litespeed-quic/bin/test_common.c

2369 lines
62 KiB
C
Raw Normal View History

/* Copyright (c) 2017 - 2021 LiteSpeed Technologies Inc. See LICENSE. */
#if __GNUC__
2017-09-22 21:00:03 +00:00
#define _GNU_SOURCE /* For struct in6_pktinfo */
#endif
2017-09-22 21:00:03 +00:00
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#if defined(__APPLE__)
# define __APPLE_USE_RFC_3542 1
#endif
#ifndef WIN32
2017-09-22 21:00:03 +00:00
#include <netinet/in.h>
#include <netinet/ip.h>
2017-09-22 21:00:03 +00:00
#include <arpa/inet.h>
#include <sys/socket.h>
#include <unistd.h>
#else
#include <Windows.h>
#include <WinSock2.h>
#include <MSWSock.h>
#include<io.h>
#pragma warning(disable:4996)//posix name deprecated
#define close closesocket
#endif
#include <sys/stat.h>
#include <sys/queue.h>
2017-09-22 21:00:03 +00:00
#include <fcntl.h>
#include "test_config.h"
2020-06-03 04:13:30 +00:00
#if HAVE_REGEX
2020-06-03 04:13:30 +00:00
#ifndef WIN32
#include <regex.h>
2020-06-03 04:13:30 +00:00
#else
#include <pcreposix.h>
#endif
#endif
2017-09-22 21:00:03 +00:00
#include <event2/event.h>
#include "lsquic.h"
#include "test_common.h"
2017-09-22 21:00:03 +00:00
#include "prog.h"
2020-06-03 04:13:30 +00:00
#include "lsxpack_header.h"
2017-09-22 21:00:03 +00:00
#include "../src/liblsquic/lsquic_logger.h"
#define MAX(a, b) ((a) > (b) ? (a) : (b))
#define MIN(a, b) ((a) < (b) ? (a) : (b))
2017-09-22 21:00:03 +00:00
#ifndef LSQUIC_USE_POOLS
#define LSQUIC_USE_POOLS 1
#endif
2017-09-22 21:00:03 +00:00
#if __linux__
# define NDROPPED_SZ CMSG_SPACE(sizeof(uint32_t)) /* SO_RXQ_OVFL */
#else
# define NDROPPED_SZ 0
#endif
#if __linux__ && defined(IP_RECVORIGDSTADDR)
# define DST_MSG_SZ sizeof(struct sockaddr_in)
#elif WIN32
# define DST_MSG_SZ sizeof(struct sockaddr_in)
2017-09-22 21:00:03 +00:00
#elif __linux__
# define DST_MSG_SZ sizeof(struct in_pktinfo)
#else
# define DST_MSG_SZ sizeof(struct sockaddr_in)
#endif
#if ECN_SUPPORTED
#define ECN_SZ CMSG_SPACE(sizeof(int))
#else
#define ECN_SZ 0
#endif
#define MAX_PACKET_SZ 0xffff
2017-09-22 21:00:03 +00:00
#define CTL_SZ (CMSG_SPACE(MAX(DST_MSG_SZ, \
sizeof(struct in6_pktinfo))) + NDROPPED_SZ + ECN_SZ)
2017-09-22 21:00:03 +00:00
/* There are `n_alloc' elements in `vecs', `local_addresses', and
* `peer_addresses' arrays. `ctlmsg_data' is n_alloc * CTL_SZ. Each packets
* gets a single `vecs' element that points somewhere into `packet_data'.
*
* `n_alloc' is calculated at run-time based on the socket's receive buffer
* size.
*/
struct packets_in
{
unsigned char *packet_data;
unsigned char *ctlmsg_data;
#ifndef WIN32
2017-09-22 21:00:03 +00:00
struct iovec *vecs;
#else
WSABUF *vecs;
#endif
#if ECN_SUPPORTED
int *ecn;
#endif
2017-09-22 21:00:03 +00:00
struct sockaddr_storage *local_addresses,
*peer_addresses;
unsigned n_alloc;
unsigned data_sz;
};
#if WIN32
LPFN_WSARECVMSG pfnWSARecvMsg;
GUID recvGuid = WSAID_WSARECVMSG;
LPFN_WSASENDMSG pfnWSASendMsg;
GUID sendGuid = WSAID_WSASENDMSG;
CRITICAL_SECTION initLock;
LONG initialized = 0;
static void getExtensionPtrs()
{
if (InterlockedCompareExchange(&initialized, 1, 0) == 0)
{
InitializeCriticalSection(&initLock);
}
EnterCriticalSection(&initLock);
if(pfnWSARecvMsg == NULL|| pfnWSASendMsg == NULL)
{
SOCKET sock= socket(PF_INET, SOCK_DGRAM, 0);
DWORD dwBytes;
int rc = 0;
if (pfnWSARecvMsg == NULL)
{
rc = WSAIoctl(sock, SIO_GET_EXTENSION_FUNCTION_POINTER, &recvGuid,
sizeof(recvGuid), &pfnWSARecvMsg, sizeof(pfnWSARecvMsg),
&dwBytes, NULL, NULL);
}
if (rc != SOCKET_ERROR)
{
if (pfnWSASendMsg == NULL)
{
rc = WSAIoctl(sock, SIO_GET_EXTENSION_FUNCTION_POINTER,
&sendGuid, sizeof(sendGuid), &pfnWSASendMsg,
sizeof(pfnWSASendMsg), &dwBytes, NULL, NULL);
}
}
if (rc == SOCKET_ERROR)
{
LSQ_ERROR("Can't get extension function pointers: %d",
WSAGetLastError());
}
closesocket(sock);
}
LeaveCriticalSection(&initLock);
}
#endif
2017-09-22 21:00:03 +00:00
static struct packets_in *
allocate_packets_in (SOCKET_TYPE fd)
2017-09-22 21:00:03 +00:00
{
struct packets_in *packs_in;
unsigned n_alloc;
socklen_t opt_len;
int recvsz;
opt_len = sizeof(recvsz);
if (0 != getsockopt(fd, SOL_SOCKET, SO_RCVBUF, (void*)&recvsz, &opt_len))
2017-09-22 21:00:03 +00:00
{
LSQ_ERROR("getsockopt failed: %s", strerror(errno));
return NULL;
}
2020-06-03 04:13:30 +00:00
n_alloc = (unsigned) recvsz / 1370;
2017-09-22 21:00:03 +00:00
LSQ_INFO("socket buffer size: %d bytes; max # packets is set to %u",
recvsz, n_alloc);
2020-06-03 04:13:30 +00:00
recvsz += MAX_PACKET_SZ;
2017-09-22 21:00:03 +00:00
packs_in = malloc(sizeof(*packs_in));
packs_in->data_sz = recvsz;
packs_in->n_alloc = n_alloc;
packs_in->packet_data = malloc(recvsz);
packs_in->ctlmsg_data = malloc(n_alloc * CTL_SZ);
packs_in->vecs = malloc(n_alloc * sizeof(packs_in->vecs[0]));
packs_in->local_addresses = malloc(n_alloc * sizeof(packs_in->local_addresses[0]));
packs_in->peer_addresses = malloc(n_alloc * sizeof(packs_in->peer_addresses[0]));
#if ECN_SUPPORTED
packs_in->ecn = malloc(n_alloc * sizeof(packs_in->ecn[0]));
#endif
2017-09-22 21:00:03 +00:00
return packs_in;
}
static void
free_packets_in (struct packets_in *packs_in)
{
#if ECN_SUPPORTED
free(packs_in->ecn);
#endif
2017-09-22 21:00:03 +00:00
free(packs_in->peer_addresses);
free(packs_in->local_addresses);
free(packs_in->ctlmsg_data);
free(packs_in->vecs);
free(packs_in->packet_data);
free(packs_in);
}
void
sport_destroy (struct service_port *sport)
{
if (sport->ev)
{
event_del(sport->ev);
event_free(sport->ev);
}
if (sport->fd >= 0)
(void) CLOSE_SOCKET(sport->fd);
2017-09-22 21:00:03 +00:00
if (sport->packs_in)
free_packets_in(sport->packs_in);
free(sport->sp_token_buf);
2017-09-22 21:00:03 +00:00
free(sport);
}
struct service_port *
sport_new (const char *optarg, struct prog *prog)
{
struct service_port *const sport = calloc(1, sizeof(*sport));
#if HAVE_REGEX
regex_t re;
regmatch_t matches[5];
int re_code;
const char *port_str;
char errbuf[80];
#else
char *port_str;
#endif
int port, e;
const char *host;
struct addrinfo hints, *res = NULL;
2017-09-22 21:00:03 +00:00
#if __linux__
sport->n_dropped = 0;
sport->drop_init = 0;
#endif
sport->ev = NULL;
sport->packs_in = NULL;
sport->fd = -1;
char *const addr = strdup(optarg);
#if __linux__
char *if_name;
if_name = strrchr(addr, ',');
if (if_name)
{
strncpy(sport->if_name, if_name + 1, sizeof(sport->if_name) - 1);
sport->if_name[ sizeof(sport->if_name) - 1 ] = '\0';
2017-09-22 21:00:03 +00:00
*if_name = '\0';
}
else
sport->if_name[0] = '\0';
#endif
#if HAVE_REGEX
re_code = regcomp(&re, "^(.*):([0-9][0-9]*)$"
"|^([0-9][0-9]*)$"
"|^(..*)$"
, REG_EXTENDED);
if (re_code != 0)
{
regerror(re_code, &re, errbuf, sizeof(errbuf));
LSQ_ERROR("cannot compile regex: %s", errbuf);
goto err;
}
if (0 != regexec(&re, addr, sizeof(matches) / sizeof(matches[0]),
matches, 0))
{
LSQ_ERROR("Invalid argument `%s'", addr);
goto err;
}
if (matches[1].rm_so >= 0)
{
addr[ matches[1].rm_so + matches[1].rm_eo ] = '\0';
host = addr;
port_str = &addr[ matches[2].rm_so ];
port = atoi(port_str);
}
else if (matches[3].rm_so >= 0)
{
if (!prog->prog_hostname)
{
LSQ_ERROR("hostname is not specified");
goto err;
}
host = prog->prog_hostname;
port_str = &addr[ matches[3].rm_so ];
port = atoi(port_str);
}
else
{
assert(matches[4].rm_so >= 0);
host = addr;
port_str = "443";
port = 443;
}
#else
host = addr;
port_str = strrchr(addr, ':');
if (port_str)
{
*port_str++ = '\0';
port = atoi(port_str);
}
else
{
port_str = "443";
port = 443;
}
#endif
assert(host);
LSQ_DEBUG("host: %s; port: %d", host, port);
if (strlen(host) > sizeof(sport->host) - 1)
{
LSQ_ERROR("argument `%s' too long", host);
goto err;
}
strcpy(sport->host, host);
2017-09-22 21:00:03 +00:00
struct sockaddr_in *const sa4 = (void *) &sport->sas;
struct sockaddr_in6 *const sa6 = (void *) &sport->sas;
if (inet_pton(AF_INET, host, &sa4->sin_addr)) {
sa4->sin_family = AF_INET;
sa4->sin_port = htons(port);
} else if (memset(sa6, 0, sizeof(*sa6)),
inet_pton(AF_INET6, host, &sa6->sin6_addr)) {
sa6->sin6_family = AF_INET6;
sa6->sin6_port = htons(port);
} else
{
memset(&hints, 0, sizeof(hints));
hints.ai_flags = AI_NUMERICSERV;
if (prog->prog_ipver == 4)
hints.ai_family = AF_INET;
else if (prog->prog_ipver == 6)
hints.ai_family = AF_INET6;
e = getaddrinfo(host, port_str, &hints, &res);
if (e != 0)
{
LSQ_ERROR("could not resolve %s:%s: %s", host, port_str,
gai_strerror(e));
goto err;
}
if (res->ai_addrlen > sizeof(sport->sas))
{
LSQ_ERROR("resolved socket length is too long");
goto err;
}
memcpy(&sport->sas, res->ai_addr, res->ai_addrlen);
if (!prog->prog_hostname)
prog->prog_hostname = sport->host;
}
#if HAVE_REGEX
if (0 == re_code)
regfree(&re);
#endif
if (res)
freeaddrinfo(res);
2017-09-22 21:00:03 +00:00
free(addr);
sport->sp_prog = prog;
return sport;
err:
#if HAVE_REGEX
if (0 == re_code)
regfree(&re);
#endif
if (res)
freeaddrinfo(res);
2017-09-22 21:00:03 +00:00
free(sport);
free(addr);
return NULL;
}
/* Replace IP address part of `sa' with that provided in ancillary messages
* in `msg'.
*/
static void
proc_ancillary (
#ifndef WIN32
struct msghdr
#else
WSAMSG
#endif
*msg, struct sockaddr_storage *storage
2017-09-22 21:00:03 +00:00
#if __linux__
, uint32_t *n_dropped
#endif
#if ECN_SUPPORTED
, int *ecn
2017-09-22 21:00:03 +00:00
#endif
)
{
const struct in6_pktinfo *in6_pkt;
struct cmsghdr *cmsg;
for (cmsg = CMSG_FIRSTHDR(msg); cmsg; cmsg = CMSG_NXTHDR(msg, cmsg))
{
if (cmsg->cmsg_level == IPPROTO_IP &&
cmsg->cmsg_type ==
#if __linux__ && defined(IP_RECVORIGDSTADDR)
IP_ORIGDSTADDR
#elif __linux__ || WIN32 || __APPLE__
2017-09-22 21:00:03 +00:00
IP_PKTINFO
#else
IP_RECVDSTADDR
#endif
)
{
#if __linux__ && defined(IP_RECVORIGDSTADDR)
memcpy(storage, CMSG_DATA(cmsg), sizeof(struct sockaddr_in));
#elif WIN32
const struct in_pktinfo *in_pkt;
in_pkt = (void *) WSA_CMSG_DATA(cmsg);
((struct sockaddr_in *) storage)->sin_addr = in_pkt->ipi_addr;
#elif __linux__ || __APPLE__
2017-09-22 21:00:03 +00:00
const struct in_pktinfo *in_pkt;
in_pkt = (void *) CMSG_DATA(cmsg);
((struct sockaddr_in *) storage)->sin_addr = in_pkt->ipi_addr;
#else
memcpy(&((struct sockaddr_in *) storage)->sin_addr,
CMSG_DATA(cmsg), sizeof(struct in_addr));
#endif
}
else if (cmsg->cmsg_level == IPPROTO_IPV6 &&
cmsg->cmsg_type == IPV6_PKTINFO)
{
#ifndef WIN32
2017-09-22 21:00:03 +00:00
in6_pkt = (void *) CMSG_DATA(cmsg);
#else
in6_pkt = (void *) WSA_CMSG_DATA(cmsg);
#endif
2017-09-22 21:00:03 +00:00
((struct sockaddr_in6 *) storage)->sin6_addr =
in6_pkt->ipi6_addr;
}
#if __linux__
else if (cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SO_RXQ_OVFL)
memcpy(n_dropped, CMSG_DATA(cmsg), sizeof(*n_dropped));
#endif
#if ECN_SUPPORTED
else if ((cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_TOS)
|| (cmsg->cmsg_level == IPPROTO_IPV6
&& cmsg->cmsg_type == IPV6_TCLASS))
{
memcpy(ecn, CMSG_DATA(cmsg), sizeof(*ecn));
*ecn &= IPTOS_ECN_MASK;
}
#ifdef __FreeBSD__
else if (cmsg->cmsg_level == IPPROTO_IP
&& cmsg->cmsg_type == IP_RECVTOS)
{
unsigned char tos;
memcpy(&tos, CMSG_DATA(cmsg), sizeof(tos));
*ecn = tos & IPTOS_ECN_MASK;
}
#endif
2017-09-22 21:00:03 +00:00
#endif
}
}
struct read_iter
{
struct service_port *ri_sport;
unsigned ri_idx; /* Current element */
unsigned ri_off; /* Offset into packet_data */
};
enum rop { ROP_OK, ROP_NOROOM, ROP_ERROR, };
static enum rop
read_one_packet (struct read_iter *iter)
{
unsigned char *ctl_buf;
struct packets_in *packs_in;
#if __linux__
uint32_t n_dropped;
#endif
#ifndef WIN32
2017-09-22 21:00:03 +00:00
ssize_t nread;
#else
DWORD nread;
int socket_ret;
#endif
2017-09-22 21:00:03 +00:00
struct sockaddr_storage *local_addr;
struct service_port *sport;
sport = iter->ri_sport;
packs_in = sport->packs_in;
if (iter->ri_idx >= packs_in->n_alloc ||
iter->ri_off + MAX_PACKET_SZ > packs_in->data_sz)
{
LSQ_DEBUG("out of room in packets_in");
return ROP_NOROOM;
}
#ifndef WIN32
2017-09-22 21:00:03 +00:00
packs_in->vecs[iter->ri_idx].iov_base = packs_in->packet_data + iter->ri_off;
packs_in->vecs[iter->ri_idx].iov_len = MAX_PACKET_SZ;
#else
packs_in->vecs[iter->ri_idx].buf = (char*)packs_in->packet_data + iter->ri_off;
packs_in->vecs[iter->ri_idx].len = MAX_PACKET_SZ;
#endif
2020-06-03 04:13:30 +00:00
#ifndef WIN32
top:
2020-06-03 04:13:30 +00:00
#endif
2017-09-22 21:00:03 +00:00
ctl_buf = packs_in->ctlmsg_data + iter->ri_idx * CTL_SZ;
#ifndef WIN32
2017-09-22 21:00:03 +00:00
struct msghdr msg = {
.msg_name = &packs_in->peer_addresses[iter->ri_idx],
.msg_namelen = sizeof(packs_in->peer_addresses[iter->ri_idx]),
.msg_iov = &packs_in->vecs[iter->ri_idx],
.msg_iovlen = 1,
.msg_control = ctl_buf,
.msg_controllen = CTL_SZ,
};
nread = recvmsg(sport->fd, &msg, 0);
if (-1 == nread) {
if (!(EAGAIN == errno || EWOULDBLOCK == errno))
LSQ_ERROR("recvmsg: %s", strerror(errno));
return ROP_ERROR;
}
if (msg.msg_flags & (MSG_TRUNC|MSG_CTRUNC))
{
if (msg.msg_flags & MSG_TRUNC)
LSQ_INFO("packet truncated - drop it");
if (msg.msg_flags & MSG_CTRUNC)
LSQ_WARN("packet's auxilicary data truncated - drop it");
goto top;
}
#else
WSAMSG msg = {
.name = (LPSOCKADDR)&packs_in->peer_addresses[iter->ri_idx],
.namelen = sizeof(packs_in->peer_addresses[iter->ri_idx]),
.lpBuffers = &packs_in->vecs[iter->ri_idx],
.dwBufferCount = 1,
.Control = {CTL_SZ,(char*)ctl_buf}
};
socket_ret = pfnWSARecvMsg(sport->fd, &msg, &nread, NULL, NULL);
if (SOCKET_ERROR == socket_ret) {
if (WSAEWOULDBLOCK != WSAGetLastError())
LSQ_ERROR("recvmsg: %d", WSAGetLastError());
return ROP_ERROR;
}
#endif
2017-09-22 21:00:03 +00:00
local_addr = &packs_in->local_addresses[iter->ri_idx];
memcpy(local_addr, &sport->sp_local_addr, sizeof(*local_addr));
2017-09-22 21:00:03 +00:00
#if __linux__
n_dropped = 0;
#endif
#if ECN_SUPPORTED
packs_in->ecn[iter->ri_idx] = 0;
2017-09-22 21:00:03 +00:00
#endif
proc_ancillary(&msg, local_addr
#if __linux__
, &n_dropped
#endif
#if ECN_SUPPORTED
, &packs_in->ecn[iter->ri_idx]
2017-09-22 21:00:03 +00:00
#endif
);
#if LSQUIC_ECN_BLACK_HOLE && ECN_SUPPORTED
{
const char *s;
s = getenv("LSQUIC_ECN_BLACK_HOLE");
if (s && atoi(s) && packs_in->ecn[iter->ri_idx])
{
LSQ_NOTICE("ECN blackhole: drop packet");
return ROP_OK;
}
}
#endif
2017-09-22 21:00:03 +00:00
#if __linux__
if (sport->drop_init)
{
if (sport->n_dropped < n_dropped)
LSQ_INFO("dropped %u packets", n_dropped - sport->n_dropped);
}
else
sport->drop_init = 1;
sport->n_dropped = n_dropped;
#endif
#ifndef WIN32
2017-09-22 21:00:03 +00:00
packs_in->vecs[iter->ri_idx].iov_len = nread;
#else
packs_in->vecs[iter->ri_idx].len = nread;
#endif
2017-09-22 21:00:03 +00:00
iter->ri_off += nread;
iter->ri_idx += 1;
return ROP_OK;
}
#if HAVE_RECVMMSG
static enum rop
read_using_recvmmsg (struct read_iter *iter)
{
#if __linux__
uint32_t n_dropped;
#endif
int s;
unsigned n;
struct sockaddr_storage *local_addr;
struct service_port *const sport = iter->ri_sport;
struct packets_in *const packs_in = sport->packs_in;
/* XXX TODO We allocate this array on the stack and initialize the
* headers each time the function is invoked. This is suboptimal.
* What we should really be doing is allocate mmsghdrs as part of
* packs_in and initialize it there. While we are at it, we should
* make packs_in shared between all service ports.
*/
struct mmsghdr mmsghdrs[ packs_in->n_alloc ];
/* Sanity check: we assume that the iterator is reset */
assert(iter->ri_off == 0 && iter->ri_idx == 0);
/* Initialize mmsghdrs */
for (n = 0; n < sizeof(mmsghdrs) / sizeof(mmsghdrs[0]); ++n)
{
packs_in->vecs[n].iov_base = packs_in->packet_data + MAX_PACKET_SZ * n;
packs_in->vecs[n].iov_len = MAX_PACKET_SZ;
mmsghdrs[n].msg_hdr = (struct msghdr) {
.msg_name = &packs_in->peer_addresses[n],
.msg_namelen = sizeof(packs_in->peer_addresses[n]),
.msg_iov = &packs_in->vecs[n],
.msg_iovlen = 1,
.msg_control = packs_in->ctlmsg_data + CTL_SZ * n,
.msg_controllen = CTL_SZ,
};
}
/* Read packets */
s = recvmmsg(sport->fd, mmsghdrs, n, 0, NULL);
if (s < 0)
{
if (!(EAGAIN == errno || EWOULDBLOCK == errno))
LSQ_ERROR("recvmmsg: %s", strerror(errno));
return ROP_ERROR;
}
/* Process ancillary data and update vecs */
for (n = 0; n < (unsigned) s; ++n)
{
local_addr = &packs_in->local_addresses[n];
memcpy(local_addr, &sport->sp_local_addr, sizeof(*local_addr));
#if __linux__
n_dropped = 0;
#endif
#if ECN_SUPPORTED
packs_in->ecn[n] = 0;
#endif
proc_ancillary(&mmsghdrs[n].msg_hdr, local_addr
#if __linux__
, &n_dropped
#endif
#if ECN_SUPPORTED
, &packs_in->ecn[n]
#endif
);
#if __linux__
if (sport->drop_init)
{
if (sport->n_dropped < n_dropped)
LSQ_INFO("dropped %u packets", n_dropped - sport->n_dropped);
}
else
sport->drop_init = 1;
sport->n_dropped = n_dropped;
#endif
packs_in->vecs[n].iov_len = mmsghdrs[n].msg_len;
}
iter->ri_idx = n;
return n == sizeof(mmsghdrs) / sizeof(mmsghdrs[0]) ? ROP_NOROOM : ROP_OK;
}
#endif
#if __GNUC__
# define UNLIKELY(cond) __builtin_expect(cond, 0)
#else
# define UNLIKELY(cond) cond
#endif
2017-09-22 21:00:03 +00:00
static void
read_handler (evutil_socket_t fd, short flags, void *ctx)
2017-09-22 21:00:03 +00:00
{
struct service_port *sport = ctx;
lsquic_engine_t *const engine = sport->engine;
struct packets_in *packs_in = sport->packs_in;
struct read_iter iter;
unsigned n, n_batches;
/* Save the value in case program is stopped packs_in is freed: */
const unsigned n_alloc = packs_in->n_alloc;
2017-09-22 21:00:03 +00:00
enum rop rop;
n_batches = 0;
iter.ri_sport = sport;
sport->sp_prog->prog_read_count += 1;
2017-09-22 21:00:03 +00:00
do
{
iter.ri_off = 0;
iter.ri_idx = 0;
#if HAVE_RECVMMSG
if (sport->sp_prog->prog_use_recvmmsg)
rop = read_using_recvmmsg(&iter);
else
#endif
do
rop = read_one_packet(&iter);
while (ROP_OK == rop);
2017-09-22 21:00:03 +00:00
if (UNLIKELY(ROP_ERROR == rop && (sport->sp_flags & SPORT_CONNECT)
&& errno == ECONNREFUSED))
{
LSQ_ERROR("connection refused: exit program");
prog_cleanup(sport->sp_prog);
exit(1);
}
2017-09-22 21:00:03 +00:00
n_batches += iter.ri_idx > 0;
for (n = 0; n < iter.ri_idx; ++n)
if (0 > lsquic_engine_packet_in(engine,
#ifndef WIN32
2017-09-22 21:00:03 +00:00
packs_in->vecs[n].iov_base,
packs_in->vecs[n].iov_len,
#else
(const unsigned char *) packs_in->vecs[n].buf,
packs_in->vecs[n].len,
#endif
2017-09-22 21:00:03 +00:00
(struct sockaddr *) &packs_in->local_addresses[n],
(struct sockaddr *) &packs_in->peer_addresses[n],
sport,
#if ECN_SUPPORTED
packs_in->ecn[n]
#else
0
#endif
))
2017-09-22 21:00:03 +00:00
break;
if (n > 0)
prog_process_conns(sport->sp_prog);
2017-09-22 21:00:03 +00:00
}
while (ROP_NOROOM == rop && !prog_is_stopped());
2017-09-22 21:00:03 +00:00
if (n_batches)
n += n_alloc * (n_batches - 1);
2017-09-22 21:00:03 +00:00
LSQ_DEBUG("read %u packet%.*s in %u batch%s", n, n != 1, "s", n_batches, n_batches != 1 ? "es" : "");
}
static int
add_to_event_loop (struct service_port *sport, struct event_base *eb)
{
sport->ev = event_new(eb, sport->fd, EV_READ|EV_PERSIST, read_handler,
sport);
if (sport->ev)
{
event_add(sport->ev, NULL);
return 0;
}
else
return -1;
}
int
sport_init_server (struct service_port *sport, struct lsquic_engine *engine,
struct event_base *eb)
{
const struct sockaddr *sa_local = (struct sockaddr *) &sport->sas;
2020-06-03 04:13:30 +00:00
int sockfd, saved_errno, s;
#ifndef WIN32
int flags;
#endif
SOCKOPT_VAL on;
socklen_t socklen;
char addr_str[0x20];
switch (sa_local->sa_family)
{
case AF_INET:
socklen = sizeof(struct sockaddr_in);
break;
case AF_INET6:
socklen = sizeof(struct sockaddr_in6);
break;
default:
errno = EINVAL;
return -1;
}
2020-06-03 04:13:30 +00:00
#if WIN32
getExtensionPtrs();
#endif
sockfd = socket(sa_local->sa_family, SOCK_DGRAM, 0);
if (-1 == sockfd)
return -1;
if (0 != bind(sockfd, sa_local, socklen)) {
saved_errno = errno;
LSQ_WARN("bind failed: %s", strerror(errno));
close(sockfd);
errno = saved_errno;
return -1;
}
/* Make socket non-blocking */
2020-06-03 04:13:30 +00:00
#ifndef WIN32
flags = fcntl(sockfd, F_GETFL);
if (-1 == flags) {
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
flags |= O_NONBLOCK;
if (0 != fcntl(sockfd, F_SETFL, flags)) {
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
2020-06-03 04:13:30 +00:00
#else
{
u_long on = 1;
ioctlsocket(sockfd, FIONBIO, &on);
}
#endif
on = 1;
if (AF_INET == sa_local->sa_family)
s = setsockopt(sockfd, IPPROTO_IP,
#if __linux__ && defined(IP_RECVORIGDSTADDR)
IP_RECVORIGDSTADDR,
2020-06-03 04:13:30 +00:00
#elif __linux__ || __APPLE__ || defined(WIN32)
IP_PKTINFO,
#else
IP_RECVDSTADDR,
#endif
2020-06-03 04:13:30 +00:00
CHAR_CAST &on, sizeof(on));
else
2020-06-03 04:13:30 +00:00
{
#ifndef WIN32
s = setsockopt(sockfd, IPPROTO_IPV6, IPV6_RECVPKTINFO, &on, sizeof(on));
2020-06-03 04:13:30 +00:00
#else
s = setsockopt(sockfd, IPPROTO_IPV6, IPV6_PKTINFO, CHAR_CAST &on, sizeof(on));
#endif
}
if (0 != s)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
2020-06-03 04:13:30 +00:00
#if (__linux__ && !defined(IP_RECVORIGDSTADDR)) || __APPLE__ || defined(WIN32)
/* Need to set IP_PKTINFO for sending */
if (AF_INET == sa_local->sa_family)
{
on = 1;
2020-06-03 04:13:30 +00:00
s = setsockopt(sockfd, IPPROTO_IP, IP_PKTINFO, CHAR_CAST &on, sizeof(on));
if (0 != s)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
}
#elif IP_RECVDSTADDR != IP_SENDSRCADDR
/* On FreeBSD, IP_RECVDSTADDR is the same as IP_SENDSRCADDR, but I do not
* know about other BSD systems.
*/
if (AF_INET == sa_local->sa_family)
{
on = 1;
s = setsockopt(sockfd, IPPROTO_IP, IP_SENDSRCADDR, &on, sizeof(on));
if (0 != s)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
}
#endif
#if __linux__ && defined(SO_RXQ_OVFL)
on = 1;
s = setsockopt(sockfd, SOL_SOCKET, SO_RXQ_OVFL, &on, sizeof(on));
if (0 != s)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
#endif
#if __linux__
if (sport->if_name[0] &&
0 != setsockopt(sockfd, SOL_SOCKET, SO_BINDTODEVICE, sport->if_name,
IFNAMSIZ))
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
#endif
#if LSQUIC_DONTFRAG_SUPPORTED
if (!(sport->sp_flags & SPORT_FRAGMENT_OK))
{
if (AF_INET == sa_local->sa_family)
{
#if __linux__
on = IP_PMTUDISC_DO;
s = setsockopt(sockfd, IPPROTO_IP, IP_MTU_DISCOVER, &on,
sizeof(on));
#else
on = 1;
2020-06-03 04:13:30 +00:00
s = setsockopt(sockfd, IPPROTO_IP, IP_DONTFRAG, CHAR_CAST &on, sizeof(on));
#endif
if (0 != s)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
}
}
#endif
#if ECN_SUPPORTED
on = 1;
if (AF_INET == sa_local->sa_family)
2020-06-03 04:13:30 +00:00
s = setsockopt(sockfd, IPPROTO_IP, IP_RECVTOS, CHAR_CAST &on, sizeof(on));
else
2020-06-03 04:13:30 +00:00
s = setsockopt(sockfd, IPPROTO_IPV6, IPV6_RECVTCLASS, CHAR_CAST &on, sizeof(on));
if (0 != s)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
#endif
if (sport->sp_flags & SPORT_SET_SNDBUF)
{
2020-06-03 04:13:30 +00:00
s = setsockopt(sockfd, SOL_SOCKET, SO_SNDBUF, CHAR_CAST &sport->sp_sndbuf,
sizeof(sport->sp_sndbuf));
if (0 != s)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
}
if (sport->sp_flags & SPORT_SET_RCVBUF)
{
2020-06-03 04:13:30 +00:00
s = setsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, CHAR_CAST &sport->sp_rcvbuf,
sizeof(sport->sp_rcvbuf));
if (0 != s)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
}
if (0 != getsockname(sockfd, (struct sockaddr *) sa_local, &socklen))
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
sport->packs_in = allocate_packets_in(sockfd);
if (!sport->packs_in)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
memcpy((void *) &sport->sp_local_addr, sa_local,
sa_local->sa_family == AF_INET ?
sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6));
switch (sa_local->sa_family) {
case AF_INET:
LSQ_DEBUG("local address: %s:%d",
inet_ntop(AF_INET, &((struct sockaddr_in *) sa_local)->sin_addr,
addr_str, sizeof(addr_str)),
ntohs(((struct sockaddr_in *) sa_local)->sin_port));
break;
}
sport->engine = engine;
sport->fd = sockfd;
sport->sp_flags |= SPORT_SERVER;
return add_to_event_loop(sport, eb);
}
2017-09-22 21:00:03 +00:00
int
sport_init_client (struct service_port *sport, struct lsquic_engine *engine,
struct event_base *eb)
{
const struct sockaddr *sa_peer = (struct sockaddr *) &sport->sas;
int saved_errno, s;
#ifndef WIN32
int flags;
#endif
SOCKET_TYPE sockfd;
socklen_t socklen, peer_socklen;
2017-09-22 21:00:03 +00:00
union {
struct sockaddr_in sin;
struct sockaddr_in6 sin6;
} u;
struct sockaddr *sa_local = (struct sockaddr *) &u;
char addr_str[0x20];
switch (sa_peer->sa_family)
{
case AF_INET:
socklen = sizeof(struct sockaddr_in);
u.sin.sin_family = AF_INET;
u.sin.sin_addr.s_addr = INADDR_ANY;
u.sin.sin_port = 0;
break;
case AF_INET6:
socklen = sizeof(struct sockaddr_in6);
memset(&u.sin6, 0, sizeof(u.sin6));
u.sin6.sin6_family = AF_INET6;
break;
default:
errno = EINVAL;
return -1;
}
#if WIN32
getExtensionPtrs();
#endif
2017-09-22 21:00:03 +00:00
sockfd = socket(sa_peer->sa_family, SOCK_DGRAM, 0);
if (-1 == sockfd)
return -1;
if (0 != bind(sockfd, sa_local, socklen)) {
saved_errno = errno;
CLOSE_SOCKET(sockfd);
2017-09-22 21:00:03 +00:00
errno = saved_errno;
return -1;
}
if (sport->sp_flags & SPORT_CONNECT)
{
peer_socklen = AF_INET == sa_peer->sa_family
? sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6);
if (0 != connect(sockfd, sa_peer, peer_socklen))
{
saved_errno = errno;
CLOSE_SOCKET(sockfd);
errno = saved_errno;
return -1;
}
}
2017-09-22 21:00:03 +00:00
/* Make socket non-blocking */
#ifndef WIN32
2017-09-22 21:00:03 +00:00
flags = fcntl(sockfd, F_GETFL);
if (-1 == flags) {
saved_errno = errno;
CLOSE_SOCKET(sockfd);
2017-09-22 21:00:03 +00:00
errno = saved_errno;
return -1;
}
flags |= O_NONBLOCK;
if (0 != fcntl(sockfd, F_SETFL, flags)) {
saved_errno = errno;
CLOSE_SOCKET(sockfd);
2017-09-22 21:00:03 +00:00
errno = saved_errno;
return -1;
}
#else
{
u_long on = 1;
ioctlsocket(sockfd, FIONBIO, &on);
}
#endif
2017-09-22 21:00:03 +00:00
#if LSQUIC_DONTFRAG_SUPPORTED
if (!(sport->sp_flags & SPORT_FRAGMENT_OK))
2017-09-22 21:00:03 +00:00
{
if (AF_INET == sa_local->sa_family)
{
int on;
2017-09-22 21:00:03 +00:00
#if __linux__
on = IP_PMTUDISC_DO;
s = setsockopt(sockfd, IPPROTO_IP, IP_MTU_DISCOVER, &on,
sizeof(on));
#elif WIN32
on = 1;
2020-06-03 04:13:30 +00:00
s = setsockopt(sockfd, IPPROTO_IP, IP_DONTFRAGMENT, CHAR_CAST &on, sizeof(on));
2017-09-22 21:00:03 +00:00
#else
on = 1;
s = setsockopt(sockfd, IPPROTO_IP, IP_DONTFRAG, &on, sizeof(on));
#endif
if (0 != s)
{
saved_errno = errno;
CLOSE_SOCKET(sockfd);
2017-09-22 21:00:03 +00:00
errno = saved_errno;
return -1;
}
}
}
#endif
2017-09-22 21:00:03 +00:00
#if ECN_SUPPORTED
{
int on = 1;
if (AF_INET == sa_local->sa_family)
2020-06-03 04:13:30 +00:00
s = setsockopt(sockfd, IPPROTO_IP, IP_RECVTOS,
CHAR_CAST &on, sizeof(on));
else
2020-06-03 04:13:30 +00:00
s = setsockopt(sockfd, IPPROTO_IPV6, IPV6_RECVTCLASS,
CHAR_CAST &on, sizeof(on));
if (0 != s)
{
saved_errno = errno;
close(sockfd);
errno = saved_errno;
return -1;
}
}
#endif
2017-09-22 21:00:03 +00:00
if (sport->sp_flags & SPORT_SET_SNDBUF)
{
s = setsockopt(sockfd, SOL_SOCKET, SO_SNDBUF,
CHAR_CAST &sport->sp_sndbuf, sizeof(sport->sp_sndbuf));
2017-09-22 21:00:03 +00:00
if (0 != s)
{
saved_errno = errno;
CLOSE_SOCKET(sockfd);
2017-09-22 21:00:03 +00:00
errno = saved_errno;
return -1;
}
}
if (sport->sp_flags & SPORT_SET_RCVBUF)
{
s = setsockopt(sockfd, SOL_SOCKET, SO_RCVBUF,
CHAR_CAST &sport->sp_rcvbuf, sizeof(sport->sp_rcvbuf));
2017-09-22 21:00:03 +00:00
if (0 != s)
{
saved_errno = errno;
CLOSE_SOCKET(sockfd);
2017-09-22 21:00:03 +00:00
errno = saved_errno;
return -1;
}
}
if (0 != getsockname(sockfd, sa_local, &socklen))
{
saved_errno = errno;
CLOSE_SOCKET(sockfd);
2017-09-22 21:00:03 +00:00
errno = saved_errno;
return -1;
}
sport->packs_in = allocate_packets_in(sockfd);
if (!sport->packs_in)
{
saved_errno = errno;
CLOSE_SOCKET(sockfd);
2017-09-22 21:00:03 +00:00
errno = saved_errno;
return -1;
}
memcpy((void *) &sport->sp_local_addr, sa_local,
sa_local->sa_family == AF_INET ?
sizeof(struct sockaddr_in) : sizeof(struct sockaddr_in6));
2017-09-22 21:00:03 +00:00
switch (sa_local->sa_family) {
case AF_INET:
LSQ_DEBUG("local address: %s:%d",
inet_ntop(AF_INET, &u.sin.sin_addr, addr_str, sizeof(addr_str)),
ntohs(u.sin.sin_port));
break;
}
sport->engine = engine;
sport->fd = sockfd;
return add_to_event_loop(sport, eb);
}
/* Sometimes it is useful to impose an artificial limit for testing */
static unsigned
packet_out_limit (void)
{
const char *env = getenv("LSQUIC_PACKET_OUT_LIMIT");
if (env)
return atoi(env);
else
return 0;
}
enum ctl_what
{
CW_SENDADDR = 1 << 0,
#if ECN_SUPPORTED
CW_ECN = 1 << 1,
#endif
};
2017-09-22 21:00:03 +00:00
static void
setup_control_msg (
#ifndef WIN32
struct msghdr
#else
WSAMSG
#endif
*msg, enum ctl_what cw,
const struct lsquic_out_spec *spec, unsigned char *buf, size_t bufsz)
2017-09-22 21:00:03 +00:00
{
struct cmsghdr *cmsg;
struct sockaddr_in *local_sa;
struct sockaddr_in6 *local_sa6;
#if __linux__ || __APPLE__ || WIN32
2017-09-22 21:00:03 +00:00
struct in_pktinfo info;
#endif
struct in6_pktinfo info6;
size_t ctl_len;
2017-09-22 21:00:03 +00:00
#ifndef WIN32
2017-09-22 21:00:03 +00:00
msg->msg_control = buf;
msg->msg_controllen = bufsz;
#else
msg->Control.buf = (char*)buf;
msg->Control.len = bufsz;
#endif
2017-09-22 21:00:03 +00:00
/* Need to zero the buffer due to a bug(?) in CMSG_NXTHDR. See
* https://stackoverflow.com/questions/27601849/cmsg-nxthdr-returns-null-even-though-there-are-more-cmsghdr-objects
*/
memset(buf, 0, bufsz);
ctl_len = 0;
for (cmsg = CMSG_FIRSTHDR(msg); cw && cmsg; cmsg = CMSG_NXTHDR(msg, cmsg))
2017-09-22 21:00:03 +00:00
{
if (cw & CW_SENDADDR)
{
if (AF_INET == spec->dest_sa->sa_family)
{
local_sa = (struct sockaddr_in *) spec->local_sa;
#if __linux__ || __APPLE__
memset(&info, 0, sizeof(info));
info.ipi_spec_dst = local_sa->sin_addr;
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_PKTINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(info));
ctl_len += CMSG_SPACE(sizeof(info));
memcpy(CMSG_DATA(cmsg), &info, sizeof(info));
#elif WIN32
memset(&info, 0, sizeof(info));
info.ipi_addr = local_sa->sin_addr;
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_PKTINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(info));
ctl_len += CMSG_SPACE(sizeof(info));
memcpy(WSA_CMSG_DATA(cmsg), &info, sizeof(info));
2017-09-22 21:00:03 +00:00
#else
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_SENDSRCADDR;
cmsg->cmsg_len = CMSG_LEN(sizeof(local_sa->sin_addr));
ctl_len += CMSG_SPACE(sizeof(local_sa->sin_addr));
memcpy(CMSG_DATA(cmsg), &local_sa->sin_addr,
sizeof(local_sa->sin_addr));
2017-09-22 21:00:03 +00:00
#endif
}
else
{
local_sa6 = (struct sockaddr_in6 *) spec->local_sa;
memset(&info6, 0, sizeof(info6));
info6.ipi6_addr = local_sa6->sin6_addr;
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
cmsg->cmsg_len = CMSG_LEN(sizeof(info6));
#ifndef WIN32
memcpy(CMSG_DATA(cmsg), &info6, sizeof(info6));
#else
memcpy(WSA_CMSG_DATA(cmsg), &info6, sizeof(info6));
#endif
ctl_len += CMSG_SPACE(sizeof(info6));
}
cw &= ~CW_SENDADDR;
}
#if ECN_SUPPORTED
else if (cw & CW_ECN)
{
if (AF_INET == spec->dest_sa->sa_family)
{
const
#if defined(__FreeBSD__)
unsigned char
#else
int
#endif
tos = spec->ecn;
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_TOS;
cmsg->cmsg_len = CMSG_LEN(sizeof(tos));
memcpy(CMSG_DATA(cmsg), &tos, sizeof(tos));
ctl_len += CMSG_SPACE(sizeof(tos));
}
else
{
const int tos = spec->ecn;
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_TCLASS;
cmsg->cmsg_len = CMSG_LEN(sizeof(tos));
memcpy(CMSG_DATA(cmsg), &tos, sizeof(tos));
ctl_len += CMSG_SPACE(sizeof(tos));
}
cw &= ~CW_ECN;
}
#endif
else
assert(0);
2017-09-22 21:00:03 +00:00
}
#ifndef WIN32
msg->msg_controllen = ctl_len;
#else
msg->Control.len = ctl_len;
#endif
2017-09-22 21:00:03 +00:00
}
#if HAVE_SENDMMSG
static int
send_packets_using_sendmmsg (const struct lsquic_out_spec *specs,
unsigned count)
{
#ifndef NDEBUG
{
/* This only works for a single port! If the specs contain more
* than one socket, this function does *NOT* work. We check it
* here just in case:
*/
void *ctx;
unsigned i;
for (i = 1, ctx = specs[i].peer_ctx;
i < count;
ctx = specs[i].peer_ctx, ++i)
assert(ctx == specs[i - 1].peer_ctx);
}
#endif
const struct service_port *const sport = specs[0].peer_ctx;
const int fd = sport->fd;
enum ctl_what cw;
unsigned i;
int s, saved_errno;
uintptr_t ancil_key, prev_ancil_key;
struct mmsghdr mmsgs[1024];
union {
/* cmsg(3) recommends union for proper alignment */
unsigned char buf[ CMSG_SPACE(
MAX(
#if __linux__
sizeof(struct in_pktinfo)
#else
sizeof(struct in_addr)
#endif
, sizeof(struct in6_pktinfo))
)
#if ECN_SUPPORTED
+ CMSG_SPACE(sizeof(int))
#endif
];
struct cmsghdr cmsg;
} ancil [ sizeof(mmsgs) / sizeof(mmsgs[0]) ];
prev_ancil_key = 0;
for (i = 0; i < count && i < sizeof(mmsgs) / sizeof(mmsgs[0]); ++i)
{
mmsgs[i].msg_hdr.msg_name = (void *) specs[i].dest_sa;
mmsgs[i].msg_hdr.msg_namelen = (AF_INET == specs[i].dest_sa->sa_family ?
sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6)),
mmsgs[i].msg_hdr.msg_iov = specs[i].iov;
mmsgs[i].msg_hdr.msg_iovlen = specs[i].iovlen;
mmsgs[i].msg_hdr.msg_flags = 0;
if ((sport->sp_flags & SPORT_SERVER) && specs[i].local_sa->sa_family)
{
cw = CW_SENDADDR;
ancil_key = (uintptr_t) specs[i].local_sa;
assert(0 == (ancil_key & 3));
}
else
{
cw = 0;
ancil_key = 0;
}
#if ECN_SUPPORTED
if (sport->sp_prog->prog_api.ea_settings->es_ecn && specs[i].ecn)
{
cw |= CW_ECN;
ancil_key |= specs[i].ecn;
}
#endif
if (cw && prev_ancil_key == ancil_key)
{
/* Reuse previous ancillary message */
assert(i > 0);
#ifndef WIN32
mmsgs[i].msg_hdr.msg_control = mmsgs[i - 1].msg_hdr.msg_control;
mmsgs[i].msg_hdr.msg_controllen = mmsgs[i - 1].msg_hdr.msg_controllen;
#else
mmsgs[i].msg_hdr.Control.buf = mmsgs[i - 1].msg_hdr.Control.buf;
mmsgs[i].msg_hdr.Control.len = mmsgs[i - 1].msg_hdr.Control.len;
#endif
}
else if (cw)
{
prev_ancil_key = ancil_key;
setup_control_msg(&mmsgs[i].msg_hdr, cw, &specs[i], ancil[i].buf,
sizeof(ancil[i].buf));
}
else
{
prev_ancil_key = 0;
#ifndef WIN32
mmsgs[i].msg_hdr.msg_control = NULL;
mmsgs[i].msg_hdr.msg_controllen = 0;
#else
mmsgs[i].msg_hdr.Control.buf = NULL;
mmsgs[i].msg_hdr.Control.len = 0;
#endif
}
}
s = sendmmsg(fd, mmsgs, count, 0);
if (s < (int) count)
{
saved_errno = errno;
prog_sport_cant_send(sport->sp_prog, sport->fd);
if (s < 0)
{
LSQ_WARN("sendmmsg failed: %s", strerror(saved_errno));
errno = saved_errno;
}
else if (s > 0)
errno = EAGAIN;
else
errno = saved_errno;
}
return s;
}
#endif
#if LSQUIC_PREFERRED_ADDR
static const struct service_port *
find_sport (struct prog *prog, const struct sockaddr *local_sa)
{
const struct service_port *sport;
const struct sockaddr *addr;
size_t len;
TAILQ_FOREACH(sport, prog->prog_sports, next_sport)
{
addr = (struct sockaddr *) &sport->sp_local_addr;
if (addr->sa_family == local_sa->sa_family)
{
len = addr->sa_family == AF_INET ? sizeof(struct sockaddr_in)
: sizeof(struct sockaddr_in6);
if (0 == memcmp(addr, local_sa, len))
return sport;
}
}
assert(0);
return NULL;
}
#endif
2017-09-22 21:00:03 +00:00
static int
send_packets_one_by_one (const struct lsquic_out_spec *specs, unsigned count)
{
const struct service_port *sport;
enum ctl_what cw;
2017-09-22 21:00:03 +00:00
unsigned n;
int s = 0;
#ifndef WIN32
2017-09-22 21:00:03 +00:00
struct msghdr msg;
#else
DWORD bytes;
WSAMSG msg;
LPWSABUF pWsaBuf = NULL;
#endif
2017-09-22 21:00:03 +00:00
union {
/* cmsg(3) recommends union for proper alignment */
#if __linux__ || WIN32
# define SIZE1 sizeof(struct in_pktinfo)
2017-09-22 21:00:03 +00:00
#else
# define SIZE1 sizeof(struct in_addr)
2017-09-22 21:00:03 +00:00
#endif
unsigned char buf[
CMSG_SPACE(MAX(SIZE1, sizeof(struct in6_pktinfo)))
#if ECN_SUPPORTED
+ CMSG_SPACE(sizeof(int))
#endif
];
2017-09-22 21:00:03 +00:00
struct cmsghdr cmsg;
} ancil;
uintptr_t ancil_key, prev_ancil_key;
2017-09-22 21:00:03 +00:00
if (0 == count)
return 0;
const unsigned orig_count = count;
const unsigned out_limit = packet_out_limit();
if (out_limit && count > out_limit)
count = out_limit;
#if LSQUIC_RANDOM_SEND_FAILURE
{
const char *freq_str = getenv("LSQUIC_RANDOM_SEND_FAILURE");
int freq;
if (freq_str)
freq = atoi(freq_str);
else
freq = 10;
if (rand() % freq == 0)
{
assert(count > 0);
sport = specs[0].peer_ctx;
LSQ_NOTICE("sending \"randomly\" fails");
prog_sport_cant_send(sport->sp_prog, sport->fd);
goto random_send_failure;
}
}
#endif
2017-09-22 21:00:03 +00:00
2019-01-30 20:28:35 +00:00
n = 0;
prev_ancil_key = 0;
#ifdef WIN32
#define MAX_OUT_BATCH_SIZE 1024
pWsaBuf = malloc(sizeof(*pWsaBuf)*MAX_OUT_BATCH_SIZE*2);
if (NULL == pWsaBuf) {
return -1;
}
#endif
2019-01-30 20:28:35 +00:00
do
2017-09-22 21:00:03 +00:00
{
sport = specs[n].peer_ctx;
#if LSQUIC_PREFERRED_ADDR
if (sport->sp_prog->prog_flags & PROG_SEARCH_ADDRS)
sport = find_sport(sport->sp_prog, specs[n].local_sa);
#endif
#ifndef WIN32
2017-09-22 21:00:03 +00:00
msg.msg_name = (void *) specs[n].dest_sa;
msg.msg_namelen = (AF_INET == specs[n].dest_sa->sa_family ?
sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6)),
msg.msg_iov = specs[n].iov;
msg.msg_iovlen = specs[n].iovlen;
2017-09-22 21:00:03 +00:00
msg.msg_flags = 0;
#else
for (int i = 0; i < specs[n].iovlen; i++)
{
pWsaBuf[i].buf = specs[n].iov[i].iov_base;
pWsaBuf[i].len = specs[n].iov[i].iov_len;
}
msg.name = (void *) specs[n].dest_sa;
msg.namelen = (AF_INET == specs[n].dest_sa->sa_family ?
sizeof(struct sockaddr_in) :
2020-06-03 04:13:30 +00:00
sizeof(struct sockaddr_in6));
msg.dwBufferCount = specs[n].iovlen;
msg.lpBuffers = pWsaBuf;
msg.dwFlags = 0;
#endif
if ((sport->sp_flags & SPORT_SERVER) && specs[n].local_sa->sa_family)
{
cw = CW_SENDADDR;
ancil_key = (uintptr_t) specs[n].local_sa;
assert(0 == (ancil_key & 3));
}
else
{
cw = 0;
ancil_key = 0;
}
#if ECN_SUPPORTED
if (sport->sp_prog->prog_api.ea_settings->es_ecn && specs[n].ecn)
{
cw |= CW_ECN;
ancil_key |= specs[n].ecn;
}
#endif
if (cw && prev_ancil_key == ancil_key)
{
/* Reuse previous ancillary message */
;
}
else if (cw)
{
prev_ancil_key = ancil_key;
setup_control_msg(&msg, cw, &specs[n], ancil.buf, sizeof(ancil.buf));
}
2017-09-22 21:00:03 +00:00
else
{
prev_ancil_key = 0;
#ifndef WIN32
2017-09-22 21:00:03 +00:00
msg.msg_control = NULL;
msg.msg_controllen = 0;
#else
msg.Control.buf = NULL;
msg.Control.len = 0;
#endif
2017-09-22 21:00:03 +00:00
}
#ifndef WIN32
2017-09-22 21:00:03 +00:00
s = sendmsg(sport->fd, &msg, 0);
#else
s = pfnWSASendMsg(sport->fd, &msg, 0, &bytes, NULL, NULL);
#endif
2017-09-22 21:00:03 +00:00
if (s < 0)
{
#ifndef WIN32
2017-09-22 21:00:03 +00:00
LSQ_INFO("sendto failed: %s", strerror(errno));
#else
LSQ_INFO("sendto failed: %s", WSAGetLastError());
#endif
2017-09-22 21:00:03 +00:00
break;
}
2019-01-30 20:28:35 +00:00
++n;
2017-09-22 21:00:03 +00:00
}
2019-01-30 20:28:35 +00:00
while (n < count);
2017-09-22 21:00:03 +00:00
if (n < orig_count)
prog_sport_cant_send(sport->sp_prog, sport->fd);
#ifdef WIN32
if (NULL != pWsaBuf) {
free(pWsaBuf);
pWsaBuf = NULL;
}
#endif
2017-09-22 21:00:03 +00:00
if (n > 0)
{
if (n < orig_count && out_limit)
errno = EAGAIN;
2017-09-22 21:00:03 +00:00
return n;
}
else
{
assert(s < 0);
#if LSQUIC_RANDOM_SEND_FAILURE
random_send_failure:
#endif
2017-09-22 21:00:03 +00:00
return -1;
}
2017-09-22 21:00:03 +00:00
}
int
sport_packets_out (void *ctx, const struct lsquic_out_spec *specs,
unsigned count)
{
#if HAVE_SENDMMSG
const struct prog *prog = ctx;
if (prog->prog_use_sendmmsg)
return send_packets_using_sendmmsg(specs, count);
else
#endif
2017-09-22 21:00:03 +00:00
return send_packets_one_by_one(specs, count);
}
int
set_engine_option (struct lsquic_engine_settings *settings,
int *version_cleared, const char *name)
{
int len;
const char *val = strchr(name, '=');
if (!val)
return -1;
len = val - name;
++val;
switch (len)
{
case 2:
if (0 == strncmp(name, "ua", 2))
{
settings->es_ua = val;
return 0;
}
break;
case 3:
if (0 == strncmp(name, "ecn", 1))
{
settings->es_ecn = atoi(val);
#if !ECN_SUPPORTED
if (settings->es_ecn)
{
LSQ_ERROR("ECN is not supported on this platform");
break;
}
#endif
return 0;
}
break;
2017-09-22 21:00:03 +00:00
case 4:
if (0 == strncmp(name, "cfcw", 4))
{
settings->es_cfcw = atoi(val);
return 0;
}
if (0 == strncmp(name, "sfcw", 4))
{
settings->es_sfcw = atoi(val);
return 0;
}
if (0 == strncmp(name, "spin", 4))
{
settings->es_spin = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
break;
case 7:
if (0 == strncmp(name, "version", 7))
{
if (!*version_cleared)
{
*version_cleared = 1;
settings->es_versions = 0;
}
enum lsquic_version ver = lsquic_str2ver(val, strlen(val));
2020-06-03 04:13:30 +00:00
if ((unsigned) ver < N_LSQVER)
{
settings->es_versions |= 1 << ver;
return 0;
}
ver = lsquic_alpn2ver(val, strlen(val));
2020-06-03 04:13:30 +00:00
if ((unsigned) ver < N_LSQVER)
2017-09-22 21:00:03 +00:00
{
settings->es_versions |= 1 << ver;
2017-09-22 21:00:03 +00:00
return 0;
}
}
else if (0 == strncmp(name, "rw_once", 7))
{
settings->es_rw_once = atoi(val);
return 0;
}
else if (0 == strncmp(name, "cc_algo", 7))
{
settings->es_cc_algo = atoi(val);
return 0;
}
else if (0 == strncmp(name, "ql_bits", 7))
{
settings->es_ql_bits = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
break;
case 8:
if (0 == strncmp(name, "max_cfcw", 8))
{
settings->es_max_cfcw = atoi(val);
return 0;
}
if (0 == strncmp(name, "max_sfcw", 8))
{
settings->es_max_sfcw = atoi(val);
return 0;
}
if (0 == strncmp(name, "scid_len", 8))
{
settings->es_scid_len = atoi(val);
return 0;
}
if (0 == strncmp(name, "dplpmtud", 8))
{
settings->es_dplpmtud = atoi(val);
return 0;
}
break;
case 9:
if (0 == strncmp(name, "send_prst", 9))
{
settings->es_send_prst = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
break;
case 10:
if (0 == strncmp(name, "honor_prst", 10))
{
settings->es_honor_prst = atoi(val);
return 0;
}
if (0 == strncmp(name, "timestamps", 10))
{
settings->es_timestamps = atoi(val);
return 0;
}
if (0 == strncmp(name, "max_plpmtu", 10))
{
settings->es_max_plpmtu = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
break;
case 11:
if (0 == strncmp(name, "ping_period", 11))
{
settings->es_ping_period = atoi(val);
return 0;
}
if (0 == strncmp(name, "base_plpmtu", 11))
{
settings->es_base_plpmtu = atoi(val);
return 0;
}
if (0 == strncmp(name, "ptpc_target", 11))
{
settings->es_ptpc_target = atof(val);
return 0;
}
break;
2017-09-22 21:00:03 +00:00
case 12:
if (0 == strncmp(name, "idle_conn_to", 12))
{
settings->es_idle_conn_to = atoi(val);
return 0;
}
if (0 == strncmp(name, "idle_timeout", 12))
{
settings->es_idle_timeout = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
if (0 == strncmp(name, "silent_close", 12))
{
settings->es_silent_close = atoi(val);
return 0;
}
if (0 == strncmp(name, "support_push", 12))
{
settings->es_support_push = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
if (0 == strncmp(name, "support_nstp", 12))
{
settings->es_support_nstp = atoi(val);
return 0;
}
if (0 == strncmp(name, "pace_packets", 12))
{
settings->es_pace_packets = atoi(val);
return 0;
}
if (0 == strncmp(name, "handshake_to", 12))
{
settings->es_handshake_to = atoi(val);
return 0;
}
if (0 == strncmp(name, "delayed_acks", 12))
{
settings->es_delayed_acks = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
break;
case 13:
if (0 == strncmp(name, "support_tcid0", 13))
{
settings->es_support_tcid0 = atoi(val);
return 0;
}
if (0 == strncmp(name, "init_max_data", 13))
{
settings->es_init_max_data = atoi(val);
return 0;
}
if (0 == strncmp(name, "scid_iss_rate", 13))
{
settings->es_scid_iss_rate = atoi(val);
return 0;
}
if (0 == strncmp(name, "ext_http_prio", 13))
{
settings->es_ext_http_prio = atoi(val);
return 0;
}
if (0 == strncmp(name, "ptpc_int_gain", 13))
{
settings->es_ptpc_int_gain = atof(val);
return 0;
}
if (0 == strncmp(name, "delay_onclose", 13))
{
settings->es_delay_onclose = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
break;
case 14:
if (0 == strncmp(name, "max_streams_in", 14))
{
settings->es_max_streams_in = atoi(val);
return 0;
}
if (0 == strncmp(name, "progress_check", 14))
{
settings->es_progress_check = atoi(val);
return 0;
}
if (0 == strncmp(name, "ptpc_prop_gain", 14))
{
settings->es_ptpc_prop_gain = atof(val);
return 0;
}
if (0 == strncmp(name, "max_batch_size", 14))
{
settings->es_max_batch_size = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
break;
case 15:
if (0 == strncmp(name, "allow_migration", 15))
{
settings->es_allow_migration = atoi(val);
return 0;
}
if (0 == strncmp(name, "grease_quic_bit", 15))
{
settings->es_grease_quic_bit = atoi(val);
return 0;
}
if (0 == strncmp(name, "ptpc_dyn_target", 15))
{
settings->es_ptpc_dyn_target = atoi(val);
return 0;
}
if (0 == strncmp(name, "ptpc_err_thresh", 15))
{
settings->es_ptpc_err_thresh = atof(val);
return 0;
}
break;
2017-09-22 21:00:03 +00:00
case 16:
if (0 == strncmp(name, "proc_time_thresh", 16))
{
settings->es_proc_time_thresh = atoi(val);
return 0;
}
if (0 == strncmp(name, "qpack_experiment", 16))
{
settings->es_qpack_experiment = atoi(val);
return 0;
}
if (0 == strncmp(name, "ptpc_periodicity", 16))
{
settings->es_ptpc_periodicity = atoi(val);
return 0;
}
if (0 == strncmp(name, "ptpc_max_packtol", 16))
{
settings->es_ptpc_max_packtol = atoi(val);
return 0;
}
if (0 == strncmp(name, "ptpc_err_divisor", 16))
{
settings->es_ptpc_err_divisor = atof(val);
return 0;
}
2017-09-22 21:00:03 +00:00
break;
case 18:
if (0 == strncmp(name, "qpack_enc_max_size", 18))
{
settings->es_qpack_enc_max_size = atoi(val);
return 0;
}
if (0 == strncmp(name, "qpack_dec_max_size", 18))
{
settings->es_qpack_dec_max_size = atoi(val);
return 0;
}
if (0 == strncmp(name, "noprogress_timeout", 18))
{
settings->es_noprogress_timeout = atoi(val);
return 0;
}
break;
2017-09-22 21:00:03 +00:00
case 20:
if (0 == strncmp(name, "max_header_list_size", 20))
{
settings->es_max_header_list_size = atoi(val);
return 0;
}
if (0 == strncmp(name, "init_max_streams_uni", 20))
{
settings->es_init_max_streams_uni = atoi(val);
return 0;
}
break;
case 21:
if (0 == strncmp(name, "qpack_enc_max_blocked", 21))
{
settings->es_qpack_enc_max_blocked = atoi(val);
return 0;
}
if (0 == strncmp(name, "qpack_dec_max_blocked", 21))
{
settings->es_qpack_dec_max_blocked = atoi(val);
return 0;
}
if (0 == strncmp(name, "init_max_streams_bidi", 21))
{
settings->es_init_max_streams_bidi = atoi(val);
return 0;
}
break;
case 23:
if (0 == strncmp(name, "max_udp_payload_size_rx", 23))
{
settings->es_max_udp_payload_size_rx = atoi(val);
return 0;
}
break;
case 24:
if (0 == strncmp(name, "init_max_stream_data_uni", 24))
{
settings->es_init_max_stream_data_uni = atoi(val);
return 0;
}
break;
case 31:
if (0 == strncmp(name, "init_max_stream_data_bidi_local", 31))
{
settings->es_init_max_stream_data_bidi_local = atoi(val);
return 0;
}
break;
case 32:
if (0 == strncmp(name, "init_max_stream_data_bidi_remote", 32))
{
settings->es_init_max_stream_data_bidi_remote = atoi(val);
return 0;
}
2017-09-22 21:00:03 +00:00
break;
}
return -1;
}
/* So that largest allocation in PBA fits in 4KB */
#define PBA_SIZE_MAX 0x1000
#define PBA_SIZE_THRESH (PBA_SIZE_MAX - sizeof(uintptr_t))
2017-09-22 21:00:03 +00:00
struct packout_buf
{
SLIST_ENTRY(packout_buf) next_free_pb;
};
void
pba_init (struct packout_buf_allocator *pba, unsigned max)
{
SLIST_INIT(&pba->free_packout_bufs);
pba->max = max;
pba->n_out = 0;
}
void *
pba_allocate (void *packout_buf_allocator, void *peer_ctx,
lsquic_conn_ctx_t *conn_ctx, unsigned short size, char is_ipv6)
2017-09-22 21:00:03 +00:00
{
struct packout_buf_allocator *const pba = packout_buf_allocator;
struct packout_buf *pb;
if (pba->max && pba->n_out >= pba->max)
{
LSQ_DEBUG("# outstanding packout bufs reached the limit of %u, "
"returning NULL", pba->max);
return NULL;
}
#if LSQUIC_USE_POOLS
2017-09-22 21:00:03 +00:00
pb = SLIST_FIRST(&pba->free_packout_bufs);
if (pb && size <= PBA_SIZE_THRESH)
2017-09-22 21:00:03 +00:00
SLIST_REMOVE_HEAD(&pba->free_packout_bufs, next_free_pb);
else if (size <= PBA_SIZE_THRESH)
pb = malloc(PBA_SIZE_MAX);
2017-09-22 21:00:03 +00:00
else
pb = malloc(sizeof(uintptr_t) + size);
#else
pb = malloc(sizeof(uintptr_t) + size);
#endif
2017-09-22 21:00:03 +00:00
if (pb)
{
* (uintptr_t *) pb = size;
2017-09-22 21:00:03 +00:00
++pba->n_out;
return (uintptr_t *) pb + 1;
}
else
return NULL;
2017-09-22 21:00:03 +00:00
}
2017-09-22 21:00:03 +00:00
void
pba_release (void *packout_buf_allocator, void *peer_ctx, void *obj, char ipv6)
2017-09-22 21:00:03 +00:00
{
struct packout_buf_allocator *const pba = packout_buf_allocator;
obj = (uintptr_t *) obj - 1;
#if LSQUIC_USE_POOLS
if (* (uintptr_t *) obj <= PBA_SIZE_THRESH)
{
struct packout_buf *const pb = obj;
SLIST_INSERT_HEAD(&pba->free_packout_bufs, pb, next_free_pb);
}
else
#endif
free(obj);
2017-09-22 21:00:03 +00:00
--pba->n_out;
}
2017-09-22 21:00:03 +00:00
void
pba_cleanup (struct packout_buf_allocator *pba)
{
#if LSQUIC_USE_POOLS
2017-09-22 21:00:03 +00:00
unsigned n = 0;
struct packout_buf *pb;
#endif
2017-09-22 21:00:03 +00:00
if (pba->n_out)
LSQ_WARN("%u packout bufs outstanding at deinit", pba->n_out);
#if LSQUIC_USE_POOLS
2017-09-22 21:00:03 +00:00
while ((pb = SLIST_FIRST(&pba->free_packout_bufs)))
{
SLIST_REMOVE_HEAD(&pba->free_packout_bufs, next_free_pb);
free(pb);
++n;
}
LSQ_INFO("pba deinitialized, freed %u packout bufs", n);
#endif
2017-09-22 21:00:03 +00:00
}
void
print_conn_info (const lsquic_conn_t *conn)
{
const char *cipher;
cipher = lsquic_conn_crypto_cipher(conn);
LSQ_INFO("Connection info: version: %u; cipher: %s; key size: %d, alg key size: %d",
lsquic_conn_quic_version(conn),
cipher ? cipher : "<null>",
lsquic_conn_crypto_keysize(conn),
lsquic_conn_crypto_alg_keysize(conn)
);
}
Latest changes - [API Change] Sendfile-like functionality is gone. The stream no longer opens files and deals with file descriptors. (Among other things, this makes the code more portable.) Three writing functions are provided: lsquic_stream_write lsquic_stream_writev lsquic_stream_writef (NEW) lsquic_stream_writef() is given an abstract reader that has function pointers for size() and read() functions which the user can implement. This is the most flexible way. lsquic_stream_write() and lsquic_stream_writev() are now both implemented as wrappers around lsquic_stream_writef(). - [OPTIMIZATION] When writing to stream, be it within or without the on_write() callback, place data directly into packet buffer, bypassing auxiliary data structures. This reduces amount of memory required, for the amount of data that can be written is limited by the congestion window. To support writes outside the on_write() callback, we keep N outgoing packet buffers per connection which can be written to by any stream. One half of these are reserved for the highest priority stream(s), the other half for all other streams. This way, low-priority streams cannot write instead of high-priority streams and, on the other hand, low-priority streams get a chance to send their packets out. The algorithm is as follows: - When user writes to stream outside of the callback: - If this is the highest priority stream, place it onto the reserved N/2 queue or fail. (The actual size of this queue is dynamic -- MAX(N/2, CWND) -- rather than N/2, allowing high-priority streams to write as much as can be sent.) - If the stream is not the highest priority, try to place the data onto the reserved N/2 queue or fail. - When tick occurs *and* more packets can be scheduled: - Transfer packets from the high N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for highest-priority streams, placing resulting packets directly onto the scheduled queue. - If more scheduling is allowed: - Transfer packets from the low N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for non-highest-priority streams, placing resulting packets directly onto the scheduled queue The number N is currently 20, but it could be varied based on resource usage. - If stream is created due to incoming headers, make headers readable from on_new. - Outgoing packets are no longer marked non-writeable to prevent placing more than one STREAM frame from the same stream into a single packet. This property is maintained via code flow and an explicit check. Packets for stream data are allocated using a special function. - STREAM frame elision is cheaper, as we only perform it if a reset stream has outgoing packets referencing it. - lsquic_packet_out_t is smaller, as stream_rec elements are now inside a union.
2017-10-31 13:35:58 +00:00
struct reader_ctx
{
size_t file_size;
size_t nread;
int fd;
};
size_t
test_reader_size (void *void_ctx)
{
struct reader_ctx *const ctx = void_ctx;
return ctx->file_size - ctx->nread;
}
size_t
test_reader_read (void *void_ctx, void *buf, size_t count)
{
struct reader_ctx *const ctx = void_ctx;
ssize_t nread;
if (count > test_reader_size(ctx))
count = test_reader_size(ctx);
#ifndef WIN32
Latest changes - [API Change] Sendfile-like functionality is gone. The stream no longer opens files and deals with file descriptors. (Among other things, this makes the code more portable.) Three writing functions are provided: lsquic_stream_write lsquic_stream_writev lsquic_stream_writef (NEW) lsquic_stream_writef() is given an abstract reader that has function pointers for size() and read() functions which the user can implement. This is the most flexible way. lsquic_stream_write() and lsquic_stream_writev() are now both implemented as wrappers around lsquic_stream_writef(). - [OPTIMIZATION] When writing to stream, be it within or without the on_write() callback, place data directly into packet buffer, bypassing auxiliary data structures. This reduces amount of memory required, for the amount of data that can be written is limited by the congestion window. To support writes outside the on_write() callback, we keep N outgoing packet buffers per connection which can be written to by any stream. One half of these are reserved for the highest priority stream(s), the other half for all other streams. This way, low-priority streams cannot write instead of high-priority streams and, on the other hand, low-priority streams get a chance to send their packets out. The algorithm is as follows: - When user writes to stream outside of the callback: - If this is the highest priority stream, place it onto the reserved N/2 queue or fail. (The actual size of this queue is dynamic -- MAX(N/2, CWND) -- rather than N/2, allowing high-priority streams to write as much as can be sent.) - If the stream is not the highest priority, try to place the data onto the reserved N/2 queue or fail. - When tick occurs *and* more packets can be scheduled: - Transfer packets from the high N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for highest-priority streams, placing resulting packets directly onto the scheduled queue. - If more scheduling is allowed: - Transfer packets from the low N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for non-highest-priority streams, placing resulting packets directly onto the scheduled queue The number N is currently 20, but it could be varied based on resource usage. - If stream is created due to incoming headers, make headers readable from on_new. - Outgoing packets are no longer marked non-writeable to prevent placing more than one STREAM frame from the same stream into a single packet. This property is maintained via code flow and an explicit check. Packets for stream data are allocated using a special function. - STREAM frame elision is cheaper, as we only perform it if a reset stream has outgoing packets referencing it. - lsquic_packet_out_t is smaller, as stream_rec elements are now inside a union.
2017-10-31 13:35:58 +00:00
nread = read(ctx->fd, buf, count);
#else
nread = _read(ctx->fd, buf, count);
#endif
Latest changes - [API Change] Sendfile-like functionality is gone. The stream no longer opens files and deals with file descriptors. (Among other things, this makes the code more portable.) Three writing functions are provided: lsquic_stream_write lsquic_stream_writev lsquic_stream_writef (NEW) lsquic_stream_writef() is given an abstract reader that has function pointers for size() and read() functions which the user can implement. This is the most flexible way. lsquic_stream_write() and lsquic_stream_writev() are now both implemented as wrappers around lsquic_stream_writef(). - [OPTIMIZATION] When writing to stream, be it within or without the on_write() callback, place data directly into packet buffer, bypassing auxiliary data structures. This reduces amount of memory required, for the amount of data that can be written is limited by the congestion window. To support writes outside the on_write() callback, we keep N outgoing packet buffers per connection which can be written to by any stream. One half of these are reserved for the highest priority stream(s), the other half for all other streams. This way, low-priority streams cannot write instead of high-priority streams and, on the other hand, low-priority streams get a chance to send their packets out. The algorithm is as follows: - When user writes to stream outside of the callback: - If this is the highest priority stream, place it onto the reserved N/2 queue or fail. (The actual size of this queue is dynamic -- MAX(N/2, CWND) -- rather than N/2, allowing high-priority streams to write as much as can be sent.) - If the stream is not the highest priority, try to place the data onto the reserved N/2 queue or fail. - When tick occurs *and* more packets can be scheduled: - Transfer packets from the high N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for highest-priority streams, placing resulting packets directly onto the scheduled queue. - If more scheduling is allowed: - Transfer packets from the low N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for non-highest-priority streams, placing resulting packets directly onto the scheduled queue The number N is currently 20, but it could be varied based on resource usage. - If stream is created due to incoming headers, make headers readable from on_new. - Outgoing packets are no longer marked non-writeable to prevent placing more than one STREAM frame from the same stream into a single packet. This property is maintained via code flow and an explicit check. Packets for stream data are allocated using a special function. - STREAM frame elision is cheaper, as we only perform it if a reset stream has outgoing packets referencing it. - lsquic_packet_out_t is smaller, as stream_rec elements are now inside a union.
2017-10-31 13:35:58 +00:00
if (nread >= 0)
{
ctx->nread += nread;
return nread;
}
else
{
LSQ_WARN("%s: error reading from file: %s", __func__, strerror(errno));
ctx->nread = ctx->file_size = 0;
return 0;
}
}
struct reader_ctx *
create_lsquic_reader_ctx (const char *filename)
{
int fd;
struct stat st;
#ifndef WIN32
Latest changes - [API Change] Sendfile-like functionality is gone. The stream no longer opens files and deals with file descriptors. (Among other things, this makes the code more portable.) Three writing functions are provided: lsquic_stream_write lsquic_stream_writev lsquic_stream_writef (NEW) lsquic_stream_writef() is given an abstract reader that has function pointers for size() and read() functions which the user can implement. This is the most flexible way. lsquic_stream_write() and lsquic_stream_writev() are now both implemented as wrappers around lsquic_stream_writef(). - [OPTIMIZATION] When writing to stream, be it within or without the on_write() callback, place data directly into packet buffer, bypassing auxiliary data structures. This reduces amount of memory required, for the amount of data that can be written is limited by the congestion window. To support writes outside the on_write() callback, we keep N outgoing packet buffers per connection which can be written to by any stream. One half of these are reserved for the highest priority stream(s), the other half for all other streams. This way, low-priority streams cannot write instead of high-priority streams and, on the other hand, low-priority streams get a chance to send their packets out. The algorithm is as follows: - When user writes to stream outside of the callback: - If this is the highest priority stream, place it onto the reserved N/2 queue or fail. (The actual size of this queue is dynamic -- MAX(N/2, CWND) -- rather than N/2, allowing high-priority streams to write as much as can be sent.) - If the stream is not the highest priority, try to place the data onto the reserved N/2 queue or fail. - When tick occurs *and* more packets can be scheduled: - Transfer packets from the high N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for highest-priority streams, placing resulting packets directly onto the scheduled queue. - If more scheduling is allowed: - Transfer packets from the low N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for non-highest-priority streams, placing resulting packets directly onto the scheduled queue The number N is currently 20, but it could be varied based on resource usage. - If stream is created due to incoming headers, make headers readable from on_new. - Outgoing packets are no longer marked non-writeable to prevent placing more than one STREAM frame from the same stream into a single packet. This property is maintained via code flow and an explicit check. Packets for stream data are allocated using a special function. - STREAM frame elision is cheaper, as we only perform it if a reset stream has outgoing packets referencing it. - lsquic_packet_out_t is smaller, as stream_rec elements are now inside a union.
2017-10-31 13:35:58 +00:00
fd = open(filename, O_RDONLY);
#else
fd = _open(filename, _O_RDONLY);
#endif
Latest changes - [API Change] Sendfile-like functionality is gone. The stream no longer opens files and deals with file descriptors. (Among other things, this makes the code more portable.) Three writing functions are provided: lsquic_stream_write lsquic_stream_writev lsquic_stream_writef (NEW) lsquic_stream_writef() is given an abstract reader that has function pointers for size() and read() functions which the user can implement. This is the most flexible way. lsquic_stream_write() and lsquic_stream_writev() are now both implemented as wrappers around lsquic_stream_writef(). - [OPTIMIZATION] When writing to stream, be it within or without the on_write() callback, place data directly into packet buffer, bypassing auxiliary data structures. This reduces amount of memory required, for the amount of data that can be written is limited by the congestion window. To support writes outside the on_write() callback, we keep N outgoing packet buffers per connection which can be written to by any stream. One half of these are reserved for the highest priority stream(s), the other half for all other streams. This way, low-priority streams cannot write instead of high-priority streams and, on the other hand, low-priority streams get a chance to send their packets out. The algorithm is as follows: - When user writes to stream outside of the callback: - If this is the highest priority stream, place it onto the reserved N/2 queue or fail. (The actual size of this queue is dynamic -- MAX(N/2, CWND) -- rather than N/2, allowing high-priority streams to write as much as can be sent.) - If the stream is not the highest priority, try to place the data onto the reserved N/2 queue or fail. - When tick occurs *and* more packets can be scheduled: - Transfer packets from the high N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for highest-priority streams, placing resulting packets directly onto the scheduled queue. - If more scheduling is allowed: - Transfer packets from the low N/2 queue to the scheduled queue. - If more scheduling is allowed: - Call on_write callbacks for non-highest-priority streams, placing resulting packets directly onto the scheduled queue The number N is currently 20, but it could be varied based on resource usage. - If stream is created due to incoming headers, make headers readable from on_new. - Outgoing packets are no longer marked non-writeable to prevent placing more than one STREAM frame from the same stream into a single packet. This property is maintained via code flow and an explicit check. Packets for stream data are allocated using a special function. - STREAM frame elision is cheaper, as we only perform it if a reset stream has outgoing packets referencing it. - lsquic_packet_out_t is smaller, as stream_rec elements are now inside a union.
2017-10-31 13:35:58 +00:00
if (fd < 0)
{
LSQ_ERROR("cannot open %s for reading: %s", filename, strerror(errno));
return NULL;
}
if (0 != fstat(fd, &st))
{
LSQ_ERROR("cannot fstat(%s) failed: %s", filename, strerror(errno));
(void) close(fd);
return NULL;
}
struct reader_ctx *ctx = malloc(sizeof(*ctx));
ctx->file_size = st.st_size;
ctx->nread = 0;
ctx->fd = fd;
return ctx;
}
void
destroy_lsquic_reader_ctx (struct reader_ctx *ctx)
{
(void) close(ctx->fd);
free(ctx);
}
int
sport_set_token (struct service_port *sport, const char *token_str)
{
static const unsigned char c2b[0x100] =
{
[(int)'0'] = 0,
[(int)'1'] = 1,
[(int)'2'] = 2,
[(int)'3'] = 3,
[(int)'4'] = 4,
[(int)'5'] = 5,
[(int)'6'] = 6,
[(int)'7'] = 7,
[(int)'8'] = 8,
[(int)'9'] = 9,
[(int)'A'] = 0xA,
[(int)'B'] = 0xB,
[(int)'C'] = 0xC,
[(int)'D'] = 0xD,
[(int)'E'] = 0xE,
[(int)'F'] = 0xF,
[(int)'a'] = 0xA,
[(int)'b'] = 0xB,
[(int)'c'] = 0xC,
[(int)'d'] = 0xD,
[(int)'e'] = 0xE,
[(int)'f'] = 0xF,
};
unsigned char *token;
int len, i;
len = strlen(token_str);
token = malloc(len / 2);
if (!token)
return -1;
for (i = 0; i < len / 2; ++i)
token[i] = (c2b[ (int) token_str[i * 2] ] << 4)
| c2b[ (int) token_str[i * 2 + 1] ];
free(sport->sp_token_buf);
sport->sp_token_buf = token;
sport->sp_token_sz = len / 2;
return 0;
}
2020-06-03 04:13:30 +00:00
int
header_set_ptr (struct lsxpack_header *hdr, struct header_buf *header_buf,
const char *name, size_t name_len,
const char *val, size_t val_len)
{
if (header_buf->off + name_len + val_len <= sizeof(header_buf->buf))
{
memcpy(header_buf->buf + header_buf->off, name, name_len);
memcpy(header_buf->buf + header_buf->off + name_len, val, val_len);
lsxpack_header_set_offset2(hdr, header_buf->buf + header_buf->off,
0, name_len, name_len, val_len);
header_buf->off += name_len + val_len;
return 0;
}
else
return -1;
}