1
1
Fork 0
mirror of https://github.com/pbatard/rufus.git synced 2024-08-14 23:57:05 +00:00
rufus/src/drive.c

1299 lines
46 KiB
C
Raw Normal View History

/*
* Rufus: The Reliable USB Formatting Utility
* Drive access function calls
* Copyright © 2011-2015 Pete Batard <pete@akeo.ie>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef _CRTDBG_MAP_ALLOC
#include <stdlib.h>
#include <crtdbg.h>
#endif
#include <windows.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "msapi_utf8.h"
#include "rufus.h"
#include "file.h"
#include "drive.h"
#include "resource.h"
#include "sys_types.h"
#include "br.h"
#include "fat16.h"
#include "fat32.h"
#include "ntfs.h"
#include "localization.h"
#if !defined(PARTITION_BASIC_DATA_GUID)
const GUID PARTITION_BASIC_DATA_GUID =
{ 0xebd0a0a2L, 0xb9e5, 0x4433, {0x87, 0xc0, 0x68, 0xb6, 0xb7, 0x26, 0x99, 0xc7} };
#endif
#if !defined(PARTITION_MSFT_RESERVED_GUID)
const GUID PARTITION_MSFT_RESERVED_GUID =
{ 0xe3c9e316L, 0x0b5c, 0x4db8, {0x81, 0x7d, 0xf9, 0x2d, 0xf0, 0x02, 0x15, 0xae} };
#endif
#if !defined(PARTITION_SYSTEM_GUID)
const GUID PARTITION_SYSTEM_GUID =
{ 0xc12a7328L, 0xf81f, 0x11d2, {0xba, 0x4b, 0x00, 0xa0, 0xc9, 0x3e, 0xc9, 0x3b} };
#endif
/*
* Globals
*/
RUFUS_DRIVE_INFO SelectedDrive;
size_t uefi_ntfs_size = 0;
/*
* The following methods get or set the AutoMount setting (which is different from AutoRun)
* Rufus needs AutoMount to be set as the format process may fail for fixed drives otherwise.
* See https://github.com/pbatard/rufus/issues/386.
*
* Reverse engineering diskpart and mountvol indicates that the former uses the IVdsService
* ClearFlags()/SetFlags() to set VDS_SVF_AUTO_MOUNT_OFF whereas mountvol on uses
* IOCTL_MOUNTMGR_SET_AUTO_MOUNT on "\\\\.\\MountPointManager".
* As the latter is MUCH simpler this is what we'll use too
*/
BOOL SetAutoMount(BOOL enable)
{
HANDLE hMountMgr;
DWORD size;
BOOL ret = FALSE;
hMountMgr = CreateFileA(MOUNTMGR_DOS_DEVICE_NAME, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hMountMgr == NULL)
return FALSE;
ret = DeviceIoControl(hMountMgr, IOCTL_MOUNTMGR_SET_AUTO_MOUNT, &enable, sizeof(enable), NULL, 0, &size, NULL);
CloseHandle(hMountMgr);
return ret;
}
BOOL GetAutoMount(BOOL* enabled)
{
HANDLE hMountMgr;
DWORD size;
BOOL ret = FALSE;
if (enabled == NULL)
return FALSE;
hMountMgr = CreateFileA(MOUNTMGR_DOS_DEVICE_NAME, GENERIC_READ|GENERIC_WRITE,
FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hMountMgr == NULL)
return FALSE;
ret = DeviceIoControl(hMountMgr, IOCTL_MOUNTMGR_QUERY_AUTO_MOUNT, NULL, 0, enabled, sizeof(*enabled), &size, NULL);
CloseHandle(hMountMgr);
return ret;
}
/*
* Working with drive indexes quite risky (left unchecked,inadvertently passing 0 as
* index would return a handle to C:, which we might then proceed to unknowingly
* clear the MBR of!), so we mitigate the risk by forcing our indexes to belong to
* the specific range [DRIVE_INDEX_MIN; DRIVE_INDEX_MAX].
*/
#define CheckDriveIndex(DriveIndex) do { \
if ((DriveIndex < DRIVE_INDEX_MIN) || (DriveIndex > DRIVE_INDEX_MAX)) { \
uprintf("ERROR: Bad index value. Please check the code!\n"); \
goto out; \
} \
DriveIndex -= DRIVE_INDEX_MIN; } while (0)
/*
* Open a drive or volume with optional write and lock access
* Return INVALID_HANDLE_VALUE (/!\ which is DIFFERENT from NULL /!\) on failure.
*/
static HANDLE GetHandle(char* Path, BOOL bWriteAccess, BOOL bLockDrive)
{
int i;
DWORD size;
HANDLE hDrive = INVALID_HANDLE_VALUE;
if (Path == NULL)
goto out;
hDrive = CreateFileA(Path, GENERIC_READ|(bWriteAccess?GENERIC_WRITE:0),
FILE_SHARE_READ|FILE_SHARE_WRITE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hDrive == INVALID_HANDLE_VALUE) {
uprintf("Could not open drive %s: %s\n", Path, WindowsErrorString());
goto out;
}
if (bWriteAccess) {
uprintf("Opened drive %s for write access\n", Path);
}
if (bLockDrive) {
if (DeviceIoControl(hDrive, FSCTL_ALLOW_EXTENDED_DASD_IO, NULL, 0, NULL, 0, &size, NULL)) {
uprintf("I/O boundary checks disabled\n");
}
for (i = 0; i < DRIVE_ACCESS_RETRIES; i++) {
if (DeviceIoControl(hDrive, FSCTL_LOCK_VOLUME, NULL, 0, NULL, 0, &size, NULL))
goto out;
if (IS_ERROR(FormatStatus)) // User cancel
break;
Sleep(DRIVE_ACCESS_TIMEOUT/DRIVE_ACCESS_RETRIES);
}
// If we reached this section, either we didn't manage to get a lock or the user cancelled
uprintf("Could not get exclusive access to device %s: %s\n", Path, WindowsErrorString());
safe_closehandle(hDrive);
}
out:
return hDrive;
}
/*
* Return the path to access the physical drive, or NULL on error.
* The string is allocated and must be freed (to ensure concurrent access)
*/
char* GetPhysicalName(DWORD DriveIndex)
{
BOOL success = FALSE;
char physical_name[24];
CheckDriveIndex(DriveIndex);
safe_sprintf(physical_name, sizeof(physical_name), "\\\\.\\PHYSICALDRIVE%d", DriveIndex);
success = TRUE;
out:
return (success)?safe_strdup(physical_name):NULL;
}
/*
* Return a handle to the physical drive identified by DriveIndex
*/
HANDLE GetPhysicalHandle(DWORD DriveIndex, BOOL bWriteAccess, BOOL bLockDrive)
{
HANDLE hPhysical = INVALID_HANDLE_VALUE;
char* PhysicalPath = GetPhysicalName(DriveIndex);
hPhysical = GetHandle(PhysicalPath, bWriteAccess, bLockDrive);
safe_free(PhysicalPath);
return hPhysical;
}
/*
* Return the first GUID volume name for the associated drive or NULL if not found
* See http://msdn.microsoft.com/en-us/library/cc542456.aspx
* The returned string is allocated and must be freed
*/
char* GetLogicalName(DWORD DriveIndex, BOOL bKeepTrailingBackslash, BOOL bSilent)
{
BOOL success = FALSE;
char volume_name[MAX_PATH];
HANDLE hDrive = INVALID_HANDLE_VALUE, hVolume = INVALID_HANDLE_VALUE;
size_t len;
char path[MAX_PATH];
VOLUME_DISK_EXTENTS DiskExtents;
DWORD size;
UINT drive_type;
int i, j;
static const char* ignore_device[] = { "\\Device\\CdRom", "\\Device\\Floppy" };
static const char* volume_start = "\\\\?\\";
CheckDriveIndex(DriveIndex);
for (i=0; hDrive == INVALID_HANDLE_VALUE; i++) {
if (i == 0) {
hVolume = FindFirstVolumeA(volume_name, sizeof(volume_name));
if (hVolume == INVALID_HANDLE_VALUE) {
suprintf("Could not access first GUID volume: %s\n", WindowsErrorString());
goto out;
}
} else {
if (!FindNextVolumeA(hVolume, volume_name, sizeof(volume_name))) {
if (GetLastError() != ERROR_NO_MORE_FILES) {
suprintf("Could not access next GUID volume: %s\n", WindowsErrorString());
}
goto out;
}
}
// Sanity checks
len = safe_strlen(volume_name);
if ((len <= 1) || (safe_strnicmp(volume_name, volume_start, 4) != 0) || (volume_name[len-1] != '\\')) {
suprintf("'%s' is not a GUID volume name\n", volume_name);
continue;
}
drive_type = GetDriveTypeA(volume_name);
if ((drive_type != DRIVE_REMOVABLE) && (drive_type != DRIVE_FIXED))
continue;
volume_name[len-1] = 0;
if (QueryDosDeviceA(&volume_name[4], path, sizeof(path)) == 0) {
suprintf("Failed to get device path for GUID volume '%s': %s\n", volume_name, WindowsErrorString());
continue;
}
for (j=0; (j<ARRAYSIZE(ignore_device)) &&
(_strnicmp(path, ignore_device[j], safe_strlen(ignore_device[j])) != 0); j++);
if (j < ARRAYSIZE(ignore_device)) {
suprintf("Skipping GUID volume for '%s'\n", path);
continue;
}
// If we can't have FILE_SHARE_WRITE, forget it
hDrive = CreateFileA(volume_name, GENERIC_READ, FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hDrive == INVALID_HANDLE_VALUE) {
suprintf("Could not open GUID volume '%s': %s\n", volume_name, WindowsErrorString());
continue;
}
if ((!DeviceIoControl(hDrive, IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS, NULL, 0,
&DiskExtents, sizeof(DiskExtents), &size, NULL)) || (size <= 0)) {
suprintf("Could not get Disk Extents: %s\n", WindowsErrorString());
safe_closehandle(hDrive);
continue;
}
safe_closehandle(hDrive);
if ((DiskExtents.NumberOfDiskExtents >= 1) && (DiskExtents.Extents[0].DiskNumber == DriveIndex)) {
if (bKeepTrailingBackslash)
volume_name[len-1] = '\\';
success = TRUE;
break;
}
}
out:
if (hVolume != INVALID_HANDLE_VALUE)
FindVolumeClose(hVolume);
return (success)?safe_strdup(volume_name):NULL;
}
/* Wait for a logical drive to reappear - Used when a drive has just been repartitioned */
BOOL WaitForLogical(DWORD DriveIndex)
{
DWORD i;
char* LogicalPath = NULL;
for (i = 0; i < DRIVE_ACCESS_RETRIES; i++) {
LogicalPath = GetLogicalName(DriveIndex, FALSE, TRUE);
if (LogicalPath != NULL) {
free(LogicalPath);
return TRUE;
}
if (IS_ERROR(FormatStatus)) // User cancel
return FALSE;
Sleep(DRIVE_ACCESS_TIMEOUT/DRIVE_ACCESS_RETRIES);
}
uprintf("Timeout while waiting for logical drive\n");
return FALSE;
}
/*
* Obtain a handle to the first logical volume on the disk identified by DriveIndex
* Returns INVALID_HANDLE_VALUE on error or NULL if no logical path exists (typical
* of unpartitioned drives)
*/
HANDLE GetLogicalHandle(DWORD DriveIndex, BOOL bWriteAccess, BOOL bLockDrive)
{
HANDLE hLogical = INVALID_HANDLE_VALUE;
char* LogicalPath = GetLogicalName(DriveIndex, FALSE, FALSE);
if (LogicalPath == NULL) {
uprintf("No logical drive found (unpartitioned?)\n");
return NULL;
}
hLogical = GetHandle(LogicalPath, bWriteAccess, bLockDrive);
free(LogicalPath);
return hLogical;
}
/*
* Who would have thought that Microsoft would make it so unbelievably hard to
* get the frickin' device number for a drive? You have to use TWO different
* methods to have a chance to get it!
*/
int GetDriveNumber(HANDLE hDrive, char* path)
{
STORAGE_DEVICE_NUMBER_REDEF DeviceNumber;
VOLUME_DISK_EXTENTS_REDEF DiskExtents;
DWORD size;
int r = -1;
if (!DeviceIoControl(hDrive, IOCTL_VOLUME_GET_VOLUME_DISK_EXTENTS, NULL, 0,
&DiskExtents, sizeof(DiskExtents), &size, NULL) || (size <= 0) || (DiskExtents.NumberOfDiskExtents < 1) ) {
// DiskExtents are NO_GO (which is the case for external USB HDDs...)
if(!DeviceIoControl(hDrive, IOCTL_STORAGE_GET_DEVICE_NUMBER, NULL, 0,
&DeviceNumber, sizeof(DeviceNumber), &size, NULL ) || (size <= 0)) {
uprintf("Could not get device number for device %s: %s", path, WindowsErrorString());
return -1;
}
r = (int)DeviceNumber.DeviceNumber;
} else if (DiskExtents.NumberOfDiskExtents >= 2) {
uprintf("Ignoring drive '%s' as it spans multiple disks (RAID?)", path);
return -1;
} else {
r = (int)DiskExtents.Extents[0].DiskNumber;
}
if (r >= MAX_DRIVES) {
uprintf("Device Number for device %s is too big (%d) - ignoring device", path, r);
return -1;
}
return r;
}
/*
* Returns the drive letters for all volumes located on the drive identified by DriveIndex,
* as well as the drive type. This is used as base for the 2 function calls that follow.
*/
static BOOL _GetDriveLettersAndType(DWORD DriveIndex, char* drive_letters, UINT* drive_type)
{
DWORD size;
BOOL r = FALSE;
HANDLE hDrive = INVALID_HANDLE_VALUE;
UINT _drive_type;
int i = 0, drive_number;
char *drive, drives[26*4 + 1]; /* "D:\", "E:\", etc., plus one NUL */
char logical_drive[] = "\\\\.\\#:";
if (drive_letters != NULL)
drive_letters[0] = 0;
if (drive_type != NULL)
*drive_type = DRIVE_UNKNOWN;
CheckDriveIndex(DriveIndex);
// This call is weird... The buffer needs to have an extra NUL, but you're
// supposed to provide the size without the extra NUL. And the returned size
// does not include the NUL either *EXCEPT* if your buffer is too small...
// But then again, this doesn't hold true if you have a 105 byte buffer and
// pass a 4*26=104 size, as the the call will return 105 (i.e. *FAILURE*)
// instead of 104 as it should => screw Microsoft: We'll include the NUL
// always, as each drive string is at least 4 chars long anyway.
size = GetLogicalDriveStringsA(sizeof(drives), drives);
if (size == 0) {
uprintf("GetLogicalDriveStrings failed: %s\n", WindowsErrorString());
goto out;
}
if (size > sizeof(drives)) {
uprintf("GetLogicalDriveStrings: Buffer too small (required %d vs. %d)\n", size, sizeof(drives));
goto out;
}
r = TRUE; // Required to detect drives that don't have volumes assigned
for (drive = drives ;*drive; drive += safe_strlen(drive)+1) {
if (!isalpha(*drive))
continue;
*drive = (char)toupper((int)*drive);
if (*drive < 'C') {
continue;
}
/* IOCTL_STORAGE_GET_DEVICE_NUMBER's STORAGE_DEVICE_NUMBER.DeviceNumber is
not unique! An HDD, a DVD and probably other drives can have the same
value there => Use GetDriveType() to filter out unwanted devices.
See https://github.com/pbatard/rufus/issues/32 for details. */
_drive_type = GetDriveTypeA(drive);
if ((_drive_type != DRIVE_REMOVABLE) && (_drive_type != DRIVE_FIXED))
continue;
safe_sprintf(logical_drive, sizeof(logical_drive), "\\\\.\\%c:", drive[0]);
hDrive = CreateFileA(logical_drive, GENERIC_READ, FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hDrive == INVALID_HANDLE_VALUE) {
// uprintf("Warning: could not open drive %c: %s\n", drive[0], WindowsErrorString());
continue;
}
drive_number = GetDriveNumber(hDrive, logical_drive);
safe_closehandle(hDrive);
if (drive_number == DriveIndex) {
r = TRUE;
if (drive_letters != NULL)
drive_letters[i++] = *drive;
// The drive type should be the same for all volumes, so we can overwrite
if (drive_type != NULL)
*drive_type = _drive_type;
}
}
out:
if (drive_letters != NULL)
drive_letters[i] = 0;
return r;
}
// Could have used a #define, but this is clearer
BOOL GetDriveLetters(DWORD DriveIndex, char* drive_letters)
{
return _GetDriveLettersAndType(DriveIndex, drive_letters, NULL);
}
// There's already a GetDriveType in the Windows API
UINT GetDriveTypeFromIndex(DWORD DriveIndex)
{
UINT drive_type;
_GetDriveLettersAndType(DriveIndex, NULL, &drive_type);
return drive_type;
}
/*
* Return the next unused drive letter from the system
*/
char GetUnusedDriveLetter(void)
{
DWORD size;
char drive_letter = 'Z'+1, *drive, drives[26*4 + 1]; /* "D:\", "E:\", etc., plus one NUL */
size = GetLogicalDriveStringsA(sizeof(drives), drives);
if (size == 0) {
uprintf("GetLogicalDriveStrings failed: %s\n", WindowsErrorString());
goto out;
}
if (size > sizeof(drives)) {
uprintf("GetLogicalDriveStrings: Buffer too small (required %d vs. %d)\n", size, sizeof(drives));
goto out;
}
for (drive_letter = 'C'; drive_letter < 'Z'; drive_letter++) {
for (drive = drives ;*drive; drive += safe_strlen(drive)+1) {
if (!isalpha(*drive))
continue;
if (drive_letter == (char)toupper((int)*drive))
break;
}
if (!*drive)
break;
}
out:
return (drive_letter>'Z')?0:drive_letter;
}
/*
* Return the drive letter and volume label
* If the drive doesn't have a volume assigned, space is returned for the letter
*/
BOOL GetDriveLabel(DWORD DriveIndex, char* letters, char** label)
{
HANDLE hPhysical;
DWORD size;
char AutorunPath[] = "#:\\autorun.inf", *AutorunLabel = NULL;
wchar_t wDrivePath[] = L"#:\\";
wchar_t wVolumeLabel[MAX_PATH+1];
static char VolumeLabel[MAX_PATH+1];
*label = STR_NO_LABEL;
if (!GetDriveLetters(DriveIndex, letters))
return FALSE;
if (letters[0] == 0) {
// Drive without volume assigned - always enabled
return TRUE;
}
// We only care about an autorun.inf if we have a single volume
AutorunPath[0] = letters[0];
wDrivePath[0] = letters[0];
// Try to read an extended label from autorun first. Fallback to regular label if not found.
// In the case of card readers with no card, users can get an annoying popup asking them
// to insert media. Use IOCTL_STORAGE_CHECK_VERIFY to prevent this
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE);
if (DeviceIoControl(hPhysical, IOCTL_STORAGE_CHECK_VERIFY, NULL, 0, NULL, 0, &size, NULL))
AutorunLabel = get_token_data_file("label", AutorunPath);
else if (GetLastError() == ERROR_NOT_READY)
uprintf("Ignoring autorun.inf label for drive %c: %s\n", letters[0],
(HRESULT_CODE(GetLastError()) == ERROR_NOT_READY)?"No media":WindowsErrorString());
safe_closehandle(hPhysical);
if (AutorunLabel != NULL) {
uprintf("Using autorun.inf label for drive %c: '%s'\n", letters[0], AutorunLabel);
safe_strcpy(VolumeLabel, sizeof(VolumeLabel), AutorunLabel);
safe_free(AutorunLabel);
*label = VolumeLabel;
} else if (GetVolumeInformationW(wDrivePath, wVolumeLabel, ARRAYSIZE(wVolumeLabel),
NULL, NULL, NULL, NULL, 0) && *wVolumeLabel) {
wchar_to_utf8_no_alloc(wVolumeLabel, VolumeLabel, sizeof(VolumeLabel));
*label = VolumeLabel;
}
return TRUE;
}
/*
* Return the drive size
*/
uint64_t GetDriveSize(DWORD DriveIndex)
{
BOOL r;
HANDLE hPhysical;
DWORD size;
BYTE geometry[256];
PDISK_GEOMETRY_EX DiskGeometry = (PDISK_GEOMETRY_EX)(void*)geometry;
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE);
if (hPhysical == INVALID_HANDLE_VALUE)
return FALSE;
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX,
NULL, 0, geometry, sizeof(geometry), &size, NULL);
safe_closehandle(hPhysical);
if (!r || size <= 0)
return 0;
return DiskGeometry->DiskSize.QuadPart;
}
/*
* GET_DRIVE_GEOMETRY is used to tell if there is an actual media
*/
BOOL IsMediaPresent(DWORD DriveIndex)
{
BOOL r;
HANDLE hPhysical;
DWORD size;
BYTE geometry[128];
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE);
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX,
NULL, 0, geometry, sizeof(geometry), &size, NULL) || (size <= 0);
safe_closehandle(hPhysical);
return r;
}
const struct {int (*fn)(FILE *fp); char* str;} known_mbr[] = {
{ is_dos_mbr, "DOS/NT/95A" },
{ is_dos_f2_mbr, "DOS/NT/95A (F2)" },
{ is_95b_mbr, "Windows 95B/98/98SE/ME" },
{ is_2000_mbr, "Windows 2000/XP/2003" },
{ is_vista_mbr, "Windows Vista" },
{ is_win7_mbr, "Windows 7" },
{ is_rufus_mbr, "Rufus" },
{ is_syslinux_mbr, "Syslinux" },
{ is_reactos_mbr, "ReactOS" },
{ is_kolibri_mbr, "KolibriOS" },
{ is_grub_mbr, "Grub4DOS" },
{ is_grub2_mbr, "Grub 2.0" },
{ is_zero_mbr, "Zeroed" },
};
// Returns TRUE if the drive seems bootable, FALSE otherwise
BOOL AnalyzeMBR(HANDLE hPhysicalDrive, const char* TargetName)
{
const char* mbr_name = "Master Boot Record";
FAKE_FD fake_fd = { 0 };
FILE* fp = (FILE*)&fake_fd;
int i;
fake_fd._handle = (char*)hPhysicalDrive;
fake_fd._sector_size = SelectedDrive.Geometry.BytesPerSector;
// Might need correction, as we use this method for images and we may not have a target UFD yet
if (fake_fd._sector_size < 512)
fake_fd._sector_size = 512;
if (!is_br(fp)) {
uprintf("%s does not have an x86 %s\n", TargetName, mbr_name);
return FALSE;
}
for (i=0; i<ARRAYSIZE(known_mbr); i++) {
if (known_mbr[i].fn(fp)) {
uprintf("%s has a %s %s\n", TargetName, known_mbr[i].str, mbr_name);
return TRUE;
}
}
uprintf("%s has an unknown %s\n", TargetName, mbr_name);
return TRUE;
}
const struct {int (*fn)(FILE *fp); char* str;} known_pbr[] = {
{ entire_fat_16_br_matches, "FAT16 DOS" },
{ entire_fat_16_fd_br_matches, "FAT16 FreeDOS" },
{ entire_fat_16_ros_br_matches, "FAT16 ReactOS" },
{ entire_fat_32_br_matches, "FAT32 DOS" },
{ entire_fat_32_nt_br_matches, "FAT32 NT" },
{ entire_fat_32_fd_br_matches, "FAT32 FreeDOS" },
{ entire_fat_32_ros_br_matches, "FAT32 ReactOS" },
{ entire_fat_32_kos_br_matches, "FAT32 KolibriOS" },
};
BOOL AnalyzePBR(HANDLE hLogicalVolume)
{
const char* pbr_name = "Partition Boot Record";
FAKE_FD fake_fd = { 0 };
FILE* fp = (FILE*)&fake_fd;
int i;
fake_fd._handle = (char*)hLogicalVolume;
fake_fd._sector_size = SelectedDrive.Geometry.BytesPerSector;
if (!is_br(fp)) {
uprintf("Volume does not have an x86 %s\n", pbr_name);
return FALSE;
}
if (is_fat_16_br(fp) || is_fat_32_br(fp)) {
for (i=0; i<ARRAYSIZE(known_pbr); i++) {
if (known_pbr[i].fn(fp)) {
uprintf("Drive has a %s %s\n", known_pbr[i].str, pbr_name);
return TRUE;
}
}
uprintf("Volume has an unknown FAT16 or FAT32 %s\n", pbr_name);
} else {
uprintf("Volume has an unknown %s\n", pbr_name);
}
return TRUE;
}
/*
* Fill the drive properties (size, FS, etc)
* Returns TRUE if the drive has a partition that can be mounted in Windows, FALSE otherwise
*/
BOOL GetDrivePartitionData(DWORD DriveIndex, char* FileSystemName, DWORD FileSystemNameSize, BOOL bSilent)
{
// MBR partition types that can be mounted in Windows
const uint8_t mbr_mountable[] = { 0x01, 0x04, 0x06, 0x07, 0x0b, 0x0c, 0x0e, 0xef };
BOOL r, ret = FALSE, isUefiNtfs = FALSE;
HANDLE hPhysical;
DWORD size;
BYTE geometry[256] = {0}, layout[4096] = {0}, part_type;
PDISK_GEOMETRY_EX DiskGeometry = (PDISK_GEOMETRY_EX)(void*)geometry;
PDRIVE_LAYOUT_INFORMATION_EX DriveLayout = (PDRIVE_LAYOUT_INFORMATION_EX)(void*)layout;
char* volume_name;
char tmp[256];
DWORD i, j;
if (FileSystemName == NULL)
return FALSE;
SelectedDrive.nPartitions = 0;
// Populate the filesystem data
FileSystemName[0] = 0;
volume_name = GetLogicalName(DriveIndex, TRUE, FALSE);
if ((volume_name == NULL) || (!GetVolumeInformationA(volume_name, NULL, 0, NULL, NULL, NULL, FileSystemName, FileSystemNameSize))) {
suprintf("No volume information for drive 0x%02x\n", DriveIndex);
}
safe_free(volume_name);
hPhysical = GetPhysicalHandle(DriveIndex, FALSE, FALSE);
if (hPhysical == INVALID_HANDLE_VALUE)
return 0;
if (uefi_ntfs_size == 0)
uefi_ntfs_size = GetResourceSize(hMainInstance, MAKEINTRESOURCEA(IDR_UEFI_NTFS), _RT_RCDATA, "uefi-ntfs.img");
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_GEOMETRY_EX,
NULL, 0, geometry, sizeof(geometry), &size, NULL);
if (!r || size <= 0) {
suprintf("Could not get geometry for drive 0x%02x: %s\n", DriveIndex, WindowsErrorString());
safe_closehandle(hPhysical);
return 0;
}
if (DiskGeometry->Geometry.BytesPerSector < 512) {
suprintf("Warning: Drive 0x%02x reports a sector size of %d - Correcting to 512 bytes.\n",
DriveIndex, DiskGeometry->Geometry.BytesPerSector);
DiskGeometry->Geometry.BytesPerSector = 512;
}
SelectedDrive.DiskSize = DiskGeometry->DiskSize.QuadPart;
memcpy(&SelectedDrive.Geometry, &DiskGeometry->Geometry, sizeof(DISK_GEOMETRY));
suprintf("Disk type: %s, Sector Size: %d bytes\n", (DiskGeometry->Geometry.MediaType == FixedMedia)?"Fixed":"Removable",
DiskGeometry->Geometry.BytesPerSector);
suprintf("Cylinders: %" PRIi64 ", TracksPerCylinder: %d, SectorsPerTrack: %d\n",
DiskGeometry->Geometry.Cylinders, DiskGeometry->Geometry.TracksPerCylinder, DiskGeometry->Geometry.SectorsPerTrack);
r = DeviceIoControl(hPhysical, IOCTL_DISK_GET_DRIVE_LAYOUT_EX,
NULL, 0, layout, sizeof(layout), &size, NULL );
if (!r || size <= 0) {
suprintf("Could not get layout for drive 0x%02x: %s\n", DriveIndex, WindowsErrorString());
safe_closehandle(hPhysical);
return 0;
}
#if defined(__GNUC__)
// GCC 4.9 bug us about the fact that MS defined an expandable array as array[1]
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
switch (DriveLayout->PartitionStyle) {
case PARTITION_STYLE_MBR:
SelectedDrive.PartitionType = PARTITION_STYLE_MBR;
for (i=0; i<DriveLayout->PartitionCount; i++) {
if (DriveLayout->PartitionEntry[i].Mbr.PartitionType != PARTITION_ENTRY_UNUSED) {
SelectedDrive.nPartitions++;
}
}
suprintf("Partition type: MBR, NB Partitions: %d\n", SelectedDrive.nPartitions);
SelectedDrive.has_mbr_uefi_marker = (DriveLayout->Mbr.Signature == MBR_UEFI_MARKER);
suprintf("Disk ID: 0x%08X %s\n", DriveLayout->Mbr.Signature, SelectedDrive.has_mbr_uefi_marker?"(UEFI target)":"");
AnalyzeMBR(hPhysical, "Drive");
for (i=0; i<DriveLayout->PartitionCount; i++) {
if (DriveLayout->PartitionEntry[i].Mbr.PartitionType != PARTITION_ENTRY_UNUSED) {
part_type = DriveLayout->PartitionEntry[i].Mbr.PartitionType;
isUefiNtfs = (i == 1) && (part_type == 0xef) &&
(DriveLayout->PartitionEntry[i].PartitionLength.QuadPart == uefi_ntfs_size);
suprintf("Partition %d%s:\n", i+1, isUefiNtfs?" (UEFI:NTFS)":"");
for (j=0; j<ARRAYSIZE(mbr_mountable); j++) {
if (part_type == mbr_mountable[j]) {
ret = TRUE;
break;
}
}
// NB: MinGW's gcc 4.9.2 broke "%lld" printout on XP so we use the inttypes.h "PRI##" qualifiers
suprintf(" Type: %s (0x%02x)\r\n Size: %s (%" PRIi64 " bytes)\r\n Start Sector: %d, Boot: %s, Recognized: %s\n",
((part_type==0x07)&&(FileSystemName[0]!=0))?FileSystemName:GetPartitionType(part_type), part_type,
SizeToHumanReadable(DriveLayout->PartitionEntry[i].PartitionLength.QuadPart, TRUE, FALSE),
DriveLayout->PartitionEntry[i].PartitionLength.QuadPart, DriveLayout->PartitionEntry[i].Mbr.HiddenSectors,
DriveLayout->PartitionEntry[i].Mbr.BootIndicator?"Yes":"No",
DriveLayout->PartitionEntry[i].Mbr.RecognizedPartition?"Yes":"No");
if ((part_type == RUFUS_EXTRA_PARTITION_TYPE) || (isUefiNtfs))
// This is a partition Rufus created => we can safely ignore it
--SelectedDrive.nPartitions;
if (part_type == 0xee) // Flag a protective MBR for non GPT platforms (XP)
SelectedDrive.has_protective_mbr = TRUE;
}
}
break;
case PARTITION_STYLE_GPT:
SelectedDrive.PartitionType = PARTITION_STYLE_GPT;
suprintf("Partition type: GPT, NB Partitions: %d\n", DriveLayout->PartitionCount);
suprintf("Disk GUID: %s\n", GuidToString(&DriveLayout->Gpt.DiskId));
suprintf("Max parts: %d, Start Offset: %" PRIi64 ", Usable = %" PRIi64 " bytes\n",
DriveLayout->Gpt.MaxPartitionCount, DriveLayout->Gpt.StartingUsableOffset.QuadPart, DriveLayout->Gpt.UsableLength.QuadPart);
for (i=0; i<DriveLayout->PartitionCount; i++) {
SelectedDrive.nPartitions++;
tmp[0] = 0;
wchar_to_utf8_no_alloc(DriveLayout->PartitionEntry[i].Gpt.Name, tmp, sizeof(tmp));
suprintf("Partition %d:\r\n Type: %s\r\n Name: '%s'\n", i+1,
GuidToString(&DriveLayout->PartitionEntry[i].Gpt.PartitionType), tmp);
suprintf(" ID: %s\r\n Size: %s (%" PRIi64 " bytes)\r\n Start Sector: %" PRIi64 ", Attributes: 0x%016" PRIX64 "\n",
GuidToString(&DriveLayout->PartitionEntry[i].Gpt.PartitionId), SizeToHumanReadable(DriveLayout->PartitionEntry[i].PartitionLength.QuadPart, TRUE, FALSE),
DriveLayout->PartitionEntry[i].PartitionLength, DriveLayout->PartitionEntry[i].StartingOffset.QuadPart / DiskGeometry->Geometry.BytesPerSector,
DriveLayout->PartitionEntry[i].Gpt.Attributes);
// Don't register the partitions that we don't care about destroying
if ( (strcmp(tmp, "UEFI:NTFS") == 0) ||
(CompareGUID(&DriveLayout->PartitionEntry[i].Gpt.PartitionType, &PARTITION_MSFT_RESERVED_GUID)) ||
(CompareGUID(&DriveLayout->PartitionEntry[i].Gpt.PartitionType, &PARTITION_SYSTEM_GUID)) )
--SelectedDrive.nPartitions;
if ( (memcmp(&PARTITION_BASIC_DATA_GUID, &DriveLayout->PartitionEntry[i].Gpt.PartitionType, sizeof(GUID)) == 0) &&
(nWindowsVersion >= WINDOWS_VISTA) )
ret = TRUE;
}
break;
default:
SelectedDrive.PartitionType = PARTITION_STYLE_MBR;
suprintf("Partition type: RAW\n");
break;
}
#if defined(__GNUC__)
#pragma GCC diagnostic warning "-Warray-bounds"
#endif
safe_closehandle(hPhysical);
return ret;
}
/*
* Flush file data
*/
static BOOL FlushDrive(char drive_letter)
{
HANDLE hDrive = INVALID_HANDLE_VALUE;
BOOL r = FALSE;
char logical_drive[] = "\\\\.\\#:";
logical_drive[4] = drive_letter;
hDrive = CreateFileA(logical_drive, GENERIC_READ|GENERIC_WRITE, FILE_SHARE_READ|FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hDrive == INVALID_HANDLE_VALUE) {
uprintf("Failed to open %c: for flushing: %s\n", drive_letter, WindowsErrorString());
goto out;
}
r = FlushFileBuffers(hDrive);
if (r == FALSE)
uprintf("Failed to flush %c: %s\n", drive_letter, WindowsErrorString());
out:
safe_closehandle(hDrive);
return r;
}
/*
* Unmount of volume using the DISMOUNT_VOLUME ioctl
*/
BOOL UnmountVolume(HANDLE hDrive)
{
DWORD size;
if (!DeviceIoControl(hDrive, FSCTL_DISMOUNT_VOLUME, NULL, 0, NULL, 0, &size, NULL)) {
uprintf("Could not unmount drive: %s\n", WindowsErrorString());
return FALSE;
}
return TRUE;
}
/*
* Mount the volume identified by drive_guid to mountpoint drive_name
*/
BOOL MountVolume(char* drive_name, char *drive_guid)
{
char mounted_guid[52]; // You need at least 51 characters on XP
char mounted_letter[16] = {0};
DWORD size;
if (drive_name[0] == '?')
return FALSE;
// For fixed disks, Windows may already have remounted the volume, but with a different letter
// than the one we want. If that's the case, we need to unmount first.
if ( (GetVolumePathNamesForVolumeNameA(drive_guid, mounted_letter, sizeof(mounted_letter), &size))
&& (size > 1) && (mounted_letter[0] != drive_name[0]) ) {
uprintf("Volume is already mounted, but as %c: instead of %c: - Unmounting...\n", mounted_letter[0], drive_name[0]);
if (!DeleteVolumeMountPointA(mounted_letter))
uprintf("Failed to unmount volume: %s", WindowsErrorString());
// Also delete the destination mountpoint if needed (Don't care about errors)
DeleteVolumeMountPointA(drive_name);
Sleep(200);
}
if (!SetVolumeMountPointA(drive_name, drive_guid)) {
// If the OS was faster than us at remounting the drive, this operation can fail
// with ERROR_DIR_NOT_EMPTY. If that's the case, just check that mountpoints match
if (GetLastError() == ERROR_DIR_NOT_EMPTY) {
if (!GetVolumeNameForVolumeMountPointA(drive_name, mounted_guid, sizeof(mounted_guid))) {
uprintf("%s already mounted, but volume GUID could not be checked: %s\n",
drive_name, WindowsErrorString());
return FALSE;
}
if (safe_strcmp(drive_guid, mounted_guid) != 0) {
uprintf("%s already mounted, but volume GUID doesn't match:\r\n expected %s, got %s\n",
drive_name, drive_guid, mounted_guid);
return FALSE;
}
uprintf("%s was already mounted as %s\n", drive_guid, drive_name);
} else {
return FALSE;
}
}
return TRUE;
}
/*
* Mount partition #part_nr, residing on the same disk as drive_name to an available
* drive letter. Returns the newly allocated drive string.
* We need to do this because, for instance, EFI System partitions are not assigned
* Volume GUIDs by the OS, and we need to have a letter assigned, for when we invoke
* bcdtool for Windows To Go. All in all, the process looks like this:
* 1. F: = \Device\HarddiskVolume9 (SINGLE LOOKUP)
* 2. Harddisk5Partition1 = \Device\HarddiskVolume9 (FULL LOOKUP)
* 3. Harddisk5Partition2 = \Device\HarddiskVolume10 (SINGLE LOOKUP)
* 4. DefineDosDevice(letter, \Device\HarddiskVolume10)
*/
char* AltMountVolume(const char* drive_name, uint8_t part_nr)
{
static char mounted_drive[] = "?:";
const DWORD bufsize = 65536;
char *buffer = NULL, *p, target[2][MAX_PATH], *ret = NULL;
size_t i;
mounted_drive[0] = GetUnusedDriveLetter();
if (mounted_drive[0] == 0) {
uprintf("Could not find an unused drive letter");
goto out;
}
target[0][0] = 0;
// Convert our drive letter to something like "\Device\HarddiskVolume9"
if (!QueryDosDeviceA(drive_name, target[0], MAX_PATH) || (strlen(target[0]) == 0)) {
uprintf("Could not get the DOS volume name for '%s': %s", drive_name, WindowsErrorString());
goto out;
}
// Now parse the whole DOS device list to find the 'Harddisk#Partition#' that matches the above
// TODO: realloc if someone ever manages to burst through 64K of DOS devices
buffer = malloc(bufsize);
if (buffer == NULL)
goto out;
buffer[0] = 0;
if (!QueryDosDeviceA(NULL, buffer, bufsize)) {
uprintf("Could not get the DOS device list: %s", WindowsErrorString());
goto out;
}
p = buffer;
while (strlen(p) != 0) {
if ((strncmp("Harddisk", p, 8) == 0) && (strstr(&p[9], "Partition") != NULL)) {
target[1][0] = 0;
if (QueryDosDeviceA(p, target[1], MAX_PATH) && (strlen(target[1]) != 0))
if ((strcmp(target[1], target[0]) == 0) && (p[1] != ':'))
break;
}
p += strlen(p) + 1;
}
i = strlen(p);
if (i == 0) {
uprintf("Could not find partition mapping for %s", target[0]);
goto out;
}
while ((--i > 0) && (isdigit(p[i])));
p[++i] = '0' + part_nr;
p[++i] = 0;
target[0][0] = 0;
if (!QueryDosDeviceA(p, target[0], MAX_PATH) || (strlen(target[0]) == 0)) {
uprintf("Could not find the DOS volume name for partition '%s': %s", p, WindowsErrorString());
goto out;
}
if (!DefineDosDeviceA(DDD_RAW_TARGET_PATH | DDD_NO_BROADCAST_SYSTEM, mounted_drive, target[0])) {
uprintf("Could not mount '%s' to '%s': %s", target[0], mounted_drive, WindowsErrorString());
goto out;
}
uprintf("Successfully mounted '%s' (USB partition %d) as '%s'", target[0], part_nr, mounted_drive);
ret = mounted_drive;
out:
safe_free(buffer);
return ret;
}
/*
* Unmount a volume that was mounted by AltmountVolume()
*/
BOOL AltUnmountVolume(const char* drive_name)
{
if (drive_name == NULL)
return FALSE;
if (!DefineDosDeviceA(DDD_REMOVE_DEFINITION | DDD_NO_BROADCAST_SYSTEM, drive_name, NULL)) {
uprintf("Could not unmount '%s': %s", drive_name, WindowsErrorString());
return FALSE;
}
uprintf("Successfully unmounted '%s'", drive_name);
return TRUE;
}
/*
* Issue a complete remount of the volume
*/
BOOL RemountVolume(char* drive_name)
{
char drive_guid[51];
// UDF requires a sync/flush, and it's also a good idea for other FS's
FlushDrive(drive_name[0]);
if (GetVolumeNameForVolumeMountPointA(drive_name, drive_guid, sizeof(drive_guid))) {
if (DeleteVolumeMountPointA(drive_name)) {
Sleep(200);
if (MountVolume(drive_name, drive_guid)) {
uprintf("Successfully remounted %s on %s\n", &drive_guid[4], drive_name);
} else {
uprintf("Failed to remount %s on %s\n", &drive_guid[4], drive_name);
// This will leave the drive inaccessible and must be flagged as an error
FormatStatus = ERROR_SEVERITY_ERROR|FAC(FACILITY_STORAGE)|APPERR(ERROR_CANT_REMOUNT_VOLUME);
return FALSE;
}
} else {
uprintf("Could not remount %s %s\n", drive_name, WindowsErrorString());
// Try to continue regardless
}
}
return TRUE;
}
/* MinGW is unhappy about accessing partitions beside the first unless we redef */
typedef struct _DRIVE_LAYOUT_INFORMATION_EX4 {
DWORD PartitionStyle;
DWORD PartitionCount;
union {
DRIVE_LAYOUT_INFORMATION_MBR Mbr;
DRIVE_LAYOUT_INFORMATION_GPT Gpt;
} Type;
PARTITION_INFORMATION_EX PartitionEntry[4];
} DRIVE_LAYOUT_INFORMATION_EX4,*PDRIVE_LAYOUT_INFORMATION_EX4;
/*
* Create a partition table
* See http://technet.microsoft.com/en-us/library/cc739412.aspx for some background info
* NB: if you modify the MBR outside of using the Windows API, Windows still uses the cached
* copy it got from the last IOCTL, and ignores your changes until you replug the drive
* or issue an IOCTL_DISK_UPDATE_PROPERTIES.
*/
BOOL CreatePartition(HANDLE hDrive, int partition_style, int file_system, BOOL mbr_uefi_marker, uint8_t extra_partitions)
{
const char* PartitionTypeName[2] = { "MBR", "GPT" };
unsigned char* buffer;
CREATE_DISK CreateDisk = {PARTITION_STYLE_RAW, {{0}}};
DRIVE_LAYOUT_INFORMATION_EX4 DriveLayoutEx = {0};
BOOL r;
DWORD i, size, bufsize, pn = 0;
LONGLONG main_part_size_in_sectors, extra_part_size_in_tracks = 0, ms_efi_size;
const LONGLONG bytes_per_track = ((LONGLONG)SelectedDrive.Geometry.SectorsPerTrack) * SelectedDrive.Geometry.BytesPerSector;
PrintInfoDebug(0, MSG_238, PartitionTypeName[partition_style]);
if ((extra_partitions & XP_UEFI_NTFS) && (uefi_ntfs_size == 0)) {
uefi_ntfs_size = GetResourceSize(hMainInstance, MAKEINTRESOURCEA(IDR_UEFI_NTFS), _RT_RCDATA, "uefi-ntfs.img");
if (uefi_ntfs_size == 0)
return FALSE;
}
// Compute the start offset of our first partition
if ((partition_style == PARTITION_STYLE_GPT) || (!IsChecked(IDC_EXTRA_PARTITION))) {
// Go with the MS 1 MB wastage at the beginning...
DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart = 1024*1024;
} else {
// Align on Cylinder
DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart = bytes_per_track;
}
// If required, set the MSR partition (GPT only - must be created before the data part)
if ((partition_style == PARTITION_STYLE_GPT) && (extra_partitions & XP_MSR)) {
uprintf("Adding MSR partition");
DriveLayoutEx.PartitionEntry[pn].PartitionLength.QuadPart = 128*1024*1024;
DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionType = PARTITION_MSFT_RESERVED_GUID;
IGNORE_RETVAL(CoCreateGuid(&DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionId));
// coverity[strcpy_overrun]
wcscpy(DriveLayoutEx.PartitionEntry[pn].Gpt.Name, L"Microsoft reserved partition");
// We must zero the beginning of this partition, else we get FAT leftovers and stuff
if (SetFilePointerEx(hDrive, DriveLayoutEx.PartitionEntry[pn].StartingOffset, NULL, FILE_BEGIN)) {
bufsize = 65536; // 64K should be enough for everyone
buffer = calloc(bufsize, 1);
if (buffer != NULL) {
if ((!WriteFile(hDrive, buffer, bufsize, &size, NULL)) || (size != bufsize))
uprintf(" Could not zero MSR: %s", WindowsErrorString());
free(buffer);
}
}
pn++;
DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart = DriveLayoutEx.PartitionEntry[pn-1].StartingOffset.QuadPart +
DriveLayoutEx.PartitionEntry[pn-1].PartitionLength.QuadPart;
}
// Set our main data partition
main_part_size_in_sectors = (SelectedDrive.DiskSize - DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart) /
// Need 33 sectors at the end for secondary GPT
SelectedDrive.Geometry.BytesPerSector - ((partition_style == PARTITION_STYLE_GPT)?33:0);
if (main_part_size_in_sectors <= 0)
return FALSE;
// Adjust the size according to extra partitions (which we always align to a track)
if (extra_partitions) {
uprintf("Adding extra partition");
if (extra_partitions & XP_EFI) {
// The size of the EFI partition depends on the minimum size we're able to format in FAT32,
// which in turn depends on the cluster size used, which in turn depends on the disk sector size.
if (SelectedDrive.Geometry.BytesPerSector <= 1024)
ms_efi_size = 100*1024*1024;
else if (SelectedDrive.Geometry.BytesPerSector <= 4096)
ms_efi_size = 300*1024*1024;
else
ms_efi_size = 1200*1024*1024; // That'll teach you to have a nonstandard disk!
extra_part_size_in_tracks = (ms_efi_size + bytes_per_track - 1) / bytes_per_track;
} else if (extra_partitions & XP_UEFI_NTFS)
extra_part_size_in_tracks = (MIN_EXTRA_PART_SIZE + bytes_per_track - 1) / bytes_per_track;
else if (extra_partitions & XP_COMPAT)
extra_part_size_in_tracks = 1; // One track for the extra partition
uprintf("Reserved %" PRIi64" tracks (%s) for extra partition", extra_part_size_in_tracks,
SizeToHumanReadable(extra_part_size_in_tracks * bytes_per_track, TRUE, FALSE));
main_part_size_in_sectors = ((main_part_size_in_sectors / SelectedDrive.Geometry.SectorsPerTrack) -
extra_part_size_in_tracks) * SelectedDrive.Geometry.SectorsPerTrack;
if (main_part_size_in_sectors <= 0)
return FALSE;
}
DriveLayoutEx.PartitionEntry[pn].PartitionLength.QuadPart = main_part_size_in_sectors * SelectedDrive.Geometry.BytesPerSector;
if (partition_style == PARTITION_STYLE_MBR) {
DriveLayoutEx.PartitionEntry[pn].Mbr.BootIndicator = IsChecked(IDC_BOOT);
switch (file_system) {
case FS_FAT16:
DriveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = 0x0e; // FAT16 LBA
break;
case FS_NTFS:
case FS_EXFAT:
case FS_UDF:
case FS_REFS:
DriveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = 0x07;
break;
case FS_FAT32:
DriveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = 0x0c; // FAT32 LBA
break;
default:
uprintf("Unsupported file system\n");
return FALSE;
}
} else {
DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionType = PARTITION_BASIC_DATA_GUID;
IGNORE_RETVAL(CoCreateGuid(&DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionId));
wcscpy(DriveLayoutEx.PartitionEntry[pn].Gpt.Name, L"Microsoft Basic Data");
}
pn++;
// Set the optional extra partition
if (extra_partitions) {
// Should end on a track boundary
DriveLayoutEx.PartitionEntry[pn].StartingOffset.QuadPart = DriveLayoutEx.PartitionEntry[pn-1].StartingOffset.QuadPart +
DriveLayoutEx.PartitionEntry[pn-1].PartitionLength.QuadPart;
DriveLayoutEx.PartitionEntry[pn].PartitionLength.QuadPart = (extra_partitions & XP_UEFI_NTFS)?uefi_ntfs_size:
extra_part_size_in_tracks * SelectedDrive.Geometry.SectorsPerTrack * SelectedDrive.Geometry.BytesPerSector;
if (partition_style == PARTITION_STYLE_GPT) {
DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionType = (extra_partitions & XP_UEFI_NTFS)?
PARTITION_BASIC_DATA_GUID:PARTITION_SYSTEM_GUID;
IGNORE_RETVAL(CoCreateGuid(&DriveLayoutEx.PartitionEntry[pn].Gpt.PartitionId));
wcscpy(DriveLayoutEx.PartitionEntry[pn].Gpt.Name, (extra_partitions & XP_UEFI_NTFS)?L"UEFI:NTFS":L"EFI system partition");
} else {
DriveLayoutEx.PartitionEntry[pn].Mbr.PartitionType = (extra_partitions & XP_UEFI_NTFS)?0xef:RUFUS_EXTRA_PARTITION_TYPE;
if (extra_partitions & XP_COMPAT)
// Set the one track compatibility partition to be all hidden sectors
DriveLayoutEx.PartitionEntry[pn].Mbr.HiddenSectors = SelectedDrive.Geometry.SectorsPerTrack;
}
// We need to write the UEFI:NTFS partition before we refresh the disk
if (extra_partitions & XP_UEFI_NTFS) {
uprintf("Writing UEFI:NTFS partition...");
if (!SetFilePointerEx(hDrive, DriveLayoutEx.PartitionEntry[pn].StartingOffset, NULL, FILE_BEGIN)) {
uprintf("Unable to set position");
return FALSE;
}
buffer = GetResource(hMainInstance, MAKEINTRESOURCEA(IDR_UEFI_NTFS), _RT_RCDATA, "uefi-ntfs.img", &bufsize, FALSE);
if (buffer == NULL) {
uprintf("Could not access uefi-ntfs.img");
return FALSE;
}
r = WriteFile(hDrive, buffer, bufsize, &size, NULL);
if ((!r) || (size != bufsize)) {
if (!r)
uprintf("Write error: %s", WindowsErrorString());
else
uprintf("Write error: Wrote %d bytes, expected %d bytes\n", size, bufsize);
return FALSE;
}
}
pn++;
}
// Initialize the remaining partition data
for (i = 0; i < pn; i++) {
DriveLayoutEx.PartitionEntry[i].PartitionNumber = i+1;
DriveLayoutEx.PartitionEntry[i].PartitionStyle = partition_style;
DriveLayoutEx.PartitionEntry[i].RewritePartition = TRUE;
}
switch (partition_style) {
case PARTITION_STYLE_MBR:
CreateDisk.PartitionStyle = PARTITION_STYLE_MBR;
// If MBR+UEFI is selected, write an UEFI marker in lieu of the regular MBR signature.
// This helps us reselect the partition scheme option that was used when creating the
// drive in Rufus. As far as I can tell, Windows doesn't care much if this signature
// isn't unique for USB drives.
CreateDisk.Mbr.Signature = mbr_uefi_marker?MBR_UEFI_MARKER:GetTickCount();
DriveLayoutEx.PartitionStyle = PARTITION_STYLE_MBR;
DriveLayoutEx.PartitionCount = 4; // Must be multiple of 4 for MBR
DriveLayoutEx.Type.Mbr.Signature = CreateDisk.Mbr.Signature;
// TODO: CHS fixup (32 sectors/track) through a cheat mode, if requested
// NB: disk geometry is computed by BIOS & co. by finding a match between LBA and CHS value of first partition
// ms-sys's write_partition_number_of_heads() and write_partition_start_sector_number() can be used if needed
break;
case PARTITION_STYLE_GPT:
// TODO: (?) As per MSDN: "When specifying a GUID partition table (GPT) as the PARTITION_STYLE of the CREATE_DISK
// structure, an application should wait for the MSR partition arrival before sending the IOCTL_DISK_SET_DRIVE_LAYOUT_EX
// control code. For more information about device notification, see RegisterDeviceNotification."
CreateDisk.PartitionStyle = PARTITION_STYLE_GPT;
IGNORE_RETVAL(CoCreateGuid(&CreateDisk.Gpt.DiskId));
CreateDisk.Gpt.MaxPartitionCount = MAX_GPT_PARTITIONS;
DriveLayoutEx.PartitionStyle = PARTITION_STYLE_GPT;
DriveLayoutEx.PartitionCount = pn;
// At the very least, a GPT disk has 34 reserved sectors at the beginning and 33 at the end.
DriveLayoutEx.Type.Gpt.StartingUsableOffset.QuadPart = 34 * SelectedDrive.Geometry.BytesPerSector;
DriveLayoutEx.Type.Gpt.UsableLength.QuadPart = SelectedDrive.DiskSize - (34+33) * SelectedDrive.Geometry.BytesPerSector;
DriveLayoutEx.Type.Gpt.MaxPartitionCount = MAX_GPT_PARTITIONS;
DriveLayoutEx.Type.Gpt.DiskId = CreateDisk.Gpt.DiskId;
break;
}
// If you don't call IOCTL_DISK_CREATE_DISK, the next call will fail
size = sizeof(CreateDisk);
r = DeviceIoControl(hDrive, IOCTL_DISK_CREATE_DISK, (BYTE*)&CreateDisk, size, NULL, 0, &size, NULL );
if (!r) {
uprintf("Could not reset disk: %s\n", WindowsErrorString());
return FALSE;
}
size = sizeof(DriveLayoutEx) - ((partition_style == PARTITION_STYLE_GPT)?((4-pn)*sizeof(PARTITION_INFORMATION_EX)):0);
r = DeviceIoControl(hDrive, IOCTL_DISK_SET_DRIVE_LAYOUT_EX, (BYTE*)&DriveLayoutEx, size, NULL, 0, &size, NULL );
if (!r) {
uprintf("Could not set drive layout: %s\n", WindowsErrorString());
return FALSE;
}
if (!RefreshDriveLayout(hDrive))
return FALSE;
return TRUE;
}
BOOL RefreshDriveLayout(HANDLE hDrive)
{
BOOL r;
DWORD size;
// Diskpart does call the following IOCTL this after updating the partition table, so we do too
r = DeviceIoControl(hDrive, IOCTL_DISK_UPDATE_PROPERTIES, NULL, 0, NULL, 0, &size, NULL );
if (!r)
uprintf("Could not refresh drive layout: %s\n", WindowsErrorString());
return r;
}
/* Delete the disk partition table */
BOOL DeletePartitions(HANDLE hDrive)
{
BOOL r;
DWORD size;
CREATE_DISK CreateDisk = {PARTITION_STYLE_RAW, {{0}}};
PrintInfoDebug(0, MSG_239);
size = sizeof(CreateDisk);
r = DeviceIoControl(hDrive, IOCTL_DISK_CREATE_DISK,
(BYTE*)&CreateDisk, size, NULL, 0, &size, NULL );
if (!r) {
uprintf("Could not delete drive layout: %s\n", WindowsErrorString());
safe_closehandle(hDrive);
return FALSE;
}
r = DeviceIoControl(hDrive, IOCTL_DISK_UPDATE_PROPERTIES, NULL, 0, NULL, 0, &size, NULL );
if (!r) {
uprintf("Could not refresh drive layout: %s\n", WindowsErrorString());
safe_closehandle(hDrive);
return FALSE;
}
return TRUE;
}
/*
* Convert a partition type to its human readable form using
* (slightly modified) entries from GNU fdisk
*/
const char* GetPartitionType(BYTE Type)
{
int i;
for (i=0; i<ARRAYSIZE(msdos_systypes); i++) {
if (msdos_systypes[i].type == Type)
return msdos_systypes[i].name;
}
return "Unknown";
}