rufus/src/pki.c

575 lines
21 KiB
C
Raw Normal View History

/*
* Rufus: The Reliable USB Formatting Utility
* PKI functions (code signing, etc.)
* Copyright © 2015-2016 Pete Batard <pete@akeo.ie>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* Memory leaks detection - define _CRTDBG_MAP_ALLOC as preprocessor macro */
#ifdef _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#endif
#include <windows.h>
#include <stdio.h>
#include <wincrypt.h>
#include <wintrust.h>
#include "rufus.h"
#include "resource.h"
#include "msapi_utf8.h"
#include "localization.h"
#define ENCODING (X509_ASN_ENCODING | PKCS_7_ASN_ENCODING)
// MinGW doesn't seem to have this one
#if !defined(szOID_NESTED_SIGNATURE)
#define szOID_NESTED_SIGNATURE "1.3.6.1.4.1.311.2.4.1"
#endif
// Signatures names we accept. Must be the the exact name, including capitalization,
// that CertGetNameStringA(CERT_NAME_ATTR_TYPE, szOID_COMMON_NAME) returns.
const char* cert_name[3] = { "Akeo Consulting", "Akeo Systems", "Pete Batard" };
// For added security, we also validate the country code of the certificate recipient.
const char* cert_country = "IE";
typedef struct {
LPWSTR lpszProgramName;
LPWSTR lpszPublisherLink;
LPWSTR lpszMoreInfoLink;
} SPROG_PUBLISHERINFO, *PSPROG_PUBLISHERINFO;
/*
* FormatMessage does not handle PKI errors
*/
const char* WinPKIErrorString(void)
{
static char error_string[64];
DWORD error_code = GetLastError();
if (((error_code >> 16) != 0x8009) && ((error_code >> 16) != 0x800B))
return WindowsErrorString();
switch (error_code) {
case NTE_BAD_UID:
return "Bad UID.";
case CRYPT_E_MSG_ERROR:
return "An error occurred while performing an operation on a cryptographic message.";
case CRYPT_E_UNKNOWN_ALGO:
return "Unknown cryptographic algorithm.";
case CRYPT_E_INVALID_MSG_TYPE:
return "Invalid cryptographic message type.";
case CRYPT_E_HASH_VALUE:
return "The hash value is not correct";
case CRYPT_E_ISSUER_SERIALNUMBER:
return "Invalid issuer and/or serial number.";
case CRYPT_E_BAD_LEN:
return "The length specified for the output data was insufficient.";
case CRYPT_E_BAD_ENCODE:
return "An error occurred during encode or decode operation.";
case CRYPT_E_FILE_ERROR:
return "An error occurred while reading or writing to a file.";
case CRYPT_E_NOT_FOUND:
return "Cannot find object or property.";
case CRYPT_E_EXISTS:
return "The object or property already exists.";
case CRYPT_E_NO_PROVIDER:
return "No provider was specified for the store or object.";
case CRYPT_E_DELETED_PREV:
return "The previous certificate or CRL context was deleted.";
case CRYPT_E_NO_MATCH:
return "Cannot find the requested object.";
case CRYPT_E_UNEXPECTED_MSG_TYPE:
case CRYPT_E_NO_KEY_PROPERTY:
case CRYPT_E_NO_DECRYPT_CERT:
return "Private key or certificate issue";
case CRYPT_E_BAD_MSG:
return "Not a cryptographic message.";
case CRYPT_E_NO_SIGNER:
return "The signed cryptographic message does not have a signer for the specified signer index.";
case CRYPT_E_REVOKED:
return "The certificate is revoked.";
case CRYPT_E_NO_REVOCATION_DLL:
case CRYPT_E_NO_REVOCATION_CHECK:
case CRYPT_E_REVOCATION_OFFLINE:
case CRYPT_E_NOT_IN_REVOCATION_DATABASE:
return "Cannot check certificate revocation.";
case CRYPT_E_INVALID_NUMERIC_STRING:
case CRYPT_E_INVALID_PRINTABLE_STRING:
case CRYPT_E_INVALID_IA5_STRING:
case CRYPT_E_INVALID_X500_STRING:
case CRYPT_E_NOT_CHAR_STRING:
return "Invalid string.";
case CRYPT_E_SECURITY_SETTINGS:
return "The cryptographic operation failed due to a local security option setting.";
case CRYPT_E_NO_VERIFY_USAGE_CHECK:
case CRYPT_E_VERIFY_USAGE_OFFLINE:
return "Cannot complete usage check.";
case CRYPT_E_NO_TRUSTED_SIGNER:
return "None of the signers of the cryptographic message or certificate trust list is trusted.";
case CERT_E_UNTRUSTEDROOT:
return "The root certificate is not trusted.";
case TRUST_E_NOSIGNATURE:
return "Not digitally signed.";
case TRUST_E_EXPLICIT_DISTRUST:
return "One of the certificates used was marked as untrusted by the user.";
case TRUST_E_TIME_STAMP:
return "The timestamp could not be verified.";
default:
static_sprintf(error_string, "Unknown PKI error 0x%08lX", error_code);
return error_string;
}
}
// Mostly from https://support.microsoft.com/en-us/kb/323809
char* GetSignatureName(const char* path, const char* country_code)
{
static char szSubjectName[128];
2017-10-13 09:34:23 +00:00
char szCountry[3] = "__";
char *p = NULL, *mpath = NULL;
BOOL r;
HMODULE hm;
HCERTSTORE hStore = NULL;
HCRYPTMSG hMsg = NULL;
PCCERT_CONTEXT pCertContext = NULL;
DWORD dwSize, dwEncoding, dwContentType, dwFormatType;
PCMSG_SIGNER_INFO pSignerInfo = NULL;
DWORD dwSignerInfo = 0;
CERT_INFO CertInfo = { 0 };
SPROG_PUBLISHERINFO ProgPubInfo = { 0 };
wchar_t *szFileName;
// If the path is NULL, get the signature of the current runtime
if (path == NULL) {
szFileName = calloc(MAX_PATH, sizeof(wchar_t));
if (szFileName == NULL)
return NULL;
hm = GetModuleHandle(NULL);
if (hm == NULL) {
uprintf("PKI: Could not get current executable handle: %s", WinPKIErrorString());
goto out;
}
dwSize = GetModuleFileNameW(hm, szFileName, MAX_PATH);
if ((dwSize == 0) || ((dwSize == MAX_PATH) && (GetLastError() == ERROR_INSUFFICIENT_BUFFER))) {
uprintf("PKI: Could not get module filename: %s", WinPKIErrorString());
goto out;
}
mpath = wchar_to_utf8(szFileName);
} else {
szFileName = utf8_to_wchar(path);
}
// Get message handle and store handle from the signed file.
r = CryptQueryObject(CERT_QUERY_OBJECT_FILE, szFileName,
CERT_QUERY_CONTENT_FLAG_PKCS7_SIGNED_EMBED, CERT_QUERY_FORMAT_FLAG_BINARY,
0, &dwEncoding, &dwContentType, &dwFormatType, &hStore, &hMsg, NULL);
if (!r) {
uprintf("PKI: Failed to get signature for '%s': %s", (path==NULL)?mpath:path, WinPKIErrorString());
goto out;
}
// Get signer information size.
r = CryptMsgGetParam(hMsg, CMSG_SIGNER_INFO_PARAM, 0, NULL, &dwSignerInfo);
if (!r) {
uprintf("PKI: Failed to get signer size: %s", WinPKIErrorString());
goto out;
}
// Allocate memory for signer information.
pSignerInfo = (PCMSG_SIGNER_INFO)calloc(dwSignerInfo, 1);
if (!pSignerInfo) {
uprintf("PKI: Could not allocate memory for signer information");
goto out;
}
// Get Signer Information.
r = CryptMsgGetParam(hMsg, CMSG_SIGNER_INFO_PARAM, 0, (PVOID)pSignerInfo, &dwSignerInfo);
if (!r) {
uprintf("PKI: Failed to get signer information: %s", WinPKIErrorString());
goto out;
}
// Search for the signer certificate in the temporary certificate store.
CertInfo.Issuer = pSignerInfo->Issuer;
CertInfo.SerialNumber = pSignerInfo->SerialNumber;
pCertContext = CertFindCertificateInStore(hStore, ENCODING, 0, CERT_FIND_SUBJECT_CERT, (PVOID)&CertInfo, NULL);
if (!pCertContext) {
uprintf("PKI: Failed to locate signer certificate in temporary store: %s", WinPKIErrorString());
goto out;
}
// If a country code is provided, validate that the certificate we have is for the same country
if (country_code != NULL) {
dwSize = CertGetNameStringA(pCertContext, CERT_NAME_ATTR_TYPE, 0, szOID_COUNTRY_NAME,
szCountry, sizeof(szCountry));
if (dwSize < 2) {
uprintf("PKI: Failed to get Country Code");
goto out;
}
if (strcmpi(country_code, szCountry) != 0) {
uprintf("PKI: Unexpected Country Code (Found '%s', expected '%s')", szCountry, country_code);
goto out;
}
}
// Isolate the signing certificate subject name
dwSize = CertGetNameStringA(pCertContext, CERT_NAME_ATTR_TYPE, 0, szOID_COMMON_NAME,
szSubjectName, sizeof(szSubjectName));
if (dwSize <= 1) {
uprintf("PKI: Failed to get Subject Name");
goto out;
}
2017-11-01 13:16:32 +00:00
if (szCountry[0] == '_')
uprintf("Binary executable is signed by '%s'", szSubjectName);
else
uprintf("Binary executable is signed by '%s' (%s)", szSubjectName, szCountry);
p = szSubjectName;
out:
safe_free(mpath);
safe_free(szFileName);
safe_free(ProgPubInfo.lpszProgramName);
safe_free(ProgPubInfo.lpszPublisherLink);
safe_free(ProgPubInfo.lpszMoreInfoLink);
safe_free(pSignerInfo);
if (pCertContext != NULL)
CertFreeCertificateContext(pCertContext);
if (hStore != NULL)
CertCloseStore(hStore, 0);
if (hMsg != NULL)
CryptMsgClose(hMsg);
return p;
}
// The timestamping authorities we use are RFC 3161 compliant
static uint64_t GetRFC3161TimeStamp(PCMSG_SIGNER_INFO pSignerInfo)
{
BOOL r, found = FALSE;
DWORD n, dwSize = 0;
PCRYPT_CONTENT_INFO pCounterSignerInfo = NULL;
uint64_t ts = 0ULL;
uint8_t *timestamp_token;
size_t timestamp_token_size;
char* timestamp_str;
size_t timestamp_str_size;
// Loop through unauthenticated attributes for szOID_RFC3161_counterSign OID
for (n = 0; n < pSignerInfo->UnauthAttrs.cAttr; n++) {
if (lstrcmpA(pSignerInfo->UnauthAttrs.rgAttr[n].pszObjId, szOID_RFC3161_counterSign) == 0) {
// Depending on how Microsoft implemented their timestamp checks, and the fact that we are dealing
// with UnauthAttrs, there's a possibility that an attacker may add a "fake" RFC 3161 countersigner
// to try to trick us into using their timestamp data. Detect that.
if (found) {
uprintf("PKI: Multiple RFC 3161 countersigners found. This could indicate something very nasty...");
return 0ULL;
}
found = TRUE;
// Read the countersigner message data
r = CryptDecodeObjectEx(PKCS_7_ASN_ENCODING, PKCS_CONTENT_INFO,
pSignerInfo->UnauthAttrs.rgAttr[n].rgValue[0].pbData,
pSignerInfo->UnauthAttrs.rgAttr[n].rgValue[0].cbData,
CRYPT_DECODE_ALLOC_FLAG, NULL, (PVOID)&pCounterSignerInfo, &dwSize);
if (!r) {
uprintf("PKI: Could not retrieve RFC 3161 countersigner data: %s", WinPKIErrorString());
continue;
}
// Get the RFC 3161 timestamp message
timestamp_token = get_data_from_asn1(pCounterSignerInfo->Content.pbData,
pCounterSignerInfo->Content.cbData, szOID_TIMESTAMP_TOKEN,
// 0x04 = "Octet String" ASN.1 tag
0x04, &timestamp_token_size);
if (timestamp_token) {
timestamp_str = get_data_from_asn1(timestamp_token, timestamp_token_size, NULL,
// 0x18 = "Generalized Time" ASN.1 tag
0x18, &timestamp_str_size);
if (timestamp_str) {
// As per RFC 3161 The syntax is: YYYYMMDDhhmmss[.s...]Z
if ((timestamp_str_size < 14) || (timestamp_str[timestamp_str_size - 1] != 'Z')) {
// Sanity checks
uprintf("PKI: Not an RFC 3161 timestamp");
DumpBufferHex(timestamp_str, timestamp_str_size);
} else {
ts = strtoull(timestamp_str, NULL, 10);
}
}
}
LocalFree(pCounterSignerInfo);
}
}
return ts;
}
// The following is used to get the RFP 3161 timestamp of a nested signature
static uint64_t GetNestedRFC3161TimeStamp(PCMSG_SIGNER_INFO pSignerInfo)
{
BOOL r, found = FALSE;
DWORD n, dwSize = 0;
PCRYPT_CONTENT_INFO pNestedSignature = NULL;
PCMSG_SIGNER_INFO pNestedSignerInfo = NULL;
HCRYPTMSG hMsg = NULL;
uint64_t ts = 0ULL;
// Loop through unauthenticated attributes for szOID_NESTED_SIGNATURE OID
for (n = 0; ; n++) {
if (pNestedSignature != NULL) {
LocalFree(pNestedSignature);
pNestedSignature = NULL;
}
if (hMsg != NULL) {
CryptMsgClose(hMsg);
hMsg = NULL;
}
safe_free(pNestedSignerInfo);
if (n >= pSignerInfo->UnauthAttrs.cAttr)
break;
if (lstrcmpA(pSignerInfo->UnauthAttrs.rgAttr[n].pszObjId, szOID_NESTED_SIGNATURE) == 0) {
if (found) {
uprintf("PKI: Multiple nested signatures found. This could indicate something very nasty...");
return 0ULL;
}
found = TRUE;
r = CryptDecodeObjectEx(PKCS_7_ASN_ENCODING, PKCS_CONTENT_INFO,
pSignerInfo->UnauthAttrs.rgAttr[n].rgValue[0].pbData,
pSignerInfo->UnauthAttrs.rgAttr[n].rgValue[0].cbData,
CRYPT_DECODE_ALLOC_FLAG, NULL, (PVOID)&pNestedSignature, &dwSize);
if (!r) {
uprintf("PKI: Could not retrieve nested signature data: %s", WinPKIErrorString());
continue;
}
hMsg = CryptMsgOpenToDecode(ENCODING, CMSG_DETACHED_FLAG, CMSG_SIGNED, (HCRYPTPROV)NULL, NULL, NULL);
if (hMsg == NULL) {
uprintf("PKI: Could not create nested signature message: %s", WinPKIErrorString());
continue;
}
r = CryptMsgUpdate(hMsg, pNestedSignature->Content.pbData, pNestedSignature->Content.cbData, TRUE);
if (!r) {
uprintf("PKI: Could not update message: %s", WinPKIErrorString());
continue;
}
// Get nested signer
r = CryptMsgGetParam(hMsg, CMSG_SIGNER_INFO_PARAM, 0, NULL, &dwSize);
if (!r) {
uprintf("PKI: Failed to get nested signer size: %s", WinPKIErrorString());
continue;
}
pNestedSignerInfo = (PCMSG_SIGNER_INFO)calloc(dwSize, 1);
if (!pNestedSignerInfo) {
uprintf("PKI: Could not allocate memory for nested signer");
continue;
}
r = CryptMsgGetParam(hMsg, CMSG_SIGNER_INFO_PARAM, 0, (PVOID)pNestedSignerInfo, &dwSize);
if (!r) {
uprintf("PKI: Failed to get nested signer information: %s", WinPKIErrorString());
continue;
}
ts = GetRFC3161TimeStamp(pNestedSignerInfo);
}
}
return ts;
}
// Return the signature timestamp (as a YYYYMMDDHHMMSS value) or 0 on error
uint64_t GetSignatureTimeStamp(const char* path)
{
char *mpath = NULL;
BOOL r;
HMODULE hm;
HCERTSTORE hStore = NULL;
HCRYPTMSG hMsg = NULL;
DWORD dwSize, dwEncoding, dwContentType, dwFormatType;
PCMSG_SIGNER_INFO pSignerInfo = NULL;
DWORD dwSignerInfo = 0;
wchar_t *szFileName;
uint64_t timestamp = 0ULL, nested_timestamp;
// If the path is NULL, get the signature of the current runtime
if (path == NULL) {
szFileName = calloc(MAX_PATH, sizeof(wchar_t));
if (szFileName == NULL)
goto out;
hm = GetModuleHandle(NULL);
if (hm == NULL) {
uprintf("PKI: Could not get current executable handle: %s", WinPKIErrorString());
goto out;
}
dwSize = GetModuleFileNameW(hm, szFileName, MAX_PATH);
if ((dwSize == 0) || ((dwSize == MAX_PATH) && (GetLastError() == ERROR_INSUFFICIENT_BUFFER))) {
uprintf("PKI: Could not get module filename: %s", WinPKIErrorString());
goto out;
}
mpath = wchar_to_utf8(szFileName);
} else {
szFileName = utf8_to_wchar(path);
}
// Get message handle and store handle from the signed file.
r = CryptQueryObject(CERT_QUERY_OBJECT_FILE, szFileName,
CERT_QUERY_CONTENT_FLAG_PKCS7_SIGNED_EMBED, CERT_QUERY_FORMAT_FLAG_BINARY,
0, &dwEncoding, &dwContentType, &dwFormatType, &hStore, &hMsg, NULL);
if (!r) {
uprintf("PKI: Failed to get signature for '%s': %s", (path==NULL)?mpath:path, WinPKIErrorString());
goto out;
}
// Get signer information size.
r = CryptMsgGetParam(hMsg, CMSG_SIGNER_INFO_PARAM, 0, NULL, &dwSignerInfo);
if (!r) {
uprintf("PKI: Failed to get signer size: %s", WinPKIErrorString());
goto out;
}
// Allocate memory for signer information.
pSignerInfo = (PCMSG_SIGNER_INFO)calloc(dwSignerInfo, 1);
if (!pSignerInfo) {
uprintf("PKI: Could not allocate memory for signer information");
goto out;
}
// Get Signer Information.
r = CryptMsgGetParam(hMsg, CMSG_SIGNER_INFO_PARAM, 0, (PVOID)pSignerInfo, &dwSignerInfo);
if (!r) {
uprintf("PKI: Failed to get signer information: %s", WinPKIErrorString());
goto out;
}
// Get the RFC 3161 timestamp
timestamp = GetRFC3161TimeStamp(pSignerInfo);
if (timestamp)
uprintf("Note: '%s' has timestamp %s", (path==NULL)?mpath:path, TimestampToHumanReadable(timestamp));
// Because we are currently using both SHA-1 and SHA-256 signatures, we are in the very specific
// situation that Windows may say our executable passes Authenticode validation on Windows 7 or
// later (which includes timestamp validation) even if the SHA-1 signature or timestamps have
// been altered.
// This means that, if we don't also check the nested SHA-256 signature timestamp, an attacker
// could alter the SHA-1 one (which is the one we use by default for chronology validation) and
// trick us into using an invalid timestamp value. To prevent this, we validate that, if we have
// both a regular and nested timestamp, they are within 60 seconds of each other.
nested_timestamp = GetNestedRFC3161TimeStamp(pSignerInfo);
if (nested_timestamp)
uprintf("Note: '%s' has nested timestamp %s", (path==NULL)?mpath:path, TimestampToHumanReadable(nested_timestamp));
if ((timestamp != 0ULL) && (nested_timestamp != 0ULL)) {
if (_abs64(nested_timestamp - timestamp) > 100) {
uprintf("PKI: Signature timestamp and nested timestamp differ by more than a minute. "
"This could indicate something very nasty...", timestamp, nested_timestamp);
timestamp = 0ULL;
}
}
out:
safe_free(mpath);
safe_free(szFileName);
safe_free(pSignerInfo);
if (hStore != NULL)
CertCloseStore(hStore, 0);
if (hMsg != NULL)
CryptMsgClose(hMsg);
return timestamp;
}
// From https://msdn.microsoft.com/en-us/library/windows/desktop/aa382384.aspx
LONG ValidateSignature(HWND hDlg, const char* path)
{
LONG r;
WINTRUST_DATA trust_data = { 0 };
WINTRUST_FILE_INFO trust_file = { 0 };
GUID guid_generic_verify = // WINTRUST_ACTION_GENERIC_VERIFY_V2
{ 0xaac56b, 0xcd44, 0x11d0,{ 0x8c, 0xc2, 0x0, 0xc0, 0x4f, 0xc2, 0x95, 0xee } };
char *signature_name;
size_t i;
uint64_t current_ts, update_ts;
// Check the signature name. Make it specific enough (i.e. don't simply check for "Akeo")
// so that, besides hacking our server, it'll place an extra hurdle on any malicious entity
// into also fooling a C.A. to issue a certificate that passes our test.
signature_name = GetSignatureName(path, cert_country);
if (signature_name == NULL) {
uprintf("PKI: Could not get signature name");
MessageBoxExU(hDlg, lmprintf(MSG_284), lmprintf(MSG_283), MB_OK | MB_ICONERROR | MB_IS_RTL, selected_langid);
return TRUST_E_NOSIGNATURE;
}
for (i = 0; i < ARRAYSIZE(cert_name); i++) {
if (strcmp(signature_name, cert_name[i]) == 0)
break;
}
if (i >= ARRAYSIZE(cert_name)) {
uprintf("PKI: Signature '%s' is unexpected...", signature_name);
if (MessageBoxExU(hDlg, lmprintf(MSG_285, signature_name), lmprintf(MSG_283),
MB_YESNO | MB_ICONWARNING | MB_IS_RTL, selected_langid) != IDYES)
return TRUST_E_EXPLICIT_DISTRUST;
}
trust_file.cbStruct = sizeof(trust_file);
trust_file.pcwszFilePath = utf8_to_wchar(path);
if (trust_file.pcwszFilePath == NULL) {
uprintf("PKI: Unable to convert '%s' to UTF16", path);
return ERROR_SEVERITY_ERROR | FAC(FACILITY_CERT) | ERROR_NOT_ENOUGH_MEMORY;
}
trust_data.cbStruct = sizeof(trust_data);
// NB: WTD_UI_ALL can result in ERROR_SUCCESS even if the signature validation fails,
// because it still prompts the user to run untrusted software, even after explicitly
// notifying them that the signature invalid (and of course Microsoft had to make
// that UI prompt a bit too similar to the other benign prompt you get when running
// trusted software, which, as per cert.org's assessment, may confuse non-security
// conscious-users who decide to gloss over these kind of notifications).
trust_data.dwUIChoice = WTD_UI_NONE;
// We just downloaded from the Internet, so we should be able to check revocation
trust_data.fdwRevocationChecks = WTD_REVOKE_WHOLECHAIN;
// 0x400 = WTD_MOTW for Windows 8.1 or later
trust_data.dwProvFlags = WTD_REVOCATION_CHECK_CHAIN | 0x400;
trust_data.dwUnionChoice = WTD_CHOICE_FILE;
trust_data.pFile = &trust_file;
r = WinVerifyTrustEx(INVALID_HANDLE_VALUE, &guid_generic_verify, &trust_data);
safe_free(trust_file.pcwszFilePath);
switch (r) {
case ERROR_SUCCESS:
// Verify that the timestamp of the downloaded update is in the future of our current one.
// This is done to prevent the use of an officially signed, but older binary, as potential attack vector.
current_ts = GetSignatureTimeStamp(NULL);
if (current_ts == 0ULL) {
uprintf("PKI: Cannot retreive the current binary's timestamp - Aborting update");
r = TRUST_E_TIME_STAMP;
} else {
update_ts = GetSignatureTimeStamp(path);
if (update_ts < current_ts) {
2017-09-05 21:21:34 +00:00
uprintf("PKI: Update timestamp (%" PRIi64 ") is younger than ours (%" PRIi64 ") - Aborting update", update_ts, current_ts);
r = TRUST_E_TIME_STAMP;
}
}
if (r != ERROR_SUCCESS)
MessageBoxExU(hDlg, lmprintf(MSG_300), lmprintf(MSG_299), MB_OK | MB_ICONERROR | MB_IS_RTL, selected_langid);
break;
case TRUST_E_NOSIGNATURE:
// Should already have been reported, but since we have a custom message for it...
uprintf("PKI: File does not appear to be signed: %s", WinPKIErrorString());
MessageBoxExU(hDlg, lmprintf(MSG_284), lmprintf(MSG_283), MB_OK | MB_ICONERROR | MB_IS_RTL, selected_langid);
break;
default:
uprintf("PKI: Failed to validate signature: %s", WinPKIErrorString());
MessageBoxExU(hDlg, lmprintf(MSG_240), lmprintf(MSG_283), MB_OK | MB_ICONERROR | MB_IS_RTL, selected_langid);
break;
}
return r;
}