rayoko/src/types.zig

167 lines
5.3 KiB
Zig
Raw Normal View History

const std = @import("std");
const ast = @import("ast.zig");
const comp = @import("comp_ctx.zig");
const CompileError = @import("codegen.zig").CompileError;
const Token = @import("tokens.zig").Token;
const SymbolUnderlyingType = comp.SymbolUnderlyingType;
pub const TypeSolver = struct {
allocator: *std.mem.Allocator,
// error handling
err_ctx: ?[]const u8 = null,
err_tok: ?Token = null,
hadError: bool = false,
pub fn init(allocator: *std.mem.Allocator) TypeSolver {
return TypeSolver{ .allocator = allocator };
}
fn setErrContext(self: *@This(), comptime fmt: ?[]const u8, args: ...) void {
if (fmt == null) {
self.err_ctx = null;
return;
}
// TODO allocate buffer on init() and use it
var buf = self.allocator.alloc(u8, 256) catch unreachable;
self.err_ctx = std.fmt.bufPrint(buf, fmt.?, args) catch unreachable;
}
fn setErrToken(self: *@This(), tok: ?Token) void {
self.err_tok = tok;
}
fn doError(self: *@This(), comptime fmt: []const u8, args: ...) void {
self.hadError = true;
std.debug.warn("type error");
if (self.err_tok) |tok| {
std.debug.warn(" at line {}", tok.line);
}
if (self.err_ctx) |ctx| {
std.debug.warn(" on {}", ctx);
}
std.debug.warn("\n\t");
std.debug.warn(fmt, args);
std.debug.warn("\n");
}
/// Resolve a type in global scope
fn resolveGlobalType(
self: *@This(),
ctx: *comp.CompilationContext,
identifier: []const u8,
) ?SymbolUnderlyingType {
// assume the identifier references a builtin
var typ = ctx.solveType(identifier);
switch (typ) {
.OpaqueType => |val| {
// solve for opaque so it isnt opaque
var sym = ctx.symbol_table.get(val);
if (sym != null)
return switch (sym.?.value) {
.Struct => SymbolUnderlyingType{ .Struct = val },
.Enum => SymbolUnderlyingType{ .Enum = val },
else => blk: {
self.doError(
"expected struct or enum for type '{}', got {}",
val,
sym,
);
break :blk null;
},
};
self.doError("Unknown type: '{}'", val);
return null;
},
else => return typ,
}
}
pub fn nodePass(
self: *@This(),
ctx: *comp.CompilationContext,
node: *ast.Node,
) !void {
switch (node.*) {
.Root => unreachable,
.FnDecl => |decl| {
self.setErrToken(decl.return_type);
self.setErrContext("function {}", decl.func_name.lexeme);
var ret_type = self.resolveGlobalType(ctx, decl.return_type.lexeme);
std.debug.warn("resolved fn {} type: {}\n", decl.func_name.lexeme, ret_type);
var parameters = comp.TypeList.init(self.allocator);
for (decl.params.toSlice()) |param| {
var param_type = self.resolveGlobalType(ctx, param.typ.lexeme);
if (param_type == null) continue;
try parameters.append(param_type.?);
}
// TODO symbols and scope resolution, that's
// its own can of worms
var symbols = comp.SymbolTable.init(self.allocator);
// TODO go through body, resolve statements, expressions
// and everything else
if (ret_type != null and parameters.len == decl.params.len) {
try ctx.insertFn(decl, ret_type.?, parameters, symbols);
}
},
.Struct => |struc| {
self.setErrToken(struc.name);
self.setErrContext("struct {}", struc.name.lexeme);
var types = comp.TypeList.init(self.allocator);
for (struc.fields.toSlice()) |field| {
self.setErrToken(field.name);
var field_type = self.resolveGlobalType(ctx, field.typ.lexeme);
if (field_type == null) continue;
try types.append(field_type.?);
}
// only determine struct as fully resolved
// when length of declared types == length of resolved types
// we don't return type errors from the main loop so we can
// keep going and find more type errors
if (types.len == struc.fields.len)
try ctx.insertStruct(struc, types);
},
// TODO enums are u32
//.Enum => {},
// TODO infer type of expr in const
//.ConstDecl => {},
else => unreachable,
}
}
pub fn pass(self: *@This(), root: *ast.Node) !comp.CompilationContext {
var ctx = comp.CompilationContext.init(self.allocator);
var slice = root.Root.toSlice();
for (slice) |_, idx| {
try self.nodePass(&ctx, &slice[idx]);
}
return ctx;
}
};