asarfuckery/appasar/ptb/node_modules/jsprim/lib/jsprim.js

736 lines
17 KiB
JavaScript
Raw Normal View History

2019-01-17 18:22:05 +00:00
/*
* lib/jsprim.js: utilities for primitive JavaScript types
*/
var mod_assert = require('assert-plus');
var mod_util = require('util');
var mod_extsprintf = require('extsprintf');
var mod_verror = require('verror');
var mod_jsonschema = require('json-schema');
/*
* Public interface
*/
exports.deepCopy = deepCopy;
exports.deepEqual = deepEqual;
exports.isEmpty = isEmpty;
exports.hasKey = hasKey;
exports.forEachKey = forEachKey;
exports.pluck = pluck;
exports.flattenObject = flattenObject;
exports.flattenIter = flattenIter;
exports.validateJsonObject = validateJsonObjectJS;
exports.validateJsonObjectJS = validateJsonObjectJS;
exports.randElt = randElt;
exports.extraProperties = extraProperties;
exports.mergeObjects = mergeObjects;
exports.startsWith = startsWith;
exports.endsWith = endsWith;
exports.parseInteger = parseInteger;
exports.iso8601 = iso8601;
exports.rfc1123 = rfc1123;
exports.parseDateTime = parseDateTime;
exports.hrtimediff = hrtimeDiff;
exports.hrtimeDiff = hrtimeDiff;
exports.hrtimeAccum = hrtimeAccum;
exports.hrtimeAdd = hrtimeAdd;
exports.hrtimeNanosec = hrtimeNanosec;
exports.hrtimeMicrosec = hrtimeMicrosec;
exports.hrtimeMillisec = hrtimeMillisec;
/*
* Deep copy an acyclic *basic* Javascript object. This only handles basic
* scalars (strings, numbers, booleans) and arbitrarily deep arrays and objects
* containing these. This does *not* handle instances of other classes.
*/
function deepCopy(obj)
{
var ret, key;
var marker = '__deepCopy';
if (obj && obj[marker])
throw (new Error('attempted deep copy of cyclic object'));
if (obj && obj.constructor == Object) {
ret = {};
obj[marker] = true;
for (key in obj) {
if (key == marker)
continue;
ret[key] = deepCopy(obj[key]);
}
delete (obj[marker]);
return (ret);
}
if (obj && obj.constructor == Array) {
ret = [];
obj[marker] = true;
for (key = 0; key < obj.length; key++)
ret.push(deepCopy(obj[key]));
delete (obj[marker]);
return (ret);
}
/*
* It must be a primitive type -- just return it.
*/
return (obj);
}
function deepEqual(obj1, obj2)
{
if (typeof (obj1) != typeof (obj2))
return (false);
if (obj1 === null || obj2 === null || typeof (obj1) != 'object')
return (obj1 === obj2);
if (obj1.constructor != obj2.constructor)
return (false);
var k;
for (k in obj1) {
if (!obj2.hasOwnProperty(k))
return (false);
if (!deepEqual(obj1[k], obj2[k]))
return (false);
}
for (k in obj2) {
if (!obj1.hasOwnProperty(k))
return (false);
}
return (true);
}
function isEmpty(obj)
{
var key;
for (key in obj)
return (false);
return (true);
}
function hasKey(obj, key)
{
mod_assert.equal(typeof (key), 'string');
return (Object.prototype.hasOwnProperty.call(obj, key));
}
function forEachKey(obj, callback)
{
for (var key in obj) {
if (hasKey(obj, key)) {
callback(key, obj[key]);
}
}
}
function pluck(obj, key)
{
mod_assert.equal(typeof (key), 'string');
return (pluckv(obj, key));
}
function pluckv(obj, key)
{
if (obj === null || typeof (obj) !== 'object')
return (undefined);
if (obj.hasOwnProperty(key))
return (obj[key]);
var i = key.indexOf('.');
if (i == -1)
return (undefined);
var key1 = key.substr(0, i);
if (!obj.hasOwnProperty(key1))
return (undefined);
return (pluckv(obj[key1], key.substr(i + 1)));
}
/*
* Invoke callback(row) for each entry in the array that would be returned by
* flattenObject(data, depth). This is just like flattenObject(data,
* depth).forEach(callback), except that the intermediate array is never
* created.
*/
function flattenIter(data, depth, callback)
{
doFlattenIter(data, depth, [], callback);
}
function doFlattenIter(data, depth, accum, callback)
{
var each;
var key;
if (depth === 0) {
each = accum.slice(0);
each.push(data);
callback(each);
return;
}
mod_assert.ok(data !== null);
mod_assert.equal(typeof (data), 'object');
mod_assert.equal(typeof (depth), 'number');
mod_assert.ok(depth >= 0);
for (key in data) {
each = accum.slice(0);
each.push(key);
doFlattenIter(data[key], depth - 1, each, callback);
}
}
function flattenObject(data, depth)
{
if (depth === 0)
return ([ data ]);
mod_assert.ok(data !== null);
mod_assert.equal(typeof (data), 'object');
mod_assert.equal(typeof (depth), 'number');
mod_assert.ok(depth >= 0);
var rv = [];
var key;
for (key in data) {
flattenObject(data[key], depth - 1).forEach(function (p) {
rv.push([ key ].concat(p));
});
}
return (rv);
}
function startsWith(str, prefix)
{
return (str.substr(0, prefix.length) == prefix);
}
function endsWith(str, suffix)
{
return (str.substr(
str.length - suffix.length, suffix.length) == suffix);
}
function iso8601(d)
{
if (typeof (d) == 'number')
d = new Date(d);
mod_assert.ok(d.constructor === Date);
return (mod_extsprintf.sprintf('%4d-%02d-%02dT%02d:%02d:%02d.%03dZ',
d.getUTCFullYear(), d.getUTCMonth() + 1, d.getUTCDate(),
d.getUTCHours(), d.getUTCMinutes(), d.getUTCSeconds(),
d.getUTCMilliseconds()));
}
var RFC1123_MONTHS = [
'Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun',
'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'];
var RFC1123_DAYS = [
'Sun', 'Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat'];
function rfc1123(date) {
return (mod_extsprintf.sprintf('%s, %02d %s %04d %02d:%02d:%02d GMT',
RFC1123_DAYS[date.getUTCDay()], date.getUTCDate(),
RFC1123_MONTHS[date.getUTCMonth()], date.getUTCFullYear(),
date.getUTCHours(), date.getUTCMinutes(),
date.getUTCSeconds()));
}
/*
* Parses a date expressed as a string, as either a number of milliseconds since
* the epoch or any string format that Date accepts, giving preference to the
* former where these two sets overlap (e.g., small numbers).
*/
function parseDateTime(str)
{
/*
* This is irritatingly implicit, but significantly more concise than
* alternatives. The "+str" will convert a string containing only a
* number directly to a Number, or NaN for other strings. Thus, if the
* conversion succeeds, we use it (this is the milliseconds-since-epoch
* case). Otherwise, we pass the string directly to the Date
* constructor to parse.
*/
var numeric = +str;
if (!isNaN(numeric)) {
return (new Date(numeric));
} else {
return (new Date(str));
}
}
/*
* Number.*_SAFE_INTEGER isn't present before node v0.12, so we hardcode
* the ES6 definitions here, while allowing for them to someday be higher.
*/
var MAX_SAFE_INTEGER = Number.MAX_SAFE_INTEGER || 9007199254740991;
var MIN_SAFE_INTEGER = Number.MIN_SAFE_INTEGER || -9007199254740991;
/*
* Default options for parseInteger().
*/
var PI_DEFAULTS = {
base: 10,
allowSign: true,
allowPrefix: false,
allowTrailing: false,
allowImprecise: false,
trimWhitespace: false,
leadingZeroIsOctal: false
};
var CP_0 = 0x30;
var CP_9 = 0x39;
var CP_A = 0x41;
var CP_B = 0x42;
var CP_O = 0x4f;
var CP_T = 0x54;
var CP_X = 0x58;
var CP_Z = 0x5a;
var CP_a = 0x61;
var CP_b = 0x62;
var CP_o = 0x6f;
var CP_t = 0x74;
var CP_x = 0x78;
var CP_z = 0x7a;
var PI_CONV_DEC = 0x30;
var PI_CONV_UC = 0x37;
var PI_CONV_LC = 0x57;
/*
* A stricter version of parseInt() that provides options for changing what
* is an acceptable string (for example, disallowing trailing characters).
*/
function parseInteger(str, uopts)
{
mod_assert.string(str, 'str');
mod_assert.optionalObject(uopts, 'options');
var baseOverride = false;
var options = PI_DEFAULTS;
if (uopts) {
baseOverride = hasKey(uopts, 'base');
options = mergeObjects(options, uopts);
mod_assert.number(options.base, 'options.base');
mod_assert.ok(options.base >= 2, 'options.base >= 2');
mod_assert.ok(options.base <= 36, 'options.base <= 36');
mod_assert.bool(options.allowSign, 'options.allowSign');
mod_assert.bool(options.allowPrefix, 'options.allowPrefix');
mod_assert.bool(options.allowTrailing,
'options.allowTrailing');
mod_assert.bool(options.allowImprecise,
'options.allowImprecise');
mod_assert.bool(options.trimWhitespace,
'options.trimWhitespace');
mod_assert.bool(options.leadingZeroIsOctal,
'options.leadingZeroIsOctal');
if (options.leadingZeroIsOctal) {
mod_assert.ok(!baseOverride,
'"base" and "leadingZeroIsOctal" are ' +
'mutually exclusive');
}
}
var c;
var pbase = -1;
var base = options.base;
var start;
var mult = 1;
var value = 0;
var idx = 0;
var len = str.length;
/* Trim any whitespace on the left side. */
if (options.trimWhitespace) {
while (idx < len && isSpace(str.charCodeAt(idx))) {
++idx;
}
}
/* Check the number for a leading sign. */
if (options.allowSign) {
if (str[idx] === '-') {
idx += 1;
mult = -1;
} else if (str[idx] === '+') {
idx += 1;
}
}
/* Parse the base-indicating prefix if there is one. */
if (str[idx] === '0') {
if (options.allowPrefix) {
pbase = prefixToBase(str.charCodeAt(idx + 1));
if (pbase !== -1 && (!baseOverride || pbase === base)) {
base = pbase;
idx += 2;
}
}
if (pbase === -1 && options.leadingZeroIsOctal) {
base = 8;
}
}
/* Parse the actual digits. */
for (start = idx; idx < len; ++idx) {
c = translateDigit(str.charCodeAt(idx));
if (c !== -1 && c < base) {
value *= base;
value += c;
} else {
break;
}
}
/* If we didn't parse any digits, we have an invalid number. */
if (start === idx) {
return (new Error('invalid number: ' + JSON.stringify(str)));
}
/* Trim any whitespace on the right side. */
if (options.trimWhitespace) {
while (idx < len && isSpace(str.charCodeAt(idx))) {
++idx;
}
}
/* Check for trailing characters. */
if (idx < len && !options.allowTrailing) {
return (new Error('trailing characters after number: ' +
JSON.stringify(str.slice(idx))));
}
/* If our value is 0, we return now, to avoid returning -0. */
if (value === 0) {
return (0);
}
/* Calculate our final value. */
var result = value * mult;
/*
* If the string represents a value that cannot be precisely represented
* by JavaScript, then we want to check that:
*
* - We never increased the value past MAX_SAFE_INTEGER
* - We don't make the result negative and below MIN_SAFE_INTEGER
*
* Because we only ever increment the value during parsing, there's no
* chance of moving past MAX_SAFE_INTEGER and then dropping below it
* again, losing precision in the process. This means that we only need
* to do our checks here, at the end.
*/
if (!options.allowImprecise &&
(value > MAX_SAFE_INTEGER || result < MIN_SAFE_INTEGER)) {
return (new Error('number is outside of the supported range: ' +
JSON.stringify(str.slice(start, idx))));
}
return (result);
}
/*
* Interpret a character code as a base-36 digit.
*/
function translateDigit(d)
{
if (d >= CP_0 && d <= CP_9) {
/* '0' to '9' -> 0 to 9 */
return (d - PI_CONV_DEC);
} else if (d >= CP_A && d <= CP_Z) {
/* 'A' - 'Z' -> 10 to 35 */
return (d - PI_CONV_UC);
} else if (d >= CP_a && d <= CP_z) {
/* 'a' - 'z' -> 10 to 35 */
return (d - PI_CONV_LC);
} else {
/* Invalid character code */
return (-1);
}
}
/*
* Test if a value matches the ECMAScript definition of trimmable whitespace.
*/
function isSpace(c)
{
return (c === 0x20) ||
(c >= 0x0009 && c <= 0x000d) ||
(c === 0x00a0) ||
(c === 0x1680) ||
(c === 0x180e) ||
(c >= 0x2000 && c <= 0x200a) ||
(c === 0x2028) ||
(c === 0x2029) ||
(c === 0x202f) ||
(c === 0x205f) ||
(c === 0x3000) ||
(c === 0xfeff);
}
/*
* Determine which base a character indicates (e.g., 'x' indicates hex).
*/
function prefixToBase(c)
{
if (c === CP_b || c === CP_B) {
/* 0b/0B (binary) */
return (2);
} else if (c === CP_o || c === CP_O) {
/* 0o/0O (octal) */
return (8);
} else if (c === CP_t || c === CP_T) {
/* 0t/0T (decimal) */
return (10);
} else if (c === CP_x || c === CP_X) {
/* 0x/0X (hexadecimal) */
return (16);
} else {
/* Not a meaningful character */
return (-1);
}
}
function validateJsonObjectJS(schema, input)
{
var report = mod_jsonschema.validate(input, schema);
if (report.errors.length === 0)
return (null);
/* Currently, we only do anything useful with the first error. */
var error = report.errors[0];
/* The failed property is given by a URI with an irrelevant prefix. */
var propname = error['property'];
var reason = error['message'].toLowerCase();
var i, j;
/*
* There's at least one case where the property error message is
* confusing at best. We work around this here.
*/
if ((i = reason.indexOf('the property ')) != -1 &&
(j = reason.indexOf(' is not defined in the schema and the ' +
'schema does not allow additional properties')) != -1) {
i += 'the property '.length;
if (propname === '')
propname = reason.substr(i, j - i);
else
propname = propname + '.' + reason.substr(i, j - i);
reason = 'unsupported property';
}
var rv = new mod_verror.VError('property "%s": %s', propname, reason);
rv.jsv_details = error;
return (rv);
}
function randElt(arr)
{
mod_assert.ok(Array.isArray(arr) && arr.length > 0,
'randElt argument must be a non-empty array');
return (arr[Math.floor(Math.random() * arr.length)]);
}
function assertHrtime(a)
{
mod_assert.ok(a[0] >= 0 && a[1] >= 0,
'negative numbers not allowed in hrtimes');
mod_assert.ok(a[1] < 1e9, 'nanoseconds column overflow');
}
/*
* Compute the time elapsed between hrtime readings A and B, where A is later
* than B. hrtime readings come from Node's process.hrtime(). There is no
* defined way to represent negative deltas, so it's illegal to diff B from A
* where the time denoted by B is later than the time denoted by A. If this
* becomes valuable, we can define a representation and extend the
* implementation to support it.
*/
function hrtimeDiff(a, b)
{
assertHrtime(a);
assertHrtime(b);
mod_assert.ok(a[0] > b[0] || (a[0] == b[0] && a[1] >= b[1]),
'negative differences not allowed');
var rv = [ a[0] - b[0], 0 ];
if (a[1] >= b[1]) {
rv[1] = a[1] - b[1];
} else {
rv[0]--;
rv[1] = 1e9 - (b[1] - a[1]);
}
return (rv);
}
/*
* Convert a hrtime reading from the array format returned by Node's
* process.hrtime() into a scalar number of nanoseconds.
*/
function hrtimeNanosec(a)
{
assertHrtime(a);
return (Math.floor(a[0] * 1e9 + a[1]));
}
/*
* Convert a hrtime reading from the array format returned by Node's
* process.hrtime() into a scalar number of microseconds.
*/
function hrtimeMicrosec(a)
{
assertHrtime(a);
return (Math.floor(a[0] * 1e6 + a[1] / 1e3));
}
/*
* Convert a hrtime reading from the array format returned by Node's
* process.hrtime() into a scalar number of milliseconds.
*/
function hrtimeMillisec(a)
{
assertHrtime(a);
return (Math.floor(a[0] * 1e3 + a[1] / 1e6));
}
/*
* Add two hrtime readings A and B, overwriting A with the result of the
* addition. This function is useful for accumulating several hrtime intervals
* into a counter. Returns A.
*/
function hrtimeAccum(a, b)
{
assertHrtime(a);
assertHrtime(b);
/*
* Accumulate the nanosecond component.
*/
a[1] += b[1];
if (a[1] >= 1e9) {
/*
* The nanosecond component overflowed, so carry to the seconds
* field.
*/
a[0]++;
a[1] -= 1e9;
}
/*
* Accumulate the seconds component.
*/
a[0] += b[0];
return (a);
}
/*
* Add two hrtime readings A and B, returning the result as a new hrtime array.
* Does not modify either input argument.
*/
function hrtimeAdd(a, b)
{
assertHrtime(a);
var rv = [ a[0], a[1] ];
return (hrtimeAccum(rv, b));
}
/*
* Check an object for unexpected properties. Accepts the object to check, and
* an array of allowed property names (strings). Returns an array of key names
* that were found on the object, but did not appear in the list of allowed
* properties. If no properties were found, the returned array will be of
* zero length.
*/
function extraProperties(obj, allowed)
{
mod_assert.ok(typeof (obj) === 'object' && obj !== null,
'obj argument must be a non-null object');
mod_assert.ok(Array.isArray(allowed),
'allowed argument must be an array of strings');
for (var i = 0; i < allowed.length; i++) {
mod_assert.ok(typeof (allowed[i]) === 'string',
'allowed argument must be an array of strings');
}
return (Object.keys(obj).filter(function (key) {
return (allowed.indexOf(key) === -1);
}));
}
/*
* Given three sets of properties "provided" (may be undefined), "overrides"
* (required), and "defaults" (may be undefined), construct an object containing
* the union of these sets with "overrides" overriding "provided", and
* "provided" overriding "defaults". None of the input objects are modified.
*/
function mergeObjects(provided, overrides, defaults)
{
var rv, k;
rv = {};
if (defaults) {
for (k in defaults)
rv[k] = defaults[k];
}
if (provided) {
for (k in provided)
rv[k] = provided[k];
}
if (overrides) {
for (k in overrides)
rv[k] = overrides[k];
}
return (rv);
}