- [BUGFIX] Q044: don't encode packet number in 6 bytes. Six-byte
packet number encoding does not exist in Q044. This fixes a
regression introduced in '[BUGFIX] Buffered packets can contain
ACK frames' -- we need to keep QUIC version in mind when selecting
the longest possible packet number encoding used for the buffered
packet that carries the ACK.
- [BUGFIX] Do not increase CWND when timeout occurs.
- http_client: support setting handshake timeout on command line.
Use -o handshake_to=timeout.
- http_client: use -k to connect UDP socket to pick up ICMP errors.
- http_client: allow pathless mode, when only handshake is performed
without issuing any requests. This can be done by simply not
specifying a -p flag on the command line.
- [FEATURE, API Change] 0-RTT support. Add function to export 0-RTT
information; it can be supplied to a subsequent connect() call.
- [FEATURE] Add -0 flag to http_client to exercise 0-RTT support.
- [BUGFIX] Resuscitate the Windows build.
- [BUGFIX] Send HTTP settings (max header list size) if necessary.
- [BUGFIX] Buffered packets can contain ACK frames.
- [BUGFIX] Make packet writeable once all STREAM frames are elided.
- [BUGFIX] Fix potential null dereference when realloc fails.
- cmake: simplify build configuration.
- [API Change] Can specify clock granularity in engine settings.
- [BUGFIX] Pacer uses fixed clock granularity. Since the change on
2018-04-09, it is not necessary to try to approximate the next tick
time in the pacer: it can use fix clock granularity specified by
the user.
- [BUGFIX] Do not tick constantly before handshake is done.
- [BUGFIX] Do not exit tick prematurely: reuse packet with ACK. Even
if we cannot allocate *more* packets, we could still be able to write
to one already allocated.
- [BUGFIX] Do not schedule pacer if there are no lost packets.
- [BUGFIX] http_client: make sure only one read per on_read() callback
is performed in the header conversion bypass (-B) mode.
- http_client: with -E, assign random priority when stream is created.
- [OPTIMIZATION] On immediate write, place an ACK frame into the first
buffered packet if an ACK is queued. This reduces the number of
standalone ACK packets.
- [OPTIMIZATION] Allow placing more than one STREAM frame from the same
stream into an outgoing packet. This change minimizes the number of
buffered packets required to store several small HTTP messages by
virtue of allowing more than one STREAM frame from HEADERS stream in
the same packet.
- [OPTIMIZATION] Flush headers when writing to buffered packets. This
causes the headers to be written to the same buffered packet queue,
thereby improving packet utilization, especially for small HTTP
messages.
- [FEATURE] http_client can now collect stats: time to connect, TTFB,
time to download, requests per seconds, and bandwidth. See -t flag.
- [BUGFIX] http_client: -B, -K, and -r can be used at the same time.
- [BUGFIX] http_client: do not display cert chain before each request.
Now this is only done once per connection, if the handshake is
successful and -a option is given.
- [BUGFIX] Do not wait to dispatch on_close() after reading. If a
stream is scheduled to be closed after on_read() callback returns,
close it immediately instead of waiting until the end of the tick.
If client creates new request from on_close() event, they will be
processed in the same tick instead of waiting for the next one.
- [BUGFIX] HEADERS stream is critical: always treat it with highest
priority.
- [API Change] Packet out Memory Interface (PMI) update:
- Split PMI pool return into pmi_release and pmi_return
- PMI callbacks take peer_ctx and is_ipv6 arguments
- [BUGFIX] Fix use-after-free when certificate is updated
- Silence gcc warning in optimized mode by performing useless
initialization
- cmake: use the standard variable CMAKE_BUILD_TYPE instead of
DEVEL_MODE
- [API Change] Disable packet sending if full batch cannot be sent
If lsquic_packets_out_f() cannot send the whole batch, disable
packet sending until lsquic_engine_send_unsent_packets() is called.
- [BUGFIX] Handle case when STREAM frame does not fit.
- [BUGFIX] Always allow incoming STREAM frames to overlap. Peers
may send overlapping STREAM frames even if using versions older
than Q043.
- Custom header set fixes:
- set "FIN reached" flag when custom header with FIN flag is
claimed;
- do not return custom header set for a reset stream.
Add ability to create custom header set objects via callbacks.
This avoids reading and re-parsing headers from the stream.
See test/http_client.c for example implementation. (Use -B flag
to turn it on).
- 1.10.1
- [BUGFIX] process connections after each batch of packets is read
This avoids a problem of accumulating a very large list of packets
(possible when speeds are high and socket's receive buffer is large)
and processing it all at once.
- If glibc is older than 2.17, link with rt. This is necessary for
clock_getres(2).
- Add version macros to lsquic.h; remove unnecessary includes.
Use the original method of tracking connections by CIDs by default.
If zero-sized CID support is turned on, connections are tracked by
the address. A new connection is not created if another connection
is using the same network address.
The macro soup in test_common.c acquired a few more fingernails, but
this is better than maintaining (or, rather, forgetting to maintain)
two versions of the same code.
- Remove comment: MSPC is obsolete (no code changes)
- Prog: use lsquic_str2ver() when processing -o version flag
- Remove unused CTIM and SRBF transport parameters
- Disable QUIC versions Q037 and Q038 by default
- Fix Windows compilation by including compat header file in lshpack.c
- Address warnings produced by newer versions of gcc
- Future-proof: turn off -Werror
The API is simplified: do not expose the user code to several
queues. A "connection queue" is now an internal concept.
The user processes connections using the single function
lsquic_engine_process_conns(). When this function is called,
only those connections are processed that need to be processed.
A connection needs to be processed when:
1. New incoming packets have been fed to the connection.
2. User wants to read from a stream that is readable.
3. User wants to write to a stream that is writeable.
4. There are buffered packets that can be sent out. (This
means that the user wrote to a stream outside of the
lsquic library callback.)
5. A control frame (such as BLOCKED) needs to be sent out.
6. A stream needs to be serviced or delayed stream needs to
be created.
7. An alarm rings.
8. Pacer timer expires.
To achieve this, the library places the connections into two
priority queues (min heaps):
1. Tickable Queue; and
2. Advisory Tick Time queue (ATTQ).
Each time lsquic_engine_process_conns() is called, the Tickable
Queue is emptied. After the connections have been ticked, they are
queried again: if a connection is not being closed, it is placed
either in the Tickable Queue if it is ready to be ticked again or
it is placed in the Advisory Tick Time Queue. It is assumed that
a connection always has at least one timer set (the idle alarm).
The connections in the Tickable Queue are arranged in the least
recently ticked order. This lets connections that have been quiet
longer to get their packets scheduled first.
This change means that the library no longer needs to be ticked
periodically. The user code can query the library when is the
next tick event and schedule it exactly. When connections are
processed, only the tickable connections are processed, not *all*
the connections. When there are no tick events, it means that no
timer event is necessary -- only the file descriptor READ event
is active.
The following are improvements and simplifications that have
been triggered:
- Queue of connections with incoming packets is gone.
- "Pending Read/Write Events" Queue is gone (along with its
history and progress checks). This queue has become the
Tickable Queue.
- The connection hash no longer needs to track the connection
insertion order.
- [OPTIMIZATION] Merge series of ACKs if possible
Parsed single-range ACK frames (that is the majority of frames) are
saved in the connection and their processing is deferred until the
connection is ticked. If several ACKs come in a series between
adjacent ticks, we check whether the latest ACK is a strict superset
of the saved ACK. If it is, the older ACK is not processed.
If ACK frames can be merged, they are merged and only one of them is
either processed or saved.
- [OPTIMIZATION] Speed up ACK verification by simplifying send history.
Never generate a gap in the sent packet number sequence. This reduces
the send history to a single number instead of potentially a series of
packet ranges and thereby speeds up ACK verification.
By default, detecting a gap in the send history is not fatal: only a
single warning is generated per connection. The connection can continue
to operate even if the ACK verification code is not able to detect some
inconsistencies.
- [OPTIMIZATION] Rearrange the lsquic_send_ctl struct
The first part of struct lsquic_send_ctl now consists of members that
are used in lsquic_send_ctl_got_ack() (in the absense of packet loss,
which is the normal case). To speed up reads and writes, we no longer
try to save space by using 8- and 16-bit integers. Use regular integer
width for everything.
- [OPTIMIZATION] Cache size of sent packet.
- [OPTIMIZATION] Keep track of the largest ACKed in packet_out
Instead of parsing our own ACK frames when packet has been acked,
use the value saved in the packet_out structure when the ACK frame
was generated.
- [OPTIMIZATION] Take RTT sampling conditional out of ACK loop
- [OPTIMIZATION] ACK processing: only call clock_gettime() if needed
- [OPTIMIZATION] Several code-level optimizations to ACK processing.
- Fix: http_client: fix -I flag; switch assert() to abort()