Compare commits

...

2 commits

Author SHA1 Message Date
dfb954c39c analysis: insert "incomplete" function as soon as possible
by inserting it before we analyze statements, we allow ourselves to
analyze statements *with the data we already have*, for example, we can
now check the return statements' type, and see if it matches with the
functions' declared return type.

this is done via setting CompilationContext.cur_function on insertFn()

 - don't just ignore function analysis if its incomplete, do an error
2019-09-26 22:00:32 -03:00
093a8003b6 ast_printer: fix children printing
- add scope ids for debug purposes
 - add children to parent on Scope.createChild
 - types: add validation of if's condition expr type
 - types: add scopes to ifs
2019-09-26 21:36:26 -03:00
3 changed files with 71 additions and 30 deletions

View file

@ -370,7 +370,7 @@ fn prettyType(typ: SymbolUnderlyingType) []const u8 {
}
pub fn printScope(scope: *Scope, ident: usize) void {
print(ident, "scope at addr {}\n", &scope);
print(ident, "scope '{}' at addr {}\n", scope.id, &scope);
var it = scope.env.iterator();
while (it.next()) |kv| {
@ -378,7 +378,7 @@ pub fn printScope(scope: *Scope, ident: usize) void {
}
for (scope.children.toSlice()) |child| {
printScope(scope, ident + 1);
printScope(child, ident + 1);
}
}

View file

@ -39,8 +39,9 @@ pub const Scope = struct {
children: ScopeList,
allocator: *std.mem.Allocator,
id: ?[]const u8 = null,
pub fn create(allocator: *std.mem.Allocator, parent: ?*Scope) !*Scope {
pub fn create(allocator: *std.mem.Allocator, parent: ?*Scope, id: ?[]const u8) !*Scope {
var scope = try allocator.create(Scope);
scope.* = Scope{
@ -48,12 +49,15 @@ pub const Scope = struct {
.env = Environment.init(allocator),
.children = ScopeList.init(allocator),
.allocator = allocator,
.id = id,
};
return scope;
}
pub fn createChild(self: *@This()) !*Scope {
return try @This().create(self.allocator, self);
pub fn createChild(self: *@This(), id: ?[]const u8) !*Scope {
var child = try @This().create(self.allocator, self, id);
try self.children.append(child);
return child;
}
pub fn deinit(self: *const @This()) void {
@ -124,7 +128,7 @@ pub const CompilationContext = struct {
allocator: *std.mem.Allocator,
symbol_table: SymbolTable,
current_function: ?*FunctionSymbol = null,
cur_function: ?*FunctionSymbol = null,
current_scope: ?*Scope = null,
pub fn init(allocator: *std.mem.Allocator) CompilationContext {
@ -135,12 +139,14 @@ pub const CompilationContext = struct {
}
/// Create a new scope out of the current one and set it as the current.
pub fn bumpScope(self: *@This()) !void {
pub fn bumpScope(self: *@This(), scope_id: ?[]const u8) !void {
if (self.current_scope == null) {
@panic("can't bump scope from null");
}
var child = try self.current_scope.?.createChild();
std.debug.warn("==scope bump== '{}'\n", scope_id);
var child = try self.current_scope.?.createChild(scope_id);
self.current_scope = child;
}
@ -155,9 +161,21 @@ pub const CompilationContext = struct {
@panic("can't dump scope from null");
}
const parent_id: ?[]const u8 = if (self.current_scope.?.parent == null) null else self.current_scope.?.parent.?.id;
std.debug.warn(
"==scope dump== {} to {}\n",
self.current_scope.?.id,
parent_id,
);
self.current_scope = self.current_scope.?.parent;
}
pub fn setCurrentFunction(self: *@This(), func_ctx: ?FunctionAnalysisContext) void {
self.cur_function = func_ctx;
}
/// Solve a given type as a string into a SymbolUnderlyingTypeEnum
/// This does not help if you want a full SymbolUnderlyingType, use
/// solveType() for that.
@ -213,7 +231,9 @@ pub const CompilationContext = struct {
_ = try type_map.put(param.name.lexeme, param_types.at(idx));
}
_ = try self.symbol_table.put(decl.func_name.lexeme, SymbolData{
const lex = decl.func_name.lexeme;
_ = try self.symbol_table.put(lex, SymbolData{
.Function = FunctionSymbol{
.decl = decl,
.return_type = ret_type,
@ -221,6 +241,9 @@ pub const CompilationContext = struct {
.scope = scope,
},
});
var kv = self.symbol_table.get(lex);
self.cur_function = &kv.?.value.Function;
}
pub fn insertEnum(self: *@This(), enu: ast.Enum) !void {

View file

@ -88,6 +88,14 @@ pub const TypeSolver = struct {
}
}
pub fn expectSymUnType(self: *@This(), symbol_type: comp.SymbolUnderlyingType, wanted_type: comp.SymbolUnderlyingTypeEnum) !void {
var actual_type = comp.SymbolUnderlyingTypeEnum(symbol_type);
if (actual_type != wanted_type) {
std.debug.warn("Expected {}, got {}\n", wanted_type, actual_type);
return CompileError.TypeError;
}
}
// TODO make return type optional and so, skip exprs that
// fail to be fully resolved, instead of returning CompileError
pub fn resolveExprType(
@ -230,22 +238,26 @@ pub const TypeSolver = struct {
// pull a hack with err contexts, lol)
.Return => |ret| {
var ret_stmt_type = try self.resolveExprType(ctx, ret.value);
// TODO check if ret_stmt_type == ctx.cur_function.return_type
try self.expectSymUnType(ret_stmt_type, ctx.cur_function.?.return_type);
},
// If create two scopes for each branch of the if
.If => |ifstmt| {
_ = try self.resolveExprType(ctx, ifstmt.condition);
var cond_type = try self.resolveExprType(ctx, ifstmt.condition);
try self.expectSymUnType(cond_type, .Bool);
// TODO assert condition's type is bool
try ctx.bumpScope("if_then");
// TODO bump-dump scope
for (ifstmt.then_branch.toSlice()) |then_stmt| {
try self.stmtPass(ctx, then_stmt);
}
ctx.dumpScope();
if (ifstmt.else_branch) |else_branch| {
// TODO bump-dump scope
try ctx.bumpScope("if_else");
defer ctx.dumpScope();
for (else_branch.toSlice()) |else_stmt| {
try self.stmtPass(ctx, else_stmt);
}
@ -280,14 +292,18 @@ pub const TypeSolver = struct {
self.setErrToken(null);
self.setErrContext(null);
// always reset the contexts' current function
ctx.cur_function = null;
switch (node.*) {
.Root => unreachable,
.FnDecl => |decl| {
self.setErrToken(decl.return_type);
self.setErrContext("function {}", decl.func_name.lexeme);
const name = decl.func_name.lexeme;
self.setErrContext("function {}", name);
var ret_type = self.resolveGlobalType(ctx, decl.return_type.lexeme);
std.debug.warn("resolved fn {} type: {}\n", decl.func_name.lexeme, ret_type);
std.debug.warn("start analysis of fn {} ret_type: {}\n", decl.func_name.lexeme, ret_type);
var parameters = comp.TypeList.init(self.allocator);
for (decl.params.toSlice()) |param| {
@ -298,9 +314,24 @@ pub const TypeSolver = struct {
// for a function, we always create a new root scope for it
// and force-set it into the current context
var scope = try comp.Scope.create(self.allocator, null);
var scope = try comp.Scope.create(self.allocator, null, "function");
errdefer scope.deinit();
// we intentionally insert the function so that:
// - we can do return statement validation
// - we have parameter types fully analyzed
if (ret_type != null and parameters.len == decl.params.len) {
try ctx.insertFn(decl, ret_type.?, parameters, scope);
} else {
if (ret_type != null)
self.doError("Return type was not fully resolved");
if (parameters.len != decl.params.len)
self.doError("Fully analyzed {} parameters, wanted {}", parameters.len, decl.params.len);
return CompileError.TypeError;
}
// we must always start from a null current scope,
// functions inside functions are not allowed
std.debug.assert(ctx.current_scope == null);
@ -313,19 +344,6 @@ pub const TypeSolver = struct {
// it should be null when we dump from a function. always
ctx.dumpScope();
std.debug.assert(ctx.current_scope == null);
// TODO scopes: down scope
// TODO symbols and scope resolution, that's
// its own can of worms
var symbols = comp.SymbolTable.init(self.allocator);
// TODO go through body, resolve statements, expressions
// and everything else
if (ret_type != null and parameters.len == decl.params.len) {
try ctx.insertFn(decl, ret_type.?, parameters, scope);
}
},
.Struct => |struc| {