, DriveLayout->Gpt.UsableLength.QuadPart); for (i=0; iPartitionCount; i++) { SelectedDrive.nPartitions++; tmp[0] = 0; wchar_to_utf8_no_alloc(DriveLayout->PartitionEntry[i].Gpt.Name, tmp, sizeof(tmp)); suprintf("Partition %d:\r\n Type: %s\r\n Name: '%s'\n", i+1, GuidToString(&DriveLayout->PartitionEntry[i].Gpt.PartitionType), tmp); suprintf(" ID: %s\r\n Size: %s (%" PRIi64 " bytes)\r\n Start Sector: %" PRIi64 ", Attributes: 0x%016" PRIX64 "\n", GuidToString(&DriveLayout->PartitionEntry[i].Gpt.PartitionId), SizeToHumanReadable(DriveLayout->PartitionEntry[i].PartitionLength.QuadPart, TRUE, FALSE), DriveLayout->PartitionEntry[i].PartitionLength, DriveLayout->PartitionEntry[i].StartingOffset.QuadPart / DiskGeometry->Geometry.BytesPerSector, DriveLayout->PartitionEntry[i].Gpt.Attributes); // Don't register the partitions that we don't care about destroying if ( (strcmp(tmp, "UEFI:NTFS") == 0) || (CompareGUID(&DriveLayout->PartitionEntry[i].Gpt.PartitionType, &PARTITION_MSFT_RESERVED_GUID)) || (CompareGUID(&DriveLayout->PartitionEntry[i].Gpt.PartitionType, &PARTITION_SYSTEM_GUID)) ) --SelectedDrive.nPartitions; if ( (memcmp(&PARTITION_BASIC_DATA_GUID, &DriveLayout->PartitionEntry[i].Gpt.PartitionType, sizeof(GUID)) == 0) && (nWindowsVersion >= WINDOWS_VISTA) ) ret = TRUE; } break; default: SelectedDrive.PartitionType = PARTITION_STYLE_MBR; suprintf("Partition type: RAW\n"); break; } #if defined(__GNUC__) #pragma GCC diagnostic warning "-Warray-bounds" #endif safe_closehandle(hPhysical); return ret; } /* * Flush file data */ static BOOL FlushDrive(char drive_letter) { HANDLE hDrive = INVALID_HANDLE_VALUE; BOOL r = FALSE; char logical_drive[] = "\\\\.\\#:"; logical_drive[4] = drive_letter; hDrive = CreateFileA(logical_drive, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL); if (hDrive == INVALID_HANDLE_VALUE) { uprintf("Failed to open %c: for flushing: %s\n", drive_letter, WindowsErrorString()); goto out; } r = FlushFileBuffers(hDrive); if (r == FALSE) uprintf("Failed to flush %c: %s\n", drive_letter, WindowsErrorString()); out: safe_closehandle(hDrive); return r; } /* * Unmount of volume using the DISMOUNT_VOLUME ioctl */ BOOL UnmountVolume(HANDLE hDrive) { DWORD size; if (!DeviceIoControl(hDrive, FSCTL_DISMOUNT_VOLUME, NULL, 0, NULL, 0, &size, NULL)) { uprintf("Could not unmount drive: %s\n", WindowsErrorString()); return FALSE; } return TRUE; } /* * Mount the volume identified by drive_guid to mountpoint drive_name */ BOOL MountVolume(char* drive_name, char *drive_guid) { char mounted_guid[52]; // You need at least 51 characters on XP char mounted_letter[16] = {0}; DWORD size; if (drive_name[0] == '?') return FALSE; // For fixed disks, Windows may already have remounted the volume, but with a different letter // than the one we want. If that's the case, we need to unmount first. if ( (GetVolumePathNamesForVolumeNameA(drive_guid, mounted_letter, sizeof(mounted_letter), &size)) && (size > 1) && (mounted_letter[0] != drive_name[0]) ) { uprintf("Volume is already mounted, but as %c: instead of %c: - Unmounting...\n", mounted_letter[0], drive_name[0]); if (!DeleteVolumeMountPointA(mounted_letter)) uprintf("Failed to unmount volume: %s", WindowsErrorString()); Sleep(200); } if (!SetVolumeMountPointA(drive_name, drive_guid)) { // If the OS was faster than us at remounting the drive, this operation can fail // with ERROR_DIR_NOT_EMPTY. If that's the case, just check that mountpoints match if (GetLastError() == ERROR_DIR_NOT_EMPTY) { if (!GetVolumeNameForVolumeMountPointA(drive_name, mounted_guid, sizeof(mounted_guid))) { uprintf("%s already mounted, but volume GUID could not be checked: %s\n", drive_name, WindowsErrorString()); return FALSE; } if (safe_strcmp(drive_guid, mounted_guid) != 0) { uprintf("%s already mounted, but volume GUID doesn't match:\r\n expected %s, got %s\n", drive_name, drive_guid, mounted_guid); return FALSE; } uprintf("%s was already mounted as %s\n", drive_guid, drive_name); } else { return FALSE; } } return TRUE; } /* * Mount partition #part_nr, residing on the same disk as drive_name to an available * drive letter. Returns the newly allocated drive string. * We need to do this because, for instance, EFI System partitions are not assigned * Volume GUIDs by the OS, and we need to have a letter assigned, for when we invoke * bcdtool for Windows To Go. All in all, the process looks like this: * 1. F: = \Device\HarddiskVolume9 (SINGLE LOOKUP) * 2. Harddisk5Partition1 = \Device\HarddiskVolume9 (FULL LOOKUP) * 3. Harddisk5Partition2 = \Device\HarddiskVolume10 (SINGLE LOOKUP) * 4. DefineDosDevice(letter, \Device\HarddiskVolume10) */ char* AltMountVolume(const char* drive_name, uint8_t part_nr) { static char mounted_drive[] = "?:"; const DWORD bufsize = 65536; char *buffer = NULL, *p, target[2][MAX_PATH], *ret = NULL; size_t i; mounted_drive[0] = GetUnusedDriveLetter(); if (mounted_drive[0] == 0) { uprintf("Could not find an unused drive letter"); goto out; } target[0][0] = 0; // Convert our drive letter to something like "\Device\HarddiskVolume9" if (!QueryDosDeviceA(drive_name, target[0], MAX_PATH) || (strlen(target[0]) == 0)) { uprintf("Could not get the DOS volume name for '%s': %s", drive_name, WindowsErrorString()); goto out; } // Now parse the whole DOS device list to find the 'Harddisk#Partition#' that matches the above // TODO: realloc if someone ever manages to burst through 64K of DOS devices buffer = malloc(bufsize); if (buffer == NULL) goto out; buffer[0] = 0; if (!QueryDosDeviceA(NULL, buffer, bufsize)) { uprintf("Could not get the DOS device list: %s", WindowsErrorString()); goto out; } p = buffer; while (strlen(p) != 0) { if ((strncmp("Harddisk", p, 8) == 0) && (strstr(&p[9], "Partition") != NULL)) { target[1][0] = 0; if (QueryDosDeviceA(p, target[1], MAX_PATH) && (strlen(target[1]) != 0)) if ((strcmp(target[1], target[0]) == 0) && (p[1] != ':')) break; } p += strlen(p) + 1; } i = strlen(p); if (i == 0) { uprintf("Could not find partition mapping for %s", target[0]); goto out; } while ((--i > 0) && (isdigit(p[i]))); p[++i] = '0' + part_nr; p[++i] = 0; target[0][0] = 0; if (!QueryDosDeviceA(p, target[0], MAX_PATH) || (strlen(target[0]) == 0)) { uprintf("Could not find the DOS volume name for partition '%s': %s", p, WindowsErrorString()); goto out; } if (!DefineDosDeviceA(DDD_RAW_TARGET_PATH | DDD_NO_BROADCAST_SYSTEM, mounted_drive, target[0])) { uprintf("Could not mount '%s' to '%s': %s", target[0], mounted_drive, WindowsErrorString()); goto out; } uprintf("Successfully mounted '%s' (USB partition %d) as '%s'", target[0], part_nr, mounted_drive); ret = mounted_drive; out: safe_free(buffer); return ret; } /* * Unmount a volume that was mounted by AltmountVolume() */ BOOL AltUnmountVolume(const char* drive_name) { if (drive_name == NULL) return FALSE; if (!DefineDosDeviceA(DDD_REMOVE_DEFINITION | DDD_NO_BROADCAST_SYSTEM, drive_name, NULL)) { uprintf("Could not unmount '%s': %s", drive_name, WindowsErrorString()); return FALSE; } uprintf("Successfully unmounted '%s'", drive_name); return TRUE; } /* * Issue a complete remount of the volume */ BOOL RemountVolume(char* drive_name) { char drive_guid[51]; // UDF requires a sync/flush, and it's also a good idea for other FS's FlushDrive(drive_name[0]); if (GetVolumeNameForVolumeMountPointA(drive_name, drive_guid, sizeof(drive_guid))) { if (DeleteVolumeMountPointA(drive_name)) { Sleep(200); if (MountVolume(drive_name, drive_guid)) { uprintf("Successfully remounted %s on %s\n", &drive_guid[4], drive_name); } else { uprintf("Failed to remount %s on %s\n", &drive_guid[4], drive_name); // This will leave the drive inaccessible and must be flagged as an error FormatStatus = ERROR_SEVERITY_ERROR|FAC(FACILITY_STORAGE)|APPERR(ERROR_CANT_REMOUNT_VOLUME); return FALSE; } } else { uprintf("Could not remount %s %s\n", drive_name, WindowsErrorString()); // Try to continue regardless } } return TRUE; } /* MinGW is unhappy about accessing partitions beside the first unless we redef */ typedef struct _DRIVE_LAYOUT_INFORMATION_EX4 { DWORD PartitionStyle; DWORD PartitionCount; union { DRIVE_LAYOUT_INFORMATION_MBR Mbr; DRIVE_LAYOUT_INFORMATION_GPT Gpt; } Type; PARTITION_INFORMATION_EX PartitionEntry[4]; } DRIVE_LAYOUT_INFORMATION_EX4,*PDRIVE_LAYOUT_INFORMATION_EX4; /* * Create a partition table * See http://technet.microsoft.com/en-us/library/cc739412.aspx for some background info * NB: if you modify the MBR outside of using the Windows API, Windows still uses the cached * copy it got from the last IOCTL, and ignores your changes until you replug the drive * or issue an IOCTL_DISK_UPDATE_PROPERTIES. */ BOOL CreatePartition(HANDLE hDrive, int partition_style, int file_system, BOOL mbr_uefi_marker, uint8_t extra_partitions) { const char* PartitionTypeName[2] = { "MBR", "GPT" }; unsigned char* buffer; CREATE_DISK CreateDisk = {PARTITION_STYLE_RAW, {{0}}}; DRIVE_LAYOUT_INFORMATION_EX4 DriveLayoutEx = {0}; BOOL r; DWORD i, size, bufsize, pn = 0; LONGLONG main_part_size_in_sectors, extra_part_size_in_tracks = 0, ms_efi_size; const LONGLONG bytes_per_track = ((LONGLONG)SelectedDrive.Geometry.SectorsPerTrack) * SelectedDrive.Geometry.BytesPerSector; PrintInfoDebug(0, MSG_238, PartitionTypeName[partition_style]); if ((extra_partitions & XP_UEFI_NTFS) && (uefi_ntfs_size == 0)) { uefi_ntfs_size = GetResourceSize(hMainInstance, MAKEINTRESOURCEA(IDR_UEFI_NTFS), _RT_RCDATA, "uefi-ntfs.img"); if (uefi_ntfs_size == 0) return FALSE; } // Compute the start offset of our first partition if ((partition_style == PARTITION_STYLE_GPT) || (!IsChecked(IDC_EXTRA_PARTITION))) { // Go with the MS 1 MB wastage at the beginning... DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart = 1024*1024; } else { // Align on Cylinder DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart = bytes_per_track; } // If required, set the MSR partition (GPT only - must be created before the data part) if ((partition_style == PARTITION_STYLE_GPT) && (extra_partitions & XP_MSR)) { uprintf("Adding MSR partition"); DriveLayoutEx.PartitionEntry[pn].PartitionLength.QuadPart = 128*1024*1024; DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionType = PARTITION_MSFT_RESERVED_GUID; IGNORE_RETVAL(CoCreateGuid(&DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionId)); // coverity[strcpy_overrun] wcscpy(DriveLayoutEx.PartitionEntry[pn].Gpt.Name, L"Microsoft reserved partition"); // We must zero the beginning of this partition, else we get FAT leftovers and stuff if (SetFilePointerEx(hDrive, DriveLayoutEx.PartitionEntry[pn].StartingOffset, NULL, FILE_BEGIN)) { bufsize = 65536; // 64K should be enough for everyone buffer = calloc(bufsize, 1); if (buffer != NULL) { if ((!WriteFile(hDrive, buffer, bufsize, &size, NULL)) || (size != bufsize)) uprintf(" Could not zero MSR: %s", WindowsErrorString()); free(buffer); } } pn++; DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart = DriveLayoutEx.PartitionEntry[pn-1].StartingOffset.QuadPart + DriveLayoutEx.PartitionEntry[pn-1].PartitionLength.QuadPart; } // Set our main data partition main_part_size_in_sectors = (SelectedDrive.DiskSize - DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart) / // Need 33 sectors at the end for secondary GPT SelectedDrive.Geometry.BytesPerSector - ((partition_style == PARTITION_STYLE_GPT)?33:0); if (main_part_size_in_sectors <= 0) return FALSE; // Adjust the size according to extra partitions (which we always align to a track) if (extra_partitions) { uprintf("Adding extra partition"); if (extra_partitions & XP_EFI) { // The size of the EFI partition depends on the minimum size we're able to format in FAT32, // which in turn depends on the cluster size used, which in turn depends on the disk sector size. if (SelectedDrive.Geometry.BytesPerSector <= 1024) ms_efi_size = 100*1024*1024; else if (SelectedDrive.Geometry.BytesPerSector <= 4096) ms_efi_size = 300*1024*1024; else ms_efi_size = 1200*1024*1024; // That'll teach you to have a nonstandard disk! extra_part_size_in_tracks = (ms_efi_size + bytes_per_track - 1) / bytes_per_track; } else if (extra_partitions & XP_UEFI_NTFS) extra_part_size_in_tracks = (MIN_EXTRA_PART_SIZE + bytes_per_track - 1) / bytes_per_track; else if (extra_partitions & XP_COMPAT) extra_part_size_in_tracks = 1; // One track for the extra partition uprintf("Reserved %" PRIi64" tracks (%s) for extra partition", extra_part_size_in_tracks, SizeToHumanReadable(extra_part_size_in_tracks * bytes_per_track, TRUE, FALSE)); main_part_size_in_sectors = ((main_part_size_in_sectors / SelectedDrive.Geometry.SectorsPerTrack) - extra_part_size_in_tracks) * SelectedDrive.Geometry.SectorsPerTrack; if (main_part_size_in_sectors <= 0) return FALSE; } DriveLayoutEx.PartitionEntry[pn].PartitionLength.QuadPart = main_part_size_in_sectors * SelectedDrive.Geometry.BytesPerSector; if (partition_style == PARTITION_STYLE_MBR) { DriveLayoutEx.PartitionEntry[pn].Mbr.BootIndicator = IsChecked(IDC_BOOT); switch (file_system) { case FS_FAT16: DriveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = 0x0e; // FAT16 LBA break; case FS_NTFS: case FS_EXFAT: case FS_UDF: case FS_REFS: DriveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = 0x07; break; case FS_FAT32: DriveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = 0x0c; // FAT32 LBA break; default: uprintf("Unsupported file system\n"); return FALSE; } } else { DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionType = PARTITION_BASIC_DATA_GUID; IGNORE_RETVAL(CoCreateGuid(&DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionId)); wcscpy(DriveLayoutEx.PartitionEntry[pn].Gpt.Name, L"Microsoft Basic Data"); } pn++; // Set the optional extra partition if (extra_partitions) { // Should end on a track boundary DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart = DriveLayoutEx.PartitionEntry[pn-1].StartingOffset.QuadPart + DriveLayoutEx.PartitionEntry[pn-1].PartitionLength.QuadPart; DriveLayoutEx.PartitionEntry[pn].PartitionLength.QuadPart = (extra_partitions & XP_UEFI_NTFS)?uefi_ntfs_size: extra_part_size_in_tracks * SelectedDrive.Geometry.SectorsPerTrack * SelectedDrive.Geometry.BytesPerSector; if (partition_style == PARTITION_STYLE_GPT) { DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionType = (extra_partitions & XP_UEFI_NTFS)? PARTITION_BASIC_DATA_GUID:PARTITION_SYSTEM_GUID; IGNORE_RETVAL(CoCreateGuid(&DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionId)); wcscpy(DriveLayoutEx.PartitionEntry[pn].Gpt.Name, (extra_partitions & XP_UEFI_NTFS)?L"UEFI:NTFS":L"EFI system partition"); } else { DriveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = (extra_partitions & XP_UEFI_NTFS)?0xef:RUFUS_EXTRA_PARTITION_TYPE; if (extra_partitions & XP_COMPAT) // Set the one track compatibility partition to be all hidden sectors DriveLayoutEx.PartitionEntry[pn].Mbr.HiddenSectors = SelectedDrive.Geometry.SectorsPerTrack; } // We need to write the UEFI:NTFS partition before we refresh the disk if (extra_partitions & XP_UEFI_NTFS) { uprintf("Writing UEFI:NTFS partition..."); if (!SetFilePointerEx(hDrive, DriveLayoutEx.PartitionEntry[pn].StartingOffset, NULL, FILE_BEGIN)) { uprintf("Unable to set position"); return FALSE; } buffer = GetResource(hMainInstance, MAKEINTRESOURCEA(IDR_UEFI_NTFS), _RT_RCDATA, "uefi-ntfs.img", &bufsize, FALSE); if (buffer == NULL) { uprintf("Could not access uefi-ntfs.img"); return FALSE; } r = WriteFile(hDrive, buffer, bufsize, &size, NULL); if ((!r) || (size != bufsize)) { if (!r) uprintf("Write error: %s", WindowsErrorString()); else uprintf("Write error: Wrote %d bytes, expected %d bytes\n", size, bufsize); return FALSE; } } pn++; } // Initialize the remaining partition data for (i = 0; i < pn; i++) { DriveLayoutEx.PartitionEntry[i].PartitionNumber = i+1; DriveLayoutEx.PartitionEntry[i].PartitionStyle = partition_style; DriveLayoutEx.PartitionEntry[i].RewritePartition = TRUE; } switch (partition_style) { case PARTITION_STYLE_MBR: CreateDisk.PartitionStyle = PARTITION_STYLE_MBR; // If MBR+UEFI is selected, write an UEFI marker in lieu of the regular MBR signature. // This helps us reselect the partition scheme option that was used when creating the // drive in Rufus. As far as I can tell, Windows doesn't care much if this signature // isn't unique for USB drives. CreateDisk.Mbr.Signature = mbr_uefi_marker?MBR_UEFI_MARKER:GetTickCount(); DriveLayoutEx.PartitionStyle = PARTITION_STYLE_MBR; DriveLayoutEx.PartitionCount = 4; // Must be multiple of 4 for MBR DriveLayoutEx.Type.Mbr.Signature = CreateDisk.Mbr.Signature; // TODO: CHS fixup (32 sectors/track) through a cheat mode, if requested // NB: disk geometry is computed by BIOS & co. by finding a match between LBA and CHS value of first partition // ms-sys's write_partition_number_of_heads() and write_partition_start_sector_number() can be used if needed break; case PARTITION_STYLE_GPT: // TODO: (?) As per MSDN: "When specifying a GUID partition table (GPT) as the PARTITION_STYLE of the CREATE_DISK // structure, an application should wait for the MSR partition arrival before sending the IOCTL_DISK_SET_DRIVE_LAYOUT_EX // control code. For more information about device notification, see RegisterDeviceNotification." CreateDisk.PartitionStyle = PARTITION_STYLE_GPT; IGNORE_RETVAL(CoCreateGuid(&CreateDisk.Gpt.DiskId)); CreateDisk.Gpt.MaxPartitionCount = MAX_GPT_PARTITIONS; DriveLayoutEx.PartitionStyle = PARTITION_STYLE_GPT; DriveLayoutEx.PartitionCount = pn; // At the very least, a GPT disk has 34 reserved sectors at the beginning and 33 at the end. DriveLayoutEx.Type.Gpt.StartingUsableOffset.QuadPart = 34 * SelectedDrive.Geometry.BytesPerSector; DriveLayoutEx.Type.Gpt.UsableLength.QuadPart = SelectedDrive.DiskSize - (34+33) * SelectedDrive.Geometry.BytesPerSector; DriveLayoutEx.Type.Gpt.MaxPartitionCount = MAX_GPT_PARTITIONS; DriveLayoutEx.Type.Gpt.DiskId = CreateDisk.Gpt.DiskId; break; } // If you don't call IOCTL_DISK_CREATE_DISK, the next call will fail size = sizeof(CreateDisk); r = DeviceIoControl(hDrive, IOCTL_DISK_CREATE_DISK, (BYTE*)&CreateDisk, size, NULL, 0, &size, NULL ); if (!r) { uprintf("Could not reset disk: %s\n", WindowsErrorString()); return FALSE; } size = sizeof(DriveLayoutEx) - ((partition_style == PARTITION_STYLE_GPT)?((4-pn)*sizeof(PARTITION_INFORMATION_EX)):0); r = DeviceIoControl(hDrive, IOCTL_DISK_SET_DRIVE_LAYOUT_EX, (BYTE*)&DriveLayoutEx, size, NULL, 0, &size, NULL ); if (!r) { uprintf("Could not set drive layout: %s\n", WindowsErrorString()); return FALSE; } if (!RefreshDriveLayout(hDrive)) return FALSE; return TRUE; } BOOL RefreshDriveLayout(HANDLE hDrive) { BOOL r; DWORD size; // Diskpart does call the following IOCTL this after updating the partition table, so we do too r = DeviceIoControl(hDrive, IOCTL_DISK_UPDATE_PROPERTIES, NULL, 0, NULL, 0, &size, NULL ); if (!r) uprintf("Could not refresh drive layout: %s\n", WindowsErrorString()); return r; } /* Delete the disk partition table */ BOOL DeletePartitions(HANDLE hDrive) { BOOL r; DWORD size; CREATE_DISK CreateDisk = {PARTITION_STYLE_RAW, {{0}}}; PrintInfoDebug(0, MSG_239); size = sizeof(CreateDisk); r = DeviceIoControl(hDrive, IOCTL_DISK_CREATE_DISK, (BYTE*)&CreateDisk, size, NULL, 0, &size, NULL ); if (!r) { uprintf("Could not delete drive layout: %s\n", WindowsErrorString()); safe_closehandle(hDrive); return FALSE; } r = DeviceIoControl(hDrive, IOCTL_DISK_UPDATE_PROPERTIES, NULL, 0, NULL, 0, &size, NULL ); if (!r) { uprintf("Could not refresh drive layout: %s\n", WindowsErrorString()); safe_closehandle(hDrive); return FALSE; } return TRUE; } /* * Convert a partition type to its human readable form using * (slightly modified) entries from GNU fdisk */ const char* GetPartitionType(BYTE Type) { int i; for (i=0; i