2019-01-03 16:48:45 +00:00
|
|
|
/* Copyright (c) 2017 - 2019 LiteSpeed Technologies Inc. See LICENSE. */
|
2017-09-22 21:00:03 +00:00
|
|
|
/*
|
|
|
|
* http_client.c -- A simple HTTP/QUIC client
|
|
|
|
*/
|
2018-05-16 19:48:43 +00:00
|
|
|
|
2018-03-12 22:25:01 +00:00
|
|
|
#ifndef WIN32
|
2017-09-22 21:00:03 +00:00
|
|
|
#include <arpa/inet.h>
|
|
|
|
#include <netinet/in.h>
|
2018-03-12 22:25:01 +00:00
|
|
|
#else
|
|
|
|
#include <Windows.h>
|
|
|
|
#include <WinSock2.h>
|
|
|
|
#include <io.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <getopt.h>
|
|
|
|
#define STDOUT_FILENO 1
|
|
|
|
#define random rand
|
|
|
|
#pragma warning(disable:4996) //POSIX name deprecated
|
|
|
|
#endif
|
2017-09-22 21:00:03 +00:00
|
|
|
#include <assert.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <sys/queue.h>
|
2018-03-12 22:25:01 +00:00
|
|
|
#ifndef WIN32
|
|
|
|
#include <unistd.h>
|
2017-09-22 21:00:03 +00:00
|
|
|
#include <sys/types.h>
|
2018-08-17 15:44:54 +00:00
|
|
|
#include <dirent.h>
|
2018-12-11 03:40:01 +00:00
|
|
|
#include <limits.h>
|
2018-03-12 22:25:01 +00:00
|
|
|
#endif
|
2017-09-22 21:00:03 +00:00
|
|
|
#include <sys/stat.h>
|
|
|
|
#include <fcntl.h>
|
2018-12-27 19:01:17 +00:00
|
|
|
#include <event2/event.h>
|
2019-01-16 20:13:59 +00:00
|
|
|
#include <math.h>
|
2017-09-22 21:00:03 +00:00
|
|
|
|
2018-08-17 15:44:54 +00:00
|
|
|
#include <openssl/bio.h>
|
|
|
|
#include <openssl/pem.h>
|
|
|
|
#include <openssl/x509.h>
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
#include "lsquic.h"
|
|
|
|
#include "test_common.h"
|
|
|
|
#include "prog.h"
|
|
|
|
|
|
|
|
#include "../src/liblsquic/lsquic_logger.h"
|
2019-01-16 20:13:59 +00:00
|
|
|
#include "../src/liblsquic/lsquic_int_types.h"
|
|
|
|
#include "../src/liblsquic/lsquic_util.h"
|
2017-09-22 21:00:03 +00:00
|
|
|
|
2019-01-09 22:17:38 +00:00
|
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
/* This is used to exercise generating and sending of priority frames */
|
|
|
|
static int randomly_reprioritize_streams;
|
|
|
|
|
2019-01-16 20:13:59 +00:00
|
|
|
static int s_display_cert_chain;
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
/* If this file descriptor is open, the client will accept server push and
|
|
|
|
* dump the contents here. See -u flag.
|
|
|
|
*/
|
|
|
|
static int promise_fd = -1;
|
|
|
|
|
2018-08-28 13:59:47 +00:00
|
|
|
/* Set to true value to use header bypass. This means that the use code
|
|
|
|
* creates header set via callbacks and then fetches it by calling
|
|
|
|
* lsquic_stream_get_hset() when the first "on_read" event is called.
|
|
|
|
*/
|
|
|
|
static int g_header_bypass;
|
|
|
|
|
2019-01-16 20:13:59 +00:00
|
|
|
static int s_discard_response;
|
|
|
|
|
|
|
|
struct sample_stats
|
|
|
|
{
|
|
|
|
unsigned n;
|
|
|
|
unsigned long min, max;
|
|
|
|
unsigned long sum; /* To calculate mean */
|
|
|
|
unsigned long sum_X2; /* To calculate stddev */
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct sample_stats s_stat_to_conn, /* Time to connect */
|
|
|
|
s_stat_ttfb,
|
|
|
|
s_stat_req; /* From TTFB to EOS */
|
|
|
|
static unsigned s_stat_conns_ok, s_stat_conns_failed;
|
|
|
|
static unsigned long s_stat_downloaded_bytes;
|
|
|
|
|
|
|
|
static void
|
|
|
|
update_sample_stats (struct sample_stats *stats, unsigned long val)
|
|
|
|
{
|
|
|
|
LSQ_DEBUG("%s: %p: %lu", __func__, stats, val);
|
|
|
|
if (stats->n)
|
|
|
|
{
|
|
|
|
if (val < stats->min)
|
|
|
|
stats->min = val;
|
|
|
|
else if (val > stats->max)
|
|
|
|
stats->max = val;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
stats->min = val;
|
|
|
|
stats->max = val;
|
|
|
|
}
|
|
|
|
stats->sum += val;
|
|
|
|
stats->sum_X2 += val * val;
|
|
|
|
++stats->n;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
calc_sample_stats (const struct sample_stats *stats,
|
|
|
|
long double *mean_p, long double *stddev_p)
|
|
|
|
{
|
|
|
|
unsigned long mean, tmp;
|
|
|
|
|
|
|
|
if (stats->n)
|
|
|
|
{
|
|
|
|
mean = stats->sum / stats->n;
|
|
|
|
*mean_p = (long double) mean;
|
|
|
|
if (stats->n > 1)
|
|
|
|
{
|
|
|
|
tmp = stats->sum_X2 - stats->n * mean * mean;
|
|
|
|
tmp /= stats->n - 1;
|
|
|
|
*stddev_p = sqrtl((long double) tmp);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
*stddev_p = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
*mean_p = 0;
|
|
|
|
*stddev_p = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2019-01-30 20:28:35 +00:00
|
|
|
#ifdef WIN32
|
|
|
|
static char *
|
|
|
|
strndup(const char *s, size_t n)
|
|
|
|
{
|
|
|
|
char *copy;
|
|
|
|
|
|
|
|
copy = malloc(n + 1);
|
|
|
|
if (copy)
|
|
|
|
{
|
|
|
|
memcpy(copy, s, n);
|
|
|
|
copy[n] = '\0';
|
|
|
|
}
|
|
|
|
|
|
|
|
return copy;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
struct lsquic_conn_ctx;
|
|
|
|
|
|
|
|
struct path_elem {
|
|
|
|
TAILQ_ENTRY(path_elem) next_pe;
|
|
|
|
const char *path;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct http_client_ctx {
|
|
|
|
TAILQ_HEAD(, lsquic_conn_ctx)
|
|
|
|
conn_ctxs;
|
|
|
|
const char *hostname;
|
|
|
|
const char *method;
|
|
|
|
const char *payload;
|
|
|
|
char payload_size[20];
|
|
|
|
|
|
|
|
/* hcc_path_elems holds a list of paths which are to be requested from
|
|
|
|
* the server. Each new request gets the next path from the list (the
|
|
|
|
* iterator is stored in hcc_cur_pe); when the end is reached, the
|
|
|
|
* iterator wraps around.
|
|
|
|
*/
|
|
|
|
TAILQ_HEAD(, path_elem) hcc_path_elems;
|
|
|
|
struct path_elem *hcc_cur_pe;
|
|
|
|
|
|
|
|
unsigned hcc_total_n_reqs;
|
|
|
|
unsigned hcc_reqs_per_conn;
|
|
|
|
unsigned hcc_concurrency;
|
2019-01-09 22:17:38 +00:00
|
|
|
unsigned hcc_cc_reqs_per_conn;
|
2017-09-22 21:00:03 +00:00
|
|
|
unsigned hcc_n_open_conns;
|
2019-02-04 13:59:11 +00:00
|
|
|
|
|
|
|
unsigned char *hcc_zero_rtt;
|
|
|
|
size_t hcc_zero_rtt_len;
|
|
|
|
size_t hcc_zero_rtt_max_len;
|
|
|
|
FILE *hcc_zero_rtt_file;
|
|
|
|
char *hcc_zero_rtt_file_name;
|
2017-09-22 21:00:03 +00:00
|
|
|
|
|
|
|
enum {
|
2018-02-26 21:01:16 +00:00
|
|
|
HCC_SEEN_FIN = (1 << 1),
|
|
|
|
HCC_ABORT_ON_INCOMPLETE = (1 << 2),
|
2019-02-04 13:59:11 +00:00
|
|
|
HCC_RTT_INFO = (1 << 3),
|
2017-09-22 21:00:03 +00:00
|
|
|
} hcc_flags;
|
|
|
|
struct prog *prog;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct lsquic_conn_ctx {
|
|
|
|
TAILQ_ENTRY(lsquic_conn_ctx) next_ch;
|
|
|
|
lsquic_conn_t *conn;
|
|
|
|
struct http_client_ctx *client_ctx;
|
2019-01-16 20:13:59 +00:00
|
|
|
lsquic_time_t ch_created;
|
2017-09-22 21:00:03 +00:00
|
|
|
unsigned ch_n_reqs; /* This number gets decremented as streams are closed and
|
|
|
|
* incremented as push promises are accepted.
|
|
|
|
*/
|
2019-01-09 22:17:38 +00:00
|
|
|
unsigned ch_n_cc_streams; /* This number is incremented as streams are opened
|
|
|
|
* and decremented as streams are closed. It should
|
|
|
|
* never exceed hcc_cc_reqs_per_conn in client_ctx.
|
|
|
|
*/
|
2017-09-22 21:00:03 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
2018-08-28 13:59:47 +00:00
|
|
|
struct hset_elem
|
|
|
|
{
|
|
|
|
STAILQ_ENTRY(hset_elem) next;
|
|
|
|
unsigned name_idx;
|
|
|
|
char *name;
|
|
|
|
char *value;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
STAILQ_HEAD(hset, hset_elem);
|
|
|
|
|
|
|
|
static void
|
|
|
|
hset_dump (const struct hset *, FILE *);
|
|
|
|
static void
|
|
|
|
hset_destroy (void *hset);
|
2019-01-16 20:13:59 +00:00
|
|
|
static void
|
|
|
|
display_cert_chain (lsquic_conn_t *);
|
2018-08-28 13:59:47 +00:00
|
|
|
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
static void
|
|
|
|
create_connections (struct http_client_ctx *client_ctx)
|
|
|
|
{
|
2019-02-04 13:59:11 +00:00
|
|
|
unsigned char *zero_rtt = NULL;
|
|
|
|
size_t zero_rtt_len = 0;
|
|
|
|
if (client_ctx->hcc_flags & HCC_RTT_INFO)
|
|
|
|
{
|
|
|
|
zero_rtt = client_ctx->hcc_zero_rtt;
|
|
|
|
zero_rtt_len = client_ctx->hcc_zero_rtt_len;
|
2019-02-18 13:40:51 +00:00
|
|
|
LSQ_INFO("create connection zero_rtt %zu bytes", zero_rtt_len);
|
2019-02-04 13:59:11 +00:00
|
|
|
}
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
while (client_ctx->hcc_n_open_conns < client_ctx->hcc_concurrency &&
|
|
|
|
client_ctx->hcc_total_n_reqs > 0)
|
2019-02-04 13:59:11 +00:00
|
|
|
if (0 != prog_connect(client_ctx->prog, zero_rtt, zero_rtt_len))
|
2017-09-22 21:00:03 +00:00
|
|
|
{
|
|
|
|
LSQ_ERROR("connection failed");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2019-01-09 22:17:38 +00:00
|
|
|
static void
|
|
|
|
create_streams (struct http_client_ctx *client_ctx, lsquic_conn_ctx_t *conn_h)
|
|
|
|
{
|
|
|
|
while (conn_h->ch_n_reqs - conn_h->ch_n_cc_streams &&
|
|
|
|
conn_h->ch_n_cc_streams < client_ctx->hcc_cc_reqs_per_conn)
|
|
|
|
{
|
|
|
|
lsquic_conn_make_stream(conn_h->conn);
|
|
|
|
conn_h->ch_n_cc_streams++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
static lsquic_conn_ctx_t *
|
|
|
|
http_client_on_new_conn (void *stream_if_ctx, lsquic_conn_t *conn)
|
|
|
|
{
|
|
|
|
struct http_client_ctx *client_ctx = stream_if_ctx;
|
|
|
|
lsquic_conn_ctx_t *conn_h = calloc(1, sizeof(*conn_h));
|
|
|
|
conn_h->conn = conn;
|
|
|
|
conn_h->client_ctx = client_ctx;
|
2019-01-09 22:17:38 +00:00
|
|
|
conn_h->ch_n_reqs = MIN(client_ctx->hcc_total_n_reqs,
|
|
|
|
client_ctx->hcc_reqs_per_conn);
|
2017-09-22 21:00:03 +00:00
|
|
|
client_ctx->hcc_total_n_reqs -= conn_h->ch_n_reqs;
|
|
|
|
TAILQ_INSERT_TAIL(&client_ctx->conn_ctxs, conn_h, next_ch);
|
|
|
|
++conn_h->client_ctx->hcc_n_open_conns;
|
2019-02-18 13:40:51 +00:00
|
|
|
if (!TAILQ_EMPTY(&client_ctx->hcc_path_elems))
|
|
|
|
create_streams(client_ctx, conn_h);
|
2019-01-16 20:13:59 +00:00
|
|
|
conn_h->ch_created = lsquic_time_now();
|
2017-09-22 21:00:03 +00:00
|
|
|
return conn_h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2018-12-27 19:01:17 +00:00
|
|
|
struct create_another_conn_or_stop_ctx
|
|
|
|
{
|
|
|
|
struct event *event;
|
|
|
|
struct http_client_ctx *client_ctx;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
create_another_conn_or_stop (evutil_socket_t sock, short events, void *ctx)
|
|
|
|
{
|
|
|
|
struct create_another_conn_or_stop_ctx *const cacos = ctx;
|
|
|
|
struct http_client_ctx *const client_ctx = cacos->client_ctx;
|
|
|
|
|
|
|
|
event_del(cacos->event);
|
|
|
|
event_free(cacos->event);
|
|
|
|
free(cacos);
|
|
|
|
|
|
|
|
create_connections(client_ctx);
|
|
|
|
if (0 == client_ctx->hcc_n_open_conns)
|
|
|
|
{
|
|
|
|
LSQ_INFO("All connections are closed: stop engine");
|
|
|
|
prog_stop(client_ctx->prog);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
static void
|
|
|
|
http_client_on_conn_closed (lsquic_conn_t *conn)
|
|
|
|
{
|
|
|
|
lsquic_conn_ctx_t *conn_h = lsquic_conn_get_ctx(conn);
|
2018-12-27 19:01:17 +00:00
|
|
|
struct create_another_conn_or_stop_ctx *cacos;
|
2018-02-26 21:01:16 +00:00
|
|
|
enum LSQUIC_CONN_STATUS status;
|
2018-12-27 19:01:17 +00:00
|
|
|
struct event_base *eb;
|
2018-02-26 21:01:16 +00:00
|
|
|
char errmsg[80];
|
|
|
|
|
|
|
|
status = lsquic_conn_status(conn, errmsg, sizeof(errmsg));
|
|
|
|
LSQ_INFO("Connection closed. Status: %d. Message: %s", status,
|
|
|
|
errmsg[0] ? errmsg : "<not set>");
|
|
|
|
if (conn_h->client_ctx->hcc_flags & HCC_ABORT_ON_INCOMPLETE)
|
2018-03-09 19:17:39 +00:00
|
|
|
{
|
|
|
|
if (!(conn_h->client_ctx->hcc_flags & HCC_SEEN_FIN))
|
|
|
|
abort();
|
|
|
|
}
|
2017-09-22 21:00:03 +00:00
|
|
|
TAILQ_REMOVE(&conn_h->client_ctx->conn_ctxs, conn_h, next_ch);
|
|
|
|
--conn_h->client_ctx->hcc_n_open_conns;
|
2018-12-27 19:01:17 +00:00
|
|
|
|
|
|
|
cacos = calloc(1, sizeof(*cacos));
|
|
|
|
if (!cacos)
|
2017-09-22 21:00:03 +00:00
|
|
|
{
|
2018-12-27 19:01:17 +00:00
|
|
|
LSQ_ERROR("cannot allocate cacos");
|
|
|
|
exit(1);
|
2017-09-22 21:00:03 +00:00
|
|
|
}
|
2018-12-27 19:01:17 +00:00
|
|
|
eb = prog_eb(conn_h->client_ctx->prog);
|
|
|
|
cacos->client_ctx = conn_h->client_ctx;
|
|
|
|
cacos->event = event_new(eb, -1, 0, create_another_conn_or_stop, cacos);
|
|
|
|
if (!cacos->event)
|
|
|
|
{
|
|
|
|
LSQ_ERROR("cannot allocate event");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
if (0 != event_add(cacos->event, NULL))
|
|
|
|
{
|
|
|
|
LSQ_ERROR("cannot add cacos event");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
event_active(cacos->event, 0, 0);
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
free(conn_h);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2018-05-21 19:02:33 +00:00
|
|
|
static void
|
2019-02-04 13:59:11 +00:00
|
|
|
http_client_on_hsk_done (lsquic_conn_t *conn, enum lsquic_hsk_status status)
|
2018-05-21 19:02:33 +00:00
|
|
|
{
|
2019-01-16 20:13:59 +00:00
|
|
|
lsquic_conn_ctx_t *conn_h;
|
2019-02-04 13:59:11 +00:00
|
|
|
lsquic_conn_ctx_t *conn_ctx = lsquic_conn_get_ctx(conn);
|
|
|
|
struct http_client_ctx *client_ctx = conn_ctx->client_ctx;
|
|
|
|
ssize_t ret;
|
|
|
|
if (status == LSQ_HSK_FAIL)
|
|
|
|
LSQ_INFO("handshake failed");
|
|
|
|
else
|
|
|
|
LSQ_INFO("handshake success %s",
|
|
|
|
status == LSQ_HSK_0RTT_OK ? "with 0-RTT" : "");
|
2019-02-25 14:12:20 +00:00
|
|
|
if (status == LSQ_HSK_OK)
|
2019-02-04 13:59:11 +00:00
|
|
|
{
|
|
|
|
ret = lsquic_conn_get_zero_rtt(conn, client_ctx->hcc_zero_rtt,
|
|
|
|
client_ctx->hcc_zero_rtt_max_len);
|
|
|
|
if (ret > 0)
|
|
|
|
{
|
|
|
|
client_ctx->hcc_zero_rtt_len = ret;
|
2019-02-18 13:40:51 +00:00
|
|
|
LSQ_INFO("get zero_rtt %zu bytes", client_ctx->hcc_zero_rtt_len);
|
2019-02-04 13:59:11 +00:00
|
|
|
client_ctx->hcc_flags |= HCC_RTT_INFO;
|
|
|
|
/* clear file and prepare to write */
|
|
|
|
if (client_ctx->hcc_zero_rtt_file)
|
|
|
|
{
|
|
|
|
client_ctx->hcc_zero_rtt_file = freopen(
|
|
|
|
client_ctx->hcc_zero_rtt_file_name,
|
|
|
|
"wb", client_ctx->hcc_zero_rtt_file);
|
|
|
|
LSQ_DEBUG("reopen and clear zero_rtt file");
|
|
|
|
}
|
|
|
|
/* open file for the first time */
|
|
|
|
if (client_ctx->hcc_zero_rtt_file_name &&
|
|
|
|
!client_ctx->hcc_zero_rtt_file)
|
|
|
|
{
|
|
|
|
client_ctx->hcc_zero_rtt_file = fopen(
|
|
|
|
client_ctx->hcc_zero_rtt_file_name, "wb+");
|
|
|
|
if (client_ctx->hcc_zero_rtt_file)
|
|
|
|
LSQ_DEBUG("opened zero_rtt file");
|
|
|
|
else
|
|
|
|
LSQ_DEBUG("zero_rtt file cannot be created");
|
|
|
|
}
|
|
|
|
/* write to file */
|
|
|
|
if (client_ctx->hcc_zero_rtt_file)
|
|
|
|
{
|
|
|
|
size_t ret2 = fwrite(client_ctx->hcc_zero_rtt, 1,
|
|
|
|
client_ctx->hcc_zero_rtt_len,
|
|
|
|
client_ctx->hcc_zero_rtt_file);
|
2019-02-18 13:40:51 +00:00
|
|
|
LSQ_DEBUG("wrote %zu bytes to zero_rtt file", ret2);
|
2019-02-04 13:59:11 +00:00
|
|
|
if (ret2 == client_ctx->hcc_zero_rtt_len)
|
|
|
|
{
|
|
|
|
fclose(client_ctx->hcc_zero_rtt_file);
|
|
|
|
client_ctx->hcc_zero_rtt_file = NULL;
|
|
|
|
LSQ_DEBUG("close zero_rtt file");
|
|
|
|
}
|
|
|
|
else
|
|
|
|
LSQ_ERROR("did not write full blob to zero_rtt file");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (ret == 0)
|
|
|
|
{
|
|
|
|
LSQ_INFO("zero_rtt not available");
|
|
|
|
} else
|
|
|
|
LSQ_INFO("get_zero_rtt failed %s", strerror(errno));
|
|
|
|
}
|
2019-01-16 20:13:59 +00:00
|
|
|
|
2019-02-04 13:59:11 +00:00
|
|
|
if ((status != LSQ_HSK_FAIL) && s_display_cert_chain)
|
2019-01-16 20:13:59 +00:00
|
|
|
display_cert_chain(conn);
|
|
|
|
|
2019-02-04 13:59:11 +00:00
|
|
|
if (status != LSQ_HSK_FAIL)
|
2019-01-16 20:13:59 +00:00
|
|
|
{
|
|
|
|
conn_h = lsquic_conn_get_ctx(conn);
|
|
|
|
++s_stat_conns_ok;
|
|
|
|
update_sample_stats(&s_stat_to_conn,
|
|
|
|
lsquic_time_now() - conn_h->ch_created);
|
2019-02-18 13:40:51 +00:00
|
|
|
if (TAILQ_EMPTY(&client_ctx->hcc_path_elems))
|
|
|
|
{
|
|
|
|
LSQ_INFO("no paths mode: close connection");
|
|
|
|
lsquic_conn_close(conn_h->conn);
|
|
|
|
}
|
2019-01-16 20:13:59 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
++s_stat_conns_failed;
|
2018-05-21 19:02:33 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
struct lsquic_stream_ctx {
|
|
|
|
lsquic_stream_t *stream;
|
|
|
|
struct http_client_ctx *client_ctx;
|
|
|
|
const char *path;
|
|
|
|
enum {
|
|
|
|
HEADERS_SENT = (1 << 0),
|
2019-01-16 20:13:59 +00:00
|
|
|
PROCESSED_HEADERS = 1 << 1,
|
2017-09-22 21:00:03 +00:00
|
|
|
} sh_flags;
|
2019-01-16 20:13:59 +00:00
|
|
|
lsquic_time_t sh_created;
|
|
|
|
lsquic_time_t sh_ttfb;
|
2017-09-22 21:00:03 +00:00
|
|
|
unsigned count;
|
Latest changes
- [API Change] Sendfile-like functionality is gone. The stream no
longer opens files and deals with file descriptors. (Among other
things, this makes the code more portable.) Three writing functions
are provided:
lsquic_stream_write
lsquic_stream_writev
lsquic_stream_writef (NEW)
lsquic_stream_writef() is given an abstract reader that has function
pointers for size() and read() functions which the user can implement.
This is the most flexible way. lsquic_stream_write() and
lsquic_stream_writev() are now both implemented as wrappers around
lsquic_stream_writef().
- [OPTIMIZATION] When writing to stream, be it within or without the
on_write() callback, place data directly into packet buffer,
bypassing auxiliary data structures. This reduces amount of memory
required, for the amount of data that can be written is limited
by the congestion window.
To support writes outside the on_write() callback, we keep N
outgoing packet buffers per connection which can be written to
by any stream. One half of these are reserved for the highest
priority stream(s), the other half for all other streams. This way,
low-priority streams cannot write instead of high-priority streams
and, on the other hand, low-priority streams get a chance to send
their packets out.
The algorithm is as follows:
- When user writes to stream outside of the callback:
- If this is the highest priority stream, place it onto the
reserved N/2 queue or fail.
(The actual size of this queue is dynamic -- MAX(N/2, CWND) --
rather than N/2, allowing high-priority streams to write as
much as can be sent.)
- If the stream is not the highest priority, try to place the
data onto the reserved N/2 queue or fail.
- When tick occurs *and* more packets can be scheduled:
- Transfer packets from the high N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for highest-priority streams,
placing resulting packets directly onto the scheduled queue.
- If more scheduling is allowed:
- Transfer packets from the low N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for non-highest-priority streams,
placing resulting packets directly onto the scheduled queue
The number N is currently 20, but it could be varied based on
resource usage.
- If stream is created due to incoming headers, make headers readable
from on_new.
- Outgoing packets are no longer marked non-writeable to prevent placing
more than one STREAM frame from the same stream into a single packet.
This property is maintained via code flow and an explicit check.
Packets for stream data are allocated using a special function.
- STREAM frame elision is cheaper, as we only perform it if a reset
stream has outgoing packets referencing it.
- lsquic_packet_out_t is smaller, as stream_rec elements are now
inside a union.
2017-10-31 13:35:58 +00:00
|
|
|
struct lsquic_reader reader;
|
2017-09-22 21:00:03 +00:00
|
|
|
};
|
|
|
|
|
2018-05-16 19:48:43 +00:00
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
static lsquic_stream_ctx_t *
|
|
|
|
http_client_on_new_stream (void *stream_if_ctx, lsquic_stream_t *stream)
|
|
|
|
{
|
|
|
|
const int pushed = lsquic_stream_is_pushed(stream);
|
|
|
|
|
|
|
|
if (pushed)
|
|
|
|
{
|
|
|
|
LSQ_INFO("not accepting server push");
|
|
|
|
lsquic_stream_refuse_push(stream);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
lsquic_stream_ctx_t *st_h = calloc(1, sizeof(*st_h));
|
|
|
|
st_h->stream = stream;
|
|
|
|
st_h->client_ctx = stream_if_ctx;
|
2019-01-16 20:13:59 +00:00
|
|
|
st_h->sh_created = lsquic_time_now();
|
2017-09-22 21:00:03 +00:00
|
|
|
if (st_h->client_ctx->hcc_cur_pe)
|
|
|
|
{
|
|
|
|
st_h->client_ctx->hcc_cur_pe = TAILQ_NEXT(
|
|
|
|
st_h->client_ctx->hcc_cur_pe, next_pe);
|
|
|
|
if (!st_h->client_ctx->hcc_cur_pe) /* Wrap around */
|
|
|
|
st_h->client_ctx->hcc_cur_pe =
|
|
|
|
TAILQ_FIRST(&st_h->client_ctx->hcc_path_elems);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
st_h->client_ctx->hcc_cur_pe = TAILQ_FIRST(
|
|
|
|
&st_h->client_ctx->hcc_path_elems);
|
|
|
|
st_h->path = st_h->client_ctx->hcc_cur_pe->path;
|
Latest changes
- [API Change] Sendfile-like functionality is gone. The stream no
longer opens files and deals with file descriptors. (Among other
things, this makes the code more portable.) Three writing functions
are provided:
lsquic_stream_write
lsquic_stream_writev
lsquic_stream_writef (NEW)
lsquic_stream_writef() is given an abstract reader that has function
pointers for size() and read() functions which the user can implement.
This is the most flexible way. lsquic_stream_write() and
lsquic_stream_writev() are now both implemented as wrappers around
lsquic_stream_writef().
- [OPTIMIZATION] When writing to stream, be it within or without the
on_write() callback, place data directly into packet buffer,
bypassing auxiliary data structures. This reduces amount of memory
required, for the amount of data that can be written is limited
by the congestion window.
To support writes outside the on_write() callback, we keep N
outgoing packet buffers per connection which can be written to
by any stream. One half of these are reserved for the highest
priority stream(s), the other half for all other streams. This way,
low-priority streams cannot write instead of high-priority streams
and, on the other hand, low-priority streams get a chance to send
their packets out.
The algorithm is as follows:
- When user writes to stream outside of the callback:
- If this is the highest priority stream, place it onto the
reserved N/2 queue or fail.
(The actual size of this queue is dynamic -- MAX(N/2, CWND) --
rather than N/2, allowing high-priority streams to write as
much as can be sent.)
- If the stream is not the highest priority, try to place the
data onto the reserved N/2 queue or fail.
- When tick occurs *and* more packets can be scheduled:
- Transfer packets from the high N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for highest-priority streams,
placing resulting packets directly onto the scheduled queue.
- If more scheduling is allowed:
- Transfer packets from the low N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for non-highest-priority streams,
placing resulting packets directly onto the scheduled queue
The number N is currently 20, but it could be varied based on
resource usage.
- If stream is created due to incoming headers, make headers readable
from on_new.
- Outgoing packets are no longer marked non-writeable to prevent placing
more than one STREAM frame from the same stream into a single packet.
This property is maintained via code flow and an explicit check.
Packets for stream data are allocated using a special function.
- STREAM frame elision is cheaper, as we only perform it if a reset
stream has outgoing packets referencing it.
- lsquic_packet_out_t is smaller, as stream_rec elements are now
inside a union.
2017-10-31 13:35:58 +00:00
|
|
|
if (st_h->client_ctx->payload)
|
|
|
|
{
|
|
|
|
st_h->reader.lsqr_read = test_reader_read;
|
|
|
|
st_h->reader.lsqr_size = test_reader_size;
|
|
|
|
st_h->reader.lsqr_ctx = create_lsquic_reader_ctx(st_h->client_ctx->payload);
|
|
|
|
if (!st_h->reader.lsqr_ctx)
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
st_h->reader.lsqr_ctx = NULL;
|
2017-09-22 21:00:03 +00:00
|
|
|
LSQ_INFO("created new stream, path: %s", st_h->path);
|
|
|
|
lsquic_stream_wantwrite(stream, 1);
|
2019-01-21 14:07:02 +00:00
|
|
|
if (randomly_reprioritize_streams)
|
|
|
|
lsquic_stream_set_priority(stream, 1 + (random() & 0xFF));
|
2017-09-22 21:00:03 +00:00
|
|
|
|
|
|
|
return st_h;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
send_headers (lsquic_stream_ctx_t *st_h)
|
|
|
|
{
|
2018-05-16 19:48:43 +00:00
|
|
|
const char *hostname = st_h->client_ctx->hostname;
|
|
|
|
if (!hostname)
|
|
|
|
hostname = st_h->client_ctx->prog->prog_hostname;
|
2017-09-22 21:00:03 +00:00
|
|
|
lsquic_http_header_t headers_arr[] = {
|
|
|
|
{
|
|
|
|
.name = { .iov_base = ":method", .iov_len = 7, },
|
|
|
|
.value = { .iov_base = (void *) st_h->client_ctx->method,
|
|
|
|
.iov_len = strlen(st_h->client_ctx->method), },
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = { .iov_base = ":scheme", .iov_len = 7, },
|
2019-03-05 21:56:02 +00:00
|
|
|
.value = { .iov_base = "https", .iov_len = 5, }
|
2017-09-22 21:00:03 +00:00
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = { .iov_base = ":path", .iov_len = 5, },
|
|
|
|
.value = { .iov_base = (void *) st_h->path,
|
|
|
|
.iov_len = strlen(st_h->path), },
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = { ":authority", 10, },
|
2018-05-16 19:48:43 +00:00
|
|
|
.value = { .iov_base = (void *) hostname,
|
|
|
|
.iov_len = strlen(hostname), },
|
2017-09-22 21:00:03 +00:00
|
|
|
},
|
|
|
|
/*
|
|
|
|
{
|
|
|
|
.name = { "host", 4 },
|
|
|
|
.value = { .iov_base = (void *) st_h->client_ctx->hostname,
|
|
|
|
.iov_len = strlen(st_h->client_ctx->hostname), },
|
|
|
|
},
|
|
|
|
*/
|
|
|
|
{
|
|
|
|
.name = { .iov_base = "user-agent", .iov_len = 10, },
|
|
|
|
.value = { .iov_base = (char *) st_h->client_ctx->prog->prog_settings.es_ua,
|
|
|
|
.iov_len = strlen(st_h->client_ctx->prog->prog_settings.es_ua), },
|
|
|
|
},
|
|
|
|
/* The following headers only gets sent if there is request payload: */
|
|
|
|
{
|
|
|
|
.name = { .iov_base = "content-type", .iov_len = 12, },
|
|
|
|
.value = { .iov_base = "application/octet-stream", .iov_len = 24, },
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.name = { .iov_base = "content-length", .iov_len = 14, },
|
|
|
|
.value = { .iov_base = (void *) st_h->client_ctx->payload_size,
|
|
|
|
.iov_len = strlen(st_h->client_ctx->payload_size), },
|
|
|
|
},
|
|
|
|
};
|
|
|
|
lsquic_http_headers_t headers = {
|
|
|
|
.count = sizeof(headers_arr) / sizeof(headers_arr[0]),
|
|
|
|
.headers = headers_arr,
|
|
|
|
};
|
|
|
|
if (!st_h->client_ctx->payload)
|
|
|
|
headers.count -= 2;
|
|
|
|
if (0 != lsquic_stream_send_headers(st_h->stream, &headers,
|
|
|
|
st_h->client_ctx->payload == NULL))
|
|
|
|
{
|
|
|
|
LSQ_ERROR("cannot send headers: %s", strerror(errno));
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2018-08-17 15:44:54 +00:00
|
|
|
/* This is here to exercise lsquic_conn_get_server_cert_chain() API */
|
|
|
|
static void
|
|
|
|
display_cert_chain (lsquic_conn_t *conn)
|
|
|
|
{
|
|
|
|
STACK_OF(X509) *chain;
|
|
|
|
X509_NAME *name;
|
|
|
|
X509 *cert;
|
|
|
|
unsigned i;
|
|
|
|
char buf[100];
|
|
|
|
|
|
|
|
chain = lsquic_conn_get_server_cert_chain(conn);
|
|
|
|
if (!chain)
|
|
|
|
{
|
|
|
|
LSQ_WARN("could not get server certificate chain");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (i = 0; i < sk_X509_num(chain); ++i)
|
|
|
|
{
|
|
|
|
cert = sk_X509_value(chain, i);
|
|
|
|
name = X509_get_subject_name(cert);
|
|
|
|
LSQ_INFO("cert #%u: name: %s", i,
|
|
|
|
X509_NAME_oneline(name, buf, sizeof(buf)));
|
2018-08-27 17:55:06 +00:00
|
|
|
X509_free(cert);
|
2018-08-17 15:44:54 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
sk_X509_free(chain);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
static void
|
|
|
|
http_client_on_write (lsquic_stream_t *stream, lsquic_stream_ctx_t *st_h)
|
|
|
|
{
|
Latest changes
- [API Change] Sendfile-like functionality is gone. The stream no
longer opens files and deals with file descriptors. (Among other
things, this makes the code more portable.) Three writing functions
are provided:
lsquic_stream_write
lsquic_stream_writev
lsquic_stream_writef (NEW)
lsquic_stream_writef() is given an abstract reader that has function
pointers for size() and read() functions which the user can implement.
This is the most flexible way. lsquic_stream_write() and
lsquic_stream_writev() are now both implemented as wrappers around
lsquic_stream_writef().
- [OPTIMIZATION] When writing to stream, be it within or without the
on_write() callback, place data directly into packet buffer,
bypassing auxiliary data structures. This reduces amount of memory
required, for the amount of data that can be written is limited
by the congestion window.
To support writes outside the on_write() callback, we keep N
outgoing packet buffers per connection which can be written to
by any stream. One half of these are reserved for the highest
priority stream(s), the other half for all other streams. This way,
low-priority streams cannot write instead of high-priority streams
and, on the other hand, low-priority streams get a chance to send
their packets out.
The algorithm is as follows:
- When user writes to stream outside of the callback:
- If this is the highest priority stream, place it onto the
reserved N/2 queue or fail.
(The actual size of this queue is dynamic -- MAX(N/2, CWND) --
rather than N/2, allowing high-priority streams to write as
much as can be sent.)
- If the stream is not the highest priority, try to place the
data onto the reserved N/2 queue or fail.
- When tick occurs *and* more packets can be scheduled:
- Transfer packets from the high N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for highest-priority streams,
placing resulting packets directly onto the scheduled queue.
- If more scheduling is allowed:
- Transfer packets from the low N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for non-highest-priority streams,
placing resulting packets directly onto the scheduled queue
The number N is currently 20, but it could be varied based on
resource usage.
- If stream is created due to incoming headers, make headers readable
from on_new.
- Outgoing packets are no longer marked non-writeable to prevent placing
more than one STREAM frame from the same stream into a single packet.
This property is maintained via code flow and an explicit check.
Packets for stream data are allocated using a special function.
- STREAM frame elision is cheaper, as we only perform it if a reset
stream has outgoing packets referencing it.
- lsquic_packet_out_t is smaller, as stream_rec elements are now
inside a union.
2017-10-31 13:35:58 +00:00
|
|
|
ssize_t nw;
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
if (st_h->sh_flags & HEADERS_SENT)
|
|
|
|
{
|
Latest changes
- [API Change] Sendfile-like functionality is gone. The stream no
longer opens files and deals with file descriptors. (Among other
things, this makes the code more portable.) Three writing functions
are provided:
lsquic_stream_write
lsquic_stream_writev
lsquic_stream_writef (NEW)
lsquic_stream_writef() is given an abstract reader that has function
pointers for size() and read() functions which the user can implement.
This is the most flexible way. lsquic_stream_write() and
lsquic_stream_writev() are now both implemented as wrappers around
lsquic_stream_writef().
- [OPTIMIZATION] When writing to stream, be it within or without the
on_write() callback, place data directly into packet buffer,
bypassing auxiliary data structures. This reduces amount of memory
required, for the amount of data that can be written is limited
by the congestion window.
To support writes outside the on_write() callback, we keep N
outgoing packet buffers per connection which can be written to
by any stream. One half of these are reserved for the highest
priority stream(s), the other half for all other streams. This way,
low-priority streams cannot write instead of high-priority streams
and, on the other hand, low-priority streams get a chance to send
their packets out.
The algorithm is as follows:
- When user writes to stream outside of the callback:
- If this is the highest priority stream, place it onto the
reserved N/2 queue or fail.
(The actual size of this queue is dynamic -- MAX(N/2, CWND) --
rather than N/2, allowing high-priority streams to write as
much as can be sent.)
- If the stream is not the highest priority, try to place the
data onto the reserved N/2 queue or fail.
- When tick occurs *and* more packets can be scheduled:
- Transfer packets from the high N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for highest-priority streams,
placing resulting packets directly onto the scheduled queue.
- If more scheduling is allowed:
- Transfer packets from the low N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for non-highest-priority streams,
placing resulting packets directly onto the scheduled queue
The number N is currently 20, but it could be varied based on
resource usage.
- If stream is created due to incoming headers, make headers readable
from on_new.
- Outgoing packets are no longer marked non-writeable to prevent placing
more than one STREAM frame from the same stream into a single packet.
This property is maintained via code flow and an explicit check.
Packets for stream data are allocated using a special function.
- STREAM frame elision is cheaper, as we only perform it if a reset
stream has outgoing packets referencing it.
- lsquic_packet_out_t is smaller, as stream_rec elements are now
inside a union.
2017-10-31 13:35:58 +00:00
|
|
|
if (st_h->client_ctx->payload && test_reader_size(st_h->reader.lsqr_ctx) > 0)
|
2017-09-22 21:00:03 +00:00
|
|
|
{
|
Latest changes
- [API Change] Sendfile-like functionality is gone. The stream no
longer opens files and deals with file descriptors. (Among other
things, this makes the code more portable.) Three writing functions
are provided:
lsquic_stream_write
lsquic_stream_writev
lsquic_stream_writef (NEW)
lsquic_stream_writef() is given an abstract reader that has function
pointers for size() and read() functions which the user can implement.
This is the most flexible way. lsquic_stream_write() and
lsquic_stream_writev() are now both implemented as wrappers around
lsquic_stream_writef().
- [OPTIMIZATION] When writing to stream, be it within or without the
on_write() callback, place data directly into packet buffer,
bypassing auxiliary data structures. This reduces amount of memory
required, for the amount of data that can be written is limited
by the congestion window.
To support writes outside the on_write() callback, we keep N
outgoing packet buffers per connection which can be written to
by any stream. One half of these are reserved for the highest
priority stream(s), the other half for all other streams. This way,
low-priority streams cannot write instead of high-priority streams
and, on the other hand, low-priority streams get a chance to send
their packets out.
The algorithm is as follows:
- When user writes to stream outside of the callback:
- If this is the highest priority stream, place it onto the
reserved N/2 queue or fail.
(The actual size of this queue is dynamic -- MAX(N/2, CWND) --
rather than N/2, allowing high-priority streams to write as
much as can be sent.)
- If the stream is not the highest priority, try to place the
data onto the reserved N/2 queue or fail.
- When tick occurs *and* more packets can be scheduled:
- Transfer packets from the high N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for highest-priority streams,
placing resulting packets directly onto the scheduled queue.
- If more scheduling is allowed:
- Transfer packets from the low N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for non-highest-priority streams,
placing resulting packets directly onto the scheduled queue
The number N is currently 20, but it could be varied based on
resource usage.
- If stream is created due to incoming headers, make headers readable
from on_new.
- Outgoing packets are no longer marked non-writeable to prevent placing
more than one STREAM frame from the same stream into a single packet.
This property is maintained via code flow and an explicit check.
Packets for stream data are allocated using a special function.
- STREAM frame elision is cheaper, as we only perform it if a reset
stream has outgoing packets referencing it.
- lsquic_packet_out_t is smaller, as stream_rec elements are now
inside a union.
2017-10-31 13:35:58 +00:00
|
|
|
nw = lsquic_stream_writef(stream, &st_h->reader);
|
|
|
|
if (nw < 0)
|
2017-09-22 21:00:03 +00:00
|
|
|
{
|
Latest changes
- [API Change] Sendfile-like functionality is gone. The stream no
longer opens files and deals with file descriptors. (Among other
things, this makes the code more portable.) Three writing functions
are provided:
lsquic_stream_write
lsquic_stream_writev
lsquic_stream_writef (NEW)
lsquic_stream_writef() is given an abstract reader that has function
pointers for size() and read() functions which the user can implement.
This is the most flexible way. lsquic_stream_write() and
lsquic_stream_writev() are now both implemented as wrappers around
lsquic_stream_writef().
- [OPTIMIZATION] When writing to stream, be it within or without the
on_write() callback, place data directly into packet buffer,
bypassing auxiliary data structures. This reduces amount of memory
required, for the amount of data that can be written is limited
by the congestion window.
To support writes outside the on_write() callback, we keep N
outgoing packet buffers per connection which can be written to
by any stream. One half of these are reserved for the highest
priority stream(s), the other half for all other streams. This way,
low-priority streams cannot write instead of high-priority streams
and, on the other hand, low-priority streams get a chance to send
their packets out.
The algorithm is as follows:
- When user writes to stream outside of the callback:
- If this is the highest priority stream, place it onto the
reserved N/2 queue or fail.
(The actual size of this queue is dynamic -- MAX(N/2, CWND) --
rather than N/2, allowing high-priority streams to write as
much as can be sent.)
- If the stream is not the highest priority, try to place the
data onto the reserved N/2 queue or fail.
- When tick occurs *and* more packets can be scheduled:
- Transfer packets from the high N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for highest-priority streams,
placing resulting packets directly onto the scheduled queue.
- If more scheduling is allowed:
- Transfer packets from the low N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for non-highest-priority streams,
placing resulting packets directly onto the scheduled queue
The number N is currently 20, but it could be varied based on
resource usage.
- If stream is created due to incoming headers, make headers readable
from on_new.
- Outgoing packets are no longer marked non-writeable to prevent placing
more than one STREAM frame from the same stream into a single packet.
This property is maintained via code flow and an explicit check.
Packets for stream data are allocated using a special function.
- STREAM frame elision is cheaper, as we only perform it if a reset
stream has outgoing packets referencing it.
- lsquic_packet_out_t is smaller, as stream_rec elements are now
inside a union.
2017-10-31 13:35:58 +00:00
|
|
|
LSQ_ERROR("write error: %s", strerror(errno));
|
2017-09-22 21:00:03 +00:00
|
|
|
exit(1);
|
|
|
|
}
|
Latest changes
- [API Change] Sendfile-like functionality is gone. The stream no
longer opens files and deals with file descriptors. (Among other
things, this makes the code more portable.) Three writing functions
are provided:
lsquic_stream_write
lsquic_stream_writev
lsquic_stream_writef (NEW)
lsquic_stream_writef() is given an abstract reader that has function
pointers for size() and read() functions which the user can implement.
This is the most flexible way. lsquic_stream_write() and
lsquic_stream_writev() are now both implemented as wrappers around
lsquic_stream_writef().
- [OPTIMIZATION] When writing to stream, be it within or without the
on_write() callback, place data directly into packet buffer,
bypassing auxiliary data structures. This reduces amount of memory
required, for the amount of data that can be written is limited
by the congestion window.
To support writes outside the on_write() callback, we keep N
outgoing packet buffers per connection which can be written to
by any stream. One half of these are reserved for the highest
priority stream(s), the other half for all other streams. This way,
low-priority streams cannot write instead of high-priority streams
and, on the other hand, low-priority streams get a chance to send
their packets out.
The algorithm is as follows:
- When user writes to stream outside of the callback:
- If this is the highest priority stream, place it onto the
reserved N/2 queue or fail.
(The actual size of this queue is dynamic -- MAX(N/2, CWND) --
rather than N/2, allowing high-priority streams to write as
much as can be sent.)
- If the stream is not the highest priority, try to place the
data onto the reserved N/2 queue or fail.
- When tick occurs *and* more packets can be scheduled:
- Transfer packets from the high N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for highest-priority streams,
placing resulting packets directly onto the scheduled queue.
- If more scheduling is allowed:
- Transfer packets from the low N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for non-highest-priority streams,
placing resulting packets directly onto the scheduled queue
The number N is currently 20, but it could be varied based on
resource usage.
- If stream is created due to incoming headers, make headers readable
from on_new.
- Outgoing packets are no longer marked non-writeable to prevent placing
more than one STREAM frame from the same stream into a single packet.
This property is maintained via code flow and an explicit check.
Packets for stream data are allocated using a special function.
- STREAM frame elision is cheaper, as we only perform it if a reset
stream has outgoing packets referencing it.
- lsquic_packet_out_t is smaller, as stream_rec elements are now
inside a union.
2017-10-31 13:35:58 +00:00
|
|
|
if (test_reader_size(st_h->reader.lsqr_ctx) > 0)
|
|
|
|
{
|
|
|
|
lsquic_stream_wantwrite(stream, 1);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
lsquic_stream_shutdown(stream, 1);
|
|
|
|
lsquic_stream_wantread(stream, 1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
lsquic_stream_shutdown(stream, 1);
|
|
|
|
lsquic_stream_wantread(stream, 1);
|
2017-09-22 21:00:03 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
st_h->sh_flags |= HEADERS_SENT;
|
|
|
|
send_headers(st_h);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
http_client_on_read (lsquic_stream_t *stream, lsquic_stream_ctx_t *st_h)
|
|
|
|
{
|
2018-02-26 21:01:16 +00:00
|
|
|
struct http_client_ctx *const client_ctx = st_h->client_ctx;
|
2018-08-28 13:59:47 +00:00
|
|
|
struct hset *hset;
|
2017-09-22 21:00:03 +00:00
|
|
|
ssize_t nread;
|
|
|
|
unsigned old_prio, new_prio;
|
|
|
|
unsigned char buf[0x200];
|
|
|
|
unsigned nreads = 0;
|
2018-03-12 22:25:01 +00:00
|
|
|
#ifdef WIN32
|
2018-05-16 19:48:43 +00:00
|
|
|
srand(GetTickCount());
|
2018-03-12 22:25:01 +00:00
|
|
|
#endif
|
|
|
|
|
2019-01-21 14:07:02 +00:00
|
|
|
do
|
2018-08-28 13:59:47 +00:00
|
|
|
{
|
2019-01-21 14:07:02 +00:00
|
|
|
if (g_header_bypass && !(st_h->sh_flags & PROCESSED_HEADERS))
|
2018-08-28 13:59:47 +00:00
|
|
|
{
|
2019-01-21 14:07:02 +00:00
|
|
|
hset = lsquic_stream_get_hset(stream);
|
|
|
|
if (!hset)
|
|
|
|
{
|
|
|
|
LSQ_ERROR("could not get header set from stream");
|
|
|
|
exit(2);
|
|
|
|
}
|
|
|
|
st_h->sh_ttfb = lsquic_time_now();
|
|
|
|
update_sample_stats(&s_stat_ttfb, st_h->sh_ttfb - st_h->sh_created);
|
|
|
|
if (s_discard_response)
|
|
|
|
LSQ_DEBUG("discard response: do not dump headers");
|
|
|
|
else
|
|
|
|
hset_dump(hset, stdout);
|
|
|
|
hset_destroy(hset);
|
|
|
|
st_h->sh_flags |= PROCESSED_HEADERS;
|
2018-08-28 13:59:47 +00:00
|
|
|
}
|
2019-01-21 14:07:02 +00:00
|
|
|
else if (nread = lsquic_stream_read(stream, buf, sizeof(buf)), nread > 0)
|
2017-09-22 21:00:03 +00:00
|
|
|
{
|
2019-01-16 20:13:59 +00:00
|
|
|
s_stat_downloaded_bytes += nread;
|
|
|
|
if (!g_header_bypass && !(st_h->sh_flags & PROCESSED_HEADERS))
|
|
|
|
{
|
|
|
|
/* First read is assumed to be the first byte */
|
|
|
|
st_h->sh_ttfb = lsquic_time_now();
|
|
|
|
update_sample_stats(&s_stat_ttfb,
|
|
|
|
st_h->sh_ttfb - st_h->sh_created);
|
|
|
|
st_h->sh_flags |= PROCESSED_HEADERS;
|
|
|
|
}
|
|
|
|
if (!s_discard_response)
|
2017-09-22 21:00:03 +00:00
|
|
|
write(STDOUT_FILENO, buf, nread);
|
|
|
|
if (randomly_reprioritize_streams && (st_h->count++ & 0x3F) == 0)
|
|
|
|
{
|
|
|
|
old_prio = lsquic_stream_priority(stream);
|
2018-05-10 12:11:32 +00:00
|
|
|
new_prio = 1 + (random() & 0xFF);
|
2018-02-26 21:01:16 +00:00
|
|
|
#ifndef NDEBUG
|
|
|
|
const int s =
|
|
|
|
#endif
|
|
|
|
lsquic_stream_set_priority(stream, new_prio);
|
2017-09-22 21:00:03 +00:00
|
|
|
assert(s == 0);
|
2019-01-21 14:07:02 +00:00
|
|
|
LSQ_DEBUG("changed stream %u priority from %u to %u",
|
2017-09-22 21:00:03 +00:00
|
|
|
lsquic_stream_id(stream), old_prio, new_prio);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (0 == nread)
|
|
|
|
{
|
2019-01-16 20:13:59 +00:00
|
|
|
update_sample_stats(&s_stat_req, lsquic_time_now() - st_h->sh_ttfb);
|
2018-02-26 21:01:16 +00:00
|
|
|
client_ctx->hcc_flags |= HCC_SEEN_FIN;
|
2017-09-22 21:00:03 +00:00
|
|
|
lsquic_stream_shutdown(stream, 0);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else if (client_ctx->prog->prog_settings.es_rw_once && EWOULDBLOCK == errno)
|
|
|
|
{
|
|
|
|
LSQ_NOTICE("emptied the buffer in 'once' mode");
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
LSQ_ERROR("could not read: %s", strerror(errno));
|
|
|
|
exit(2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (client_ctx->prog->prog_settings.es_rw_once
|
|
|
|
&& nreads++ < 3 /* Emulate just a few reads */);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
http_client_on_close (lsquic_stream_t *stream, lsquic_stream_ctx_t *st_h)
|
|
|
|
{
|
|
|
|
const int pushed = lsquic_stream_is_pushed(stream);
|
|
|
|
if (pushed)
|
|
|
|
{
|
|
|
|
assert(NULL == st_h);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
LSQ_INFO("%s called", __func__);
|
2019-01-09 22:17:38 +00:00
|
|
|
struct http_client_ctx *const client_ctx = st_h->client_ctx;
|
2017-09-22 21:00:03 +00:00
|
|
|
lsquic_conn_t *conn = lsquic_stream_conn(stream);
|
|
|
|
lsquic_conn_ctx_t *conn_h;
|
2019-01-09 22:17:38 +00:00
|
|
|
TAILQ_FOREACH(conn_h, &client_ctx->conn_ctxs, next_ch)
|
2017-09-22 21:00:03 +00:00
|
|
|
if (conn_h->conn == conn)
|
|
|
|
break;
|
|
|
|
assert(conn_h);
|
|
|
|
--conn_h->ch_n_reqs;
|
2019-01-09 22:17:38 +00:00
|
|
|
--conn_h->ch_n_cc_streams;
|
2017-09-22 21:00:03 +00:00
|
|
|
if (0 == conn_h->ch_n_reqs)
|
|
|
|
{
|
|
|
|
LSQ_INFO("all requests completed, closing connection");
|
|
|
|
lsquic_conn_close(conn_h->conn);
|
|
|
|
}
|
|
|
|
else
|
2019-01-09 22:17:38 +00:00
|
|
|
{
|
|
|
|
LSQ_INFO("%u active stream, %u request remain, creating %u new stream",
|
|
|
|
conn_h->ch_n_cc_streams,
|
|
|
|
conn_h->ch_n_reqs - conn_h->ch_n_cc_streams,
|
|
|
|
MIN((conn_h->ch_n_reqs - conn_h->ch_n_cc_streams),
|
|
|
|
(client_ctx->hcc_cc_reqs_per_conn - conn_h->ch_n_cc_streams)));
|
|
|
|
create_streams(client_ctx, conn_h);
|
|
|
|
}
|
Latest changes
- [API Change] Sendfile-like functionality is gone. The stream no
longer opens files and deals with file descriptors. (Among other
things, this makes the code more portable.) Three writing functions
are provided:
lsquic_stream_write
lsquic_stream_writev
lsquic_stream_writef (NEW)
lsquic_stream_writef() is given an abstract reader that has function
pointers for size() and read() functions which the user can implement.
This is the most flexible way. lsquic_stream_write() and
lsquic_stream_writev() are now both implemented as wrappers around
lsquic_stream_writef().
- [OPTIMIZATION] When writing to stream, be it within or without the
on_write() callback, place data directly into packet buffer,
bypassing auxiliary data structures. This reduces amount of memory
required, for the amount of data that can be written is limited
by the congestion window.
To support writes outside the on_write() callback, we keep N
outgoing packet buffers per connection which can be written to
by any stream. One half of these are reserved for the highest
priority stream(s), the other half for all other streams. This way,
low-priority streams cannot write instead of high-priority streams
and, on the other hand, low-priority streams get a chance to send
their packets out.
The algorithm is as follows:
- When user writes to stream outside of the callback:
- If this is the highest priority stream, place it onto the
reserved N/2 queue or fail.
(The actual size of this queue is dynamic -- MAX(N/2, CWND) --
rather than N/2, allowing high-priority streams to write as
much as can be sent.)
- If the stream is not the highest priority, try to place the
data onto the reserved N/2 queue or fail.
- When tick occurs *and* more packets can be scheduled:
- Transfer packets from the high N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for highest-priority streams,
placing resulting packets directly onto the scheduled queue.
- If more scheduling is allowed:
- Transfer packets from the low N/2 queue to the scheduled
queue.
- If more scheduling is allowed:
- Call on_write callbacks for non-highest-priority streams,
placing resulting packets directly onto the scheduled queue
The number N is currently 20, but it could be varied based on
resource usage.
- If stream is created due to incoming headers, make headers readable
from on_new.
- Outgoing packets are no longer marked non-writeable to prevent placing
more than one STREAM frame from the same stream into a single packet.
This property is maintained via code flow and an explicit check.
Packets for stream data are allocated using a special function.
- STREAM frame elision is cheaper, as we only perform it if a reset
stream has outgoing packets referencing it.
- lsquic_packet_out_t is smaller, as stream_rec elements are now
inside a union.
2017-10-31 13:35:58 +00:00
|
|
|
if (st_h->reader.lsqr_ctx)
|
|
|
|
destroy_lsquic_reader_ctx(st_h->reader.lsqr_ctx);
|
2017-09-22 21:00:03 +00:00
|
|
|
free(st_h);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const struct lsquic_stream_if http_client_if = {
|
|
|
|
.on_new_conn = http_client_on_new_conn,
|
|
|
|
.on_conn_closed = http_client_on_conn_closed,
|
|
|
|
.on_new_stream = http_client_on_new_stream,
|
|
|
|
.on_read = http_client_on_read,
|
|
|
|
.on_write = http_client_on_write,
|
|
|
|
.on_close = http_client_on_close,
|
2018-05-21 19:02:33 +00:00
|
|
|
.on_hsk_done = http_client_on_hsk_done,
|
2017-09-22 21:00:03 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
usage (const char *prog)
|
|
|
|
{
|
|
|
|
const char *const slash = strrchr(prog, '/');
|
|
|
|
if (slash)
|
|
|
|
prog = slash + 1;
|
|
|
|
printf(
|
|
|
|
"Usage: %s [opts]\n"
|
|
|
|
"\n"
|
|
|
|
"Options:\n"
|
2019-02-18 13:40:51 +00:00
|
|
|
" -p PATH Path to request. May be specified more than once. If no\n"
|
|
|
|
" path is specified, the connection is closed as soon as\n"
|
|
|
|
" handshake succeeds.\n"
|
2017-09-22 21:00:03 +00:00
|
|
|
" -n CONNS Number of concurrent connections. Defaults to 1.\n"
|
|
|
|
" -r NREQS Total number of requests to send. Defaults to 1.\n"
|
2019-01-09 22:17:38 +00:00
|
|
|
" -R MAXREQS Maximum number of requests per single connection. Some\n"
|
2017-09-22 21:00:03 +00:00
|
|
|
" connections will have fewer requests than this.\n"
|
2019-01-09 22:17:38 +00:00
|
|
|
" -w CONCUR Number of concurrent requests per single connection.\n"
|
|
|
|
" Defaults to 1.\n"
|
2017-09-22 21:00:03 +00:00
|
|
|
" -m METHOD Method. Defaults to GET.\n"
|
|
|
|
" -P PAYLOAD Name of the file that contains payload to be used in the\n"
|
|
|
|
" request. This adds two more headers to the request:\n"
|
|
|
|
" content-type: application/octet-stream and\n"
|
|
|
|
" content-length\n"
|
|
|
|
" -K Discard server response\n"
|
2018-02-26 21:01:16 +00:00
|
|
|
" -I Abort on incomplete reponse from server\n"
|
2018-05-16 19:48:43 +00:00
|
|
|
" -4 Prefer IPv4 when resolving hostname\n"
|
|
|
|
" -6 Prefer IPv6 when resolving hostname\n"
|
2019-02-04 13:59:11 +00:00
|
|
|
" -0 FILE Provide RTT info file (reading or writing)\n"
|
2018-08-17 15:44:54 +00:00
|
|
|
#ifndef WIN32
|
|
|
|
" -C DIR Certificate store. If specified, server certificate will\n"
|
|
|
|
" be verified.\n"
|
2019-01-09 22:17:38 +00:00
|
|
|
#endif
|
2019-01-16 20:13:59 +00:00
|
|
|
" -a Display server certificate chain after successful handshake.\n"
|
|
|
|
" -t Print stats to stdout.\n"
|
|
|
|
" -T FILE Print stats to FILE. If FILE is -, print stats to stdout.\n"
|
2017-09-22 21:00:03 +00:00
|
|
|
, prog);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2018-08-17 15:44:54 +00:00
|
|
|
#ifndef WIN32
|
|
|
|
static X509_STORE *store;
|
|
|
|
|
|
|
|
/* Windows does not have regex... */
|
|
|
|
static int
|
|
|
|
ends_in_pem (const char *s)
|
|
|
|
{
|
|
|
|
int len;
|
|
|
|
|
|
|
|
len = strlen(s);
|
|
|
|
|
|
|
|
return len >= 4
|
|
|
|
&& 0 == strcasecmp(s + len - 4, ".pem");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static X509 *
|
|
|
|
file2cert (const char *path)
|
|
|
|
{
|
|
|
|
X509 *cert = NULL;
|
|
|
|
BIO *in;
|
|
|
|
|
|
|
|
in = BIO_new(BIO_s_file());
|
|
|
|
if (!in)
|
|
|
|
goto end;
|
|
|
|
|
|
|
|
if (BIO_read_filename(in, path) <= 0)
|
|
|
|
goto end;
|
|
|
|
|
|
|
|
cert = PEM_read_bio_X509_AUX(in, NULL, NULL, NULL);
|
|
|
|
|
|
|
|
end:
|
|
|
|
BIO_free(in);
|
|
|
|
return cert;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
init_x509_cert_store (const char *path)
|
|
|
|
{
|
|
|
|
struct dirent *ent;
|
|
|
|
X509 *cert;
|
|
|
|
DIR *dir;
|
|
|
|
char file_path[NAME_MAX];
|
2019-02-04 13:59:11 +00:00
|
|
|
int ret;
|
2018-08-17 15:44:54 +00:00
|
|
|
|
|
|
|
dir = opendir(path);
|
|
|
|
if (!dir)
|
|
|
|
{
|
|
|
|
LSQ_WARN("Cannot open directory `%s': %s", path, strerror(errno));
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
store = X509_STORE_new();
|
|
|
|
|
|
|
|
while ((ent = readdir(dir)))
|
|
|
|
{
|
|
|
|
if (ends_in_pem(ent->d_name))
|
|
|
|
{
|
2019-02-04 13:59:11 +00:00
|
|
|
ret = snprintf(file_path, sizeof(file_path), "%s/%s",
|
|
|
|
path, ent->d_name);
|
|
|
|
if (ret < 0)
|
|
|
|
{
|
|
|
|
LSQ_WARN("file_path formatting error %s", strerror(errno));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
else if ((unsigned)ret >= sizeof(file_path))
|
|
|
|
{
|
|
|
|
LSQ_WARN("file_path was truncated %s", strerror(errno));
|
|
|
|
continue;
|
|
|
|
}
|
2018-08-17 15:44:54 +00:00
|
|
|
cert = file2cert(file_path);
|
|
|
|
if (cert)
|
|
|
|
{
|
|
|
|
if (1 != X509_STORE_add_cert(store, cert))
|
|
|
|
LSQ_WARN("could not add cert from %s", file_path);
|
|
|
|
}
|
|
|
|
else
|
|
|
|
LSQ_WARN("could not read cert from %s", file_path);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
(void) closedir(dir);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static int
|
|
|
|
verify_server_cert (void *ctx, STACK_OF(X509) *chain)
|
|
|
|
{
|
|
|
|
X509_STORE_CTX store_ctx;
|
|
|
|
X509 *cert;
|
|
|
|
int ver;
|
|
|
|
|
|
|
|
if (!store)
|
|
|
|
{
|
|
|
|
if (0 != init_x509_cert_store(ctx))
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
cert = sk_X509_shift(chain);
|
|
|
|
X509_STORE_CTX_init(&store_ctx, store, cert, chain);
|
|
|
|
|
|
|
|
ver = X509_verify_cert(&store_ctx);
|
|
|
|
|
|
|
|
X509_STORE_CTX_cleanup(&store_ctx);
|
|
|
|
|
|
|
|
if (ver != 1)
|
|
|
|
LSQ_WARN("could not verify server certificate");
|
|
|
|
|
|
|
|
return ver == 1 ? 0 : -1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
2018-08-28 13:59:47 +00:00
|
|
|
static void *
|
|
|
|
hset_create (void *hsi_ctx, int is_push_promise)
|
|
|
|
{
|
|
|
|
struct hset *hset;
|
|
|
|
|
2019-01-16 20:13:59 +00:00
|
|
|
if (s_discard_response)
|
|
|
|
return (void *) 1;
|
|
|
|
else if ((hset = malloc(sizeof(*hset))))
|
2018-08-28 13:59:47 +00:00
|
|
|
{
|
|
|
|
STAILQ_INIT(hset);
|
|
|
|
return hset;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static enum lsquic_header_status
|
|
|
|
hset_add_header (void *hset_p, unsigned name_idx,
|
|
|
|
const char *name, unsigned name_len,
|
|
|
|
const char *value, unsigned value_len)
|
|
|
|
{
|
|
|
|
struct hset *hset = hset_p;
|
|
|
|
struct hset_elem *el;
|
|
|
|
|
2019-01-16 20:13:59 +00:00
|
|
|
if (name)
|
|
|
|
s_stat_downloaded_bytes += name_len + value_len + 4; /* ": \r\n" */
|
|
|
|
else
|
|
|
|
s_stat_downloaded_bytes += 2; /* \r\n "*/
|
|
|
|
|
|
|
|
if (s_discard_response)
|
|
|
|
return LSQUIC_HDR_OK;
|
|
|
|
|
2018-08-28 13:59:47 +00:00
|
|
|
if (!name) /* This signals end of headers. We do no post-processing. */
|
|
|
|
return LSQUIC_HDR_OK;
|
|
|
|
|
|
|
|
el = malloc(sizeof(*el));
|
|
|
|
if (!el)
|
|
|
|
return LSQUIC_HDR_ERR_NOMEM;
|
|
|
|
|
|
|
|
el->name = strndup(name, name_len);
|
|
|
|
el->value = strndup(value, value_len);
|
|
|
|
if (!(el->name && el->value))
|
|
|
|
{
|
|
|
|
free(el->name);
|
|
|
|
free(el->value);
|
|
|
|
free(el);
|
|
|
|
return LSQUIC_HDR_ERR_NOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
el->name_idx = name_idx;
|
|
|
|
STAILQ_INSERT_TAIL(hset, el, next);
|
|
|
|
return LSQUIC_HDR_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
hset_destroy (void *hset_p)
|
|
|
|
{
|
|
|
|
struct hset *hset = hset_p;
|
|
|
|
struct hset_elem *el, *next;
|
|
|
|
|
2019-01-16 20:13:59 +00:00
|
|
|
if (!s_discard_response)
|
2018-08-28 13:59:47 +00:00
|
|
|
{
|
2019-01-16 20:13:59 +00:00
|
|
|
for (el = STAILQ_FIRST(hset); el; el = next)
|
|
|
|
{
|
|
|
|
next = STAILQ_NEXT(el, next);
|
|
|
|
free(el->name);
|
|
|
|
free(el->value);
|
|
|
|
free(el);
|
|
|
|
}
|
|
|
|
free(hset);
|
2018-08-28 13:59:47 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void
|
|
|
|
hset_dump (const struct hset *hset, FILE *out)
|
|
|
|
{
|
|
|
|
const struct hset_elem *el;
|
|
|
|
|
|
|
|
STAILQ_FOREACH(el, hset, next)
|
|
|
|
if (el->name_idx)
|
|
|
|
fprintf(out, "%s (static table idx %u): %s\n", el->name,
|
|
|
|
el->name_idx, el->value);
|
|
|
|
else
|
|
|
|
fprintf(out, "%s: %s\n", el->name, el->value);
|
|
|
|
|
|
|
|
fprintf(out, "\n");
|
|
|
|
fflush(out);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* These are basic and for illustration purposes only. You will want to
|
|
|
|
* do your own verification by doing something similar to what is done
|
|
|
|
* in src/liblsquic/lsquic_http1x_if.c
|
|
|
|
*/
|
|
|
|
static const struct lsquic_hset_if header_bypass_api =
|
|
|
|
{
|
|
|
|
.hsi_create_header_set = hset_create,
|
|
|
|
.hsi_process_header = hset_add_header,
|
|
|
|
.hsi_discard_header_set = hset_destroy,
|
|
|
|
};
|
|
|
|
|
|
|
|
|
2019-01-16 20:13:59 +00:00
|
|
|
static void
|
|
|
|
display_stat (FILE *out, const struct sample_stats *stats, const char *name)
|
|
|
|
{
|
|
|
|
long double mean, stddev;
|
|
|
|
|
|
|
|
calc_sample_stats(stats, &mean, &stddev);
|
|
|
|
fprintf(out, "%s: n: %u; min: %.2Lf ms; max: %.2Lf ms; mean: %.2Lf ms; "
|
|
|
|
"sd: %.2Lf ms\n", name, stats->n, (long double) stats->min / 1000,
|
|
|
|
(long double) stats->max / 1000, mean / 1000, stddev / 1000);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
int
|
|
|
|
main (int argc, char **argv)
|
|
|
|
{
|
|
|
|
int opt, s;
|
2019-01-16 20:13:59 +00:00
|
|
|
lsquic_time_t start_time;
|
|
|
|
FILE *stats_fh = NULL;
|
|
|
|
long double elapsed;
|
2017-09-22 21:00:03 +00:00
|
|
|
struct http_client_ctx client_ctx;
|
|
|
|
struct stat st;
|
|
|
|
struct path_elem *pe;
|
|
|
|
struct sport_head sports;
|
|
|
|
struct prog prog;
|
2019-02-04 13:59:11 +00:00
|
|
|
unsigned char zero_rtt[8192];
|
2017-09-22 21:00:03 +00:00
|
|
|
|
|
|
|
TAILQ_INIT(&sports);
|
|
|
|
memset(&client_ctx, 0, sizeof(client_ctx));
|
|
|
|
TAILQ_INIT(&client_ctx.hcc_path_elems);
|
|
|
|
TAILQ_INIT(&client_ctx.conn_ctxs);
|
|
|
|
client_ctx.method = "GET";
|
|
|
|
client_ctx.hcc_concurrency = 1;
|
2019-01-09 22:17:38 +00:00
|
|
|
client_ctx.hcc_cc_reqs_per_conn = 1;
|
2017-09-22 21:00:03 +00:00
|
|
|
client_ctx.hcc_reqs_per_conn = 1;
|
|
|
|
client_ctx.hcc_total_n_reqs = 1;
|
2019-02-04 13:59:11 +00:00
|
|
|
client_ctx.hcc_zero_rtt = (unsigned char *)zero_rtt;
|
|
|
|
client_ctx.hcc_zero_rtt_len = sizeof(zero_rtt);
|
|
|
|
client_ctx.hcc_zero_rtt_max_len = sizeof(zero_rtt);
|
2017-09-22 21:00:03 +00:00
|
|
|
client_ctx.prog = &prog;
|
2018-03-12 22:25:01 +00:00
|
|
|
#ifdef WIN32
|
|
|
|
WSADATA wsd;
|
|
|
|
WSAStartup(MAKEWORD(2, 2), &wsd);
|
|
|
|
#endif
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
prog_init(&prog, LSENG_HTTP, &sports, &http_client_if, &client_ctx);
|
|
|
|
|
2019-02-04 13:59:11 +00:00
|
|
|
while (-1 != (opt = getopt(argc, argv, PROG_OPTS "46Br:R:IKu:EP:M:n:w:H:p:0:h"
|
2018-08-17 15:44:54 +00:00
|
|
|
#ifndef WIN32
|
2019-01-16 20:13:59 +00:00
|
|
|
"C:atT:"
|
2018-08-17 15:44:54 +00:00
|
|
|
#endif
|
|
|
|
)))
|
2017-09-22 21:00:03 +00:00
|
|
|
{
|
|
|
|
switch (opt) {
|
2019-01-16 20:13:59 +00:00
|
|
|
case 'a':
|
|
|
|
++s_display_cert_chain;
|
|
|
|
break;
|
2018-05-16 19:48:43 +00:00
|
|
|
case '4':
|
2018-05-16 16:14:02 +00:00
|
|
|
case '6':
|
2018-05-18 14:39:21 +00:00
|
|
|
prog.prog_ipver = opt - '0';
|
2018-05-16 16:14:02 +00:00
|
|
|
break;
|
2018-08-28 13:59:47 +00:00
|
|
|
case 'B':
|
|
|
|
g_header_bypass = 1;
|
|
|
|
prog.prog_api.ea_hsi_if = &header_bypass_api;
|
|
|
|
prog.prog_api.ea_hsi_ctx = NULL;
|
|
|
|
break;
|
2018-02-26 21:01:16 +00:00
|
|
|
case 'I':
|
|
|
|
client_ctx.hcc_flags |= HCC_ABORT_ON_INCOMPLETE;
|
|
|
|
break;
|
2017-09-22 21:00:03 +00:00
|
|
|
case 'K':
|
2019-01-16 20:13:59 +00:00
|
|
|
++s_discard_response;
|
2017-09-22 21:00:03 +00:00
|
|
|
break;
|
|
|
|
case 'u': /* Accept p<U>sh promise */
|
|
|
|
promise_fd = open(optarg, O_WRONLY|O_CREAT|O_TRUNC, 0644);
|
|
|
|
if (promise_fd < 0)
|
|
|
|
{
|
|
|
|
perror("open");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
prog.prog_settings.es_support_push = 1; /* Pokes into prog */
|
|
|
|
break;
|
|
|
|
case 'E': /* E: randomly reprioritize str<E>ams. Now, that's
|
|
|
|
* pretty random. :)
|
|
|
|
*/
|
|
|
|
randomly_reprioritize_streams = 1;
|
|
|
|
break;
|
|
|
|
case 'n':
|
|
|
|
client_ctx.hcc_concurrency = atoi(optarg);
|
|
|
|
break;
|
2019-01-09 22:17:38 +00:00
|
|
|
case 'w':
|
|
|
|
client_ctx.hcc_cc_reqs_per_conn = atoi(optarg);
|
|
|
|
break;
|
2017-09-22 21:00:03 +00:00
|
|
|
case 'P':
|
|
|
|
client_ctx.payload = optarg;
|
|
|
|
if (0 != stat(optarg, &st))
|
|
|
|
{
|
|
|
|
perror("stat");
|
|
|
|
exit(2);
|
|
|
|
}
|
|
|
|
sprintf(client_ctx.payload_size, "%jd", (intmax_t) st.st_size);
|
|
|
|
break;
|
|
|
|
case 'M':
|
|
|
|
client_ctx.method = optarg;
|
|
|
|
break;
|
|
|
|
case 'r':
|
|
|
|
client_ctx.hcc_total_n_reqs = atoi(optarg);
|
|
|
|
break;
|
|
|
|
case 'R':
|
|
|
|
client_ctx.hcc_reqs_per_conn = atoi(optarg);
|
|
|
|
break;
|
|
|
|
case 'H':
|
|
|
|
client_ctx.hostname = optarg;
|
2018-05-16 19:48:43 +00:00
|
|
|
prog.prog_hostname = optarg; /* Pokes into prog */
|
2017-09-22 21:00:03 +00:00
|
|
|
break;
|
|
|
|
case 'p':
|
|
|
|
pe = calloc(1, sizeof(*pe));
|
|
|
|
pe->path = optarg;
|
|
|
|
TAILQ_INSERT_TAIL(&client_ctx.hcc_path_elems, pe, next_pe);
|
|
|
|
break;
|
|
|
|
case 'h':
|
|
|
|
usage(argv[0]);
|
|
|
|
prog_print_common_options(&prog, stdout);
|
|
|
|
exit(0);
|
2018-08-17 15:44:54 +00:00
|
|
|
#ifndef WIN32
|
|
|
|
case 'C':
|
|
|
|
prog.prog_api.ea_verify_cert = verify_server_cert;
|
|
|
|
prog.prog_api.ea_verify_ctx = optarg;
|
|
|
|
break;
|
|
|
|
#endif
|
2019-01-16 20:13:59 +00:00
|
|
|
case 't':
|
|
|
|
stats_fh = stdout;
|
|
|
|
break;
|
|
|
|
case 'T':
|
|
|
|
if (0 == strcmp(optarg, "-"))
|
|
|
|
stats_fh = stdout;
|
|
|
|
else
|
|
|
|
{
|
|
|
|
stats_fh = fopen(optarg, "w");
|
|
|
|
if (!stats_fh)
|
|
|
|
{
|
|
|
|
perror("fopen");
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
2019-02-04 13:59:11 +00:00
|
|
|
case '0':
|
|
|
|
client_ctx.hcc_zero_rtt_file_name = optarg;
|
|
|
|
client_ctx.hcc_zero_rtt_file = fopen(optarg, "rb+");
|
|
|
|
if (client_ctx.hcc_zero_rtt_file)
|
|
|
|
LSQ_DEBUG("opened zero_rtt file");
|
|
|
|
else
|
|
|
|
LSQ_DEBUG("zero_rtt file is empty, opening later");
|
|
|
|
break;
|
2017-09-22 21:00:03 +00:00
|
|
|
default:
|
|
|
|
if (0 != prog_set_opt(&prog, opt, optarg))
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-01-16 20:13:59 +00:00
|
|
|
#if LSQUIC_CONN_STATS
|
|
|
|
prog.prog_api.ea_stats_fh = stats_fh;
|
|
|
|
#endif
|
|
|
|
|
2019-02-04 13:59:11 +00:00
|
|
|
if (client_ctx.hcc_zero_rtt_file)
|
|
|
|
{
|
|
|
|
size_t ret = fread(client_ctx.hcc_zero_rtt, 1,
|
|
|
|
client_ctx.hcc_zero_rtt_max_len,
|
|
|
|
client_ctx.hcc_zero_rtt_file);
|
|
|
|
if (ret)
|
|
|
|
{
|
|
|
|
client_ctx.hcc_flags |= HCC_RTT_INFO;
|
|
|
|
client_ctx.hcc_zero_rtt_len = ret;
|
2019-02-18 13:40:51 +00:00
|
|
|
LSQ_DEBUG("read %zu bytes from zero_rtt file", ret);
|
2019-02-04 13:59:11 +00:00
|
|
|
}
|
|
|
|
else
|
|
|
|
LSQ_DEBUG("zero_rtt file is empty");
|
|
|
|
}
|
2017-09-22 21:00:03 +00:00
|
|
|
|
2019-01-16 20:13:59 +00:00
|
|
|
start_time = lsquic_time_now();
|
2017-09-22 21:00:03 +00:00
|
|
|
if (0 != prog_prep(&prog))
|
|
|
|
{
|
|
|
|
LSQ_ERROR("could not prep");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
|
|
|
|
|
|
|
create_connections(&client_ctx);
|
|
|
|
|
|
|
|
LSQ_DEBUG("entering event loop");
|
|
|
|
|
|
|
|
s = prog_run(&prog);
|
2019-01-16 20:13:59 +00:00
|
|
|
|
2019-02-04 13:59:11 +00:00
|
|
|
if (client_ctx.hcc_zero_rtt_file)
|
|
|
|
{
|
|
|
|
fclose(client_ctx.hcc_zero_rtt_file);
|
|
|
|
client_ctx.hcc_zero_rtt_file = NULL;
|
|
|
|
LSQ_DEBUG("close zero_rtt file");
|
|
|
|
}
|
|
|
|
|
2019-01-16 20:13:59 +00:00
|
|
|
if (stats_fh)
|
|
|
|
{
|
|
|
|
elapsed = (long double) (lsquic_time_now() - start_time) / 1000000;
|
|
|
|
fprintf(stats_fh, "overall statistics as calculated by %s:\n", argv[0]);
|
|
|
|
display_stat(stats_fh, &s_stat_to_conn, "time for connect");
|
|
|
|
display_stat(stats_fh, &s_stat_req, "time for request");
|
|
|
|
display_stat(stats_fh, &s_stat_ttfb, "time to 1st byte");
|
|
|
|
fprintf(stats_fh, "downloaded %lu application bytes in %.3Lf seconds\n",
|
|
|
|
s_stat_downloaded_bytes, elapsed);
|
|
|
|
fprintf(stats_fh, "%.2Lf reqs/sec; %.0Lf bytes/sec\n",
|
|
|
|
(long double) s_stat_req.n / elapsed,
|
|
|
|
(long double) s_stat_downloaded_bytes / elapsed);
|
2019-01-28 20:41:28 +00:00
|
|
|
fprintf(stats_fh, "read handler count %lu\n", prog.prog_read_count);
|
2019-01-16 20:13:59 +00:00
|
|
|
}
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
prog_cleanup(&prog);
|
|
|
|
if (promise_fd >= 0)
|
|
|
|
(void) close(promise_fd);
|
|
|
|
|
2018-08-27 17:55:06 +00:00
|
|
|
while ((pe = TAILQ_FIRST(&client_ctx.hcc_path_elems)))
|
|
|
|
{
|
|
|
|
TAILQ_REMOVE(&client_ctx.hcc_path_elems, pe, next_pe);
|
|
|
|
free(pe);
|
|
|
|
}
|
|
|
|
|
2017-09-22 21:00:03 +00:00
|
|
|
exit(0 == s ? EXIT_SUCCESS : EXIT_FAILURE);
|
|
|
|
}
|