DoukutsuNikki/external/miniaudio.h
2022-11-03 02:29:20 -04:00

62352 lines
2.6 MiB

/*
Audio playback and capture library. Choice of public domain or MIT-0. See license statements at the end of this file.
miniaudio - v0.10.9 - 2020-06-24
David Reid - davidreidsoftware@gmail.com
Website: https://miniaud.io
GitHub: https://github.com/dr-soft/miniaudio
*/
/*
RELEASE NOTES - VERSION 0.10.x
==============================
Version 0.10 includes major API changes and refactoring, mostly concerned with the data conversion system. Data conversion is performed internally to convert
audio data between the format requested when initializing the `ma_device` object and the format of the internal device used by the backend. The same applies
to the `ma_decoder` object. The previous design has several design flaws and missing features which necessitated a complete redesign.
Changes to Data Conversion
--------------------------
The previous data conversion system used callbacks to deliver input data for conversion. This design works well in some specific situations, but in other
situations it has some major readability and maintenance issues. The decision was made to replace this with a more iterative approach where you just pass in a
pointer to the input data directly rather than dealing with a callback.
The following are the data conversion APIs that have been removed and their replacements:
- ma_format_converter -> ma_convert_pcm_frames_format()
- ma_channel_router -> ma_channel_converter
- ma_src -> ma_resampler
- ma_pcm_converter -> ma_data_converter
The previous conversion APIs accepted a callback in their configs. There are no longer any callbacks to deal with. Instead you just pass the data into the
`*_process_pcm_frames()` function as a pointer to a buffer.
The simplest aspect of data conversion is sample format conversion. To convert between two formats, just call `ma_convert_pcm_frames_format()`. Channel
conversion is also simple which you can do with `ma_channel_converter` via `ma_channel_converter_process_pcm_frames()`.
Resampling is more complicated because the number of output frames that are processed is different to the number of input frames that are consumed. When you
call `ma_resampler_process_pcm_frames()` you need to pass in the number of input frames available for processing and the number of output frames you want to
output. Upon returning they will receive the number of input frames that were consumed and the number of output frames that were generated.
The `ma_data_converter` API is a wrapper around format, channel and sample rate conversion and handles all of the data conversion you'll need which probably
makes it the best option if you need to do data conversion.
In addition to changes to the API design, a few other changes have been made to the data conversion pipeline:
- The sinc resampler has been removed. This was completely broken and never actually worked properly.
- The linear resampler now uses low-pass filtering to remove aliasing. The quality of the low-pass filter can be controlled via the resampler config with the
`lpfOrder` option, which has a maximum value of MA_MAX_FILTER_ORDER.
- Data conversion now supports s16 natively which runs through a fixed point pipeline. Previously everything needed to be converted to floating point before
processing, whereas now both s16 and f32 are natively supported. Other formats still require conversion to either s16 or f32 prior to processing, however
`ma_data_converter` will handle this for you.
Custom Memory Allocators
------------------------
miniaudio has always supported macro level customization for memory allocation via MA_MALLOC, MA_REALLOC and MA_FREE, however some scenarios require more
flexibility by allowing a user data pointer to be passed to the custom allocation routines. Support for this has been added to version 0.10 via the
`ma_allocation_callbacks` structure. Anything making use of heap allocations has been updated to accept this new structure.
The `ma_context_config` structure has been updated with a new member called `allocationCallbacks`. Leaving this set to it's defaults returned by
`ma_context_config_init()` will cause it to use MA_MALLOC, MA_REALLOC and MA_FREE. Likewise, The `ma_decoder_config` structure has been updated in the same
way, and leaving everything as-is after `ma_decoder_config_init()` will cause it to use the same defaults.
The following APIs have been updated to take a pointer to a `ma_allocation_callbacks` object. Setting this parameter to NULL will cause it to use defaults.
Otherwise they will use the relevant callback in the structure.
- ma_malloc()
- ma_realloc()
- ma_free()
- ma_aligned_malloc()
- ma_aligned_free()
- ma_rb_init() / ma_rb_init_ex()
- ma_pcm_rb_init() / ma_pcm_rb_init_ex()
Note that you can continue to use MA_MALLOC, MA_REALLOC and MA_FREE as per normal. These will continue to be used by default if you do not specify custom
allocation callbacks.
Buffer and Period Configuration Changes
---------------------------------------
The way in which the size of the internal buffer and periods are specified in the device configuration have changed. In previous versions, the config variables
`bufferSizeInFrames` and `bufferSizeInMilliseconds` defined the size of the entire buffer, with the size of a period being the size of this variable divided by
the period count. This became confusing because people would expect the value of `bufferSizeInFrames` or `bufferSizeInMilliseconds` to independantly determine
latency, when in fact it was that value divided by the period count that determined it. These variables have been removed and replaced with new ones called
`periodSizeInFrames` and `periodSizeInMilliseconds`.
These new configuration variables work in the same way as their predecessors in that if one is set to 0, the other will be used, but the main difference is
that you now set these to you desired latency rather than the size of the entire buffer. The benefit of this is that it's much easier and less confusing to
configure latency.
The following unused APIs have been removed:
ma_get_default_buffer_size_in_milliseconds()
ma_get_default_buffer_size_in_frames()
The following macros have been removed:
MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_LOW_LATENCY
MA_BASE_BUFFER_SIZE_IN_MILLISECONDS_CONSERVATIVE
Other API Changes
-----------------
Other less major API changes have also been made in version 0.10.
`ma_device_set_stop_callback()` has been removed. If you require a stop callback, you must now set it via the device config just like the data callback.
The `ma_sine_wave` API has been replaced with a more general API called `ma_waveform`. This supports generation of different types of waveforms, including
sine, square, triangle and sawtooth. Use `ma_waveform_init()` in place of `ma_sine_wave_init()` to initialize the waveform object. This takes a configuration
object called `ma_waveform_config` which defines the properties of the waveform. Use `ma_waveform_config_init()` to initialize a `ma_waveform_config` object.
Use `ma_waveform_read_pcm_frames()` in place of `ma_sine_wave_read_f32()` and `ma_sine_wave_read_f32_ex()`.
`ma_convert_frames()` and `ma_convert_frames_ex()` have been changed. Both of these functions now take a new parameter called `frameCountOut` which specifies
the size of the output buffer in PCM frames. This has been added for safety. In addition to this, the parameters for `ma_convert_frames_ex()` have changed to
take a pointer to a `ma_data_converter_config` object to specify the input and output formats to convert between. This was done to make it more flexible, to
prevent the parameter list getting too long, and to prevent API breakage whenever a new conversion property is added.
`ma_calculate_frame_count_after_src()` has been renamed to `ma_calculate_frame_count_after_resampling()` for consistency with the new `ma_resampler` API.
Filters
-------
The following filters have been added:
|-------------|-------------------------------------------------------------------|
| API | Description |
|-------------|-------------------------------------------------------------------|
| ma_biquad | Biquad filter (transposed direct form 2) |
| ma_lpf1 | First order low-pass filter |
| ma_lpf2 | Second order low-pass filter |
| ma_lpf | High order low-pass filter (Butterworth) |
| ma_hpf1 | First order high-pass filter |
| ma_hpf2 | Second order high-pass filter |
| ma_hpf | High order high-pass filter (Butterworth) |
| ma_bpf2 | Second order band-pass filter |
| ma_bpf | High order band-pass filter |
| ma_peak2 | Second order peaking filter |
| ma_notch2 | Second order notching filter |
| ma_loshelf2 | Second order low shelf filter |
| ma_hishelf2 | Second order high shelf filter |
|-------------|-------------------------------------------------------------------|
These filters all support 32-bit floating point and 16-bit signed integer formats natively. Other formats need to be converted beforehand.
Sine, Square, Triangle and Sawtooth Waveforms
---------------------------------------------
Previously miniaudio supported only sine wave generation. This has now been generalized to support sine, square, triangle and sawtooth waveforms. The old
`ma_sine_wave` API has been removed and replaced with the `ma_waveform` API. Use `ma_waveform_config_init()` to initialize a config object, and then pass it
into `ma_waveform_init()`. Then use `ma_waveform_read_pcm_frames()` to read PCM data.
Noise Generation
----------------
A noise generation API has been added. This is used via the `ma_noise` API. Currently white, pink and Brownian noise is supported. The `ma_noise` API is
similar to the waveform API. Use `ma_noise_config_init()` to initialize a config object, and then pass it into `ma_noise_init()` to initialize a `ma_noise`
object. Then use `ma_noise_read_pcm_frames()` to read PCM data.
Miscellaneous Changes
---------------------
The MA_NO_STDIO option has been removed. This would disable file I/O APIs, however this has proven to be too hard to maintain for it's perceived value and was
therefore removed.
Internal functions have all been made static where possible. If you get warnings about unused functions, please submit a bug report.
The `ma_device` structure is no longer defined as being aligned to MA_SIMD_ALIGNMENT. This resulted in a possible crash when allocating a `ma_device` object on
the heap, but not aligning it to MA_SIMD_ALIGNMENT. This crash would happen due to the compiler seeing the alignment specified on the structure and assuming it
was always aligned as such and thinking it was safe to emit alignment-dependant SIMD instructions. Since miniaudio's philosophy is for things to just work,
this has been removed from all structures.
Results codes have been overhauled. Unnecessary result codes have been removed, and some have been renumbered for organisation purposes. If you are are binding
maintainer you will need to update your result codes. Support has also been added for retrieving a human readable description of a given result code via the
`ma_result_description()` API.
ALSA: The automatic format conversion, channel conversion and resampling performed by ALSA is now disabled by default as they were causing some compatibility
issues with certain devices and configurations. These can be individually enabled via the device config:
```c
deviceConfig.alsa.noAutoFormat = MA_TRUE;
deviceConfig.alsa.noAutoChannels = MA_TRUE;
deviceConfig.alsa.noAutoResample = MA_TRUE;
```
*/
/*
Introduction
============
miniaudio is a single file library for audio playback and capture. To use it, do the following in one .c file:
```c
#define MINIAUDIO_IMPLEMENTATION
#include "miniaudio.h
```
You can #include miniaudio.h in other parts of the program just like any other header.
miniaudio uses the concept of a "device" as the abstraction for physical devices. The idea is that you choose a physical device to emit or capture audio from,
and then move data to/from the device when miniaudio tells you to. Data is delivered to and from devices asynchronously via a callback which you specify when
initializing the device.
When initializing the device you first need to configure it. The device configuration allows you to specify things like the format of the data delivered via
the callback, the size of the internal buffer and the ID of the device you want to emit or capture audio from.
Once you have the device configuration set up you can initialize the device. When initializing a device you need to allocate memory for the device object
beforehand. This gives the application complete control over how the memory is allocated. In the example below we initialize a playback device on the stack,
but you could allocate it on the heap if that suits your situation better.
```c
void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount)
{
// In playback mode copy data to pOutput. In capture mode read data from pInput. In full-duplex mode, both pOutput and pInput will be valid and you can
// move data from pInput into pOutput. Never process more than frameCount frames.
}
...
ma_device_config config = ma_device_config_init(ma_device_type_playback);
config.playback.format = MY_FORMAT;
config.playback.channels = MY_CHANNEL_COUNT;
config.sampleRate = MY_SAMPLE_RATE;
config.dataCallback = data_callback;
config.pUserData = pMyCustomData; // Can be accessed from the device object (device.pUserData).
ma_device device;
if (ma_device_init(NULL, &config, &device) != MA_SUCCESS) {
... An error occurred ...
}
ma_device_start(&device); // The device is sleeping by default so you'll need to start it manually.
...
ma_device_uninit(&device); // This will stop the device so no need to do that manually.
```
In the example above, `data_callback()` is where audio data is written and read from the device. The idea is in playback mode you cause sound to be emitted
from the speakers by writing audio data to the output buffer (`pOutput` in the example). In capture mode you read data from the input buffer (`pInput`) to
extract sound captured by the microphone. The `frameCount` parameter tells you how many frames can be written to the output buffer and read from the input
buffer. A "frame" is one sample for each channel. For example, in a stereo stream (2 channels), one frame is 2 samples: one for the left, one for the right.
The channel count is defined by the device config. The size in bytes of an individual sample is defined by the sample format which is also specified in the
device config. Multi-channel audio data is always interleaved, which means the samples for each frame are stored next to each other in memory. For example, in
a stereo stream the first pair of samples will be the left and right samples for the first frame, the second pair of samples will be the left and right samples
for the second frame, etc.
The configuration of the device is defined by the `ma_device_config` structure. The config object is always initialized with `ma_device_config_init()`. It's
important to always initialize the config with this function as it initializes it with logical defaults and ensures your program doesn't break when new members
are added to the `ma_device_config` structure. The example above uses a fairly simple and standard device configuration. The call to `ma_device_config_init()`
takes a single parameter, which is whether or not the device is a playback, capture, duplex or loopback device (loopback devices are not supported on all
backends). The `config.playback.format` member sets the sample format which can be one of the following (all formats are native-endian):
|---------------|----------------------------------------|---------------------------|
| Symbol | Description | Range |
|---------------|----------------------------------------|---------------------------|
| ma_format_f32 | 32-bit floating point | [-1, 1] |
| ma_format_s16 | 16-bit signed integer | [-32768, 32767] |
| ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] |
| ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] |
| ma_format_u8 | 8-bit unsigned integer | [0, 255] |
|---------------|----------------------------------------|---------------------------|
The `config.playback.channels` member sets the number of channels to use with the device. The channel count cannot exceed MA_MAX_CHANNELS. The
`config.sampleRate` member sets the sample rate (which must be the same for both playback and capture in full-duplex configurations). This is usually set to
44100 or 48000, but can be set to anything. It's recommended to keep this between 8000 and 384000, however.
Note that leaving the format, channel count and/or sample rate at their default values will result in the internal device's native configuration being used
which is useful if you want to avoid the overhead of miniaudio's automatic data conversion.
In addition to the sample format, channel count and sample rate, the data callback and user data pointer are also set via the config. The user data pointer is
not passed into the callback as a parameter, but is instead set to the `pUserData` member of `ma_device` which you can access directly since all miniaudio
structures are transparent.
Initializing the device is done with `ma_device_init()`. This will return a result code telling you what went wrong, if anything. On success it will return
`MA_SUCCESS`. After initialization is complete the device will be in a stopped state. To start it, use `ma_device_start()`. Uninitializing the device will stop
it, which is what the example above does, but you can also stop the device with `ma_device_stop()`. To resume the device simply call `ma_device_start()` again.
Note that it's important to never stop or start the device from inside the callback. This will result in a deadlock. Instead you set a variable or signal an
event indicating that the device needs to stop and handle it in a different thread. The following APIs must never be called inside the callback:
ma_device_init()
ma_device_init_ex()
ma_device_uninit()
ma_device_start()
ma_device_stop()
You must never try uninitializing and reinitializing a device inside the callback. You must also never try to stop and start it from inside the callback. There
are a few other things you shouldn't do in the callback depending on your requirements, however this isn't so much a thread-safety thing, but rather a real-
time processing thing which is beyond the scope of this introduction.
The example above demonstrates the initialization of a playback device, but it works exactly the same for capture. All you need to do is change the device type
from `ma_device_type_playback` to `ma_device_type_capture` when setting up the config, like so:
```c
ma_device_config config = ma_device_config_init(ma_device_type_capture);
config.capture.format = MY_FORMAT;
config.capture.channels = MY_CHANNEL_COUNT;
```
In the data callback you just read from the input buffer (`pInput` in the example above) and leave the output buffer alone (it will be set to NULL when the
device type is set to `ma_device_type_capture`).
These are the available device types and how you should handle the buffers in the callback:
|-------------------------|--------------------------------------------------------|
| Device Type | Callback Behavior |
|-------------------------|--------------------------------------------------------|
| ma_device_type_playback | Write to output buffer, leave input buffer untouched. |
| ma_device_type_capture | Read from input buffer, leave output buffer untouched. |
| ma_device_type_duplex | Read from input buffer, write to output buffer. |
| ma_device_type_loopback | Read from input buffer, leave output buffer untouched. |
|-------------------------|--------------------------------------------------------|
You will notice in the example above that the sample format and channel count is specified separately for playback and capture. This is to support different
data formats between the playback and capture devices in a full-duplex system. An example may be that you want to capture audio data as a monaural stream (one
channel), but output sound to a stereo speaker system. Note that if you use different formats between playback and capture in a full-duplex configuration you
will need to convert the data yourself. There are functions available to help you do this which will be explained later.
The example above did not specify a physical device to connect to which means it will use the operating system's default device. If you have multiple physical
devices connected and you want to use a specific one you will need to specify the device ID in the configuration, like so:
```
config.playback.pDeviceID = pMyPlaybackDeviceID; // Only if requesting a playback or duplex device.
config.capture.pDeviceID = pMyCaptureDeviceID; // Only if requesting a capture, duplex or loopback device.
```
To retrieve the device ID you will need to perform device enumeration, however this requires the use of a new concept called the "context". Conceptually
speaking the context sits above the device. There is one context to many devices. The purpose of the context is to represent the backend at a more global level
and to perform operations outside the scope of an individual device. Mainly it is used for performing run-time linking against backend libraries, initializing
backends and enumerating devices. The example below shows how to enumerate devices.
```c
ma_context context;
if (ma_context_init(NULL, 0, NULL, &context) != MA_SUCCESS) {
// Error.
}
ma_device_info* pPlaybackDeviceInfos;
ma_uint32 playbackDeviceCount;
ma_device_info* pCaptureDeviceInfos;
ma_uint32 captureDeviceCount;
if (ma_context_get_devices(&context, &pPlaybackDeviceInfos, &playbackDeviceCount, &pCaptureDeviceInfos, &captureDeviceCount) != MA_SUCCESS) {
// Error.
}
// Loop over each device info and do something with it. Here we just print the name with their index. You may want to give the user the
// opportunity to choose which device they'd prefer.
for (ma_uint32 iDevice = 0; iDevice < playbackDeviceCount; iDevice += 1) {
printf("%d - %s\n", iDevice, pPlaybackDeviceInfos[iDevice].name);
}
ma_device_config config = ma_device_config_init(ma_device_type_playback);
config.playback.pDeviceID = &pPlaybackDeviceInfos[chosenPlaybackDeviceIndex].id;
config.playback.format = MY_FORMAT;
config.playback.channels = MY_CHANNEL_COUNT;
config.sampleRate = MY_SAMPLE_RATE;
config.dataCallback = data_callback;
config.pUserData = pMyCustomData;
ma_device device;
if (ma_device_init(&context, &config, &device) != MA_SUCCESS) {
// Error
}
...
ma_device_uninit(&device);
ma_context_uninit(&context);
```
The first thing we do in this example is initialize a `ma_context` object with `ma_context_init()`. The first parameter is a pointer to a list of `ma_backend`
values which are used to override the default backend priorities. When this is NULL, as in this example, miniaudio's default priorities are used. The second
parameter is the number of backends listed in the array pointed to by the first parameter. The third parameter is a pointer to a `ma_context_config` object
which can be NULL, in which case defaults are used. The context configuration is used for setting the logging callback, custom memory allocation callbacks,
user-defined data and some backend-specific configurations.
Once the context has been initialized you can enumerate devices. In the example above we use the simpler `ma_context_get_devices()`, however you can also use a
callback for handling devices by using `ma_context_enumerate_devices()`. When using `ma_context_get_devices()` you provide a pointer to a pointer that will,
upon output, be set to a pointer to a buffer containing a list of `ma_device_info` structures. You also provide a pointer to an unsigned integer that will
receive the number of items in the returned buffer. Do not free the returned buffers as their memory is managed internally by miniaudio.
The `ma_device_info` structure contains an `id` member which is the ID you pass to the device config. It also contains the name of the device which is useful
for presenting a list of devices to the user via the UI.
When creating your own context you will want to pass it to `ma_device_init()` when initializing the device. Passing in NULL, like we do in the first example,
will result in miniaudio creating the context for you, which you don't want to do since you've already created a context. Note that internally the context is
only tracked by it's pointer which means you must not change the location of the `ma_context` object. If this is an issue, consider using `malloc()` to
allocate memory for the context.
Building
========
miniaudio should work cleanly out of the box without the need to download or install any dependencies. See below for platform-specific details.
Windows
-------
The Windows build should compile cleanly on all popular compilers without the need to configure any include paths nor link to any libraries.
macOS and iOS
-------------
The macOS build should compile cleanly without the need to download any dependencies nor link to any libraries or frameworks. The iOS build needs to be
compiled as Objective-C (sorry) and will need to link the relevant frameworks but should Just Work with Xcode. Compiling through the command line requires
linking to -lpthread and -lm.
Linux
-----
The Linux build only requires linking to -ldl, -lpthread and -lm. You do not need any development packages.
BSD
---
The BSD build only requires linking to -lpthread and -lm. NetBSD uses audio(4), OpenBSD uses sndio and FreeBSD uses OSS.
Android
-------
AAudio is the highest priority backend on Android. This should work out of the box without needing any kind of compiler configuration. Support for AAudio
starts with Android 8 which means older versions will fall back to OpenSL|ES which requires API level 16+.
Emscripten
----------
The Emscripten build emits Web Audio JavaScript directly and should Just Work without any configuration. You cannot use -std=c* compiler flags, nor -ansi.
Build Options
-------------
#define these options before including miniaudio.h.
#define MA_NO_WASAPI
Disables the WASAPI backend.
#define MA_NO_DSOUND
Disables the DirectSound backend.
#define MA_NO_WINMM
Disables the WinMM backend.
#define MA_NO_ALSA
Disables the ALSA backend.
#define MA_NO_PULSEAUDIO
Disables the PulseAudio backend.
#define MA_NO_JACK
Disables the JACK backend.
#define MA_NO_COREAUDIO
Disables the Core Audio backend.
#define MA_NO_SNDIO
Disables the sndio backend.
#define MA_NO_AUDIO4
Disables the audio(4) backend.
#define MA_NO_OSS
Disables the OSS backend.
#define MA_NO_AAUDIO
Disables the AAudio backend.
#define MA_NO_OPENSL
Disables the OpenSL|ES backend.
#define MA_NO_WEBAUDIO
Disables the Web Audio backend.
#define MA_NO_NULL
Disables the null backend.
#define MA_NO_DECODING
Disables decoding APIs.
#define MA_NO_ENCODING
Disables encoding APIs.
#define MA_NO_WAV
Disables the built-in WAV decoder and encoder.
#define MA_NO_FLAC
Disables the built-in FLAC decoder.
#define MA_NO_MP3
Disables the built-in MP3 decoder.
#define MA_NO_DEVICE_IO
Disables playback and recording. This will disable ma_context and ma_device APIs. This is useful if you only want to use miniaudio's data conversion and/or
decoding APIs.
#define MA_NO_GENERATION
Disables generation APIs such a ma_waveform and ma_noise.
#define MA_NO_SSE2
Disables SSE2 optimizations.
#define MA_NO_AVX2
Disables AVX2 optimizations.
#define MA_NO_AVX512
Disables AVX-512 optimizations.
#define MA_NO_NEON
Disables NEON optimizations.
#define MA_LOG_LEVEL <Level>
Sets the logging level. Set level to one of the following:
MA_LOG_LEVEL_VERBOSE
MA_LOG_LEVEL_INFO
MA_LOG_LEVEL_WARNING
MA_LOG_LEVEL_ERROR
#define MA_DEBUG_OUTPUT
Enable printf() debug output.
#define MA_COINIT_VALUE
Windows only. The value to pass to internal calls to CoInitializeEx(). Defaults to COINIT_MULTITHREADED.
#define MA_API
Controls how public APIs should be decorated. Defaults to `extern`.
#define MA_DLL
If set, configures MA_API to either import or export APIs depending on whether or not the implementation is being defined. If defining the implementation,
MA_API will be configured to export. Otherwise it will be configured to import. This has no effect if MA_API is defined externally.
Definitions
===========
This section defines common terms used throughout miniaudio. Unfortunately there is often ambiguity in the use of terms throughout the audio space, so this
section is intended to clarify how miniaudio uses each term.
Sample
------
A sample is a single unit of audio data. If the sample format is f32, then one sample is one 32-bit floating point number.
Frame / PCM Frame
-----------------
A frame is a group of samples equal to the number of channels. For a stereo stream a frame is 2 samples, a mono frame is 1 sample, a 5.1 surround sound frame
is 6 samples, etc. The terms "frame" and "PCM frame" are the same thing in miniaudio. Note that this is different to a compressed frame. If ever miniaudio
needs to refer to a compressed frame, such as a FLAC frame, it will always clarify what it's referring to with something like "FLAC frame".
Channel
-------
A stream of monaural audio that is emitted from an individual speaker in a speaker system, or received from an individual microphone in a microphone system. A
stereo stream has two channels (a left channel, and a right channel), a 5.1 surround sound system has 6 channels, etc. Some audio systems refer to a channel as
a complex audio stream that's mixed with other channels to produce the final mix - this is completely different to miniaudio's use of the term "channel" and
should not be confused.
Sample Rate
-----------
The sample rate in miniaudio is always expressed in Hz, such as 44100, 48000, etc. It's the number of PCM frames that are processed per second.
Formats
-------
Throughout miniaudio you will see references to different sample formats:
|---------------|----------------------------------------|---------------------------|
| Symbol | Description | Range |
|---------------|----------------------------------------|---------------------------|
| ma_format_f32 | 32-bit floating point | [-1, 1] |
| ma_format_s16 | 16-bit signed integer | [-32768, 32767] |
| ma_format_s24 | 24-bit signed integer (tightly packed) | [-8388608, 8388607] |
| ma_format_s32 | 32-bit signed integer | [-2147483648, 2147483647] |
| ma_format_u8 | 8-bit unsigned integer | [0, 255] |
|---------------|----------------------------------------|---------------------------|
All formats are native-endian.
Decoding
========
The `ma_decoder` API is used for reading audio files. To enable a decoder you must #include the header of the relevant backend library before the
implementation of miniaudio. You can find copies of these in the "extras" folder in the miniaudio repository (https://github.com/dr-soft/miniaudio).
The table below are the supported decoding backends:
|--------|-----------------|
| Type | Backend Library |
|--------|-----------------|
| WAV | dr_wav.h |
| FLAC | dr_flac.h |
| MP3 | dr_mp3.h |
| Vorbis | stb_vorbis.c |
|--------|-----------------|
The code below is an example of how to enable decoding backends:
```c
#include "dr_flac.h" // Enables FLAC decoding.
#include "dr_mp3.h" // Enables MP3 decoding.
#include "dr_wav.h" // Enables WAV decoding.
#define MINIAUDIO_IMPLEMENTATION
#include "miniaudio.h"
```
A decoder can be initialized from a file with `ma_decoder_init_file()`, a block of memory with `ma_decoder_init_memory()`, or from data delivered via callbacks
with `ma_decoder_init()`. Here is an example for loading a decoder from a file:
```c
ma_decoder decoder;
ma_result result = ma_decoder_init_file("MySong.mp3", NULL, &decoder);
if (result != MA_SUCCESS) {
return false; // An error occurred.
}
...
ma_decoder_uninit(&decoder);
```
When initializing a decoder, you can optionally pass in a pointer to a ma_decoder_config object (the NULL argument in the example above) which allows you to
configure the output format, channel count, sample rate and channel map:
```c
ma_decoder_config config = ma_decoder_config_init(ma_format_f32, 2, 48000);
```
When passing in NULL for decoder config in `ma_decoder_init*()`, the output format will be the same as that defined by the decoding backend.
Data is read from the decoder as PCM frames. This will return the number of PCM frames actually read. If the return value is less than the requested number of
PCM frames it means you've reached the end:
```c
ma_uint64 framesRead = ma_decoder_read_pcm_frames(pDecoder, pFrames, framesToRead);
if (framesRead < framesToRead) {
// Reached the end.
}
```
You can also seek to a specific frame like so:
```c
ma_result result = ma_decoder_seek_to_pcm_frame(pDecoder, targetFrame);
if (result != MA_SUCCESS) {
return false; // An error occurred.
}
```
If you want to loop back to the start, you can simply seek back to the first PCM frame:
```c
ma_decoder_seek_to_pcm_frame(pDecoder, 0);
```
When loading a decoder, miniaudio uses a trial and error technique to find the appropriate decoding backend. This can be unnecessarily inefficient if the type
is already known. In this case you can use the `_wav`, `_mp3`, etc. varients of the aforementioned initialization APIs:
```c
ma_decoder_init_wav()
ma_decoder_init_mp3()
ma_decoder_init_memory_wav()
ma_decoder_init_memory_mp3()
ma_decoder_init_file_wav()
ma_decoder_init_file_mp3()
etc.
```
The `ma_decoder_init_file()` API will try using the file extension to determine which decoding backend to prefer.
Encoding
========
The `ma_encoding` API is used for writing audio files. To enable an encoder you must #include the header of the relevant backend library before the
implementation of miniaudio. You can find copies of these in the "extras" folder in the miniaudio repository (https://github.com/dr-soft/miniaudio).
The table below are the supported encoding backends:
|--------|-----------------|
| Type | Backend Library |
|--------|-----------------|
| WAV | dr_wav.h |
|--------|-----------------|
The code below is an example of how to enable encoding backends:
```c
#include "dr_wav.h" // Enables WAV encoding.
#define MINIAUDIO_IMPLEMENTATION
#include "miniaudio.h"
```
An encoder can be initialized to write to a file with `ma_encoder_init_file()` or from data delivered via callbacks with `ma_encoder_init()`. Below is an
example for initializing an encoder to output to a file.
```c
ma_encoder_config config = ma_encoder_config_init(ma_resource_format_wav, FORMAT, CHANNELS, SAMPLE_RATE);
ma_encoder encoder;
ma_result result = ma_encoder_init_file("my_file.wav", &config, &encoder);
if (result != MA_SUCCESS) {
// Error
}
...
ma_encoder_uninit(&encoder);
```
When initializing an encoder you must specify a config which is initialized with `ma_encoder_config_init()`. Here you must specify the file type, the output
sample format, output channel count and output sample rate. The following file types are supported:
|------------------------|-------------|
| Enum | Description |
|------------------------|-------------|
| ma_resource_format_wav | WAV |
|------------------------|-------------|
If the format, channel count or sample rate is not supported by the output file type an error will be returned. The encoder will not perform data conversion so
you will need to convert it before outputting any audio data. To output audio data, use `ma_encoder_write_pcm_frames()`, like in the example below:
```c
framesWritten = ma_encoder_write_pcm_frames(&encoder, pPCMFramesToWrite, framesToWrite);
```
Encoders must be uninitialized with `ma_encoder_uninit()`.
Sample Format Conversion
========================
Conversion between sample formats is achieved with the `ma_pcm_*_to_*()`, `ma_pcm_convert()` and `ma_convert_pcm_frames_format()` APIs. Use `ma_pcm_*_to_*()`
to convert between two specific formats. Use `ma_pcm_convert()` to convert based on a `ma_format` variable. Use `ma_convert_pcm_frames_format()` to convert
PCM frames where you want to specify the frame count and channel count as a variable instead of the total sample count.
Dithering
---------
Dithering can be set using the ditherMode parameter.
The different dithering modes include the following, in order of efficiency:
|-----------|--------------------------|
| Type | Enum Token |
|-----------|--------------------------|
| None | ma_dither_mode_none |
| Rectangle | ma_dither_mode_rectangle |
| Triangle | ma_dither_mode_triangle |
|-----------|--------------------------|
Note that even if the dither mode is set to something other than `ma_dither_mode_none`, it will be ignored for conversions where dithering is not needed.
Dithering is available for the following conversions:
s16 -> u8
s24 -> u8
s32 -> u8
f32 -> u8
s24 -> s16
s32 -> s16
f32 -> s16
Note that it is not an error to pass something other than ma_dither_mode_none for conversions where dither is not used. It will just be ignored.
Channel Conversion
==================
Channel conversion is used for channel rearrangement and conversion from one channel count to another. The `ma_channel_converter` API is used for channel
conversion. Below is an example of initializing a simple channel converter which converts from mono to stereo.
```c
ma_channel_converter_config config = ma_channel_converter_config_init(ma_format, 1, NULL, 2, NULL, ma_channel_mix_mode_default, NULL);
result = ma_channel_converter_init(&config, &converter);
if (result != MA_SUCCESS) {
// Error.
}
```
To perform the conversion simply call `ma_channel_converter_process_pcm_frames()` like so:
```c
ma_result result = ma_channel_converter_process_pcm_frames(&converter, pFramesOut, pFramesIn, frameCount);
if (result != MA_SUCCESS) {
// Error.
}
```
It is up to the caller to ensure the output buffer is large enough to accomodate the new PCM frames.
The only formats supported are `ma_format_s16` and `ma_format_f32`. If you need another format you need to convert your data manually which you can do with
`ma_pcm_convert()`, etc.
Input and output PCM frames are always interleaved. Deinterleaved layouts are not supported.
Channel Mapping
---------------
In addition to converting from one channel count to another, like the example above, The channel converter can also be used to rearrange channels. When
initializing the channel converter, you can optionally pass in channel maps for both the input and output frames. If the channel counts are the same, and each
channel map contains the same channel positions with the exception that they're in a different order, a simple shuffling of the channels will be performed. If,
however, there is not a 1:1 mapping of channel positions, or the channel counts differ, the input channels will be mixed based on a mixing mode which is
specified when initializing the `ma_channel_converter_config` object.
When converting from mono to multi-channel, the mono channel is simply copied to each output channel. When going the other way around, the audio of each output
channel is simply averaged and copied to the mono channel.
In more complicated cases blending is used. The `ma_channel_mix_mode_simple` mode will drop excess channels and silence extra channels. For example, converting
from 4 to 2 channels, the 3rd and 4th channels will be dropped, whereas converting from 2 to 4 channels will put silence into the 3rd and 4th channels.
The `ma_channel_mix_mode_rectangle` mode uses spacial locality based on a rectangle to compute a simple distribution between input and output. Imagine sitting
in the middle of a room, with speakers on the walls representing channel positions. The MA_CHANNEL_FRONT_LEFT position can be thought of as being in the corner
of the front and left walls.
Finally, the `ma_channel_mix_mode_custom_weights` mode can be used to use custom user-defined weights. Custom weights can be passed in as the last parameter of
`ma_channel_converter_config_init()`.
Predefined channel maps can be retrieved with `ma_get_standard_channel_map()`. This takes a `ma_standard_channel_map` enum as it's first parameter, which can
be one of the following:
|-----------------------------------|-----------------------------------------------------------|
| Name | Description |
|-----------------------------------|-----------------------------------------------------------|
| ma_standard_channel_map_default | Default channel map used by miniaudio. See below. |
| ma_standard_channel_map_microsoft | Channel map used by Microsoft's bitfield channel maps. |
| ma_standard_channel_map_alsa | Default ALSA channel map. |
| ma_standard_channel_map_rfc3551 | RFC 3551. Based on AIFF. |
| ma_standard_channel_map_flac | FLAC channel map. |
| ma_standard_channel_map_vorbis | Vorbis channel map. |
| ma_standard_channel_map_sound4 | FreeBSD's sound(4). |
| ma_standard_channel_map_sndio | sndio channel map. www.sndio.org/tips.html |
| ma_standard_channel_map_webaudio | https://webaudio.github.io/web-audio-api/#ChannelOrdering |
|-----------------------------------|-----------------------------------------------------------|
Below are the channel maps used by default in miniaudio (ma_standard_channel_map_default):
|---------------|------------------------------|
| Channel Count | Mapping |
|---------------|------------------------------|
| 1 (Mono) | 0: MA_CHANNEL_MONO |
|---------------|------------------------------|
| 2 (Stereo) | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
|---------------|------------------------------|
| 3 | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
|---------------|------------------------------|
| 4 (Surround) | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
| | 3: MA_CHANNEL_BACK_CENTER |
|---------------|------------------------------|
| 5 | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
| | 3: MA_CHANNEL_BACK_LEFT |
| | 4: MA_CHANNEL_BACK_RIGHT |
|---------------|------------------------------|
| 6 (5.1) | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
| | 3: MA_CHANNEL_LFE |
| | 4: MA_CHANNEL_SIDE_LEFT |
| | 5: MA_CHANNEL_SIDE_RIGHT |
|---------------|------------------------------|
| 7 | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
| | 3: MA_CHANNEL_LFE |
| | 4: MA_CHANNEL_BACK_CENTER |
| | 4: MA_CHANNEL_SIDE_LEFT |
| | 5: MA_CHANNEL_SIDE_RIGHT |
|---------------|------------------------------|
| 8 (7.1) | 0: MA_CHANNEL_FRONT_LEFT |
| | 1: MA_CHANNEL_FRONT_RIGHT |
| | 2: MA_CHANNEL_FRONT_CENTER |
| | 3: MA_CHANNEL_LFE |
| | 4: MA_CHANNEL_BACK_LEFT |
| | 5: MA_CHANNEL_BACK_RIGHT |
| | 6: MA_CHANNEL_SIDE_LEFT |
| | 7: MA_CHANNEL_SIDE_RIGHT |
|---------------|------------------------------|
| Other | All channels set to 0. This |
| | is equivalent to the same |
| | mapping as the device. |
|---------------|------------------------------|
Resampling
==========
Resampling is achieved with the `ma_resampler` object. To create a resampler object, do something like the following:
```c
ma_resampler_config config = ma_resampler_config_init(ma_format_s16, channels, sampleRateIn, sampleRateOut, ma_resample_algorithm_linear);
ma_resampler resampler;
ma_result result = ma_resampler_init(&config, &resampler);
if (result != MA_SUCCESS) {
// An error occurred...
}
```
Do the following to uninitialize the resampler:
```c
ma_resampler_uninit(&resampler);
```
The following example shows how data can be processed
```c
ma_uint64 frameCountIn = 1000;
ma_uint64 frameCountOut = 2000;
ma_result result = ma_resampler_process_pcm_frames(&resampler, pFramesIn, &frameCountIn, pFramesOut, &frameCountOut);
if (result != MA_SUCCESS) {
// An error occurred...
}
// At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the number of output frames written.
```
To initialize the resampler you first need to set up a config (`ma_resampler_config`) with `ma_resampler_config_init()`. You need to specify the sample format
you want to use, the number of channels, the input and output sample rate, and the algorithm.
The sample format can be either `ma_format_s16` or `ma_format_f32`. If you need a different format you will need to perform pre- and post-conversions yourself
where necessary. Note that the format is the same for both input and output. The format cannot be changed after initialization.
The resampler supports multiple channels and is always interleaved (both input and output). The channel count cannot be changed after initialization.
The sample rates can be anything other than zero, and are always specified in hertz. They should be set to something like 44100, etc. The sample rate is the
only configuration property that can be changed after initialization.
The miniaudio resampler supports multiple algorithms:
|-----------|------------------------------|
| Algorithm | Enum Token |
|-----------|------------------------------|
| Linear | ma_resample_algorithm_linear |
| Speex | ma_resample_algorithm_speex |
|-----------|------------------------------|
Because Speex is not public domain it is strictly opt-in and the code is stored in separate files. if you opt-in to the Speex backend you will need to consider
it's license, the text of which can be found in it's source files in "extras/speex_resampler". Details on how to opt-in to the Speex resampler is explained in
the Speex Resampler section below.
The algorithm cannot be changed after initialization.
Processing always happens on a per PCM frame basis and always assumes interleaved input and output. De-interleaved processing is not supported. To process
frames, use `ma_resampler_process_pcm_frames()`. On input, this function takes the number of output frames you can fit in the output buffer and the number of
input frames contained in the input buffer. On output these variables contain the number of output frames that were written to the output buffer and the
number of input frames that were consumed in the process. You can pass in NULL for the input buffer in which case it will be treated as an infinitely large
buffer of zeros. The output buffer can also be NULL, in which case the processing will be treated as seek.
The sample rate can be changed dynamically on the fly. You can change this with explicit sample rates with `ma_resampler_set_rate()` and also with a decimal
ratio with `ma_resampler_set_rate_ratio()`. The ratio is in/out.
Sometimes it's useful to know exactly how many input frames will be required to output a specific number of frames. You can calculate this with
`ma_resampler_get_required_input_frame_count()`. Likewise, it's sometimes useful to know exactly how many frames would be output given a certain number of
input frames. You can do this with `ma_resampler_get_expected_output_frame_count()`.
Due to the nature of how resampling works, the resampler introduces some latency. This can be retrieved in terms of both the input rate and the output rate
with `ma_resampler_get_input_latency()` and `ma_resampler_get_output_latency()`.
Resampling Algorithms
---------------------
The choice of resampling algorithm depends on your situation and requirements. The linear resampler is the most efficient and has the least amount of latency,
but at the expense of poorer quality. The Speex resampler is higher quality, but slower with more latency. It also performs several heap allocations internally
for memory management.
Linear Resampling
-----------------
The linear resampler is the fastest, but comes at the expense of poorer quality. There is, however, some control over the quality of the linear resampler which
may make it a suitable option depending on your requirements.
The linear resampler performs low-pass filtering before or after downsampling or upsampling, depending on the sample rates you're converting between. When
decreasing the sample rate, the low-pass filter will be applied before downsampling. When increasing the rate it will be performed after upsampling. By default
a fourth order low-pass filter will be applied. This can be configured via the `lpfOrder` configuration variable. Setting this to 0 will disable filtering.
The low-pass filter has a cutoff frequency which defaults to half the sample rate of the lowest of the input and output sample rates (Nyquist Frequency). This
can be controlled with the `lpfNyquistFactor` config variable. This defaults to 1, and should be in the range of 0..1, although a value of 0 does not make
sense and should be avoided. A value of 1 will use the Nyquist Frequency as the cutoff. A value of 0.5 will use half the Nyquist Frequency as the cutoff, etc.
Values less than 1 will result in more washed out sound due to more of the higher frequencies being removed. This config variable has no impact on performance
and is a purely perceptual configuration.
The API for the linear resampler is the same as the main resampler API, only it's called `ma_linear_resampler`.
Speex Resampling
----------------
The Speex resampler is made up of third party code which is released under the BSD license. Because it is licensed differently to miniaudio, which is public
domain, it is strictly opt-in and all of it's code is stored in separate files. If you opt-in to the Speex resampler you must consider the license text in it's
source files. To opt-in, you must first #include the following file before the implementation of miniaudio.h:
#include "extras/speex_resampler/ma_speex_resampler.h"
Both the header and implementation is contained within the same file. The implementation can be included in your program like so:
#define MINIAUDIO_SPEEX_RESAMPLER_IMPLEMENTATION
#include "extras/speex_resampler/ma_speex_resampler.h"
Note that even if you opt-in to the Speex backend, miniaudio won't use it unless you explicitly ask for it in the respective config of the object you are
initializing. If you try to use the Speex resampler without opting in, initialization of the `ma_resampler` object will fail with `MA_NO_BACKEND`.
The only configuration option to consider with the Speex resampler is the `speex.quality` config variable. This is a value between 0 and 10, with 0 being
the fastest with the poorest quality and 10 being the slowest with the highest quality. The default value is 3.
General Data Conversion
=======================
The `ma_data_converter` API can be used to wrap sample format conversion, channel conversion and resampling into one operation. This is what miniaudio uses
internally to convert between the format requested when the device was initialized and the format of the backend's native device. The API for general data
conversion is very similar to the resampling API. Create a `ma_data_converter` object like this:
```c
ma_data_converter_config config = ma_data_converter_config_init(inputFormat, outputFormat, inputChannels, outputChannels, inputSampleRate, outputSampleRate);
ma_data_converter converter;
ma_result result = ma_data_converter_init(&config, &converter);
if (result != MA_SUCCESS) {
// An error occurred...
}
```
In the example above we use `ma_data_converter_config_init()` to initialize the config, however there's many more properties that can be configured, such as
channel maps and resampling quality. Something like the following may be more suitable depending on your requirements:
```c
ma_data_converter_config config = ma_data_converter_config_init_default();
config.formatIn = inputFormat;
config.formatOut = outputFormat;
config.channelsIn = inputChannels;
config.channelsOut = outputChannels;
config.sampleRateIn = inputSampleRate;
config.sampleRateOut = outputSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_flac, config.channelCountIn, config.channelMapIn);
config.resampling.linear.lpfOrder = MA_MAX_FILTER_ORDER;
```
Do the following to uninitialize the data converter:
```c
ma_data_converter_uninit(&converter);
```
The following example shows how data can be processed
```c
ma_uint64 frameCountIn = 1000;
ma_uint64 frameCountOut = 2000;
ma_result result = ma_data_converter_process_pcm_frames(&converter, pFramesIn, &frameCountIn, pFramesOut, &frameCountOut);
if (result != MA_SUCCESS) {
// An error occurred...
}
// At this point, frameCountIn contains the number of input frames that were consumed and frameCountOut contains the number of output frames written.
```
The data converter supports multiple channels and is always interleaved (both input and output). The channel count cannot be changed after initialization.
Sample rates can be anything other than zero, and are always specified in hertz. They should be set to something like 44100, etc. The sample rate is the only
configuration property that can be changed after initialization, but only if the `resampling.allowDynamicSampleRate` member of `ma_data_converter_config` is
set to MA_TRUE. To change the sample rate, use `ma_data_converter_set_rate()` or `ma_data_converter_set_rate_ratio()`. The ratio must be in/out. The resampling
algorithm cannot be changed after initialization.
Processing always happens on a per PCM frame basis and always assumes interleaved input and output. De-interleaved processing is not supported. To process
frames, use `ma_data_converter_process_pcm_frames()`. On input, this function takes the number of output frames you can fit in the output buffer and the number
of input frames contained in the input buffer. On output these variables contain the number of output frames that were written to the output buffer and the
number of input frames that were consumed in the process. You can pass in NULL for the input buffer in which case it will be treated as an infinitely large
buffer of zeros. The output buffer can also be NULL, in which case the processing will be treated as seek.
Sometimes it's useful to know exactly how many input frames will be required to output a specific number of frames. You can calculate this with
`ma_data_converter_get_required_input_frame_count()`. Likewise, it's sometimes useful to know exactly how many frames would be output given a certain number of
input frames. You can do this with `ma_data_converter_get_expected_output_frame_count()`.
Due to the nature of how resampling works, the data converter introduces some latency if resampling is required. This can be retrieved in terms of both the
input rate and the output rate with `ma_data_converter_get_input_latency()` and `ma_data_converter_get_output_latency()`.
Filtering
=========
Biquad Filtering
----------------
Biquad filtering is achieved with the `ma_biquad` API. Example:
```c
ma_biquad_config config = ma_biquad_config_init(ma_format_f32, channels, b0, b1, b2, a0, a1, a2);
ma_result result = ma_biquad_init(&config, &biquad);
if (result != MA_SUCCESS) {
// Error.
}
...
ma_biquad_process_pcm_frames(&biquad, pFramesOut, pFramesIn, frameCount);
```
Biquad filtering is implemented using transposed direct form 2. The numerator coefficients are b0, b1 and b2, and the denominator coefficients are a0, a1 and
a2. The a0 coefficient is required and coefficients must not be pre-normalized.
Supported formats are `ma_format_s16` and `ma_format_f32`. If you need to use a different format you need to convert it yourself beforehand. When using
`ma_format_s16` the biquad filter will use fixed point arithmetic. When using `ma_format_f32`, floating point arithmetic will be used.
Input and output frames are always interleaved.
Filtering can be applied in-place by passing in the same pointer for both the input and output buffers, like so:
```c
ma_biquad_process_pcm_frames(&biquad, pMyData, pMyData, frameCount);
```
If you need to change the values of the coefficients, but maintain the values in the registers you can do so with `ma_biquad_reinit()`. This is useful if you
need to change the properties of the filter while keeping the values of registers valid to avoid glitching. Do not use `ma_biquad_init()` for this as it will
do a full initialization which involves clearing the registers to 0. Note that changing the format or channel count after initialization is invalid and will
result in an error.
Low-Pass Filtering
------------------
Low-pass filtering is achieved with the following APIs:
|---------|------------------------------------------|
| API | Description |
|---------|------------------------------------------|
| ma_lpf1 | First order low-pass filter |
| ma_lpf2 | Second order low-pass filter |
| ma_lpf | High order low-pass filter (Butterworth) |
|---------|------------------------------------------|
Low-pass filter example:
```c
ma_lpf_config config = ma_lpf_config_init(ma_format_f32, channels, sampleRate, cutoffFrequency, order);
ma_result result = ma_lpf_init(&config, &lpf);
if (result != MA_SUCCESS) {
// Error.
}
...
ma_lpf_process_pcm_frames(&lpf, pFramesOut, pFramesIn, frameCount);
```
Supported formats are `ma_format_s16` and` ma_format_f32`. If you need to use a different format you need to convert it yourself beforehand. Input and output
frames are always interleaved.
Filtering can be applied in-place by passing in the same pointer for both the input and output buffers, like so:
```c
ma_lpf_process_pcm_frames(&lpf, pMyData, pMyData, frameCount);
```
The maximum filter order is limited to MA_MAX_FILTER_ORDER which is set to 8. If you need more, you can chain first and second order filters together.
```c
for (iFilter = 0; iFilter < filterCount; iFilter += 1) {
ma_lpf2_process_pcm_frames(&lpf2[iFilter], pMyData, pMyData, frameCount);
}
```
If you need to change the configuration of the filter, but need to maintain the state of internal registers you can do so with `ma_lpf_reinit()`. This may be
useful if you need to change the sample rate and/or cutoff frequency dynamically while maintaing smooth transitions. Note that changing the format or channel
count after initialization is invalid and will result in an error.
The `ma_lpf` object supports a configurable order, but if you only need a first order filter you may want to consider using `ma_lpf1`. Likewise, if you only
need a second order filter you can use `ma_lpf2`. The advantage of this is that they're lighter weight and a bit more efficient.
If an even filter order is specified, a series of second order filters will be processed in a chain. If an odd filter order is specified, a first order filter
will be applied, followed by a series of second order filters in a chain.
High-Pass Filtering
-------------------
High-pass filtering is achieved with the following APIs:
|---------|-------------------------------------------|
| API | Description |
|---------|-------------------------------------------|
| ma_hpf1 | First order high-pass filter |
| ma_hpf2 | Second order high-pass filter |
| ma_hpf | High order high-pass filter (Butterworth) |
|---------|-------------------------------------------|
High-pass filters work exactly the same as low-pass filters, only the APIs are called `ma_hpf1`, `ma_hpf2` and `ma_hpf`. See example code for low-pass filters
for example usage.
Band-Pass Filtering
-------------------
Band-pass filtering is achieved with the following APIs:
|---------|-------------------------------|
| API | Description |
|---------|-------------------------------|
| ma_bpf2 | Second order band-pass filter |
| ma_bpf | High order band-pass filter |
|---------|-------------------------------|
Band-pass filters work exactly the same as low-pass filters, only the APIs are called `ma_bpf2` and `ma_hpf`. See example code for low-pass filters for example
usage. Note that the order for band-pass filters must be an even number which means there is no first order band-pass filter, unlike low-pass and high-pass
filters.
Notch Filtering
---------------
Notch filtering is achieved with the following APIs:
|-----------|------------------------------------------|
| API | Description |
|-----------|------------------------------------------|
| ma_notch2 | Second order notching filter |
|-----------|------------------------------------------|
Peaking EQ Filtering
--------------------
Peaking filtering is achieved with the following APIs:
|----------|------------------------------------------|
| API | Description |
|----------|------------------------------------------|
| ma_peak2 | Second order peaking filter |
|----------|------------------------------------------|
Low Shelf Filtering
-------------------
Low shelf filtering is achieved with the following APIs:
|-------------|------------------------------------------|
| API | Description |
|-------------|------------------------------------------|
| ma_loshelf2 | Second order low shelf filter |
|-------------|------------------------------------------|
Where a high-pass filter is used to eliminate lower frequencies, a low shelf filter can be used to just turn them down rather than eliminate them entirely.
High Shelf Filtering
--------------------
High shelf filtering is achieved with the following APIs:
|-------------|------------------------------------------|
| API | Description |
|-------------|------------------------------------------|
| ma_hishelf2 | Second order high shelf filter |
|-------------|------------------------------------------|
The high shelf filter has the same API as the low shelf filter, only you would use `ma_hishelf` instead of `ma_loshelf`. Where a low shelf filter is used to
adjust the volume of low frequencies, the high shelf filter does the same thing for high frequencies.
Waveform and Noise Generation
=============================
Waveforms
---------
miniaudio supports generation of sine, square, triangle and sawtooth waveforms. This is achieved with the `ma_waveform` API. Example:
```c
ma_waveform_config config = ma_waveform_config_init(FORMAT, CHANNELS, SAMPLE_RATE, ma_waveform_type_sine, amplitude, frequency);
ma_waveform waveform;
ma_result result = ma_waveform_init(&config, &waveform);
if (result != MA_SUCCESS) {
// Error.
}
...
ma_waveform_read_pcm_frames(&waveform, pOutput, frameCount);
```
The amplitude, frequency and sample rate can be changed dynamically with `ma_waveform_set_amplitude()`, `ma_waveform_set_frequency()` and
`ma_waveform_set_sample_rate()` respectively.
You can reverse the waveform by setting the amplitude to a negative value. You can use this to control whether or not a sawtooth has a positive or negative
ramp, for example.
Below are the supported waveform types:
|---------------------------|
| Enum Name |
|---------------------------|
| ma_waveform_type_sine |
| ma_waveform_type_square |
| ma_waveform_type_triangle |
| ma_waveform_type_sawtooth |
|---------------------------|
Noise
-----
miniaudio supports generation of white, pink and Brownian noise via the `ma_noise` API. Example:
```c
ma_noise_config config = ma_noise_config_init(FORMAT, CHANNELS, ma_noise_type_white, SEED, amplitude);
ma_noise noise;
ma_result result = ma_noise_init(&config, &noise);
if (result != MA_SUCCESS) {
// Error.
}
...
ma_noise_read_pcm_frames(&noise, pOutput, frameCount);
```
The noise API uses simple LCG random number generation. It supports a custom seed which is useful for things like automated testing requiring reproducibility.
Setting the seed to zero will default to MA_DEFAULT_LCG_SEED.
By default, the noise API will use different values for different channels. So, for example, the left side in a stereo stream will be different to the right
side. To instead have each channel use the same random value, set the `duplicateChannels` member of the noise config to true, like so:
```c
config.duplicateChannels = MA_TRUE;
```
Below are the supported noise types.
|------------------------|
| Enum Name |
|------------------------|
| ma_noise_type_white |
| ma_noise_type_pink |
| ma_noise_type_brownian |
|------------------------|
Audio Buffers
=============
miniaudio supports reading from a buffer of raw audio data via the `ma_audio_buffer` API. This can read from both memory that's managed by the application, but
can also handle the memory management for you internally. The way memory is managed is flexible and should support most use cases.
Audio buffers are initialised using the standard configuration system used everywhere in miniaudio:
```c
ma_audio_buffer_config config = ma_audio_buffer_config_init(format, channels, sizeInFrames, pExistingData, &allocationCallbacks);
ma_audio_buffer buffer;
result = ma_audio_buffer_init(&config, &buffer);
if (result != MA_SUCCESS) {
// Error.
}
...
ma_audio_buffer_uninit(&buffer);
```
In the example above, the memory pointed to by `pExistingData` will _not_ be copied which is how an application can handle memory allocations themselves. If
you would rather make a copy of the data, use `ma_audio_buffer_init_copy()`. To uninitialize the buffer, use `ma_audio_buffer_uninit()`.
Sometimes it can be convenient to allocate the memory for the `ma_audio_buffer` structure _and_ the raw audio data in a contiguous block of memory. That is,
the raw audio data will be located immediately after the `ma_audio_buffer` structure. To do this, use `ma_audio_buffer_alloc_and_init()`:
```c
ma_audio_buffer* pBuffer
result = ma_audio_buffer_alloc_and_init(&config, &pBuffer);
if (result != MA_SUCCESS) {
// Error
}
...
ma_audio_buffer_uninit_and_free(&buffer);
```
If you initialize the buffer with `ma_audio_buffer_alloc_and_init()` you should uninitialize it with `ma_audio_buffer_uninit_and_free()`.
An audio buffer has a playback cursor just like a decoder. As you read frames from the buffer, the cursor moves forward. It does not automatically loop back to
the start. To do this, you should inspect the number of frames returned by `ma_audio_buffer_read_pcm_frames()` to determine if the end has been reached, which
you can know by comparing it with the requested frame count you specified when you called the function. If the return value is less it means the end has been
reached. In this case you can seem back to the start with `ma_audio_buffer_seek_to_pcm_frame(pAudioBuffer, 0)`. Below is an example for reading data from an
audio buffer.
```c
ma_uint64 framesRead = ma_audio_buffer_read_pcm_frames(pAudioBuffer, pFramesOut, desiredFrameCount, isLooping);
if (framesRead < desiredFrameCount) {
// If not looping, this means the end has been reached. This should never happen in looping mode with valid input.
}
```
Sometimes you may want to avoid the cost of data movement between the internal buffer and the output buffer as it's just a copy operation. Instead you can use
memory mapping to retrieve a pointer to a segment of data:
```c
void* pMappedFrames;
ma_uint64 frameCount = frameCountToTryMapping;
ma_result result = ma_audio_buffer_map(pAudioBuffer, &pMappedFrames, &frameCount);
if (result == MA_SUCCESS) {
// Map was successful. The value in frameCount will be how many frames were _actually_ mapped, which may be less due to the end of the buffer being reached.
ma_copy_pcm_frames(pFramesOut, pMappedFrames, frameCount, pAudioBuffer->format, pAudioBuffer->channels);
// You must unmap the buffer.
ma_audio_buffer_unmap(pAudioBuffer, frameCount);
}
```
When you use memory mapping, the read cursor is increment by the frame count passed in to `ma_audio_buffer_unmap()`. If you decide not to process every frame
you can pass in a value smaller than the value returned by `ma_audio_buffer_map()`. The disadvantage to using memory mapping is that it does not handle looping
for you. You can determine if the buffer is at the end for the purpose of looping with `ma_audio_buffer_at_end()`.
Ring Buffers
============
miniaudio supports lock free (single producer, single consumer) ring buffers which are exposed via the `ma_rb` and `ma_pcm_rb` APIs. The `ma_rb` API operates
on bytes, whereas the `ma_pcm_rb` operates on PCM frames. They are otherwise identical as `ma_pcm_rb` is just a wrapper around `ma_rb`.
Unlike most other APIs in miniaudio, ring buffers support both interleaved and deinterleaved streams. The caller can also allocate their own backing memory for
the ring buffer to use internally for added flexibility. Otherwise the ring buffer will manage it's internal memory for you.
The examples below use the PCM frame variant of the ring buffer since that's most likely the one you will want to use. To initialize a ring buffer, do
something like the following:
```c
ma_pcm_rb rb;
ma_result result = ma_pcm_rb_init(FORMAT, CHANNELS, BUFFER_SIZE_IN_FRAMES, NULL, NULL, &rb);
if (result != MA_SUCCESS) {
// Error
}
```
The `ma_pcm_rb_init()` function takes the sample format and channel count as parameters because it's the PCM varient of the ring buffer API. For the regular
ring buffer that operates on bytes you would call `ma_rb_init()` which leaves these out and just takes the size of the buffer in bytes instead of frames. The
fourth parameter is an optional pre-allocated buffer and the fifth parameter is a pointer to a `ma_allocation_callbacks` structure for custom memory allocation
routines. Passing in NULL for this results in MA_MALLOC() and MA_FREE() being used.
Use `ma_pcm_rb_init_ex()` if you need a deinterleaved buffer. The data for each sub-buffer is offset from each other based on the stride. To manage your sub-
buffers you can use `ma_pcm_rb_get_subbuffer_stride()`, `ma_pcm_rb_get_subbuffer_offset()` and `ma_pcm_rb_get_subbuffer_ptr()`.
Use 'ma_pcm_rb_acquire_read()` and `ma_pcm_rb_acquire_write()` to retrieve a pointer to a section of the ring buffer. You specify the number of frames you
need, and on output it will set to what was actually acquired. If the read or write pointer is positioned such that the number of frames requested will require
a loop, it will be clamped to the end of the buffer. Therefore, the number of frames you're given may be less than the number you requested.
After calling `ma_pcm_rb_acquire_read()` or `ma_pcm_rb_acquire_write()`, you do your work on the buffer and then "commit" it with `ma_pcm_rb_commit_read()` or
`ma_pcm_rb_commit_write()`. This is where the read/write pointers are updated. When you commit you need to pass in the buffer that was returned by the earlier
call to `ma_pcm_rb_acquire_read()` or `ma_pcm_rb_acquire_write()` and is only used for validation. The number of frames passed to `ma_pcm_rb_commit_read()` and
`ma_pcm_rb_commit_write()` is what's used to increment the pointers.
If you want to correct for drift between the write pointer and the read pointer you can use a combination of `ma_pcm_rb_pointer_distance()`,
`ma_pcm_rb_seek_read()` and `ma_pcm_rb_seek_write()`. Note that you can only move the pointers forward, and you should only move the read pointer forward via
the consumer thread, and the write pointer forward by the producer thread. If there is too much space between the pointers, move the read pointer forward. If
there is too little space between the pointers, move the write pointer forward.
You can use a ring buffer at the byte level instead of the PCM frame level by using the `ma_rb` API. This is exactly the same, only you will use the `ma_rb`
functions instead of `ma_pcm_rb` and instead of frame counts you'll pass around byte counts.
The maximum size of the buffer in bytes is 0x7FFFFFFF-(MA_SIMD_ALIGNMENT-1) due to the most significant bit being used to encode a loop flag and the internally
managed buffers always being aligned to MA_SIMD_ALIGNMENT.
Note that the ring buffer is only thread safe when used by a single consumer thread and single producer thread.
Backends
========
The following backends are supported by miniaudio.
|-------------|-----------------------|--------------------------------------------------------|
| Name | Enum Name | Supported Operating Systems |
|-------------|-----------------------|--------------------------------------------------------|
| WASAPI | ma_backend_wasapi | Windows Vista+ |
| DirectSound | ma_backend_dsound | Windows XP+ |
| WinMM | ma_backend_winmm | Windows XP+ (may work on older versions, but untested) |
| Core Audio | ma_backend_coreaudio | macOS, iOS |
| ALSA | ma_backend_alsa | Linux |
| PulseAudio | ma_backend_pulseaudio | Cross Platform (disabled on Windows, BSD and Android) |
| JACK | ma_backend_jack | Cross Platform (disabled on BSD and Android) |
| sndio | ma_backend_sndio | OpenBSD |
| audio(4) | ma_backend_audio4 | NetBSD, OpenBSD |
| OSS | ma_backend_oss | FreeBSD |
| AAudio | ma_backend_aaudio | Android 8+ |
| OpenSL|ES | ma_backend_opensl | Android (API level 16+) |
| Web Audio | ma_backend_webaudio | Web (via Emscripten) |
| Null | ma_backend_null | Cross Platform (not used on Web) |
|-------------|-----------------------|--------------------------------------------------------|
Some backends have some nuance details you may want to be aware of.
WASAPI
------
- Low-latency shared mode will be disabled when using an application-defined sample rate which is different to the device's native sample rate. To work around
this, set wasapi.noAutoConvertSRC to true in the device config. This is due to IAudioClient3_InitializeSharedAudioStream() failing when the
AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM flag is specified. Setting wasapi.noAutoConvertSRC will result in miniaudio's internal resampler being used instead which
will in turn enable the use of low-latency shared mode.
PulseAudio
----------
- If you experience bad glitching/noise on Arch Linux, consider this fix from the Arch wiki:
https://wiki.archlinux.org/index.php/PulseAudio/Troubleshooting#Glitches,_skips_or_crackling
Alternatively, consider using a different backend such as ALSA.
Android
-------
- To capture audio on Android, remember to add the RECORD_AUDIO permission to your manifest:
<uses-permission android:name="android.permission.RECORD_AUDIO" />
- With OpenSL|ES, only a single ma_context can be active at any given time. This is due to a limitation with OpenSL|ES.
- With AAudio, only default devices are enumerated. This is due to AAudio not having an enumeration API (devices are enumerated through Java). You can however
perform your own device enumeration through Java and then set the ID in the ma_device_id structure (ma_device_id.aaudio) and pass it to ma_device_init().
- The backend API will perform resampling where possible. The reason for this as opposed to using miniaudio's built-in resampler is to take advantage of any
potential device-specific optimizations the driver may implement.
UWP
---
- UWP only supports default playback and capture devices.
- UWP requires the Microphone capability to be enabled in the application's manifest (Package.appxmanifest):
<Package ...>
...
<Capabilities>
<DeviceCapability Name="microphone" />
</Capabilities>
</Package>
Web Audio / Emscripten
----------------------
- You cannot use -std=c* compiler flags, nor -ansi. This only applies to the Emscripten build.
- The first time a context is initialized it will create a global object called "miniaudio" whose primary purpose is to act as a factory for device objects.
- Currently the Web Audio backend uses ScriptProcessorNode's, but this may need to change later as they've been deprecated.
- Google has implemented a policy in their browsers that prevent automatic media output without first receiving some kind of user input. The following web page
has additional details: https://developers.google.com/web/updates/2017/09/autoplay-policy-changes. Starting the device may fail if you try to start playback
without first handling some kind of user input.
Miscellaneous Notes
===================
- Automatic stream routing is enabled on a per-backend basis. Support is explicitly enabled for WASAPI and Core Audio, however other backends such as
PulseAudio may naturally support it, though not all have been tested.
- The contents of the output buffer passed into the data callback will always be pre-initialized to zero unless the noPreZeroedOutputBuffer config variable in
ma_device_config is set to true, in which case it'll be undefined which will require you to write something to the entire buffer.
- By default miniaudio will automatically clip samples. This only applies when the playback sample format is configured as ma_format_f32. If you are doing
clipping yourself, you can disable this overhead by setting noClip to true in the device config.
- The sndio backend is currently only enabled on OpenBSD builds.
- The audio(4) backend is supported on OpenBSD, but you may need to disable sndiod before you can use it.
- Note that GCC and Clang requires "-msse2", "-mavx2", etc. for SIMD optimizations.
*/
#ifndef miniaudio_h
#define miniaudio_h
#ifdef __cplusplus
extern "C" {
#endif
#define MA_STRINGIFY(x) #x
#define MA_XSTRINGIFY(x) MA_STRINGIFY(x)
#define MA_VERSION_MAJOR 0
#define MA_VERSION_MINOR 10
#define MA_VERSION_REVISION 9
#define MA_VERSION_STRING MA_XSTRINGIFY(MA_VERSION_MAJOR) "." MA_XSTRINGIFY(MA_VERSION_MINOR) "." MA_XSTRINGIFY(MA_VERSION_REVISION)
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning(disable:4201) /* nonstandard extension used: nameless struct/union */
#pragma warning(disable:4214) /* nonstandard extension used: bit field types other than int */
#pragma warning(disable:4324) /* structure was padded due to alignment specifier */
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic" /* For ISO C99 doesn't support unnamed structs/unions [-Wpedantic] */
#if defined(__clang__)
#pragma GCC diagnostic ignored "-Wc11-extensions" /* anonymous unions are a C11 extension */
#endif
#endif
/* Platform/backend detection. */
#ifdef _WIN32
#define MA_WIN32
#if defined(WINAPI_FAMILY) && (WINAPI_FAMILY == WINAPI_FAMILY_PC_APP || WINAPI_FAMILY == WINAPI_FAMILY_PHONE_APP)
#define MA_WIN32_UWP
#else
#define MA_WIN32_DESKTOP
#endif
#else
#define MA_POSIX
/* We only use multi-threading with the device IO API, so no need to include these headers otherwise. */
#if !defined(MA_NO_DEVICE_IO)
#include <pthread.h> /* Unfortunate #include, but needed for pthread_t, pthread_mutex_t and pthread_cond_t types. */
#endif
#ifdef __unix__
#define MA_UNIX
#if defined(__DragonFly__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
#define MA_BSD
#endif
#endif
#ifdef __linux__
#define MA_LINUX
#endif
#ifdef __APPLE__
#define MA_APPLE
#endif
#ifdef __ANDROID__
#define MA_ANDROID
#endif
#ifdef __EMSCRIPTEN__
#define MA_EMSCRIPTEN
#endif
#endif
#include <stddef.h> /* For size_t. */
/* Sized types. Prefer built-in types. Fall back to stdint. */
#ifdef _MSC_VER
#if defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
#pragma GCC diagnostic ignored "-Wlong-long"
#pragma GCC diagnostic ignored "-Wc++11-long-long"
#endif
typedef signed __int8 ma_int8;
typedef unsigned __int8 ma_uint8;
typedef signed __int16 ma_int16;
typedef unsigned __int16 ma_uint16;
typedef signed __int32 ma_int32;
typedef unsigned __int32 ma_uint32;
typedef signed __int64 ma_int64;
typedef unsigned __int64 ma_uint64;
#if defined(__clang__)
#pragma GCC diagnostic pop
#endif
#else
#define MA_HAS_STDINT
#include <stdint.h>
typedef int8_t ma_int8;
typedef uint8_t ma_uint8;
typedef int16_t ma_int16;
typedef uint16_t ma_uint16;
typedef int32_t ma_int32;
typedef uint32_t ma_uint32;
typedef int64_t ma_int64;
typedef uint64_t ma_uint64;
#endif
#ifdef MA_HAS_STDINT
typedef uintptr_t ma_uintptr;
#else
#if defined(_WIN32)
#if defined(_WIN64)
typedef ma_uint64 ma_uintptr;
#else
typedef ma_uint32 ma_uintptr;
#endif
#elif defined(__GNUC__)
#if defined(__LP64__)
typedef ma_uint64 ma_uintptr;
#else
typedef ma_uint32 ma_uintptr;
#endif
#else
typedef ma_uint64 ma_uintptr; /* Fallback. */
#endif
#endif
typedef ma_uint8 ma_bool8;
typedef ma_uint32 ma_bool32;
#define MA_TRUE 1
#define MA_FALSE 0
typedef void* ma_handle;
typedef void* ma_ptr;
typedef void (* ma_proc)(void);
#if defined(_MSC_VER) && !defined(_WCHAR_T_DEFINED)
typedef ma_uint16 wchar_t;
#endif
/* Define NULL for some compilers. */
#ifndef NULL
#define NULL 0
#endif
#if defined(SIZE_MAX)
#define MA_SIZE_MAX SIZE_MAX
#else
#define MA_SIZE_MAX 0xFFFFFFFF /* When SIZE_MAX is not defined by the standard library just default to the maximum 32-bit unsigned integer. */
#endif
#ifdef _MSC_VER
#define MA_INLINE __forceinline
#elif defined(__GNUC__)
/*
I've had a bug report where GCC is emitting warnings about functions possibly not being inlineable. This warning happens when
the __attribute__((always_inline)) attribute is defined without an "inline" statement. I think therefore there must be some
case where "__inline__" is not always defined, thus the compiler emitting these warnings. When using -std=c89 or -ansi on the
command line, we cannot use the "inline" keyword and instead need to use "__inline__". In an attempt to work around this issue
I am using "__inline__" only when we're compiling in strict ANSI mode.
*/
#if defined(__STRICT_ANSI__)
#define MA_INLINE __inline__ __attribute__((always_inline))
#else
#define MA_INLINE inline __attribute__((always_inline))
#endif
#else
#define MA_INLINE
#endif
#if !defined(MA_API)
#if defined(MA_DLL)
#if defined(_WIN32)
#define MA_DLL_IMPORT __declspec(dllimport)
#define MA_DLL_EXPORT __declspec(dllexport)
#define MA_DLL_PRIVATE static
#else
#if defined(__GNUC__) && __GNUC__ >= 4
#define MA_DLL_IMPORT __attribute__((visibility("default")))
#define MA_DLL_EXPORT __attribute__((visibility("default")))
#define MA_DLL_PRIVATE __attribute__((visibility("hidden")))
#else
#define MA_DLL_IMPORT
#define MA_DLL_EXPORT
#define MA_DLL_PRIVATE static
#endif
#endif
#if defined(MINIAUDIO_IMPLEMENTATION) || defined(MA_IMPLEMENTATION)
#define MA_API MA_DLL_EXPORT
#else
#define MA_API MA_DLL_IMPORT
#endif
#define MA_PRIVATE MA_DLL_PRIVATE
#else
#define MA_API extern
#define MA_PRIVATE static
#endif
#endif
/* SIMD alignment in bytes. Currently set to 64 bytes in preparation for future AVX-512 optimizations. */
#define MA_SIMD_ALIGNMENT 64
/*
Logging Levels
==============
A log level will automatically include the lower levels. For example, verbose logging will enable everything. The warning log level will only include warnings
and errors, but will ignore informational and verbose logging. If you only want to handle a specific log level, implement a custom log callback (see
ma_context_init() for details) and interrogate the `logLevel` parameter.
By default the log level will be set to MA_LOG_LEVEL_ERROR, but you can change this by defining MA_LOG_LEVEL before the implementation of miniaudio.
MA_LOG_LEVEL_VERBOSE
Mainly intended for debugging. This will enable all log levels and can be triggered from within the data callback so care must be taken when enabling this
in production environments.
MA_LOG_LEVEL_INFO
Informational logging. Useful for debugging. This will also enable warning and error logs. This will never be called from within the data callback.
MA_LOG_LEVEL_WARNING
Warnings. You should enable this in you development builds and action them when encounted. This will also enable error logs. These logs usually indicate a
potential problem or misconfiguration, but still allow you to keep running. This will never be called from within the data callback.
MA_LOG_LEVEL_ERROR
Error logging. This will be fired when an operation fails and is subsequently aborted. This can be fired from within the data callback, in which case the
device will be stopped. You should always have this log level enabled.
*/
#define MA_LOG_LEVEL_VERBOSE 4
#define MA_LOG_LEVEL_INFO 3
#define MA_LOG_LEVEL_WARNING 2
#define MA_LOG_LEVEL_ERROR 1
#ifndef MA_LOG_LEVEL
#define MA_LOG_LEVEL MA_LOG_LEVEL_ERROR
#endif
typedef struct ma_context ma_context;
typedef struct ma_device ma_device;
typedef ma_uint8 ma_channel;
#define MA_CHANNEL_NONE 0
#define MA_CHANNEL_MONO 1
#define MA_CHANNEL_FRONT_LEFT 2
#define MA_CHANNEL_FRONT_RIGHT 3
#define MA_CHANNEL_FRONT_CENTER 4
#define MA_CHANNEL_LFE 5
#define MA_CHANNEL_BACK_LEFT 6
#define MA_CHANNEL_BACK_RIGHT 7
#define MA_CHANNEL_FRONT_LEFT_CENTER 8
#define MA_CHANNEL_FRONT_RIGHT_CENTER 9
#define MA_CHANNEL_BACK_CENTER 10
#define MA_CHANNEL_SIDE_LEFT 11
#define MA_CHANNEL_SIDE_RIGHT 12
#define MA_CHANNEL_TOP_CENTER 13
#define MA_CHANNEL_TOP_FRONT_LEFT 14
#define MA_CHANNEL_TOP_FRONT_CENTER 15
#define MA_CHANNEL_TOP_FRONT_RIGHT 16
#define MA_CHANNEL_TOP_BACK_LEFT 17
#define MA_CHANNEL_TOP_BACK_CENTER 18
#define MA_CHANNEL_TOP_BACK_RIGHT 19
#define MA_CHANNEL_AUX_0 20
#define MA_CHANNEL_AUX_1 21
#define MA_CHANNEL_AUX_2 22
#define MA_CHANNEL_AUX_3 23
#define MA_CHANNEL_AUX_4 24
#define MA_CHANNEL_AUX_5 25
#define MA_CHANNEL_AUX_6 26
#define MA_CHANNEL_AUX_7 27
#define MA_CHANNEL_AUX_8 28
#define MA_CHANNEL_AUX_9 29
#define MA_CHANNEL_AUX_10 30
#define MA_CHANNEL_AUX_11 31
#define MA_CHANNEL_AUX_12 32
#define MA_CHANNEL_AUX_13 33
#define MA_CHANNEL_AUX_14 34
#define MA_CHANNEL_AUX_15 35
#define MA_CHANNEL_AUX_16 36
#define MA_CHANNEL_AUX_17 37
#define MA_CHANNEL_AUX_18 38
#define MA_CHANNEL_AUX_19 39
#define MA_CHANNEL_AUX_20 40
#define MA_CHANNEL_AUX_21 41
#define MA_CHANNEL_AUX_22 42
#define MA_CHANNEL_AUX_23 43
#define MA_CHANNEL_AUX_24 44
#define MA_CHANNEL_AUX_25 45
#define MA_CHANNEL_AUX_26 46
#define MA_CHANNEL_AUX_27 47
#define MA_CHANNEL_AUX_28 48
#define MA_CHANNEL_AUX_29 49
#define MA_CHANNEL_AUX_30 50
#define MA_CHANNEL_AUX_31 51
#define MA_CHANNEL_LEFT MA_CHANNEL_FRONT_LEFT
#define MA_CHANNEL_RIGHT MA_CHANNEL_FRONT_RIGHT
#define MA_CHANNEL_POSITION_COUNT (MA_CHANNEL_AUX_31 + 1)
typedef int ma_result;
#define MA_SUCCESS 0
#define MA_ERROR -1 /* A generic error. */
#define MA_INVALID_ARGS -2
#define MA_INVALID_OPERATION -3
#define MA_OUT_OF_MEMORY -4
#define MA_OUT_OF_RANGE -5
#define MA_ACCESS_DENIED -6
#define MA_DOES_NOT_EXIST -7
#define MA_ALREADY_EXISTS -8
#define MA_TOO_MANY_OPEN_FILES -9
#define MA_INVALID_FILE -10
#define MA_TOO_BIG -11
#define MA_PATH_TOO_LONG -12
#define MA_NAME_TOO_LONG -13
#define MA_NOT_DIRECTORY -14
#define MA_IS_DIRECTORY -15
#define MA_DIRECTORY_NOT_EMPTY -16
#define MA_END_OF_FILE -17
#define MA_NO_SPACE -18
#define MA_BUSY -19
#define MA_IO_ERROR -20
#define MA_INTERRUPT -21
#define MA_UNAVAILABLE -22
#define MA_ALREADY_IN_USE -23
#define MA_BAD_ADDRESS -24
#define MA_BAD_SEEK -25
#define MA_BAD_PIPE -26
#define MA_DEADLOCK -27
#define MA_TOO_MANY_LINKS -28
#define MA_NOT_IMPLEMENTED -29
#define MA_NO_MESSAGE -30
#define MA_BAD_MESSAGE -31
#define MA_NO_DATA_AVAILABLE -32
#define MA_INVALID_DATA -33
#define MA_TIMEOUT -34
#define MA_NO_NETWORK -35
#define MA_NOT_UNIQUE -36
#define MA_NOT_SOCKET -37
#define MA_NO_ADDRESS -38
#define MA_BAD_PROTOCOL -39
#define MA_PROTOCOL_UNAVAILABLE -40
#define MA_PROTOCOL_NOT_SUPPORTED -41
#define MA_PROTOCOL_FAMILY_NOT_SUPPORTED -42
#define MA_ADDRESS_FAMILY_NOT_SUPPORTED -43
#define MA_SOCKET_NOT_SUPPORTED -44
#define MA_CONNECTION_RESET -45
#define MA_ALREADY_CONNECTED -46
#define MA_NOT_CONNECTED -47
#define MA_CONNECTION_REFUSED -48
#define MA_NO_HOST -49
#define MA_IN_PROGRESS -50
#define MA_CANCELLED -51
#define MA_MEMORY_ALREADY_MAPPED -52
#define MA_AT_END -53
/* General miniaudio-specific errors. */
#define MA_FORMAT_NOT_SUPPORTED -100
#define MA_DEVICE_TYPE_NOT_SUPPORTED -101
#define MA_SHARE_MODE_NOT_SUPPORTED -102
#define MA_NO_BACKEND -103
#define MA_NO_DEVICE -104
#define MA_API_NOT_FOUND -105
#define MA_INVALID_DEVICE_CONFIG -106
/* State errors. */
#define MA_DEVICE_NOT_INITIALIZED -200
#define MA_DEVICE_ALREADY_INITIALIZED -201
#define MA_DEVICE_NOT_STARTED -202
#define MA_DEVICE_NOT_STOPPED -203
/* Operation errors. */
#define MA_FAILED_TO_INIT_BACKEND -300
#define MA_FAILED_TO_OPEN_BACKEND_DEVICE -301
#define MA_FAILED_TO_START_BACKEND_DEVICE -302
#define MA_FAILED_TO_STOP_BACKEND_DEVICE -303
/* Standard sample rates. */
#define MA_SAMPLE_RATE_8000 8000
#define MA_SAMPLE_RATE_11025 11025
#define MA_SAMPLE_RATE_16000 16000
#define MA_SAMPLE_RATE_22050 22050
#define MA_SAMPLE_RATE_24000 24000
#define MA_SAMPLE_RATE_32000 32000
#define MA_SAMPLE_RATE_44100 44100
#define MA_SAMPLE_RATE_48000 48000
#define MA_SAMPLE_RATE_88200 88200
#define MA_SAMPLE_RATE_96000 96000
#define MA_SAMPLE_RATE_176400 176400
#define MA_SAMPLE_RATE_192000 192000
#define MA_SAMPLE_RATE_352800 352800
#define MA_SAMPLE_RATE_384000 384000
#define MA_MIN_CHANNELS 1
#ifndef MA_MAX_CHANNELS
#define MA_MAX_CHANNELS 32
#endif
#define MA_MIN_SAMPLE_RATE MA_SAMPLE_RATE_8000
#define MA_MAX_SAMPLE_RATE MA_SAMPLE_RATE_384000
#ifndef MA_MAX_FILTER_ORDER
#define MA_MAX_FILTER_ORDER 8
#endif
typedef enum
{
ma_stream_format_pcm = 0
} ma_stream_format;
typedef enum
{
ma_stream_layout_interleaved = 0,
ma_stream_layout_deinterleaved
} ma_stream_layout;
typedef enum
{
ma_dither_mode_none = 0,
ma_dither_mode_rectangle,
ma_dither_mode_triangle
} ma_dither_mode;
typedef enum
{
/*
I like to keep these explicitly defined because they're used as a key into a lookup table. When items are
added to this, make sure there are no gaps and that they're added to the lookup table in ma_get_bytes_per_sample().
*/
ma_format_unknown = 0, /* Mainly used for indicating an error, but also used as the default for the output format for decoders. */
ma_format_u8 = 1,
ma_format_s16 = 2, /* Seems to be the most widely supported format. */
ma_format_s24 = 3, /* Tightly packed. 3 bytes per sample. */
ma_format_s32 = 4,
ma_format_f32 = 5,
ma_format_count
} ma_format;
typedef enum
{
ma_channel_mix_mode_rectangular = 0, /* Simple averaging based on the plane(s) the channel is sitting on. */
ma_channel_mix_mode_simple, /* Drop excess channels; zeroed out extra channels. */
ma_channel_mix_mode_custom_weights, /* Use custom weights specified in ma_channel_router_config. */
ma_channel_mix_mode_planar_blend = ma_channel_mix_mode_rectangular,
ma_channel_mix_mode_default = ma_channel_mix_mode_planar_blend
} ma_channel_mix_mode;
typedef enum
{
ma_standard_channel_map_microsoft,
ma_standard_channel_map_alsa,
ma_standard_channel_map_rfc3551, /* Based off AIFF. */
ma_standard_channel_map_flac,
ma_standard_channel_map_vorbis,
ma_standard_channel_map_sound4, /* FreeBSD's sound(4). */
ma_standard_channel_map_sndio, /* www.sndio.org/tips.html */
ma_standard_channel_map_webaudio = ma_standard_channel_map_flac, /* https://webaudio.github.io/web-audio-api/#ChannelOrdering. Only 1, 2, 4 and 6 channels are defined, but can fill in the gaps with logical assumptions. */
ma_standard_channel_map_default = ma_standard_channel_map_microsoft
} ma_standard_channel_map;
typedef enum
{
ma_performance_profile_low_latency = 0,
ma_performance_profile_conservative
} ma_performance_profile;
typedef struct
{
void* pUserData;
void* (* onMalloc)(size_t sz, void* pUserData);
void* (* onRealloc)(void* p, size_t sz, void* pUserData);
void (* onFree)(void* p, void* pUserData);
} ma_allocation_callbacks;
typedef struct
{
ma_int32 state;
} ma_lcg;
/*
Retrieves the version of miniaudio as separated integers. Each component can be NULL if it's not required.
*/
MA_API void ma_version(ma_uint32* pMajor, ma_uint32* pMinor, ma_uint32* pRevision);
/*
Retrieves the version of miniaudio as a string which can be useful for logging purposes.
*/
MA_API const char* ma_version_string();
/**************************************************************************************************************************************************************
Biquad Filtering
**************************************************************************************************************************************************************/
typedef union
{
float f32;
ma_int32 s32;
} ma_biquad_coefficient;
typedef struct
{
ma_format format;
ma_uint32 channels;
double b0;
double b1;
double b2;
double a0;
double a1;
double a2;
} ma_biquad_config;
MA_API ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_biquad_coefficient b0;
ma_biquad_coefficient b1;
ma_biquad_coefficient b2;
ma_biquad_coefficient a1;
ma_biquad_coefficient a2;
ma_biquad_coefficient r1[MA_MAX_CHANNELS];
ma_biquad_coefficient r2[MA_MAX_CHANNELS];
} ma_biquad;
MA_API ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ);
MA_API ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ);
MA_API ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_biquad_get_latency(ma_biquad* pBQ);
/**************************************************************************************************************************************************************
Low-Pass Filtering
**************************************************************************************************************************************************************/
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
double q;
} ma_lpf1_config, ma_lpf2_config;
MA_API ma_lpf1_config ma_lpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
MA_API ma_lpf2_config ma_lpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_biquad_coefficient a;
ma_biquad_coefficient r1[MA_MAX_CHANNELS];
} ma_lpf1;
MA_API ma_result ma_lpf1_init(const ma_lpf1_config* pConfig, ma_lpf1* pLPF);
MA_API ma_result ma_lpf1_reinit(const ma_lpf1_config* pConfig, ma_lpf1* pLPF);
MA_API ma_result ma_lpf1_process_pcm_frames(ma_lpf1* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_lpf1_get_latency(ma_lpf1* pLPF);
typedef struct
{
ma_biquad bq; /* The second order low-pass filter is implemented as a biquad filter. */
} ma_lpf2;
MA_API ma_result ma_lpf2_init(const ma_lpf2_config* pConfig, ma_lpf2* pLPF);
MA_API ma_result ma_lpf2_reinit(const ma_lpf2_config* pConfig, ma_lpf2* pLPF);
MA_API ma_result ma_lpf2_process_pcm_frames(ma_lpf2* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_lpf2_get_latency(ma_lpf2* pLPF);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
ma_uint32 order; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */
} ma_lpf_config;
MA_API ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 lpf1Count;
ma_uint32 lpf2Count;
ma_lpf1 lpf1[1];
ma_lpf2 lpf2[MA_MAX_FILTER_ORDER/2];
} ma_lpf;
MA_API ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF);
MA_API ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF);
MA_API ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_lpf_get_latency(ma_lpf* pLPF);
/**************************************************************************************************************************************************************
High-Pass Filtering
**************************************************************************************************************************************************************/
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
double q;
} ma_hpf1_config, ma_hpf2_config;
MA_API ma_hpf1_config ma_hpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency);
MA_API ma_hpf2_config ma_hpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_biquad_coefficient a;
ma_biquad_coefficient r1[MA_MAX_CHANNELS];
} ma_hpf1;
MA_API ma_result ma_hpf1_init(const ma_hpf1_config* pConfig, ma_hpf1* pHPF);
MA_API ma_result ma_hpf1_reinit(const ma_hpf1_config* pConfig, ma_hpf1* pHPF);
MA_API ma_result ma_hpf1_process_pcm_frames(ma_hpf1* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_hpf1_get_latency(ma_hpf1* pHPF);
typedef struct
{
ma_biquad bq; /* The second order high-pass filter is implemented as a biquad filter. */
} ma_hpf2;
MA_API ma_result ma_hpf2_init(const ma_hpf2_config* pConfig, ma_hpf2* pHPF);
MA_API ma_result ma_hpf2_reinit(const ma_hpf2_config* pConfig, ma_hpf2* pHPF);
MA_API ma_result ma_hpf2_process_pcm_frames(ma_hpf2* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_hpf2_get_latency(ma_hpf2* pHPF);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
ma_uint32 order; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */
} ma_hpf_config;
MA_API ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 hpf1Count;
ma_uint32 hpf2Count;
ma_hpf1 hpf1[1];
ma_hpf2 hpf2[MA_MAX_FILTER_ORDER/2];
} ma_hpf;
MA_API ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF);
MA_API ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF);
MA_API ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF);
/**************************************************************************************************************************************************************
Band-Pass Filtering
**************************************************************************************************************************************************************/
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
double q;
} ma_bpf2_config;
MA_API ma_bpf2_config ma_bpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q);
typedef struct
{
ma_biquad bq; /* The second order band-pass filter is implemented as a biquad filter. */
} ma_bpf2;
MA_API ma_result ma_bpf2_init(const ma_bpf2_config* pConfig, ma_bpf2* pBPF);
MA_API ma_result ma_bpf2_reinit(const ma_bpf2_config* pConfig, ma_bpf2* pBPF);
MA_API ma_result ma_bpf2_process_pcm_frames(ma_bpf2* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_bpf2_get_latency(ma_bpf2* pBPF);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double cutoffFrequency;
ma_uint32 order; /* If set to 0, will be treated as a passthrough (no filtering will be applied). */
} ma_bpf_config;
MA_API ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 bpf2Count;
ma_bpf2 bpf2[MA_MAX_FILTER_ORDER/2];
} ma_bpf;
MA_API ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF);
MA_API ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF);
MA_API ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_bpf_get_latency(ma_bpf* pBPF);
/**************************************************************************************************************************************************************
Notching Filter
**************************************************************************************************************************************************************/
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double q;
double frequency;
} ma_notch2_config;
MA_API ma_notch2_config ma_notch2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double q, double frequency);
typedef struct
{
ma_biquad bq;
} ma_notch2;
MA_API ma_result ma_notch2_init(const ma_notch2_config* pConfig, ma_notch2* pFilter);
MA_API ma_result ma_notch2_reinit(const ma_notch2_config* pConfig, ma_notch2* pFilter);
MA_API ma_result ma_notch2_process_pcm_frames(ma_notch2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_notch2_get_latency(ma_notch2* pFilter);
/**************************************************************************************************************************************************************
Peaking EQ Filter
**************************************************************************************************************************************************************/
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double gainDB;
double q;
double frequency;
} ma_peak2_config;
MA_API ma_peak2_config ma_peak2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency);
typedef struct
{
ma_biquad bq;
} ma_peak2;
MA_API ma_result ma_peak2_init(const ma_peak2_config* pConfig, ma_peak2* pFilter);
MA_API ma_result ma_peak2_reinit(const ma_peak2_config* pConfig, ma_peak2* pFilter);
MA_API ma_result ma_peak2_process_pcm_frames(ma_peak2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_peak2_get_latency(ma_peak2* pFilter);
/**************************************************************************************************************************************************************
Low Shelf Filter
**************************************************************************************************************************************************************/
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double gainDB;
double shelfSlope;
double frequency;
} ma_loshelf2_config;
MA_API ma_loshelf2_config ma_loshelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency);
typedef struct
{
ma_biquad bq;
} ma_loshelf2;
MA_API ma_result ma_loshelf2_init(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter);
MA_API ma_result ma_loshelf2_reinit(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter);
MA_API ma_result ma_loshelf2_process_pcm_frames(ma_loshelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_loshelf2_get_latency(ma_loshelf2* pFilter);
/**************************************************************************************************************************************************************
High Shelf Filter
**************************************************************************************************************************************************************/
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
double gainDB;
double shelfSlope;
double frequency;
} ma_hishelf2_config;
MA_API ma_hishelf2_config ma_hishelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency);
typedef struct
{
ma_biquad bq;
} ma_hishelf2;
MA_API ma_result ma_hishelf2_init(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter);
MA_API ma_result ma_hishelf2_reinit(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter);
MA_API ma_result ma_hishelf2_process_pcm_frames(ma_hishelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
MA_API ma_uint32 ma_hishelf2_get_latency(ma_hishelf2* pFilter);
/************************************************************************************************************************************************************
*************************************************************************************************************************************************************
DATA CONVERSION
===============
This section contains the APIs for data conversion. You will find everything here for channel mapping, sample format conversion, resampling, etc.
*************************************************************************************************************************************************************
************************************************************************************************************************************************************/
/**************************************************************************************************************************************************************
Resampling
**************************************************************************************************************************************************************/
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRateIn;
ma_uint32 sampleRateOut;
ma_uint32 lpfOrder; /* The low-pass filter order. Setting this to 0 will disable low-pass filtering. */
double lpfNyquistFactor; /* 0..1. Defaults to 1. 1 = Half the sampling frequency (Nyquist Frequency), 0.5 = Quarter the sampling frequency (half Nyquest Frequency), etc. */
} ma_linear_resampler_config;
MA_API ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
typedef struct
{
ma_linear_resampler_config config;
ma_uint32 inAdvanceInt;
ma_uint32 inAdvanceFrac;
ma_uint32 inTimeInt;
ma_uint32 inTimeFrac;
union
{
float f32[MA_MAX_CHANNELS];
ma_int16 s16[MA_MAX_CHANNELS];
} x0; /* The previous input frame. */
union
{
float f32[MA_MAX_CHANNELS];
ma_int16 s16[MA_MAX_CHANNELS];
} x1; /* The next input frame. */
ma_lpf lpf;
} ma_linear_resampler;
MA_API ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, ma_linear_resampler* pResampler);
MA_API void ma_linear_resampler_uninit(ma_linear_resampler* pResampler);
MA_API ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
MA_API ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
MA_API ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut);
MA_API ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler* pResampler, ma_uint64 outputFrameCount);
MA_API ma_uint64 ma_linear_resampler_get_expected_output_frame_count(ma_linear_resampler* pResampler, ma_uint64 inputFrameCount);
MA_API ma_uint64 ma_linear_resampler_get_input_latency(ma_linear_resampler* pResampler);
MA_API ma_uint64 ma_linear_resampler_get_output_latency(ma_linear_resampler* pResampler);
typedef enum
{
ma_resample_algorithm_linear = 0, /* Fastest, lowest quality. Optional low-pass filtering. Default. */
ma_resample_algorithm_speex
} ma_resample_algorithm;
typedef struct
{
ma_format format; /* Must be either ma_format_f32 or ma_format_s16. */
ma_uint32 channels;
ma_uint32 sampleRateIn;
ma_uint32 sampleRateOut;
ma_resample_algorithm algorithm;
struct
{
ma_uint32 lpfOrder;
double lpfNyquistFactor;
} linear;
struct
{
int quality; /* 0 to 10. Defaults to 3. */
} speex;
} ma_resampler_config;
MA_API ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm);
typedef struct
{
ma_resampler_config config;
union
{
ma_linear_resampler linear;
struct
{
void* pSpeexResamplerState; /* SpeexResamplerState* */
} speex;
} state;
} ma_resampler;
/*
Initializes a new resampler object from a config.
*/
MA_API ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pResampler);
/*
Uninitializes a resampler.
*/
MA_API void ma_resampler_uninit(ma_resampler* pResampler);
/*
Converts the given input data.
Both the input and output frames must be in the format specified in the config when the resampler was initilized.
On input, [pFrameCountOut] contains the number of output frames to process. On output it contains the number of output frames that
were actually processed, which may be less than the requested amount which will happen if there's not enough input data. You can use
ma_resampler_get_expected_output_frame_count() to know how many output frames will be processed for a given number of input frames.
On input, [pFrameCountIn] contains the number of input frames contained in [pFramesIn]. On output it contains the number of whole
input frames that were actually processed. You can use ma_resampler_get_required_input_frame_count() to know how many input frames
you should provide for a given number of output frames. [pFramesIn] can be NULL, in which case zeroes will be used instead.
If [pFramesOut] is NULL, a seek is performed. In this case, if [pFrameCountOut] is not NULL it will seek by the specified number of
output frames. Otherwise, if [pFramesCountOut] is NULL and [pFrameCountIn] is not NULL, it will seek by the specified number of input
frames. When seeking, [pFramesIn] is allowed to NULL, in which case the internal timing state will be updated, but no input will be
processed. In this case, any internal filter state will be updated as if zeroes were passed in.
It is an error for [pFramesOut] to be non-NULL and [pFrameCountOut] to be NULL.
It is an error for both [pFrameCountOut] and [pFrameCountIn] to be NULL.
*/
MA_API ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
/*
Sets the input and output sample sample rate.
*/
MA_API ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
/*
Sets the input and output sample rate as a ratio.
The ration is in/out.
*/
MA_API ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio);
/*
Calculates the number of whole input frames that would need to be read from the client in order to output the specified
number of output frames.
The returned value does not include cached input frames. It only returns the number of extra frames that would need to be
read from the input buffer in order to output the specified number of output frames.
*/
MA_API ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResampler, ma_uint64 outputFrameCount);
/*
Calculates the number of whole output frames that would be output after fully reading and consuming the specified number of
input frames.
*/
MA_API ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pResampler, ma_uint64 inputFrameCount);
/*
Retrieves the latency introduced by the resampler in input frames.
*/
MA_API ma_uint64 ma_resampler_get_input_latency(ma_resampler* pResampler);
/*
Retrieves the latency introduced by the resampler in output frames.
*/
MA_API ma_uint64 ma_resampler_get_output_latency(ma_resampler* pResampler);
/**************************************************************************************************************************************************************
Channel Conversion
**************************************************************************************************************************************************************/
typedef struct
{
ma_format format;
ma_uint32 channelsIn;
ma_uint32 channelsOut;
ma_channel channelMapIn[MA_MAX_CHANNELS];
ma_channel channelMapOut[MA_MAX_CHANNELS];
ma_channel_mix_mode mixingMode;
float weights[MA_MAX_CHANNELS][MA_MAX_CHANNELS]; /* [in][out]. Only used when mixingMode is set to ma_channel_mix_mode_custom_weights. */
} ma_channel_converter_config;
MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode);
typedef struct
{
ma_format format;
ma_uint32 channelsIn;
ma_uint32 channelsOut;
ma_channel channelMapIn[MA_MAX_CHANNELS];
ma_channel channelMapOut[MA_MAX_CHANNELS];
ma_channel_mix_mode mixingMode;
union
{
float f32[MA_MAX_CHANNELS][MA_MAX_CHANNELS];
ma_int32 s16[MA_MAX_CHANNELS][MA_MAX_CHANNELS];
} weights;
ma_bool32 isPassthrough : 1;
ma_bool32 isSimpleShuffle : 1;
ma_bool32 isSimpleMonoExpansion : 1;
ma_bool32 isStereoToMono : 1;
ma_uint8 shuffleTable[MA_MAX_CHANNELS];
} ma_channel_converter;
MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig, ma_channel_converter* pConverter);
MA_API void ma_channel_converter_uninit(ma_channel_converter* pConverter);
MA_API ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount);
/**************************************************************************************************************************************************************
Data Conversion
**************************************************************************************************************************************************************/
typedef struct
{
ma_format formatIn;
ma_format formatOut;
ma_uint32 channelsIn;
ma_uint32 channelsOut;
ma_uint32 sampleRateIn;
ma_uint32 sampleRateOut;
ma_channel channelMapIn[MA_MAX_CHANNELS];
ma_channel channelMapOut[MA_MAX_CHANNELS];
ma_dither_mode ditherMode;
ma_channel_mix_mode channelMixMode;
float channelWeights[MA_MAX_CHANNELS][MA_MAX_CHANNELS]; /* [in][out]. Only used when channelMixMode is set to ma_channel_mix_mode_custom_weights. */
struct
{
ma_resample_algorithm algorithm;
ma_bool32 allowDynamicSampleRate;
struct
{
ma_uint32 lpfOrder;
double lpfNyquistFactor;
} linear;
struct
{
int quality;
} speex;
} resampling;
} ma_data_converter_config;
MA_API ma_data_converter_config ma_data_converter_config_init_default(void);
MA_API ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
typedef struct
{
ma_data_converter_config config;
ma_channel_converter channelConverter;
ma_resampler resampler;
ma_bool32 hasPreFormatConversion : 1;
ma_bool32 hasPostFormatConversion : 1;
ma_bool32 hasChannelConverter : 1;
ma_bool32 hasResampler : 1;
ma_bool32 isPassthrough : 1;
} ma_data_converter;
MA_API ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_data_converter* pConverter);
MA_API void ma_data_converter_uninit(ma_data_converter* pConverter);
MA_API ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut);
MA_API ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut);
MA_API ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut);
MA_API ma_uint64 ma_data_converter_get_required_input_frame_count(ma_data_converter* pConverter, ma_uint64 outputFrameCount);
MA_API ma_uint64 ma_data_converter_get_expected_output_frame_count(ma_data_converter* pConverter, ma_uint64 inputFrameCount);
MA_API ma_uint64 ma_data_converter_get_input_latency(ma_data_converter* pConverter);
MA_API ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter);
/************************************************************************************************************************************************************
Format Conversion
************************************************************************************************************************************************************/
MA_API void ma_pcm_u8_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_u8_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_u8_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_u8_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s16_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s16_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s16_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s16_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s24_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s24_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s24_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s24_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_s32_to_f32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_f32_to_u8(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_f32_to_s16(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_f32_to_s24(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_f32_to_s32(void* pOut, const void* pIn, ma_uint64 count, ma_dither_mode ditherMode);
MA_API void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode);
MA_API void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode);
/*
Deinterleaves an interleaved buffer.
*/
MA_API void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames);
/*
Interleaves a group of deinterleaved buffers.
*/
MA_API void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames);
/************************************************************************************************************************************************************
Channel Maps
************************************************************************************************************************************************************/
/*
Helper for retrieving a standard channel map.
*/
MA_API void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS]);
/*
Copies a channel map.
*/
MA_API void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels);
/*
Determines whether or not a channel map is valid.
A blank channel map is valid (all channels set to MA_CHANNEL_NONE). The way a blank channel map is handled is context specific, but
is usually treated as a passthrough.
Invalid channel maps:
- A channel map with no channels
- A channel map with more than one channel and a mono channel
*/
MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
/*
Helper for comparing two channel maps for equality.
This assumes the channel count is the same between the two.
*/
MA_API ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS]);
/*
Helper for determining if a channel map is blank (all channels set to MA_CHANNEL_NONE).
*/
MA_API ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS]);
/*
Helper for determining whether or not a channel is present in the given channel map.
*/
MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition);
/************************************************************************************************************************************************************
Conversion Helpers
************************************************************************************************************************************************************/
/*
High-level helper for doing a full format conversion in one go. Returns the number of output frames. Call this with pOut set to NULL to
determine the required size of the output buffer. frameCountOut should be set to the capacity of pOut. If pOut is NULL, frameCountOut is
ignored.
A return value of 0 indicates an error.
This function is useful for one-off bulk conversions, but if you're streaming data you should use the ma_data_converter APIs instead.
*/
MA_API ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn);
MA_API ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig);
/************************************************************************************************************************************************************
Ring Buffer
************************************************************************************************************************************************************/
typedef struct
{
void* pBuffer;
ma_uint32 subbufferSizeInBytes;
ma_uint32 subbufferCount;
ma_uint32 subbufferStrideInBytes;
volatile ma_uint32 encodedReadOffset; /* Most significant bit is the loop flag. Lower 31 bits contains the actual offset in bytes. */
volatile ma_uint32 encodedWriteOffset; /* Most significant bit is the loop flag. Lower 31 bits contains the actual offset in bytes. */
ma_bool32 ownsBuffer : 1; /* Used to know whether or not miniaudio is responsible for free()-ing the buffer. */
ma_bool32 clearOnWriteAcquire : 1; /* When set, clears the acquired write buffer before returning from ma_rb_acquire_write(). */
ma_allocation_callbacks allocationCallbacks;
} ma_rb;
MA_API ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB);
MA_API ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB);
MA_API void ma_rb_uninit(ma_rb* pRB);
MA_API void ma_rb_reset(ma_rb* pRB);
MA_API ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut);
MA_API ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut);
MA_API ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut);
MA_API ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut);
MA_API ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes);
MA_API ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes);
MA_API ma_int32 ma_rb_pointer_distance(ma_rb* pRB); /* Returns the distance between the write pointer and the read pointer. Should never be negative for a correct program. Will return the number of bytes that can be read before the read pointer hits the write pointer. */
MA_API ma_uint32 ma_rb_available_read(ma_rb* pRB);
MA_API ma_uint32 ma_rb_available_write(ma_rb* pRB);
MA_API size_t ma_rb_get_subbuffer_size(ma_rb* pRB);
MA_API size_t ma_rb_get_subbuffer_stride(ma_rb* pRB);
MA_API size_t ma_rb_get_subbuffer_offset(ma_rb* pRB, size_t subbufferIndex);
MA_API void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pBuffer);
typedef struct
{
ma_rb rb;
ma_format format;
ma_uint32 channels;
} ma_pcm_rb;
MA_API ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB);
MA_API ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB);
MA_API void ma_pcm_rb_uninit(ma_pcm_rb* pRB);
MA_API void ma_pcm_rb_reset(ma_pcm_rb* pRB);
MA_API ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut);
MA_API ma_result ma_pcm_rb_commit_read(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut);
MA_API ma_result ma_pcm_rb_acquire_write(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut);
MA_API ma_result ma_pcm_rb_commit_write(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut);
MA_API ma_result ma_pcm_rb_seek_read(ma_pcm_rb* pRB, ma_uint32 offsetInFrames);
MA_API ma_result ma_pcm_rb_seek_write(ma_pcm_rb* pRB, ma_uint32 offsetInFrames);
MA_API ma_int32 ma_pcm_rb_pointer_distance(ma_pcm_rb* pRB); /* Return value is in frames. */
MA_API ma_uint32 ma_pcm_rb_available_read(ma_pcm_rb* pRB);
MA_API ma_uint32 ma_pcm_rb_available_write(ma_pcm_rb* pRB);
MA_API ma_uint32 ma_pcm_rb_get_subbuffer_size(ma_pcm_rb* pRB);
MA_API ma_uint32 ma_pcm_rb_get_subbuffer_stride(ma_pcm_rb* pRB);
MA_API ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbufferIndex);
MA_API void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void* pBuffer);
/************************************************************************************************************************************************************
Miscellaneous Helpers
************************************************************************************************************************************************************/
/*
Retrieves a human readable description of the given result code.
*/
MA_API const char* ma_result_description(ma_result result);
/*
malloc(). Calls MA_MALLOC().
*/
MA_API void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks);
/*
realloc(). Calls MA_REALLOC().
*/
MA_API void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks);
/*
free(). Calls MA_FREE().
*/
MA_API void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks);
/*
Performs an aligned malloc, with the assumption that the alignment is a power of 2.
*/
MA_API void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks);
/*
Free's an aligned malloc'd buffer.
*/
MA_API void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks);
/*
Retrieves a friendly name for a format.
*/
MA_API const char* ma_get_format_name(ma_format format);
/*
Blends two frames in floating point format.
*/
MA_API void ma_blend_f32(float* pOut, float* pInA, float* pInB, float factor, ma_uint32 channels);
/*
Retrieves the size of a sample in bytes for the given format.
This API is efficient and is implemented using a lookup table.
Thread Safety: SAFE
This API is pure.
*/
MA_API ma_uint32 ma_get_bytes_per_sample(ma_format format);
static MA_INLINE ma_uint32 ma_get_bytes_per_frame(ma_format format, ma_uint32 channels) { return ma_get_bytes_per_sample(format) * channels; }
/*
Converts a log level to a string.
*/
MA_API const char* ma_log_level_to_string(ma_uint32 logLevel);
/************************************************************************************************************************************************************
*************************************************************************************************************************************************************
DEVICE I/O
==========
This section contains the APIs for device playback and capture. Here is where you'll find ma_device_init(), etc.
*************************************************************************************************************************************************************
************************************************************************************************************************************************************/
#ifndef MA_NO_DEVICE_IO
/* Some backends are only supported on certain platforms. */
#if defined(MA_WIN32)
#define MA_SUPPORT_WASAPI
#if defined(MA_WIN32_DESKTOP) /* DirectSound and WinMM backends are only supported on desktops. */
#define MA_SUPPORT_DSOUND
#define MA_SUPPORT_WINMM
#define MA_SUPPORT_JACK /* JACK is technically supported on Windows, but I don't know how many people use it in practice... */
#endif
#endif
#if defined(MA_UNIX)
#if defined(MA_LINUX)
#if !defined(MA_ANDROID) /* ALSA is not supported on Android. */
#define MA_SUPPORT_ALSA
#endif
#endif
#if !defined(MA_BSD) && !defined(MA_ANDROID) && !defined(MA_EMSCRIPTEN)
#define MA_SUPPORT_PULSEAUDIO
#define MA_SUPPORT_JACK
#endif
#if defined(MA_ANDROID)
#define MA_SUPPORT_AAUDIO
#define MA_SUPPORT_OPENSL
#endif
#if defined(__OpenBSD__) /* <-- Change this to "#if defined(MA_BSD)" to enable sndio on all BSD flavors. */
#define MA_SUPPORT_SNDIO /* sndio is only supported on OpenBSD for now. May be expanded later if there's demand. */
#endif
#if defined(__NetBSD__) || defined(__OpenBSD__)
#define MA_SUPPORT_AUDIO4 /* Only support audio(4) on platforms with known support. */
#endif
#if defined(__FreeBSD__) || defined(__DragonFly__)
#define MA_SUPPORT_OSS /* Only support OSS on specific platforms with known support. */
#endif
#endif
#if defined(MA_APPLE)
#define MA_SUPPORT_COREAUDIO
#endif
#if defined(MA_EMSCRIPTEN)
#define MA_SUPPORT_WEBAUDIO
#endif
/* Explicitly disable the Null backend for Emscripten because it uses a background thread which is not properly supported right now. */
#if !defined(MA_EMSCRIPTEN)
#define MA_SUPPORT_NULL
#endif
#if !defined(MA_NO_WASAPI) && defined(MA_SUPPORT_WASAPI)
#define MA_ENABLE_WASAPI
#endif
#if !defined(MA_NO_DSOUND) && defined(MA_SUPPORT_DSOUND)
#define MA_ENABLE_DSOUND
#endif
#if !defined(MA_NO_WINMM) && defined(MA_SUPPORT_WINMM)
#define MA_ENABLE_WINMM
#endif
#if !defined(MA_NO_ALSA) && defined(MA_SUPPORT_ALSA)
#define MA_ENABLE_ALSA
#endif
#if !defined(MA_NO_PULSEAUDIO) && defined(MA_SUPPORT_PULSEAUDIO)
#define MA_ENABLE_PULSEAUDIO
#endif
#if !defined(MA_NO_JACK) && defined(MA_SUPPORT_JACK)
#define MA_ENABLE_JACK
#endif
#if !defined(MA_NO_COREAUDIO) && defined(MA_SUPPORT_COREAUDIO)
#define MA_ENABLE_COREAUDIO
#endif
#if !defined(MA_NO_SNDIO) && defined(MA_SUPPORT_SNDIO)
#define MA_ENABLE_SNDIO
#endif
#if !defined(MA_NO_AUDIO4) && defined(MA_SUPPORT_AUDIO4)
#define MA_ENABLE_AUDIO4
#endif
#if !defined(MA_NO_OSS) && defined(MA_SUPPORT_OSS)
#define MA_ENABLE_OSS
#endif
#if !defined(MA_NO_AAUDIO) && defined(MA_SUPPORT_AAUDIO)
#define MA_ENABLE_AAUDIO
#endif
#if !defined(MA_NO_OPENSL) && defined(MA_SUPPORT_OPENSL)
#define MA_ENABLE_OPENSL
#endif
#if !defined(MA_NO_WEBAUDIO) && defined(MA_SUPPORT_WEBAUDIO)
#define MA_ENABLE_WEBAUDIO
#endif
#if !defined(MA_NO_NULL) && defined(MA_SUPPORT_NULL)
#define MA_ENABLE_NULL
#endif
#ifdef MA_SUPPORT_WASAPI
/* We need a IMMNotificationClient object for WASAPI. */
typedef struct
{
void* lpVtbl;
ma_uint32 counter;
ma_device* pDevice;
} ma_IMMNotificationClient;
#endif
/* Backend enums must be in priority order. */
typedef enum
{
ma_backend_wasapi,
ma_backend_dsound,
ma_backend_winmm,
ma_backend_coreaudio,
ma_backend_sndio,
ma_backend_audio4,
ma_backend_oss,
ma_backend_pulseaudio,
ma_backend_alsa,
ma_backend_jack,
ma_backend_aaudio,
ma_backend_opensl,
ma_backend_webaudio,
ma_backend_null /* <-- Must always be the last item. Lowest priority, and used as the terminator for backend enumeration. */
} ma_backend;
/* Thread priorties should be ordered such that the default priority of the worker thread is 0. */
typedef enum
{
ma_thread_priority_idle = -5,
ma_thread_priority_lowest = -4,
ma_thread_priority_low = -3,
ma_thread_priority_normal = -2,
ma_thread_priority_high = -1,
ma_thread_priority_highest = 0,
ma_thread_priority_realtime = 1,
ma_thread_priority_default = 0
} ma_thread_priority;
#if defined(MA_WIN32)
typedef ma_handle ma_thread;
#endif
#if defined(MA_POSIX)
typedef pthread_t ma_thread;
#endif
#if defined(MA_WIN32)
typedef ma_handle ma_mutex;
#endif
#if defined(MA_POSIX)
typedef pthread_mutex_t ma_mutex;
#endif
#if defined(MA_WIN32)
typedef ma_handle ma_event;
#endif
#if defined(MA_POSIX)
typedef struct
{
ma_uint32 value;
pthread_mutex_t lock;
pthread_cond_t cond;
} ma_event;
#endif
#if defined(MA_WIN32)
typedef ma_handle ma_semaphore;
#endif
#if defined(MA_POSIX)
typedef struct
{
int value;
pthread_mutex_t lock;
pthread_cond_t cond;
} ma_semaphore;
#endif
/*
The callback for processing audio data from the device.
The data callback is fired by miniaudio whenever the device needs to have more data delivered to a playback device, or when a capture device has some data
available. This is called as soon as the backend asks for more data which means it may be called with inconsistent frame counts. You cannot assume the
callback will be fired with a consistent frame count.
Parameters
----------
pDevice (in)
A pointer to the relevant device.
pOutput (out)
A pointer to the output buffer that will receive audio data that will later be played back through the speakers. This will be non-null for a playback or
full-duplex device and null for a capture and loopback device.
pInput (in)
A pointer to the buffer containing input data from a recording device. This will be non-null for a capture, full-duplex or loopback device and null for a
playback device.
frameCount (in)
The number of PCM frames to process. Note that this will not necessarily be equal to what you requested when you initialized the device. The
`periodSizeInFrames` and `periodSizeInMilliseconds` members of the device config are just hints, and are not necessarily exactly what you'll get. You must
not assume this will always be the same value each time the callback is fired.
Remarks
-------
You cannot stop and start the device from inside the callback or else you'll get a deadlock. You must also not uninitialize the device from inside the
callback. The following APIs cannot be called from inside the callback:
ma_device_init()
ma_device_init_ex()
ma_device_uninit()
ma_device_start()
ma_device_stop()
The proper way to stop the device is to call `ma_device_stop()` from a different thread, normally the main application thread.
*/
typedef void (* ma_device_callback_proc)(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount);
/*
The callback for when the device has been stopped.
This will be called when the device is stopped explicitly with `ma_device_stop()` and also called implicitly when the device is stopped through external forces
such as being unplugged or an internal error occuring.
Parameters
----------
pDevice (in)
A pointer to the device that has just stopped.
Remarks
-------
Do not restart or uninitialize the device from the callback.
*/
typedef void (* ma_stop_proc)(ma_device* pDevice);
/*
The callback for handling log messages.
Parameters
----------
pContext (in)
A pointer to the context the log message originated from.
pDevice (in)
A pointer to the device the log message originate from, if any. This can be null, in which case the message came from the context.
logLevel (in)
The log level. This can be one of the following:
|----------------------|
| Log Level |
|----------------------|
| MA_LOG_LEVEL_VERBOSE |
| MA_LOG_LEVEL_INFO |
| MA_LOG_LEVEL_WARNING |
| MA_LOG_LEVEL_ERROR |
|----------------------|
message (in)
The log message.
Remarks
-------
Do not modify the state of the device from inside the callback.
*/
typedef void (* ma_log_proc)(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message);
typedef enum
{
ma_device_type_playback = 1,
ma_device_type_capture = 2,
ma_device_type_duplex = ma_device_type_playback | ma_device_type_capture, /* 3 */
ma_device_type_loopback = 4
} ma_device_type;
typedef enum
{
ma_share_mode_shared = 0,
ma_share_mode_exclusive
} ma_share_mode;
/* iOS/tvOS/watchOS session categories. */
typedef enum
{
ma_ios_session_category_default = 0, /* AVAudioSessionCategoryPlayAndRecord with AVAudioSessionCategoryOptionDefaultToSpeaker. */
ma_ios_session_category_none, /* Leave the session category unchanged. */
ma_ios_session_category_ambient, /* AVAudioSessionCategoryAmbient */
ma_ios_session_category_solo_ambient, /* AVAudioSessionCategorySoloAmbient */
ma_ios_session_category_playback, /* AVAudioSessionCategoryPlayback */
ma_ios_session_category_record, /* AVAudioSessionCategoryRecord */
ma_ios_session_category_play_and_record, /* AVAudioSessionCategoryPlayAndRecord */
ma_ios_session_category_multi_route /* AVAudioSessionCategoryMultiRoute */
} ma_ios_session_category;
/* iOS/tvOS/watchOS session category options */
typedef enum
{
ma_ios_session_category_option_mix_with_others = 0x01, /* AVAudioSessionCategoryOptionMixWithOthers */
ma_ios_session_category_option_duck_others = 0x02, /* AVAudioSessionCategoryOptionDuckOthers */
ma_ios_session_category_option_allow_bluetooth = 0x04, /* AVAudioSessionCategoryOptionAllowBluetooth */
ma_ios_session_category_option_default_to_speaker = 0x08, /* AVAudioSessionCategoryOptionDefaultToSpeaker */
ma_ios_session_category_option_interrupt_spoken_audio_and_mix_with_others = 0x11, /* AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers */
ma_ios_session_category_option_allow_bluetooth_a2dp = 0x20, /* AVAudioSessionCategoryOptionAllowBluetoothA2DP */
ma_ios_session_category_option_allow_air_play = 0x40, /* AVAudioSessionCategoryOptionAllowAirPlay */
} ma_ios_session_category_option;
typedef union
{
ma_int64 counter;
double counterD;
} ma_timer;
typedef union
{
wchar_t wasapi[64]; /* WASAPI uses a wchar_t string for identification. */
ma_uint8 dsound[16]; /* DirectSound uses a GUID for identification. */
/*UINT_PTR*/ ma_uint32 winmm; /* When creating a device, WinMM expects a Win32 UINT_PTR for device identification. In practice it's actually just a UINT. */
char alsa[256]; /* ALSA uses a name string for identification. */
char pulse[256]; /* PulseAudio uses a name string for identification. */
int jack; /* JACK always uses default devices. */
char coreaudio[256]; /* Core Audio uses a string for identification. */
char sndio[256]; /* "snd/0", etc. */
char audio4[256]; /* "/dev/audio", etc. */
char oss[64]; /* "dev/dsp0", etc. "dev/dsp" for the default device. */
ma_int32 aaudio; /* AAudio uses a 32-bit integer for identification. */
ma_uint32 opensl; /* OpenSL|ES uses a 32-bit unsigned integer for identification. */
char webaudio[32]; /* Web Audio always uses default devices for now, but if this changes it'll be a GUID. */
int nullbackend; /* The null backend uses an integer for device IDs. */
} ma_device_id;
typedef struct
{
/* Basic info. This is the only information guaranteed to be filled in during device enumeration. */
ma_device_id id;
char name[256];
/*
Detailed info. As much of this is filled as possible with ma_context_get_device_info(). Note that you are allowed to initialize
a device with settings outside of this range, but it just means the data will be converted using miniaudio's data conversion
pipeline before sending the data to/from the device. Most programs will need to not worry about these values, but it's provided
here mainly for informational purposes or in the rare case that someone might find it useful.
These will be set to 0 when returned by ma_context_enumerate_devices() or ma_context_get_devices().
*/
ma_uint32 formatCount;
ma_format formats[ma_format_count];
ma_uint32 minChannels;
ma_uint32 maxChannels;
ma_uint32 minSampleRate;
ma_uint32 maxSampleRate;
struct
{
ma_bool32 isDefault;
} _private;
} ma_device_info;
typedef struct
{
ma_device_type deviceType;
ma_uint32 sampleRate;
ma_uint32 periodSizeInFrames;
ma_uint32 periodSizeInMilliseconds;
ma_uint32 periods;
ma_performance_profile performanceProfile;
ma_bool32 noPreZeroedOutputBuffer; /* When set to true, the contents of the output buffer passed into the data callback will be left undefined rather than initialized to zero. */
ma_bool32 noClip; /* When set to true, the contents of the output buffer passed into the data callback will be clipped after returning. Only applies when the playback sample format is f32. */
ma_device_callback_proc dataCallback;
ma_stop_proc stopCallback;
void* pUserData;
struct
{
ma_resample_algorithm algorithm;
struct
{
ma_uint32 lpfOrder;
} linear;
struct
{
int quality;
} speex;
} resampling;
struct
{
const ma_device_id* pDeviceID;
ma_format format;
ma_uint32 channels;
ma_channel channelMap[MA_MAX_CHANNELS];
ma_share_mode shareMode;
} playback;
struct
{
const ma_device_id* pDeviceID;
ma_format format;
ma_uint32 channels;
ma_channel channelMap[MA_MAX_CHANNELS];
ma_share_mode shareMode;
} capture;
struct
{
ma_bool32 noAutoConvertSRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */
ma_bool32 noDefaultQualitySRC; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */
ma_bool32 noAutoStreamRouting; /* Disables automatic stream routing. */
ma_bool32 noHardwareOffloading; /* Disables WASAPI's hardware offloading feature. */
} wasapi;
struct
{
ma_bool32 noMMap; /* Disables MMap mode. */
ma_bool32 noAutoFormat; /* Opens the ALSA device with SND_PCM_NO_AUTO_FORMAT. */
ma_bool32 noAutoChannels; /* Opens the ALSA device with SND_PCM_NO_AUTO_CHANNELS. */
ma_bool32 noAutoResample; /* Opens the ALSA device with SND_PCM_NO_AUTO_RESAMPLE. */
} alsa;
struct
{
const char* pStreamNamePlayback;
const char* pStreamNameCapture;
} pulse;
} ma_device_config;
typedef struct
{
ma_log_proc logCallback;
ma_thread_priority threadPriority;
size_t threadStackSize;
void* pUserData;
ma_allocation_callbacks allocationCallbacks;
struct
{
ma_bool32 useVerboseDeviceEnumeration;
} alsa;
struct
{
const char* pApplicationName;
const char* pServerName;
ma_bool32 tryAutoSpawn; /* Enables autospawning of the PulseAudio daemon if necessary. */
} pulse;
struct
{
ma_ios_session_category sessionCategory;
ma_uint32 sessionCategoryOptions;
} coreaudio;
struct
{
const char* pClientName;
ma_bool32 tryStartServer;
} jack;
} ma_context_config;
/*
The callback for handling device enumeration. This is fired from `ma_context_enumerated_devices()`.
Parameters
----------
pContext (in)
A pointer to the context performing the enumeration.
deviceType (in)
The type of the device being enumerated. This will always be either `ma_device_type_playback` or `ma_device_type_capture`.
pInfo (in)
A pointer to a `ma_device_info` containing the ID and name of the enumerated device. Note that this will not include detailed information about the device,
only basic information (ID and name). The reason for this is that it would otherwise require opening the backend device to probe for the information which
is too inefficient.
pUserData (in)
The user data pointer passed into `ma_context_enumerate_devices()`.
*/
typedef ma_bool32 (* ma_enum_devices_callback_proc)(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData);
struct ma_context
{
ma_backend backend; /* DirectSound, ALSA, etc. */
ma_log_proc logCallback;
ma_thread_priority threadPriority;
size_t threadStackSize;
void* pUserData;
ma_allocation_callbacks allocationCallbacks;
ma_mutex deviceEnumLock; /* Used to make ma_context_get_devices() thread safe. */
ma_mutex deviceInfoLock; /* Used to make ma_context_get_device_info() thread safe. */
ma_uint32 deviceInfoCapacity; /* Total capacity of pDeviceInfos. */
ma_uint32 playbackDeviceInfoCount;
ma_uint32 captureDeviceInfoCount;
ma_device_info* pDeviceInfos; /* Playback devices first, then capture. */
ma_bool32 isBackendAsynchronous : 1; /* Set when the context is initialized. Set to 1 for asynchronous backends such as Core Audio and JACK. Do not modify. */
ma_result (* onUninit )(ma_context* pContext);
ma_bool32 (* onDeviceIDEqual )(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1);
ma_result (* onEnumDevices )(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData); /* Return false from the callback to stop enumeration. */
ma_result (* onGetDeviceInfo )(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo);
ma_result (* onDeviceInit )(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice);
void (* onDeviceUninit )(ma_device* pDevice);
ma_result (* onDeviceStart )(ma_device* pDevice);
ma_result (* onDeviceStop )(ma_device* pDevice);
ma_result (* onDeviceMainLoop)(ma_device* pDevice);
union
{
#ifdef MA_SUPPORT_WASAPI
struct
{
int _unused;
} wasapi;
#endif
#ifdef MA_SUPPORT_DSOUND
struct
{
ma_handle hDSoundDLL;
ma_proc DirectSoundCreate;
ma_proc DirectSoundEnumerateA;
ma_proc DirectSoundCaptureCreate;
ma_proc DirectSoundCaptureEnumerateA;
} dsound;
#endif
#ifdef MA_SUPPORT_WINMM
struct
{
ma_handle hWinMM;
ma_proc waveOutGetNumDevs;
ma_proc waveOutGetDevCapsA;
ma_proc waveOutOpen;
ma_proc waveOutClose;
ma_proc waveOutPrepareHeader;
ma_proc waveOutUnprepareHeader;
ma_proc waveOutWrite;
ma_proc waveOutReset;
ma_proc waveInGetNumDevs;
ma_proc waveInGetDevCapsA;
ma_proc waveInOpen;
ma_proc waveInClose;
ma_proc waveInPrepareHeader;
ma_proc waveInUnprepareHeader;
ma_proc waveInAddBuffer;
ma_proc waveInStart;
ma_proc waveInReset;
} winmm;
#endif
#ifdef MA_SUPPORT_ALSA
struct
{
ma_handle asoundSO;
ma_proc snd_pcm_open;
ma_proc snd_pcm_close;
ma_proc snd_pcm_hw_params_sizeof;
ma_proc snd_pcm_hw_params_any;
ma_proc snd_pcm_hw_params_set_format;
ma_proc snd_pcm_hw_params_set_format_first;
ma_proc snd_pcm_hw_params_get_format_mask;
ma_proc snd_pcm_hw_params_set_channels_near;
ma_proc snd_pcm_hw_params_set_rate_resample;
ma_proc snd_pcm_hw_params_set_rate_near;
ma_proc snd_pcm_hw_params_set_buffer_size_near;
ma_proc snd_pcm_hw_params_set_periods_near;
ma_proc snd_pcm_hw_params_set_access;
ma_proc snd_pcm_hw_params_get_format;
ma_proc snd_pcm_hw_params_get_channels;
ma_proc snd_pcm_hw_params_get_channels_min;
ma_proc snd_pcm_hw_params_get_channels_max;
ma_proc snd_pcm_hw_params_get_rate;
ma_proc snd_pcm_hw_params_get_rate_min;
ma_proc snd_pcm_hw_params_get_rate_max;
ma_proc snd_pcm_hw_params_get_buffer_size;
ma_proc snd_pcm_hw_params_get_periods;
ma_proc snd_pcm_hw_params_get_access;
ma_proc snd_pcm_hw_params;
ma_proc snd_pcm_sw_params_sizeof;
ma_proc snd_pcm_sw_params_current;
ma_proc snd_pcm_sw_params_get_boundary;
ma_proc snd_pcm_sw_params_set_avail_min;
ma_proc snd_pcm_sw_params_set_start_threshold;
ma_proc snd_pcm_sw_params_set_stop_threshold;
ma_proc snd_pcm_sw_params;
ma_proc snd_pcm_format_mask_sizeof;
ma_proc snd_pcm_format_mask_test;
ma_proc snd_pcm_get_chmap;
ma_proc snd_pcm_state;
ma_proc snd_pcm_prepare;
ma_proc snd_pcm_start;
ma_proc snd_pcm_drop;
ma_proc snd_pcm_drain;
ma_proc snd_device_name_hint;
ma_proc snd_device_name_get_hint;
ma_proc snd_card_get_index;
ma_proc snd_device_name_free_hint;
ma_proc snd_pcm_mmap_begin;
ma_proc snd_pcm_mmap_commit;
ma_proc snd_pcm_recover;
ma_proc snd_pcm_readi;
ma_proc snd_pcm_writei;
ma_proc snd_pcm_avail;
ma_proc snd_pcm_avail_update;
ma_proc snd_pcm_wait;
ma_proc snd_pcm_info;
ma_proc snd_pcm_info_sizeof;
ma_proc snd_pcm_info_get_name;
ma_proc snd_config_update_free_global;
ma_mutex internalDeviceEnumLock;
ma_bool32 useVerboseDeviceEnumeration;
} alsa;
#endif
#ifdef MA_SUPPORT_PULSEAUDIO
struct
{
ma_handle pulseSO;
ma_proc pa_mainloop_new;
ma_proc pa_mainloop_free;
ma_proc pa_mainloop_get_api;
ma_proc pa_mainloop_iterate;
ma_proc pa_mainloop_wakeup;
ma_proc pa_context_new;
ma_proc pa_context_unref;
ma_proc pa_context_connect;
ma_proc pa_context_disconnect;
ma_proc pa_context_set_state_callback;
ma_proc pa_context_get_state;
ma_proc pa_context_get_sink_info_list;
ma_proc pa_context_get_source_info_list;
ma_proc pa_context_get_sink_info_by_name;
ma_proc pa_context_get_source_info_by_name;
ma_proc pa_operation_unref;
ma_proc pa_operation_get_state;
ma_proc pa_channel_map_init_extend;
ma_proc pa_channel_map_valid;
ma_proc pa_channel_map_compatible;
ma_proc pa_stream_new;
ma_proc pa_stream_unref;
ma_proc pa_stream_connect_playback;
ma_proc pa_stream_connect_record;
ma_proc pa_stream_disconnect;
ma_proc pa_stream_get_state;
ma_proc pa_stream_get_sample_spec;
ma_proc pa_stream_get_channel_map;
ma_proc pa_stream_get_buffer_attr;
ma_proc pa_stream_set_buffer_attr;
ma_proc pa_stream_get_device_name;
ma_proc pa_stream_set_write_callback;
ma_proc pa_stream_set_read_callback;
ma_proc pa_stream_flush;
ma_proc pa_stream_drain;
ma_proc pa_stream_is_corked;
ma_proc pa_stream_cork;
ma_proc pa_stream_trigger;
ma_proc pa_stream_begin_write;
ma_proc pa_stream_write;
ma_proc pa_stream_peek;
ma_proc pa_stream_drop;
ma_proc pa_stream_writable_size;
ma_proc pa_stream_readable_size;
char* pApplicationName;
char* pServerName;
ma_bool32 tryAutoSpawn;
} pulse;
#endif
#ifdef MA_SUPPORT_JACK
struct
{
ma_handle jackSO;
ma_proc jack_client_open;
ma_proc jack_client_close;
ma_proc jack_client_name_size;
ma_proc jack_set_process_callback;
ma_proc jack_set_buffer_size_callback;
ma_proc jack_on_shutdown;
ma_proc jack_get_sample_rate;
ma_proc jack_get_buffer_size;
ma_proc jack_get_ports;
ma_proc jack_activate;
ma_proc jack_deactivate;
ma_proc jack_connect;
ma_proc jack_port_register;
ma_proc jack_port_name;
ma_proc jack_port_get_buffer;
ma_proc jack_free;
char* pClientName;
ma_bool32 tryStartServer;
} jack;
#endif
#ifdef MA_SUPPORT_COREAUDIO
struct
{
ma_handle hCoreFoundation;
ma_proc CFStringGetCString;
ma_proc CFRelease;
ma_handle hCoreAudio;
ma_proc AudioObjectGetPropertyData;
ma_proc AudioObjectGetPropertyDataSize;
ma_proc AudioObjectSetPropertyData;
ma_proc AudioObjectAddPropertyListener;
ma_proc AudioObjectRemovePropertyListener;
ma_handle hAudioUnit; /* Could possibly be set to AudioToolbox on later versions of macOS. */
ma_proc AudioComponentFindNext;
ma_proc AudioComponentInstanceDispose;
ma_proc AudioComponentInstanceNew;
ma_proc AudioOutputUnitStart;
ma_proc AudioOutputUnitStop;
ma_proc AudioUnitAddPropertyListener;
ma_proc AudioUnitGetPropertyInfo;
ma_proc AudioUnitGetProperty;
ma_proc AudioUnitSetProperty;
ma_proc AudioUnitInitialize;
ma_proc AudioUnitRender;
/*AudioComponent*/ ma_ptr component;
} coreaudio;
#endif
#ifdef MA_SUPPORT_SNDIO
struct
{
ma_handle sndioSO;
ma_proc sio_open;
ma_proc sio_close;
ma_proc sio_setpar;
ma_proc sio_getpar;
ma_proc sio_getcap;
ma_proc sio_start;
ma_proc sio_stop;
ma_proc sio_read;
ma_proc sio_write;
ma_proc sio_onmove;
ma_proc sio_nfds;
ma_proc sio_pollfd;
ma_proc sio_revents;
ma_proc sio_eof;
ma_proc sio_setvol;
ma_proc sio_onvol;
ma_proc sio_initpar;
} sndio;
#endif
#ifdef MA_SUPPORT_AUDIO4
struct
{
int _unused;
} audio4;
#endif
#ifdef MA_SUPPORT_OSS
struct
{
int versionMajor;
int versionMinor;
} oss;
#endif
#ifdef MA_SUPPORT_AAUDIO
struct
{
ma_handle hAAudio; /* libaaudio.so */
ma_proc AAudio_createStreamBuilder;
ma_proc AAudioStreamBuilder_delete;
ma_proc AAudioStreamBuilder_setDeviceId;
ma_proc AAudioStreamBuilder_setDirection;
ma_proc AAudioStreamBuilder_setSharingMode;
ma_proc AAudioStreamBuilder_setFormat;
ma_proc AAudioStreamBuilder_setChannelCount;
ma_proc AAudioStreamBuilder_setSampleRate;
ma_proc AAudioStreamBuilder_setBufferCapacityInFrames;
ma_proc AAudioStreamBuilder_setFramesPerDataCallback;
ma_proc AAudioStreamBuilder_setDataCallback;
ma_proc AAudioStreamBuilder_setErrorCallback;
ma_proc AAudioStreamBuilder_setPerformanceMode;
ma_proc AAudioStreamBuilder_openStream;
ma_proc AAudioStream_close;
ma_proc AAudioStream_getState;
ma_proc AAudioStream_waitForStateChange;
ma_proc AAudioStream_getFormat;
ma_proc AAudioStream_getChannelCount;
ma_proc AAudioStream_getSampleRate;
ma_proc AAudioStream_getBufferCapacityInFrames;
ma_proc AAudioStream_getFramesPerDataCallback;
ma_proc AAudioStream_getFramesPerBurst;
ma_proc AAudioStream_requestStart;
ma_proc AAudioStream_requestStop;
} aaudio;
#endif
#ifdef MA_SUPPORT_OPENSL
struct
{
int _unused;
} opensl;
#endif
#ifdef MA_SUPPORT_WEBAUDIO
struct
{
int _unused;
} webaudio;
#endif
#ifdef MA_SUPPORT_NULL
struct
{
int _unused;
} null_backend;
#endif
};
union
{
#ifdef MA_WIN32
struct
{
/*HMODULE*/ ma_handle hOle32DLL;
ma_proc CoInitializeEx;
ma_proc CoUninitialize;
ma_proc CoCreateInstance;
ma_proc CoTaskMemFree;
ma_proc PropVariantClear;
ma_proc StringFromGUID2;
/*HMODULE*/ ma_handle hUser32DLL;
ma_proc GetForegroundWindow;
ma_proc GetDesktopWindow;
/*HMODULE*/ ma_handle hAdvapi32DLL;
ma_proc RegOpenKeyExA;
ma_proc RegCloseKey;
ma_proc RegQueryValueExA;
} win32;
#endif
#ifdef MA_POSIX
struct
{
ma_handle pthreadSO;
ma_proc pthread_create;
ma_proc pthread_join;
ma_proc pthread_mutex_init;
ma_proc pthread_mutex_destroy;
ma_proc pthread_mutex_lock;
ma_proc pthread_mutex_unlock;
ma_proc pthread_cond_init;
ma_proc pthread_cond_destroy;
ma_proc pthread_cond_wait;
ma_proc pthread_cond_signal;
ma_proc pthread_attr_init;
ma_proc pthread_attr_destroy;
ma_proc pthread_attr_setschedpolicy;
ma_proc pthread_attr_getschedparam;
ma_proc pthread_attr_setschedparam;
} posix;
#endif
int _unused;
};
};
struct ma_device
{
ma_context* pContext;
ma_device_type type;
ma_uint32 sampleRate;
volatile ma_uint32 state; /* The state of the device is variable and can change at any time on any thread, so tell the compiler as such with `volatile`. */
ma_device_callback_proc onData; /* Set once at initialization time and should not be changed after. */
ma_stop_proc onStop; /* Set once at initialization time and should not be changed after. */
void* pUserData; /* Application defined data. */
ma_mutex lock;
ma_event wakeupEvent;
ma_event startEvent;
ma_event stopEvent;
ma_thread thread;
ma_result workResult; /* This is set by the worker thread after it's finished doing a job. */
ma_bool32 usingDefaultSampleRate : 1;
ma_bool32 usingDefaultBufferSize : 1;
ma_bool32 usingDefaultPeriods : 1;
ma_bool32 isOwnerOfContext : 1; /* When set to true, uninitializing the device will also uninitialize the context. Set to true when NULL is passed into ma_device_init(). */
ma_bool32 noPreZeroedOutputBuffer : 1;
ma_bool32 noClip : 1;
volatile float masterVolumeFactor; /* Volatile so we can use some thread safety when applying volume to periods. */
struct
{
ma_resample_algorithm algorithm;
struct
{
ma_uint32 lpfOrder;
} linear;
struct
{
int quality;
} speex;
} resampling;
struct
{
char name[256]; /* Maybe temporary. Likely to be replaced with a query API. */
ma_share_mode shareMode; /* Set to whatever was passed in when the device was initialized. */
ma_bool32 usingDefaultFormat : 1;
ma_bool32 usingDefaultChannels : 1;
ma_bool32 usingDefaultChannelMap : 1;
ma_format format;
ma_uint32 channels;
ma_channel channelMap[MA_MAX_CHANNELS];
ma_format internalFormat;
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_channel internalChannelMap[MA_MAX_CHANNELS];
ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
ma_data_converter converter;
} playback;
struct
{
char name[256]; /* Maybe temporary. Likely to be replaced with a query API. */
ma_share_mode shareMode; /* Set to whatever was passed in when the device was initialized. */
ma_bool32 usingDefaultFormat : 1;
ma_bool32 usingDefaultChannels : 1;
ma_bool32 usingDefaultChannelMap : 1;
ma_format format;
ma_uint32 channels;
ma_channel channelMap[MA_MAX_CHANNELS];
ma_format internalFormat;
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_channel internalChannelMap[MA_MAX_CHANNELS];
ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
ma_data_converter converter;
} capture;
union
{
#ifdef MA_SUPPORT_WASAPI
struct
{
/*IAudioClient**/ ma_ptr pAudioClientPlayback;
/*IAudioClient**/ ma_ptr pAudioClientCapture;
/*IAudioRenderClient**/ ma_ptr pRenderClient;
/*IAudioCaptureClient**/ ma_ptr pCaptureClient;
/*IMMDeviceEnumerator**/ ma_ptr pDeviceEnumerator; /* Used for IMMNotificationClient notifications. Required for detecting default device changes. */
ma_IMMNotificationClient notificationClient;
/*HANDLE*/ ma_handle hEventPlayback; /* Auto reset. Initialized to signaled. */
/*HANDLE*/ ma_handle hEventCapture; /* Auto reset. Initialized to unsignaled. */
ma_uint32 actualPeriodSizeInFramesPlayback; /* Value from GetBufferSize(). internalPeriodSizeInFrames is not set to the _actual_ buffer size when low-latency shared mode is being used due to the way the IAudioClient3 API works. */
ma_uint32 actualPeriodSizeInFramesCapture;
ma_uint32 originalPeriodSizeInFrames;
ma_uint32 originalPeriodSizeInMilliseconds;
ma_uint32 originalPeriods;
ma_bool32 hasDefaultPlaybackDeviceChanged; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */
ma_bool32 hasDefaultCaptureDeviceChanged; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */
ma_uint32 periodSizeInFramesPlayback;
ma_uint32 periodSizeInFramesCapture;
ma_bool32 isStartedCapture; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */
ma_bool32 isStartedPlayback; /* <-- Make sure this is always a whole 32-bits because we use atomic assignments. */
ma_bool32 noAutoConvertSRC : 1; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM. */
ma_bool32 noDefaultQualitySRC : 1; /* When set to true, disables the use of AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY. */
ma_bool32 noHardwareOffloading : 1;
ma_bool32 allowCaptureAutoStreamRouting : 1;
ma_bool32 allowPlaybackAutoStreamRouting : 1;
} wasapi;
#endif
#ifdef MA_SUPPORT_DSOUND
struct
{
/*LPDIRECTSOUND*/ ma_ptr pPlayback;
/*LPDIRECTSOUNDBUFFER*/ ma_ptr pPlaybackPrimaryBuffer;
/*LPDIRECTSOUNDBUFFER*/ ma_ptr pPlaybackBuffer;
/*LPDIRECTSOUNDCAPTURE*/ ma_ptr pCapture;
/*LPDIRECTSOUNDCAPTUREBUFFER*/ ma_ptr pCaptureBuffer;
} dsound;
#endif
#ifdef MA_SUPPORT_WINMM
struct
{
/*HWAVEOUT*/ ma_handle hDevicePlayback;
/*HWAVEIN*/ ma_handle hDeviceCapture;
/*HANDLE*/ ma_handle hEventPlayback;
/*HANDLE*/ ma_handle hEventCapture;
ma_uint32 fragmentSizeInFrames;
ma_uint32 iNextHeaderPlayback; /* [0,periods). Used as an index into pWAVEHDRPlayback. */
ma_uint32 iNextHeaderCapture; /* [0,periods). Used as an index into pWAVEHDRCapture. */
ma_uint32 headerFramesConsumedPlayback; /* The number of PCM frames consumed in the buffer in pWAVEHEADER[iNextHeader]. */
ma_uint32 headerFramesConsumedCapture; /* ^^^ */
/*WAVEHDR**/ ma_uint8* pWAVEHDRPlayback; /* One instantiation for each period. */
/*WAVEHDR**/ ma_uint8* pWAVEHDRCapture; /* One instantiation for each period. */
ma_uint8* pIntermediaryBufferPlayback;
ma_uint8* pIntermediaryBufferCapture;
ma_uint8* _pHeapData; /* Used internally and is used for the heap allocated data for the intermediary buffer and the WAVEHDR structures. */
} winmm;
#endif
#ifdef MA_SUPPORT_ALSA
struct
{
/*snd_pcm_t**/ ma_ptr pPCMPlayback;
/*snd_pcm_t**/ ma_ptr pPCMCapture;
ma_bool32 isUsingMMapPlayback : 1;
ma_bool32 isUsingMMapCapture : 1;
} alsa;
#endif
#ifdef MA_SUPPORT_PULSEAUDIO
struct
{
/*pa_mainloop**/ ma_ptr pMainLoop;
/*pa_mainloop_api**/ ma_ptr pAPI;
/*pa_context**/ ma_ptr pPulseContext;
/*pa_stream**/ ma_ptr pStreamPlayback;
/*pa_stream**/ ma_ptr pStreamCapture;
/*pa_context_state*/ ma_uint32 pulseContextState;
void* pMappedBufferPlayback;
const void* pMappedBufferCapture;
ma_uint32 mappedBufferFramesRemainingPlayback;
ma_uint32 mappedBufferFramesRemainingCapture;
ma_uint32 mappedBufferFramesCapacityPlayback;
ma_uint32 mappedBufferFramesCapacityCapture;
ma_bool32 breakFromMainLoop : 1;
} pulse;
#endif
#ifdef MA_SUPPORT_JACK
struct
{
/*jack_client_t**/ ma_ptr pClient;
/*jack_port_t**/ ma_ptr pPortsPlayback[MA_MAX_CHANNELS];
/*jack_port_t**/ ma_ptr pPortsCapture[MA_MAX_CHANNELS];
float* pIntermediaryBufferPlayback; /* Typed as a float because JACK is always floating point. */
float* pIntermediaryBufferCapture;
ma_pcm_rb duplexRB;
} jack;
#endif
#ifdef MA_SUPPORT_COREAUDIO
struct
{
ma_uint32 deviceObjectIDPlayback;
ma_uint32 deviceObjectIDCapture;
/*AudioUnit*/ ma_ptr audioUnitPlayback;
/*AudioUnit*/ ma_ptr audioUnitCapture;
/*AudioBufferList**/ ma_ptr pAudioBufferList; /* Only used for input devices. */
ma_event stopEvent;
ma_uint32 originalPeriodSizeInFrames;
ma_uint32 originalPeriodSizeInMilliseconds;
ma_uint32 originalPeriods;
ma_bool32 isDefaultPlaybackDevice;
ma_bool32 isDefaultCaptureDevice;
ma_bool32 isSwitchingPlaybackDevice; /* <-- Set to true when the default device has changed and miniaudio is in the process of switching. */
ma_bool32 isSwitchingCaptureDevice; /* <-- Set to true when the default device has changed and miniaudio is in the process of switching. */
ma_pcm_rb duplexRB;
void* pRouteChangeHandler; /* Only used on mobile platforms. Obj-C object for handling route changes. */
} coreaudio;
#endif
#ifdef MA_SUPPORT_SNDIO
struct
{
ma_ptr handlePlayback;
ma_ptr handleCapture;
ma_bool32 isStartedPlayback;
ma_bool32 isStartedCapture;
} sndio;
#endif
#ifdef MA_SUPPORT_AUDIO4
struct
{
int fdPlayback;
int fdCapture;
} audio4;
#endif
#ifdef MA_SUPPORT_OSS
struct
{
int fdPlayback;
int fdCapture;
} oss;
#endif
#ifdef MA_SUPPORT_AAUDIO
struct
{
/*AAudioStream**/ ma_ptr pStreamPlayback;
/*AAudioStream**/ ma_ptr pStreamCapture;
ma_pcm_rb duplexRB;
} aaudio;
#endif
#ifdef MA_SUPPORT_OPENSL
struct
{
/*SLObjectItf*/ ma_ptr pOutputMixObj;
/*SLOutputMixItf*/ ma_ptr pOutputMix;
/*SLObjectItf*/ ma_ptr pAudioPlayerObj;
/*SLPlayItf*/ ma_ptr pAudioPlayer;
/*SLObjectItf*/ ma_ptr pAudioRecorderObj;
/*SLRecordItf*/ ma_ptr pAudioRecorder;
/*SLAndroidSimpleBufferQueueItf*/ ma_ptr pBufferQueuePlayback;
/*SLAndroidSimpleBufferQueueItf*/ ma_ptr pBufferQueueCapture;
ma_bool32 isDrainingCapture;
ma_bool32 isDrainingPlayback;
ma_uint32 currentBufferIndexPlayback;
ma_uint32 currentBufferIndexCapture;
ma_uint8* pBufferPlayback; /* This is malloc()'d and is used for storing audio data. Typed as ma_uint8 for easy offsetting. */
ma_uint8* pBufferCapture;
ma_pcm_rb duplexRB;
} opensl;
#endif
#ifdef MA_SUPPORT_WEBAUDIO
struct
{
int indexPlayback; /* We use a factory on the JavaScript side to manage devices and use an index for JS/C interop. */
int indexCapture;
ma_pcm_rb duplexRB; /* In external capture format. */
} webaudio;
#endif
#ifdef MA_SUPPORT_NULL
struct
{
ma_thread deviceThread;
ma_event operationEvent;
ma_event operationCompletionEvent;
ma_uint32 operation;
ma_result operationResult;
ma_timer timer;
double priorRunTime;
ma_uint32 currentPeriodFramesRemainingPlayback;
ma_uint32 currentPeriodFramesRemainingCapture;
ma_uint64 lastProcessedFramePlayback;
ma_uint32 lastProcessedFrameCapture;
ma_bool32 isStarted;
} null_device;
#endif
};
};
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#else
#pragma GCC diagnostic pop /* For ISO C99 doesn't support unnamed structs/unions [-Wpedantic] */
#endif
/*
Initializes a `ma_context_config` object.
Return Value
------------
A `ma_context_config` initialized to defaults.
Remarks
-------
You must always use this to initialize the default state of the `ma_context_config` object. Not using this will result in your program breaking when miniaudio
is updated and new members are added to `ma_context_config`. It also sets logical defaults.
You can override members of the returned object by changing it's members directly.
See Also
--------
ma_context_init()
*/
MA_API ma_context_config ma_context_config_init(void);
/*
Initializes a context.
The context is used for selecting and initializing an appropriate backend and to represent the backend at a more global level than that of an individual
device. There is one context to many devices, and a device is created from a context. A context is required to enumerate devices.
Parameters
----------
backends (in, optional)
A list of backends to try initializing, in priority order. Can be NULL, in which case it uses default priority order.
backendCount (in, optional)
The number of items in `backend`. Ignored if `backend` is NULL.
pConfig (in, optional)
The context configuration.
pContext (in)
A pointer to the context object being initialized.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Unsafe. Do not call this function across multiple threads as some backends read and write to global state.
Remarks
-------
When `backends` is NULL, the default priority order will be used. Below is a list of backends in priority order:
|-------------|-----------------------|--------------------------------------------------------|
| Name | Enum Name | Supported Operating Systems |
|-------------|-----------------------|--------------------------------------------------------|
| WASAPI | ma_backend_wasapi | Windows Vista+ |
| DirectSound | ma_backend_dsound | Windows XP+ |
| WinMM | ma_backend_winmm | Windows XP+ (may work on older versions, but untested) |
| Core Audio | ma_backend_coreaudio | macOS, iOS |
| ALSA | ma_backend_alsa | Linux |
| PulseAudio | ma_backend_pulseaudio | Cross Platform (disabled on Windows, BSD and Android) |
| JACK | ma_backend_jack | Cross Platform (disabled on BSD and Android) |
| sndio | ma_backend_sndio | OpenBSD |
| audio(4) | ma_backend_audio4 | NetBSD, OpenBSD |
| OSS | ma_backend_oss | FreeBSD |
| AAudio | ma_backend_aaudio | Android 8+ |
| OpenSL|ES | ma_backend_opensl | Android (API level 16+) |
| Web Audio | ma_backend_webaudio | Web (via Emscripten) |
| Null | ma_backend_null | Cross Platform (not used on Web) |
|-------------|-----------------------|--------------------------------------------------------|
The context can be configured via the `pConfig` argument. The config object is initialized with `ma_context_config_init()`. Individual configuration settings
can then be set directly on the structure. Below are the members of the `ma_context_config` object.
logCallback
Callback for handling log messages from miniaudio.
threadPriority
The desired priority to use for the audio thread. Allowable values include the following:
|--------------------------------------|
| Thread Priority |
|--------------------------------------|
| ma_thread_priority_idle |
| ma_thread_priority_lowest |
| ma_thread_priority_low |
| ma_thread_priority_normal |
| ma_thread_priority_high |
| ma_thread_priority_highest (default) |
| ma_thread_priority_realtime |
| ma_thread_priority_default |
|--------------------------------------|
pUserData
A pointer to application-defined data. This can be accessed from the context object directly such as `context.pUserData`.
allocationCallbacks
Structure containing custom allocation callbacks. Leaving this at defaults will cause it to use MA_MALLOC, MA_REALLOC and MA_FREE. These allocation
callbacks will be used for anything tied to the context, including devices.
alsa.useVerboseDeviceEnumeration
ALSA will typically enumerate many different devices which can be intrusive and not user-friendly. To combat this, miniaudio will enumerate only unique
card/device pairs by default. The problem with this is that you lose a bit of flexibility and control. Setting alsa.useVerboseDeviceEnumeration makes
it so the ALSA backend includes all devices. Defaults to false.
pulse.pApplicationName
PulseAudio only. The application name to use when initializing the PulseAudio context with `pa_context_new()`.
pulse.pServerName
PulseAudio only. The name of the server to connect to with `pa_context_connect()`.
pulse.tryAutoSpawn
PulseAudio only. Whether or not to try automatically starting the PulseAudio daemon. Defaults to false. If you set this to true, keep in mind that
miniaudio uses a trial and error method to find the most appropriate backend, and this will result in the PulseAudio daemon starting which may be
intrusive for the end user.
coreaudio.sessionCategory
iOS only. The session category to use for the shared AudioSession instance. Below is a list of allowable values and their Core Audio equivalents.
|-----------------------------------------|-------------------------------------|
| miniaudio Token | Core Audio Token |
|-----------------------------------------|-------------------------------------|
| ma_ios_session_category_ambient | AVAudioSessionCategoryAmbient |
| ma_ios_session_category_solo_ambient | AVAudioSessionCategorySoloAmbient |
| ma_ios_session_category_playback | AVAudioSessionCategoryPlayback |
| ma_ios_session_category_record | AVAudioSessionCategoryRecord |
| ma_ios_session_category_play_and_record | AVAudioSessionCategoryPlayAndRecord |
| ma_ios_session_category_multi_route | AVAudioSessionCategoryMultiRoute |
| ma_ios_session_category_none | AVAudioSessionCategoryAmbient |
| ma_ios_session_category_default | AVAudioSessionCategoryAmbient |
|-----------------------------------------|-------------------------------------|
coreaudio.sessionCategoryOptions
iOS only. Session category options to use with the shared AudioSession instance. Below is a list of allowable values and their Core Audio equivalents.
|---------------------------------------------------------------------------|------------------------------------------------------------------|
| miniaudio Token | Core Audio Token |
|---------------------------------------------------------------------------|------------------------------------------------------------------|
| ma_ios_session_category_option_mix_with_others | AVAudioSessionCategoryOptionMixWithOthers |
| ma_ios_session_category_option_duck_others | AVAudioSessionCategoryOptionDuckOthers |
| ma_ios_session_category_option_allow_bluetooth | AVAudioSessionCategoryOptionAllowBluetooth |
| ma_ios_session_category_option_default_to_speaker | AVAudioSessionCategoryOptionDefaultToSpeaker |
| ma_ios_session_category_option_interrupt_spoken_audio_and_mix_with_others | AVAudioSessionCategoryOptionInterruptSpokenAudioAndMixWithOthers |
| ma_ios_session_category_option_allow_bluetooth_a2dp | AVAudioSessionCategoryOptionAllowBluetoothA2DP |
| ma_ios_session_category_option_allow_air_play | AVAudioSessionCategoryOptionAllowAirPlay |
|---------------------------------------------------------------------------|------------------------------------------------------------------|
jack.pClientName
The name of the client to pass to `jack_client_open()`.
jack.tryStartServer
Whether or not to try auto-starting the JACK server. Defaults to false.
It is recommended that only a single context is active at any given time because it's a bulky data structure which performs run-time linking for the
relevant backends every time it's initialized.
The location of the context cannot change throughout it's lifetime. Consider allocating the `ma_context` object with `malloc()` if this is an issue. The
reason for this is that a pointer to the context is stored in the `ma_device` structure.
Example 1 - Default Initialization
----------------------------------
The example below shows how to initialize the context using the default configuration.
```c
ma_context context;
ma_result result = ma_context_init(NULL, 0, NULL, &context);
if (result != MA_SUCCESS) {
// Error.
}
```
Example 2 - Custom Configuration
--------------------------------
The example below shows how to initialize the context using custom backend priorities and a custom configuration. In this hypothetical example, the program
wants to prioritize ALSA over PulseAudio on Linux. They also want to avoid using the WinMM backend on Windows because it's latency is too high. They also
want an error to be returned if no valid backend is available which they achieve by excluding the Null backend.
For the configuration, the program wants to capture any log messages so they can, for example, route it to a log file and user interface.
```c
ma_backend backends[] = {
ma_backend_alsa,
ma_backend_pulseaudio,
ma_backend_wasapi,
ma_backend_dsound
};
ma_context_config config = ma_context_config_init();
config.logCallback = my_log_callback;
config.pUserData = pMyUserData;
ma_context context;
ma_result result = ma_context_init(backends, sizeof(backends)/sizeof(backends[0]), &config, &context);
if (result != MA_SUCCESS) {
// Error.
if (result == MA_NO_BACKEND) {
// Couldn't find an appropriate backend.
}
}
```
See Also
--------
ma_context_config_init()
ma_context_uninit()
*/
MA_API ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext);
/*
Uninitializes a context.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Unsafe. Do not call this function across multiple threads as some backends read and write to global state.
Remarks
-------
Results are undefined if you call this while any device created by this context is still active.
See Also
--------
ma_context_init()
*/
MA_API ma_result ma_context_uninit(ma_context* pContext);
/*
Retrieves the size of the ma_context object.
This is mainly for the purpose of bindings to know how much memory to allocate.
*/
MA_API size_t ma_context_sizeof(void);
/*
Enumerates over every device (both playback and capture).
This is a lower-level enumeration function to the easier to use `ma_context_get_devices()`. Use `ma_context_enumerate_devices()` if you would rather not incur
an internal heap allocation, or it simply suits your code better.
Note that this only retrieves the ID and name/description of the device. The reason for only retrieving basic information is that it would otherwise require
opening the backend device in order to probe it for more detailed information which can be inefficient. Consider using `ma_context_get_device_info()` for this,
but don't call it from within the enumeration callback.
Returning false from the callback will stop enumeration. Returning true will continue enumeration.
Parameters
----------
pContext (in)
A pointer to the context performing the enumeration.
callback (in)
The callback to fire for each enumerated device.
pUserData (in)
A pointer to application-defined data passed to the callback.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Safe. This is guarded using a simple mutex lock.
Remarks
-------
Do _not_ assume the first enumerated device of a given type is the default device.
Some backends and platforms may only support default playback and capture devices.
In general, you should not do anything complicated from within the callback. In particular, do not try initializing a device from within the callback. Also,
do not try to call `ma_context_get_device_info()` from within the callback.
Consider using `ma_context_get_devices()` for a simpler and safer API, albeit at the expense of an internal heap allocation.
Example 1 - Simple Enumeration
------------------------------
ma_bool32 ma_device_enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData)
{
printf("Device Name: %s\n", pInfo->name);
return MA_TRUE;
}
ma_result result = ma_context_enumerate_devices(&context, my_device_enum_callback, pMyUserData);
if (result != MA_SUCCESS) {
// Error.
}
See Also
--------
ma_context_get_devices()
*/
MA_API ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData);
/*
Retrieves basic information about every active playback and/or capture device.
This function will allocate memory internally for the device lists and return a pointer to them through the `ppPlaybackDeviceInfos` and `ppCaptureDeviceInfos`
parameters. If you do not want to incur the overhead of these allocations consider using `ma_context_enumerate_devices()` which will instead use a callback.
Parameters
----------
pContext (in)
A pointer to the context performing the enumeration.
ppPlaybackDeviceInfos (out)
A pointer to a pointer that will receive the address of a buffer containing the list of `ma_device_info` structures for playback devices.
pPlaybackDeviceCount (out)
A pointer to an unsigned integer that will receive the number of playback devices.
ppCaptureDeviceInfos (out)
A pointer to a pointer that will receive the address of a buffer containing the list of `ma_device_info` structures for capture devices.
pCaptureDeviceCount (out)
A pointer to an unsigned integer that will receive the number of capture devices.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Unsafe. Since each call to this function invalidates the pointers from the previous call, you should not be calling this simultaneously across multiple
threads. Instead, you need to make a copy of the returned data with your own higher level synchronization.
Remarks
-------
It is _not_ safe to assume the first device in the list is the default device.
You can pass in NULL for the playback or capture lists in which case they'll be ignored.
The returned pointers will become invalid upon the next call this this function, or when the context is uninitialized. Do not free the returned pointers.
See Also
--------
ma_context_get_devices()
*/
MA_API ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlaybackDeviceInfos, ma_uint32* pPlaybackDeviceCount, ma_device_info** ppCaptureDeviceInfos, ma_uint32* pCaptureDeviceCount);
/*
Retrieves information about a device of the given type, with the specified ID and share mode.
Parameters
----------
pContext (in)
A pointer to the context performing the query.
deviceType (in)
The type of the device being queried. Must be either `ma_device_type_playback` or `ma_device_type_capture`.
pDeviceID (in)
The ID of the device being queried.
shareMode (in)
The share mode to query for device capabilities. This should be set to whatever you're intending on using when initializing the device. If you're unsure,
set this to `ma_share_mode_shared`.
pDeviceInfo (out)
A pointer to the `ma_device_info` structure that will receive the device information.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Safe. This is guarded using a simple mutex lock.
Remarks
-------
Do _not_ call this from within the `ma_context_enumerate_devices()` callback.
It's possible for a device to have different information and capabilities depending on whether or not it's opened in shared or exclusive mode. For example, in
shared mode, WASAPI always uses floating point samples for mixing, but in exclusive mode it can be anything. Therefore, this function allows you to specify
which share mode you want information for. Note that not all backends and devices support shared or exclusive mode, in which case this function will fail if
the requested share mode is unsupported.
This leaves pDeviceInfo unmodified in the result of an error.
*/
MA_API ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo);
/*
Determines if the given context supports loopback mode.
Parameters
----------
pContext (in)
A pointer to the context getting queried.
Return Value
------------
MA_TRUE if the context supports loopback mode; MA_FALSE otherwise.
*/
MA_API ma_bool32 ma_context_is_loopback_supported(ma_context* pContext);
/*
Initializes a device config with default settings.
Parameters
----------
deviceType (in)
The type of the device this config is being initialized for. This must set to one of the following:
|-------------------------|
| Device Type |
|-------------------------|
| ma_device_type_playback |
| ma_device_type_capture |
| ma_device_type_duplex |
| ma_device_type_loopback |
|-------------------------|
Return Value
------------
A new device config object with default settings. You will typically want to adjust the config after this function returns. See remarks.
Thread Safety
-------------
Safe.
Callback Safety
---------------
Safe, but don't try initializing a device in a callback.
Remarks
-------
The returned config will be initialized to defaults. You will normally want to customize a few variables before initializing the device. See Example 1 for a
typical configuration which sets the sample format, channel count, sample rate, data callback and user data. These are usually things you will want to change
before initializing the device.
See `ma_device_init()` for details on specific configuration options.
Example 1 - Simple Configuration
--------------------------------
The example below is what a program will typically want to configure for each device at a minimum. Notice how `ma_device_config_init()` is called first, and
then the returned object is modified directly. This is important because it ensures that your program continues to work as new configuration options are added
to the `ma_device_config` structure.
```c
ma_device_config config = ma_device_config_init(ma_device_type_playback);
config.playback.format = ma_format_f32;
config.playback.channels = 2;
config.sampleRate = 48000;
config.dataCallback = ma_data_callback;
config.pUserData = pMyUserData;
```
See Also
--------
ma_device_init()
ma_device_init_ex()
*/
MA_API ma_device_config ma_device_config_init(ma_device_type deviceType);
/*
Initializes a device.
A device represents a physical audio device. The idea is you send or receive audio data from the device to either play it back through a speaker, or capture it
from a microphone. Whether or not you should send or receive data from the device (or both) depends on the type of device you are initializing which can be
playback, capture, full-duplex or loopback. (Note that loopback mode is only supported on select backends.) Sending and receiving audio data to and from the
device is done via a callback which is fired by miniaudio at periodic time intervals.
The frequency at which data is delivered to and from a device depends on the size of it's period. The size of the period can be defined in terms of PCM frames
or milliseconds, whichever is more convenient. Generally speaking, the smaller the period, the lower the latency at the expense of higher CPU usage and
increased risk of glitching due to the more frequent and granular data deliver intervals. The size of a period will depend on your requirements, but
miniaudio's defaults should work fine for most scenarios. If you're building a game you should leave this fairly small, whereas if you're building a simple
media player you can make it larger. Note that the period size you request is actually just a hint - miniaudio will tell the backend what you want, but the
backend is ultimately responsible for what it gives you. You cannot assume you will get exactly what you ask for.
When delivering data to and from a device you need to make sure it's in the correct format which you can set through the device configuration. You just set the
format that you want to use and miniaudio will perform all of the necessary conversion for you internally. When delivering data to and from the callback you
can assume the format is the same as what you requested when you initialized the device. See Remarks for more details on miniaudio's data conversion pipeline.
Parameters
----------
pContext (in, optional)
A pointer to the context that owns the device. This can be null, in which case it creates a default context internally.
pConfig (in)
A pointer to the device configuration. Cannot be null. See remarks for details.
pDevice (out)
A pointer to the device object being initialized.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Unsafe. It is not safe to call this function simultaneously for different devices because some backends depend on and mutate global state. The same applies to
calling this at the same time as `ma_device_uninit()`.
Callback Safety
---------------
Unsafe. It is not safe to call this inside any callback.
Remarks
-------
Setting `pContext` to NULL will result in miniaudio creating a default context internally and is equivalent to passing in a context initialized like so:
```c
ma_context_init(NULL, 0, NULL, &context);
```
Do not set `pContext` to NULL if you are needing to open multiple devices. You can, however, use NULL when initializing the first device, and then use
device.pContext for the initialization of other devices.
The device can be configured via the `pConfig` argument. The config object is initialized with `ma_device_config_init()`. Individual configuration settings can
then be set directly on the structure. Below are the members of the `ma_device_config` object.
deviceType
Must be `ma_device_type_playback`, `ma_device_type_capture`, `ma_device_type_duplex` of `ma_device_type_loopback`.
sampleRate
The sample rate, in hertz. The most common sample rates are 48000 and 44100. Setting this to 0 will use the device's native sample rate.
periodSizeInFrames
The desired size of a period in PCM frames. If this is 0, `periodSizeInMilliseconds` will be used instead. If both are 0 the default buffer size will
be used depending on the selected performance profile. This value affects latency. See below for details.
periodSizeInMilliseconds
The desired size of a period in milliseconds. If this is 0, `periodSizeInFrames` will be used instead. If both are 0 the default buffer size will be
used depending on the selected performance profile. The value affects latency. See below for details.
periods
The number of periods making up the device's entire buffer. The total buffer size is `periodSizeInFrames` or `periodSizeInMilliseconds` multiplied by
this value. This is just a hint as backends will be the ones who ultimately decide how your periods will be configured.
performanceProfile
A hint to miniaudio as to the performance requirements of your program. Can be either `ma_performance_profile_low_latency` (default) or
`ma_performance_profile_conservative`. This mainly affects the size of default buffers and can usually be left at it's default value.
noPreZeroedOutputBuffer
When set to true, the contents of the output buffer passed into the data callback will be left undefined. When set to false (default), the contents of
the output buffer will be cleared the zero. You can use this to avoid the overhead of zeroing out the buffer if you can guarantee that your data
callback will write to every sample in the output buffer, or if you are doing your own clearing.
noClip
When set to true, the contents of the output buffer passed into the data callback will be clipped after returning. When set to false (default), the
contents of the output buffer are left alone after returning and it will be left up to the backend itself to decide whether or not the clip. This only
applies when the playback sample format is f32.
dataCallback
The callback to fire whenever data is ready to be delivered to or from the device.
stopCallback
The callback to fire whenever the device has stopped, either explicitly via `ma_device_stop()`, or implicitly due to things like the device being
disconnected.
pUserData
The user data pointer to use with the device. You can access this directly from the device object like `device.pUserData`.
resampling.algorithm
The resampling algorithm to use when miniaudio needs to perform resampling between the rate specified by `sampleRate` and the device's native rate. The
default value is `ma_resample_algorithm_linear`, and the quality can be configured with `resampling.linear.lpfOrder`.
resampling.linear.lpfOrder
The linear resampler applies a low-pass filter as part of it's procesing for anti-aliasing. This setting controls the order of the filter. The higher
the value, the better the quality, in general. Setting this to 0 will disable low-pass filtering altogether. The maximum value is
`MA_MAX_FILTER_ORDER`. The default value is `min(4, MA_MAX_FILTER_ORDER)`.
playback.pDeviceID
A pointer to a `ma_device_id` structure containing the ID of the playback device to initialize. Setting this NULL (default) will use the system's
default playback device. Retrieve the device ID from the `ma_device_info` structure, which can be retrieved using device enumeration.
playback.format
The sample format to use for playback. When set to `ma_format_unknown` the device's native format will be used. This can be retrieved after
initialization from the device object directly with `device.playback.format`.
playback.channels
The number of channels to use for playback. When set to 0 the device's native channel count will be used. This can be retrieved after initialization
from the device object directly with `device.playback.channels`.
playback.channelMap
The channel map to use for playback. When left empty, the device's native channel map will be used. This can be retrieved after initialization from the
device object direct with `device.playback.channelMap`.
playback.shareMode
The preferred share mode to use for playback. Can be either `ma_share_mode_shared` (default) or `ma_share_mode_exclusive`. Note that if you specify
exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired by changing this to
ma_share_mode_shared and reinitializing.
capture.pDeviceID
A pointer to a `ma_device_id` structure containing the ID of the capture device to initialize. Setting this NULL (default) will use the system's
default capture device. Retrieve the device ID from the `ma_device_info` structure, which can be retrieved using device enumeration.
capture.format
The sample format to use for capture. When set to `ma_format_unknown` the device's native format will be used. This can be retrieved after
initialization from the device object directly with `device.capture.format`.
capture.channels
The number of channels to use for capture. When set to 0 the device's native channel count will be used. This can be retrieved after initialization
from the device object directly with `device.capture.channels`.
capture.channelMap
The channel map to use for capture. When left empty, the device's native channel map will be used. This can be retrieved after initialization from the
device object direct with `device.capture.channelMap`.
capture.shareMode
The preferred share mode to use for capture. Can be either `ma_share_mode_shared` (default) or `ma_share_mode_exclusive`. Note that if you specify
exclusive mode, but it's not supported by the backend, initialization will fail. You can then fall back to shared mode if desired by changing this to
ma_share_mode_shared and reinitializing.
wasapi.noAutoConvertSRC
WASAPI only. When set to true, disables WASAPI's automatic resampling and forces the use of miniaudio's resampler. Defaults to false.
wasapi.noDefaultQualitySRC
WASAPI only. Only used when `wasapi.noAutoConvertSRC` is set to false. When set to true, disables the use of `AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY`.
You should usually leave this set to false, which is the default.
wasapi.noAutoStreamRouting
WASAPI only. When set to true, disables automatic stream routing on the WASAPI backend. Defaults to false.
wasapi.noHardwareOffloading
WASAPI only. When set to true, disables the use of WASAPI's hardware offloading feature. Defaults to false.
alsa.noMMap
ALSA only. When set to true, disables MMap mode. Defaults to false.
alsa.noAutoFormat
ALSA only. When set to true, disables ALSA's automatic format conversion by including the SND_PCM_NO_AUTO_FORMAT flag. Defaults to false.
alsa.noAutoChannels
ALSA only. When set to true, disables ALSA's automatic channel conversion by including the SND_PCM_NO_AUTO_CHANNELS flag. Defaults to false.
alsa.noAutoResample
ALSA only. When set to true, disables ALSA's automatic resampling by including the SND_PCM_NO_AUTO_RESAMPLE flag. Defaults to false.
pulse.pStreamNamePlayback
PulseAudio only. Sets the stream name for playback.
pulse.pStreamNameCapture
PulseAudio only. Sets the stream name for capture.
Once initialized, the device's config is immutable. If you need to change the config you will need to initialize a new device.
After initializing the device it will be in a stopped state. To start it, use `ma_device_start()`.
If both `periodSizeInFrames` and `periodSizeInMilliseconds` are set to zero, it will default to `MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY` or
`MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE`, depending on whether or not `performanceProfile` is set to `ma_performance_profile_low_latency` or
`ma_performance_profile_conservative`.
If you request exclusive mode and the backend does not support it an error will be returned. For robustness, you may want to first try initializing the device
in exclusive mode, and then fall back to shared mode if required. Alternatively you can just request shared mode (the default if you leave it unset in the
config) which is the most reliable option. Some backends do not have a practical way of choosing whether or not the device should be exclusive or not (ALSA,
for example) in which case it just acts as a hint. Unless you have special requirements you should try avoiding exclusive mode as it's intrusive to the user.
Starting with Windows 10, miniaudio will use low-latency shared mode where possible which may make exclusive mode unnecessary.
When sending or receiving data to/from a device, miniaudio will internally perform a format conversion to convert between the format specified by the config
and the format used internally by the backend. If you pass in 0 for the sample format, channel count, sample rate _and_ channel map, data transmission will run
on an optimized pass-through fast path. You can retrieve the format, channel count and sample rate by inspecting the `playback/capture.format`,
`playback/capture.channels` and `sampleRate` members of the device object.
When compiling for UWP you must ensure you call this function on the main UI thread because the operating system may need to present the user with a message
asking for permissions. Please refer to the official documentation for ActivateAudioInterfaceAsync() for more information.
ALSA Specific: When initializing the default device, requesting shared mode will try using the "dmix" device for playback and the "dsnoop" device for capture.
If these fail it will try falling back to the "hw" device.
Example 1 - Simple Initialization
---------------------------------
This example shows how to initialize a simple playback device using a standard configuration. If you are just needing to do simple playback from the default
playback device this is usually all you need.
```c
ma_device_config config = ma_device_config_init(ma_device_type_playback);
config.playback.format = ma_format_f32;
config.playback.channels = 2;
config.sampleRate = 48000;
config.dataCallback = ma_data_callback;
config.pMyUserData = pMyUserData;
ma_device device;
ma_result result = ma_device_init(NULL, &config, &device);
if (result != MA_SUCCESS) {
// Error
}
```
Example 2 - Advanced Initialization
-----------------------------------
This example shows how you might do some more advanced initialization. In this hypothetical example we want to control the latency by setting the buffer size
and period count. We also want to allow the user to be able to choose which device to output from which means we need a context so we can perform device
enumeration.
```c
ma_context context;
ma_result result = ma_context_init(NULL, 0, NULL, &context);
if (result != MA_SUCCESS) {
// Error
}
ma_device_info* pPlaybackDeviceInfos;
ma_uint32 playbackDeviceCount;
result = ma_context_get_devices(&context, &pPlaybackDeviceInfos, &playbackDeviceCount, NULL, NULL);
if (result != MA_SUCCESS) {
// Error
}
// ... choose a device from pPlaybackDeviceInfos ...
ma_device_config config = ma_device_config_init(ma_device_type_playback);
config.playback.pDeviceID = pMyChosenDeviceID; // <-- Get this from the `id` member of one of the `ma_device_info` objects returned by ma_context_get_devices().
config.playback.format = ma_format_f32;
config.playback.channels = 2;
config.sampleRate = 48000;
config.dataCallback = ma_data_callback;
config.pUserData = pMyUserData;
config.periodSizeInMilliseconds = 10;
config.periods = 3;
ma_device device;
result = ma_device_init(&context, &config, &device);
if (result != MA_SUCCESS) {
// Error
}
```
See Also
--------
ma_device_config_init()
ma_device_uninit()
ma_device_start()
ma_context_init()
ma_context_get_devices()
ma_context_enumerate_devices()
*/
MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice);
/*
Initializes a device without a context, with extra parameters for controlling the configuration of the internal self-managed context.
This is the same as `ma_device_init()`, only instead of a context being passed in, the parameters from `ma_context_init()` are passed in instead. This function
allows you to configure the internally created context.
Parameters
----------
backends (in, optional)
A list of backends to try initializing, in priority order. Can be NULL, in which case it uses default priority order.
backendCount (in, optional)
The number of items in `backend`. Ignored if `backend` is NULL.
pContextConfig (in, optional)
The context configuration.
pConfig (in)
A pointer to the device configuration. Cannot be null. See remarks for details.
pDevice (out)
A pointer to the device object being initialized.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Unsafe. It is not safe to call this function simultaneously for different devices because some backends depend on and mutate global state. The same applies to
calling this at the same time as `ma_device_uninit()`.
Callback Safety
---------------
Unsafe. It is not safe to call this inside any callback.
Remarks
-------
You only need to use this function if you want to configure the context differently to it's defaults. You should never use this function if you want to manage
your own context.
See the documentation for `ma_context_init()` for information on the different context configuration options.
See Also
--------
ma_device_init()
ma_device_uninit()
ma_device_config_init()
ma_context_init()
*/
MA_API ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pContextConfig, const ma_device_config* pConfig, ma_device* pDevice);
/*
Uninitializes a device.
This will explicitly stop the device. You do not need to call `ma_device_stop()` beforehand, but it's harmless if you do.
Parameters
----------
pDevice (in)
A pointer to the device to stop.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Unsafe. As soon as this API is called the device should be considered undefined.
Callback Safety
---------------
Unsafe. It is not safe to call this inside any callback. Doing this will result in a deadlock.
See Also
--------
ma_device_init()
ma_device_stop()
*/
MA_API void ma_device_uninit(ma_device* pDevice);
/*
Starts the device. For playback devices this begins playback. For capture devices it begins recording.
Use `ma_device_stop()` to stop the device.
Parameters
----------
pDevice (in)
A pointer to the device to start.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Safe. It's safe to call this from any thread with the exception of the callback thread.
Callback Safety
---------------
Unsafe. It is not safe to call this inside any callback.
Remarks
-------
For a playback device, this will retrieve an initial chunk of audio data from the client before returning. The reason for this is to ensure there is valid
audio data in the buffer, which needs to be done before the device begins playback.
This API waits until the backend device has been started for real by the worker thread. It also waits on a mutex for thread-safety.
Do not call this in any callback.
See Also
--------
ma_device_stop()
*/
MA_API ma_result ma_device_start(ma_device* pDevice);
/*
Stops the device. For playback devices this stops playback. For capture devices it stops recording.
Use `ma_device_start()` to start the device again.
Parameters
----------
pDevice (in)
A pointer to the device to stop.
Return Value
------------
MA_SUCCESS if successful; any other error code otherwise.
Thread Safety
-------------
Safe. It's safe to call this from any thread with the exception of the callback thread.
Callback Safety
---------------
Unsafe. It is not safe to call this inside any callback. Doing this will result in a deadlock.
Remarks
-------
This API needs to wait on the worker thread to stop the backend device properly before returning. It also waits on a mutex for thread-safety. In addition, some
backends need to wait for the device to finish playback/recording of the current fragment which can take some time (usually proportionate to the buffer size
that was specified at initialization time).
Backends are required to either pause the stream in-place or drain the buffer if pausing is not possible. The reason for this is that stopping the device and
the resuming it with ma_device_start() (which you might do when your program loses focus) may result in a situation where those samples are never output to the
speakers or received from the microphone which can in turn result in de-syncs.
Do not call this in any callback.
This will be called implicitly by `ma_device_uninit()`.
See Also
--------
ma_device_start()
*/
MA_API ma_result ma_device_stop(ma_device* pDevice);
/*
Determines whether or not the device is started.
Parameters
----------
pDevice (in)
A pointer to the device whose start state is being retrieved.
Return Value
------------
True if the device is started, false otherwise.
Thread Safety
-------------
Safe. If another thread calls `ma_device_start()` or `ma_device_stop()` at this same time as this function is called, there's a very small chance the return
value will be out of sync.
Callback Safety
---------------
Safe. This is implemented as a simple accessor.
See Also
--------
ma_device_start()
ma_device_stop()
*/
MA_API ma_bool32 ma_device_is_started(ma_device* pDevice);
/*
Sets the master volume factor for the device.
The volume factor must be between 0 (silence) and 1 (full volume). Use `ma_device_set_master_gain_db()` to use decibel notation, where 0 is full volume and
values less than 0 decreases the volume.
Parameters
----------
pDevice (in)
A pointer to the device whose volume is being set.
volume (in)
The new volume factor. Must be within the range of [0, 1].
Return Value
------------
MA_SUCCESS if the volume was set successfully.
MA_INVALID_ARGS if pDevice is NULL.
MA_INVALID_ARGS if the volume factor is not within the range of [0, 1].
Thread Safety
-------------
Safe. This just sets a local member of the device object.
Callback Safety
---------------
Safe. If you set the volume in the data callback, that data written to the output buffer will have the new volume applied.
Remarks
-------
This applies the volume factor across all channels.
This does not change the operating system's volume. It only affects the volume for the given `ma_device` object's audio stream.
See Also
--------
ma_device_get_master_volume()
ma_device_set_master_volume_gain_db()
ma_device_get_master_volume_gain_db()
*/
MA_API ma_result ma_device_set_master_volume(ma_device* pDevice, float volume);
/*
Retrieves the master volume factor for the device.
Parameters
----------
pDevice (in)
A pointer to the device whose volume factor is being retrieved.
pVolume (in)
A pointer to the variable that will receive the volume factor. The returned value will be in the range of [0, 1].
Return Value
------------
MA_SUCCESS if successful.
MA_INVALID_ARGS if pDevice is NULL.
MA_INVALID_ARGS if pVolume is NULL.
Thread Safety
-------------
Safe. This just a simple member retrieval.
Callback Safety
---------------
Safe.
Remarks
-------
If an error occurs, `*pVolume` will be set to 0.
See Also
--------
ma_device_set_master_volume()
ma_device_set_master_volume_gain_db()
ma_device_get_master_volume_gain_db()
*/
MA_API ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume);
/*
Sets the master volume for the device as gain in decibels.
A gain of 0 is full volume, whereas a gain of < 0 will decrease the volume.
Parameters
----------
pDevice (in)
A pointer to the device whose gain is being set.
gainDB (in)
The new volume as gain in decibels. Must be less than or equal to 0, where 0 is full volume and anything less than 0 decreases the volume.
Return Value
------------
MA_SUCCESS if the volume was set successfully.
MA_INVALID_ARGS if pDevice is NULL.
MA_INVALID_ARGS if the gain is > 0.
Thread Safety
-------------
Safe. This just sets a local member of the device object.
Callback Safety
---------------
Safe. If you set the volume in the data callback, that data written to the output buffer will have the new volume applied.
Remarks
-------
This applies the gain across all channels.
This does not change the operating system's volume. It only affects the volume for the given `ma_device` object's audio stream.
See Also
--------
ma_device_get_master_volume_gain_db()
ma_device_set_master_volume()
ma_device_get_master_volume()
*/
MA_API ma_result ma_device_set_master_gain_db(ma_device* pDevice, float gainDB);
/*
Retrieves the master gain in decibels.
Parameters
----------
pDevice (in)
A pointer to the device whose gain is being retrieved.
pGainDB (in)
A pointer to the variable that will receive the gain in decibels. The returned value will be <= 0.
Return Value
------------
MA_SUCCESS if successful.
MA_INVALID_ARGS if pDevice is NULL.
MA_INVALID_ARGS if pGainDB is NULL.
Thread Safety
-------------
Safe. This just a simple member retrieval.
Callback Safety
---------------
Safe.
Remarks
-------
If an error occurs, `*pGainDB` will be set to 0.
See Also
--------
ma_device_set_master_volume_gain_db()
ma_device_set_master_volume()
ma_device_get_master_volume()
*/
MA_API ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB);
/*
Retrieves a friendly name for a backend.
*/
MA_API const char* ma_get_backend_name(ma_backend backend);
/*
Determines whether or not loopback mode is support by a backend.
*/
MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend);
#endif /* MA_NO_DEVICE_IO */
/*
Creates a mutex.
A mutex must be created from a valid context. A mutex is initially unlocked.
*/
MA_API ma_result ma_mutex_init(ma_mutex* pMutex);
/*
Deletes a mutex.
*/
MA_API void ma_mutex_uninit(ma_mutex* pMutex);
/*
Locks a mutex with an infinite timeout.
*/
MA_API void ma_mutex_lock(ma_mutex* pMutex);
/*
Unlocks a mutex.
*/
MA_API void ma_mutex_unlock(ma_mutex* pMutex);
/*
Initializes an auto-reset event.
*/
MA_API ma_result ma_event_init(ma_event* pEvent);
/*
Uninitializes an auto-reset event.
*/
MA_API void ma_event_uninit(ma_event* pEvent);
/*
Waits for the specified auto-reset event to become signalled.
*/
MA_API ma_result ma_event_wait(ma_event* pEvent);
/*
Signals the specified auto-reset event.
*/
MA_API ma_result ma_event_signal(ma_event* pEvent);
/************************************************************************************************************************************************************
Utiltities
************************************************************************************************************************************************************/
/*
Adjust buffer size based on a scaling factor.
This just multiplies the base size by the scaling factor, making sure it's a size of at least 1.
*/
MA_API ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale);
/*
Calculates a buffer size in milliseconds from the specified number of frames and sample rate.
*/
MA_API ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate);
/*
Calculates a buffer size in frames from the specified number of milliseconds and sample rate.
*/
MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate);
/*
Copies PCM frames from one buffer to another.
*/
MA_API void ma_copy_pcm_frames(void* dst, const void* src, ma_uint64 frameCount, ma_format format, ma_uint32 channels);
/*
Copies silent frames into the given buffer.
Remarks
-------
For all formats except `ma_format_u8`, the output buffer will be filled with 0. For `ma_format_u8` it will be filled with 128. The reason for this is that it
makes more sense for the purpose of mixing to initialize it to the center point.
*/
MA_API void ma_silence_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels);
static MA_INLINE void ma_zero_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels) { ma_silence_pcm_frames(p, frameCount, format, channels); }
/*
Offsets a pointer by the specified number of PCM frames.
*/
MA_API void* ma_offset_pcm_frames_ptr(void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels);
MA_API const void* ma_offset_pcm_frames_const_ptr(const void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels);
/*
Clips f32 samples.
*/
MA_API void ma_clip_samples_f32(float* p, ma_uint64 sampleCount);
static MA_INLINE void ma_clip_pcm_frames_f32(float* p, ma_uint64 frameCount, ma_uint32 channels) { ma_clip_samples_f32(p, frameCount*channels); }
/*
Helper for applying a volume factor to samples.
Note that the source and destination buffers can be the same, in which case it'll perform the operation in-place.
*/
MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint32 sampleCount, float factor);
MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint32 sampleCount, float factor);
MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint32 sampleCount, float factor);
MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint32 sampleCount, float factor);
MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint32 sampleCount, float factor);
MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint32 sampleCount, float factor);
MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint32 sampleCount, float factor);
MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint32 sampleCount, float factor);
MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint32 sampleCount, float factor);
MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint32 sampleCount, float factor);
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor);
MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pFrames, ma_uint32 frameCount, ma_uint32 channels, float factor);
MA_API void ma_apply_volume_factor_pcm_frames(void* pFrames, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor);
/*
Helper for converting a linear factor to gain in decibels.
*/
MA_API float ma_factor_to_gain_db(float factor);
/*
Helper for converting gain in decibels to a linear factor.
*/
MA_API float ma_gain_db_to_factor(float gain);
typedef void ma_data_source;
typedef struct
{
ma_result (* onRead)(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead);
ma_result (* onSeek)(ma_data_source* pDataSource, ma_uint64 frameIndex);
ma_result (* onMap)(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */
ma_result (* onUnmap)(ma_data_source* pDataSource, ma_uint64 frameCount);
ma_result (* onGetDataFormat)(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels);
} ma_data_source_callbacks;
MA_API ma_result ma_data_source_read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead, ma_bool32 loop); /* Must support pFramesOut = NULL in which case a forward seek should be performed. */
MA_API ma_result ma_data_source_seek_pcm_frames(ma_data_source* pDataSource, ma_uint64 frameCount, ma_uint64* pFramesSeeked, ma_bool32 loop); /* Can only seek forward. Equivalent to ma_data_source_read_pcm_frames(pDataSource, NULL, frameCount); */
MA_API ma_result ma_data_source_seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex);
MA_API ma_result ma_data_source_map(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount);
MA_API ma_result ma_data_source_unmap(ma_data_source* pDataSource, ma_uint64 frameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */
MA_API ma_result ma_data_source_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels);
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint64 sizeInFrames;
const void* pData; /* If set to NULL, will allocate a block of memory for you. */
ma_allocation_callbacks allocationCallbacks;
} ma_audio_buffer_config;
MA_API ma_audio_buffer_config ma_audio_buffer_config_init(ma_format format, ma_uint32 channels, ma_uint64 sizeInFrames, const void* pData, const ma_allocation_callbacks* pAllocationCallbacks);
typedef struct
{
ma_data_source_callbacks ds;
ma_format format;
ma_uint32 channels;
ma_uint64 cursor;
ma_uint64 sizeInFrames;
const void* pData;
ma_allocation_callbacks allocationCallbacks;
ma_bool32 ownsData; /* Used to control whether or not miniaudio owns the data buffer. If set to true, pData will be freed in ma_audio_buffer_uninit(). */
ma_uint8 _pExtraData[1]; /* For allocating a buffer with the memory located directly after the other memory of the structure. */
} ma_audio_buffer;
MA_API ma_result ma_audio_buffer_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer);
MA_API ma_result ma_audio_buffer_init_copy(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer);
MA_API ma_result ma_audio_buffer_alloc_and_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer** ppAudioBuffer); /* Always copies the data. Doesn't make sense to use this otherwise. Use ma_audio_buffer_uninit_and_free() to uninit. */
MA_API void ma_audio_buffer_uninit(ma_audio_buffer* pAudioBuffer);
MA_API void ma_audio_buffer_uninit_and_free(ma_audio_buffer* pAudioBuffer);
MA_API ma_uint64 ma_audio_buffer_read_pcm_frames(ma_audio_buffer* pAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop);
MA_API ma_result ma_audio_buffer_seek_to_pcm_frame(ma_audio_buffer* pAudioBuffer, ma_uint64 frameIndex);
MA_API ma_result ma_audio_buffer_map(ma_audio_buffer* pAudioBuffer, void** ppFramesOut, ma_uint64* pFrameCount);
MA_API ma_result ma_audio_buffer_unmap(ma_audio_buffer* pAudioBuffer, ma_uint64 frameCount); /* Returns MA_AT_END if the end has been reached. This should be considered successful. */
MA_API ma_result ma_audio_buffer_at_end(ma_audio_buffer* pAudioBuffer);
typedef enum
{
ma_seek_origin_start,
ma_seek_origin_current,
ma_seek_origin_end /* Not used by decoders. */
} ma_seek_origin;
#if !defined(MA_NO_DECODING) || !defined(MA_NO_ENCODING)
typedef enum
{
ma_resource_format_wav
} ma_resource_format;
#endif
/************************************************************************************************************************************************************
VFS
===
The VFS object (virtual file system) is what's used to customize file access. This is useful in cases where stdio FILE* based APIs may not be entirely
appropriate for a given situation.
************************************************************************************************************************************************************/
typedef void ma_vfs;
typedef ma_handle ma_vfs_file;
#define MA_OPEN_MODE_READ 0x00000001
#define MA_OPEN_MODE_WRITE 0x00000002
typedef struct
{
ma_uint64 sizeInBytes;
} ma_file_info;
typedef struct
{
ma_result (* onOpen) (ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile);
ma_result (* onOpenW)(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile);
ma_result (* onClose)(ma_vfs* pVFS, ma_vfs_file file);
ma_result (* onRead) (ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead);
ma_result (* onWrite)(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten);
ma_result (* onSeek) (ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin);
ma_result (* onTell) (ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor);
ma_result (* onInfo) (ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo);
} ma_vfs_callbacks;
MA_API ma_result ma_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile);
MA_API ma_result ma_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile);
MA_API ma_result ma_vfs_close(ma_vfs* pVFS, ma_vfs_file file);
MA_API ma_result ma_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead);
MA_API ma_result ma_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten);
MA_API ma_result ma_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin);
MA_API ma_result ma_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor);
MA_API ma_result ma_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo);
MA_API ma_result ma_vfs_open_and_read_file(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks);
typedef struct
{
ma_vfs_callbacks cb;
ma_allocation_callbacks allocationCallbacks; /* Only used for the wchar_t version of open() on non-Windows platforms. */
} ma_default_vfs;
MA_API ma_result ma_default_vfs_init(ma_default_vfs* pVFS, const ma_allocation_callbacks* pAllocationCallbacks);
/************************************************************************************************************************************************************
Decoding
========
Decoders are independent of the main device API. Decoding APIs can be called freely inside the device's data callback, but they are not thread safe unless
you do your own synchronization.
************************************************************************************************************************************************************/
#ifndef MA_NO_DECODING
typedef struct ma_decoder ma_decoder;
typedef size_t (* ma_decoder_read_proc) (ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead); /* Returns the number of bytes read. */
typedef ma_bool32 (* ma_decoder_seek_proc) (ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin); /* Origin will never be ma_seek_origin_end. */
typedef ma_uint64 (* ma_decoder_read_pcm_frames_proc) (ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount); /* Returns the number of frames read. Output data is in internal format. */
typedef ma_result (* ma_decoder_seek_to_pcm_frame_proc) (ma_decoder* pDecoder, ma_uint64 frameIndex);
typedef ma_result (* ma_decoder_uninit_proc) (ma_decoder* pDecoder);
typedef ma_uint64 (* ma_decoder_get_length_in_pcm_frames_proc)(ma_decoder* pDecoder);
typedef struct
{
ma_format format; /* Set to 0 or ma_format_unknown to use the stream's internal format. */
ma_uint32 channels; /* Set to 0 to use the stream's internal channels. */
ma_uint32 sampleRate; /* Set to 0 to use the stream's internal sample rate. */
ma_channel channelMap[MA_MAX_CHANNELS];
ma_channel_mix_mode channelMixMode;
ma_dither_mode ditherMode;
struct
{
ma_resample_algorithm algorithm;
struct
{
ma_uint32 lpfOrder;
} linear;
struct
{
int quality;
} speex;
} resampling;
ma_allocation_callbacks allocationCallbacks;
} ma_decoder_config;
struct ma_decoder
{
ma_data_source_callbacks ds;
ma_decoder_read_proc onRead;
ma_decoder_seek_proc onSeek;
void* pUserData;
ma_uint64 readPointer; /* Used for returning back to a previous position after analysing the stream or whatnot. */
ma_format internalFormat;
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_channel internalChannelMap[MA_MAX_CHANNELS];
ma_format outputFormat;
ma_uint32 outputChannels;
ma_uint32 outputSampleRate;
ma_channel outputChannelMap[MA_MAX_CHANNELS];
ma_data_converter converter; /* <-- Data conversion is achieved by running frames through this. */
ma_allocation_callbacks allocationCallbacks;
ma_decoder_read_pcm_frames_proc onReadPCMFrames;
ma_decoder_seek_to_pcm_frame_proc onSeekToPCMFrame;
ma_decoder_uninit_proc onUninit;
ma_decoder_get_length_in_pcm_frames_proc onGetLengthInPCMFrames;
void* pInternalDecoder; /* <-- The drwav/drflac/stb_vorbis/etc. objects. */
union
{
struct
{
ma_vfs* pVFS;
ma_vfs_file file;
} vfs;
struct
{
const ma_uint8* pData;
size_t dataSize;
size_t currentReadPos;
} memory; /* Only used for decoders that were opened against a block of memory. */
} backend;
};
MA_API ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate);
MA_API ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs_wav(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs_flac(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs_mp3(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs_vorbis(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs_wav_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs_flac_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs_mp3_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_vfs_vorbis_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file_wav(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file_flac(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file_mp3(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file_wav_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file_flac_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file_mp3_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder);
MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder);
/*
Retrieves the length of the decoder in PCM frames.
Do not call this on streams of an undefined length, such as internet radio.
If the length is unknown or an error occurs, 0 will be returned.
This will always return 0 for Vorbis decoders. This is due to a limitation with stb_vorbis in push mode which is what miniaudio
uses internally.
For MP3's, this will decode the entire file. Do not call this in time critical scenarios.
This function is not thread safe without your own synchronization.
*/
MA_API ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder);
/*
Reads PCM frames from the given decoder.
This is not thread safe without your own synchronization.
*/
MA_API ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount);
/*
Seeks to a PCM frame based on it's absolute index.
This is not thread safe without your own synchronization.
*/
MA_API ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex);
/*
Helper for opening and decoding a file into a heap allocated block of memory. Free the returned pointer with ma_free(). On input,
pConfig should be set to what you want. On output it will be set to what you got.
*/
MA_API ma_result ma_decode_from_vfs(ma_vfs* pVFS, const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut);
MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut);
MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut);
#endif /* MA_NO_DECODING */
/************************************************************************************************************************************************************
Encoding
========
Encoders do not perform any format conversion for you. If your target format does not support the format, and error will be returned.
************************************************************************************************************************************************************/
#ifndef MA_NO_ENCODING
typedef struct ma_encoder ma_encoder;
typedef size_t (* ma_encoder_write_proc) (ma_encoder* pEncoder, const void* pBufferIn, size_t bytesToWrite); /* Returns the number of bytes written. */
typedef ma_bool32 (* ma_encoder_seek_proc) (ma_encoder* pEncoder, int byteOffset, ma_seek_origin origin);
typedef ma_result (* ma_encoder_init_proc) (ma_encoder* pEncoder);
typedef void (* ma_encoder_uninit_proc) (ma_encoder* pEncoder);
typedef ma_uint64 (* ma_encoder_write_pcm_frames_proc)(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount);
typedef struct
{
ma_resource_format resourceFormat;
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
ma_allocation_callbacks allocationCallbacks;
} ma_encoder_config;
MA_API ma_encoder_config ma_encoder_config_init(ma_resource_format resourceFormat, ma_format format, ma_uint32 channels, ma_uint32 sampleRate);
struct ma_encoder
{
ma_encoder_config config;
ma_encoder_write_proc onWrite;
ma_encoder_seek_proc onSeek;
ma_encoder_init_proc onInit;
ma_encoder_uninit_proc onUninit;
ma_encoder_write_pcm_frames_proc onWritePCMFrames;
void* pUserData;
void* pInternalEncoder; /* <-- The drwav/drflac/stb_vorbis/etc. objects. */
void* pFile; /* FILE*. Only used when initialized with ma_encoder_init_file(). */
};
MA_API ma_result ma_encoder_init(ma_encoder_write_proc onWrite, ma_encoder_seek_proc onSeek, void* pUserData, const ma_encoder_config* pConfig, ma_encoder* pEncoder);
MA_API ma_result ma_encoder_init_file(const char* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder);
MA_API ma_result ma_encoder_init_file_w(const wchar_t* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder);
MA_API void ma_encoder_uninit(ma_encoder* pEncoder);
MA_API ma_uint64 ma_encoder_write_pcm_frames(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount);
#endif /* MA_NO_ENCODING */
/************************************************************************************************************************************************************
Generation
************************************************************************************************************************************************************/
#ifndef MA_NO_GENERATION
typedef enum
{
ma_waveform_type_sine,
ma_waveform_type_square,
ma_waveform_type_triangle,
ma_waveform_type_sawtooth
} ma_waveform_type;
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
ma_waveform_type type;
double amplitude;
double frequency;
} ma_waveform_config;
MA_API ma_waveform_config ma_waveform_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_waveform_type type, double amplitude, double frequency);
typedef struct
{
ma_data_source_callbacks ds;
ma_waveform_config config;
double advance;
double time;
} ma_waveform;
MA_API ma_result ma_waveform_init(const ma_waveform_config* pConfig, ma_waveform* pWaveform);
MA_API ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount);
MA_API ma_result ma_waveform_seek_to_pcm_frame(ma_waveform* pWaveform, ma_uint64 frameIndex);
MA_API ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude);
MA_API ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency);
MA_API ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate);
typedef enum
{
ma_noise_type_white,
ma_noise_type_pink,
ma_noise_type_brownian
} ma_noise_type;
typedef struct
{
ma_format format;
ma_uint32 channels;
ma_noise_type type;
ma_int32 seed;
double amplitude;
ma_bool32 duplicateChannels;
} ma_noise_config;
MA_API ma_noise_config ma_noise_config_init(ma_format format, ma_uint32 channels, ma_noise_type type, ma_int32 seed, double amplitude);
typedef struct
{
ma_data_source_callbacks ds;
ma_noise_config config;
ma_lcg lcg;
union
{
struct
{
double bin[MA_MAX_CHANNELS][16];
double accumulation[MA_MAX_CHANNELS];
ma_uint32 counter[MA_MAX_CHANNELS];
} pink;
struct
{
double accumulation[MA_MAX_CHANNELS];
} brownian;
} state;
} ma_noise;
MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, ma_noise* pNoise);
MA_API ma_uint64 ma_noise_read_pcm_frames(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount);
#endif /* MA_NO_GENERATION */
#ifdef __cplusplus
}
#endif
#endif /* miniaudio_h */
/************************************************************************************************************************************************************
*************************************************************************************************************************************************************
IMPLEMENTATION
*************************************************************************************************************************************************************
************************************************************************************************************************************************************/
#if defined(MINIAUDIO_IMPLEMENTATION) || defined(MA_IMPLEMENTATION)
#include <assert.h>
#include <limits.h> /* For INT_MAX */
#include <math.h> /* sin(), etc. */
#include <stdarg.h>
#include <stdio.h>
#if !defined(_MSC_VER) && !defined(__DMC__)
#include <strings.h> /* For strcasecmp(). */
#include <wchar.h> /* For wcslen(), wcsrtombs() */
#endif
#ifdef MA_WIN32
#include <windows.h>
#else
#include <stdlib.h> /* For malloc(), free(), wcstombs(). */
#include <string.h> /* For memset() */
#endif
#include <sys/stat.h> /* For fstat(), etc. */
#ifdef MA_EMSCRIPTEN
#include <emscripten/emscripten.h>
#endif
#if !defined(MA_64BIT) && !defined(MA_32BIT)
#ifdef _WIN32
#ifdef _WIN64
#define MA_64BIT
#else
#define MA_32BIT
#endif
#endif
#endif
#if !defined(MA_64BIT) && !defined(MA_32BIT)
#ifdef __GNUC__
#ifdef __LP64__
#define MA_64BIT
#else
#define MA_32BIT
#endif
#endif
#endif
#if !defined(MA_64BIT) && !defined(MA_32BIT)
#include <stdint.h>
#if INTPTR_MAX == INT64_MAX
#define MA_64BIT
#else
#define MA_32BIT
#endif
#endif
/* Architecture Detection */
#if defined(__x86_64__) || defined(_M_X64)
#define MA_X64
#elif defined(__i386) || defined(_M_IX86)
#define MA_X86
#elif defined(__arm__) || defined(_M_ARM)
#define MA_ARM
#endif
/* Cannot currently support AVX-512 if AVX is disabled. */
#if !defined(MA_NO_AVX512) && defined(MA_NO_AVX2)
#define MA_NO_AVX512
#endif
/* Intrinsics Support */
#if defined(MA_X64) || defined(MA_X86)
#if defined(_MSC_VER) && !defined(__clang__)
/* MSVC. */
#if _MSC_VER >= 1400 && !defined(MA_NO_SSE2) /* 2005 */
#define MA_SUPPORT_SSE2
#endif
/*#if _MSC_VER >= 1600 && !defined(MA_NO_AVX)*/ /* 2010 */
/* #define MA_SUPPORT_AVX*/
/*#endif*/
#if _MSC_VER >= 1700 && !defined(MA_NO_AVX2) /* 2012 */
#define MA_SUPPORT_AVX2
#endif
#if _MSC_VER >= 1910 && !defined(MA_NO_AVX512) /* 2017 */
#define MA_SUPPORT_AVX512
#endif
#else
/* Assume GNUC-style. */
#if defined(__SSE2__) && !defined(MA_NO_SSE2)
#define MA_SUPPORT_SSE2
#endif
/*#if defined(__AVX__) && !defined(MA_NO_AVX)*/
/* #define MA_SUPPORT_AVX*/
/*#endif*/
#if defined(__AVX2__) && !defined(MA_NO_AVX2)
#define MA_SUPPORT_AVX2
#endif
#if defined(__AVX512F__) && !defined(MA_NO_AVX512)
#define MA_SUPPORT_AVX512
#endif
#endif
/* If at this point we still haven't determined compiler support for the intrinsics just fall back to __has_include. */
#if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include)
#if !defined(MA_SUPPORT_SSE2) && !defined(MA_NO_SSE2) && __has_include(<emmintrin.h>)
#define MA_SUPPORT_SSE2
#endif
/*#if !defined(MA_SUPPORT_AVX) && !defined(MA_NO_AVX) && __has_include(<immintrin.h>)*/
/* #define MA_SUPPORT_AVX*/
/*#endif*/
#if !defined(MA_SUPPORT_AVX2) && !defined(MA_NO_AVX2) && __has_include(<immintrin.h>)
#define MA_SUPPORT_AVX2
#endif
#if !defined(MA_SUPPORT_AVX512) && !defined(MA_NO_AVX512) && __has_include(<zmmintrin.h>)
#define MA_SUPPORT_AVX512
#endif
#endif
#if defined(MA_SUPPORT_AVX512)
#include <immintrin.h> /* Not a mistake. Intentionally including <immintrin.h> instead of <zmmintrin.h> because otherwise the compiler will complain. */
#elif defined(MA_SUPPORT_AVX2) || defined(MA_SUPPORT_AVX)
#include <immintrin.h>
#elif defined(MA_SUPPORT_SSE2)
#include <emmintrin.h>
#endif
#endif
#if defined(MA_ARM)
#if !defined(MA_NO_NEON) && (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64))
#define MA_SUPPORT_NEON
#endif
/* Fall back to looking for the #include file. */
#if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include)
#if !defined(MA_SUPPORT_NEON) && !defined(MA_NO_NEON) && __has_include(<arm_neon.h>)
#define MA_SUPPORT_NEON
#endif
#endif
#if defined(MA_SUPPORT_NEON)
#include <arm_neon.h>
#endif
#endif
/* Begin globally disabled warnings. */
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable:4752) /* found Intel(R) Advanced Vector Extensions; consider using /arch:AVX */
#endif
#if defined(MA_X64) || defined(MA_X86)
#if defined(_MSC_VER) && !defined(__clang__)
#if _MSC_VER >= 1400
#include <intrin.h>
static MA_INLINE void ma_cpuid(int info[4], int fid)
{
__cpuid(info, fid);
}
#else
#define MA_NO_CPUID
#endif
#if _MSC_VER >= 1600 && (defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 160040219)
static MA_INLINE unsigned __int64 ma_xgetbv(int reg)
{
return _xgetbv(reg);
}
#else
#define MA_NO_XGETBV
#endif
#elif (defined(__GNUC__) || defined(__clang__)) && !defined(MA_ANDROID)
static MA_INLINE void ma_cpuid(int info[4], int fid)
{
/*
It looks like the -fPIC option uses the ebx register which GCC complains about. We can work around this by just using a different register, the
specific register of which I'm letting the compiler decide on. The "k" prefix is used to specify a 32-bit register. The {...} syntax is for
supporting different assembly dialects.
What's basically happening is that we're saving and restoring the ebx register manually.
*/
#if defined(DRFLAC_X86) && defined(__PIC__)
__asm__ __volatile__ (
"xchg{l} {%%}ebx, %k1;"
"cpuid;"
"xchg{l} {%%}ebx, %k1;"
: "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0)
);
#else
__asm__ __volatile__ (
"cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0)
);
#endif
}
static MA_INLINE ma_uint64 ma_xgetbv(int reg)
{
unsigned int hi;
unsigned int lo;
__asm__ __volatile__ (
"xgetbv" : "=a"(lo), "=d"(hi) : "c"(reg)
);
return ((ma_uint64)hi << 32) | (ma_uint64)lo;
}
#else
#define MA_NO_CPUID
#define MA_NO_XGETBV
#endif
#else
#define MA_NO_CPUID
#define MA_NO_XGETBV
#endif
static MA_INLINE ma_bool32 ma_has_sse2(void)
{
#if defined(MA_SUPPORT_SSE2)
#if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_SSE2)
#if defined(MA_X64)
return MA_TRUE; /* 64-bit targets always support SSE2. */
#elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__)
return MA_TRUE; /* If the compiler is allowed to freely generate SSE2 code we can assume support. */
#else
#if defined(MA_NO_CPUID)
return MA_FALSE;
#else
int info[4];
ma_cpuid(info, 1);
return (info[3] & (1 << 26)) != 0;
#endif
#endif
#else
return MA_FALSE; /* SSE2 is only supported on x86 and x64 architectures. */
#endif
#else
return MA_FALSE; /* No compiler support. */
#endif
}
#if 0
static MA_INLINE ma_bool32 ma_has_avx()
{
#if defined(MA_SUPPORT_AVX)
#if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_AVX)
#if defined(_AVX_) || defined(__AVX__)
return MA_TRUE; /* If the compiler is allowed to freely generate AVX code we can assume support. */
#else
/* AVX requires both CPU and OS support. */
#if defined(MA_NO_CPUID) || defined(MA_NO_XGETBV)
return MA_FALSE;
#else
int info[4];
ma_cpuid(info, 1);
if (((info[2] & (1 << 27)) != 0) && ((info[2] & (1 << 28)) != 0)) {
ma_uint64 xrc = ma_xgetbv(0);
if ((xrc & 0x06) == 0x06) {
return MA_TRUE;
} else {
return MA_FALSE;
}
} else {
return MA_FALSE;
}
#endif
#endif
#else
return MA_FALSE; /* AVX is only supported on x86 and x64 architectures. */
#endif
#else
return MA_FALSE; /* No compiler support. */
#endif
}
#endif
static MA_INLINE ma_bool32 ma_has_avx2(void)
{
#if defined(MA_SUPPORT_AVX2)
#if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_AVX2)
#if defined(_AVX2_) || defined(__AVX2__)
return MA_TRUE; /* If the compiler is allowed to freely generate AVX2 code we can assume support. */
#else
/* AVX2 requires both CPU and OS support. */
#if defined(MA_NO_CPUID) || defined(MA_NO_XGETBV)
return MA_FALSE;
#else
int info1[4];
int info7[4];
ma_cpuid(info1, 1);
ma_cpuid(info7, 7);
if (((info1[2] & (1 << 27)) != 0) && ((info7[1] & (1 << 5)) != 0)) {
ma_uint64 xrc = ma_xgetbv(0);
if ((xrc & 0x06) == 0x06) {
return MA_TRUE;
} else {
return MA_FALSE;
}
} else {
return MA_FALSE;
}
#endif
#endif
#else
return MA_FALSE; /* AVX2 is only supported on x86 and x64 architectures. */
#endif
#else
return MA_FALSE; /* No compiler support. */
#endif
}
static MA_INLINE ma_bool32 ma_has_avx512f(void)
{
#if defined(MA_SUPPORT_AVX512)
#if (defined(MA_X64) || defined(MA_X86)) && !defined(MA_NO_AVX512)
#if defined(__AVX512F__)
return MA_TRUE; /* If the compiler is allowed to freely generate AVX-512F code we can assume support. */
#else
/* AVX-512 requires both CPU and OS support. */
#if defined(MA_NO_CPUID) || defined(MA_NO_XGETBV)
return MA_FALSE;
#else
int info1[4];
int info7[4];
ma_cpuid(info1, 1);
ma_cpuid(info7, 7);
if (((info1[2] & (1 << 27)) != 0) && ((info7[1] & (1 << 16)) != 0)) {
ma_uint64 xrc = ma_xgetbv(0);
if ((xrc & 0xE6) == 0xE6) {
return MA_TRUE;
} else {
return MA_FALSE;
}
} else {
return MA_FALSE;
}
#endif
#endif
#else
return MA_FALSE; /* AVX-512F is only supported on x86 and x64 architectures. */
#endif
#else
return MA_FALSE; /* No compiler support. */
#endif
}
static MA_INLINE ma_bool32 ma_has_neon(void)
{
#if defined(MA_SUPPORT_NEON)
#if defined(MA_ARM) && !defined(MA_NO_NEON)
#if (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64))
return MA_TRUE; /* If the compiler is allowed to freely generate NEON code we can assume support. */
#else
/* TODO: Runtime check. */
return MA_FALSE;
#endif
#else
return MA_FALSE; /* NEON is only supported on ARM architectures. */
#endif
#else
return MA_FALSE; /* No compiler support. */
#endif
}
#define MA_SIMD_NONE 0
#define MA_SIMD_SSE2 1
#define MA_SIMD_AVX2 2
#define MA_SIMD_NEON 3
#ifndef MA_PREFERRED_SIMD
# if defined(MA_SUPPORT_SSE2) && defined(MA_PREFER_SSE2)
#define MA_PREFERRED_SIMD MA_SIMD_SSE2
#elif defined(MA_SUPPORT_AVX2) && defined(MA_PREFER_AVX2)
#define MA_PREFERRED_SIMD MA_SIMD_AVX2
#elif defined(MA_SUPPORT_NEON) && defined(MA_PREFER_NEON)
#define MA_PREFERRED_SIMD MA_SIMD_NEON
#else
#define MA_PREFERRED_SIMD MA_SIMD_NONE
#endif
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1400
#define MA_HAS_BYTESWAP16_INTRINSIC
#define MA_HAS_BYTESWAP32_INTRINSIC
#define MA_HAS_BYTESWAP64_INTRINSIC
#elif defined(__clang__)
#if defined(__has_builtin)
#if __has_builtin(__builtin_bswap16)
#define MA_HAS_BYTESWAP16_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap32)
#define MA_HAS_BYTESWAP32_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap64)
#define MA_HAS_BYTESWAP64_INTRINSIC
#endif
#endif
#elif defined(__GNUC__)
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
#define MA_HAS_BYTESWAP32_INTRINSIC
#define MA_HAS_BYTESWAP64_INTRINSIC
#endif
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
#define MA_HAS_BYTESWAP16_INTRINSIC
#endif
#endif
static MA_INLINE ma_bool32 ma_is_little_endian(void)
{
#if defined(MA_X86) || defined(MA_X64)
return MA_TRUE;
#else
int n = 1;
return (*(char*)&n) == 1;
#endif
}
static MA_INLINE ma_bool32 ma_is_big_endian(void)
{
return !ma_is_little_endian();
}
static MA_INLINE ma_uint32 ma_swap_endian_uint32(ma_uint32 n)
{
#ifdef MA_HAS_BYTESWAP32_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_ulong(n);
#elif defined(__GNUC__) || defined(__clang__)
#if defined(MA_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(MA_64BIT) /* <-- 64-bit inline assembly has not been tested, so disabling for now. */
/* Inline assembly optimized implementation for ARM. In my testing, GCC does not generate optimized code with __builtin_bswap32(). */
ma_uint32 r;
__asm__ __volatile__ (
#if defined(MA_64BIT)
"rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n) /* <-- This is untested. If someone in the community could test this, that would be appreciated! */
#else
"rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
#endif
);
return r;
#else
return __builtin_bswap32(n);
#endif
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
return ((n & 0xFF000000) >> 24) |
((n & 0x00FF0000) >> 8) |
((n & 0x0000FF00) << 8) |
((n & 0x000000FF) << 24);
#endif
}
#ifndef MA_COINIT_VALUE
#define MA_COINIT_VALUE 0 /* 0 = COINIT_MULTITHREADED */
#endif
#ifndef MA_PI
#define MA_PI 3.14159265358979323846264f
#endif
#ifndef MA_PI_D
#define MA_PI_D 3.14159265358979323846264
#endif
#ifndef MA_TAU
#define MA_TAU 6.28318530717958647693f
#endif
#ifndef MA_TAU_D
#define MA_TAU_D 6.28318530717958647693
#endif
/* The default format when ma_format_unknown (0) is requested when initializing a device. */
#ifndef MA_DEFAULT_FORMAT
#define MA_DEFAULT_FORMAT ma_format_f32
#endif
/* The default channel count to use when 0 is used when initializing a device. */
#ifndef MA_DEFAULT_CHANNELS
#define MA_DEFAULT_CHANNELS 2
#endif
/* The default sample rate to use when 0 is used when initializing a device. */
#ifndef MA_DEFAULT_SAMPLE_RATE
#define MA_DEFAULT_SAMPLE_RATE 48000
#endif
/* Default periods when none is specified in ma_device_init(). More periods means more work on the CPU. */
#ifndef MA_DEFAULT_PERIODS
#define MA_DEFAULT_PERIODS 3
#endif
/* The default period size in milliseconds for low latency mode. */
#ifndef MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY
#define MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY 10
#endif
/* The default buffer size in milliseconds for conservative mode. */
#ifndef MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE
#define MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE 100
#endif
/* The default LPF filter order for linear resampling. Note that this is clamped to MA_MAX_FILTER_ORDER. */
#ifndef MA_DEFAULT_RESAMPLER_LPF_ORDER
#if MA_MAX_FILTER_ORDER >= 4
#define MA_DEFAULT_RESAMPLER_LPF_ORDER 4
#else
#define MA_DEFAULT_RESAMPLER_LPF_ORDER MA_MAX_FILTER_ORDER
#endif
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-variable"
#endif
/* Standard sample rates, in order of priority. */
static ma_uint32 g_maStandardSampleRatePriorities[] = {
MA_SAMPLE_RATE_48000, /* Most common */
MA_SAMPLE_RATE_44100,
MA_SAMPLE_RATE_32000, /* Lows */
MA_SAMPLE_RATE_24000,
MA_SAMPLE_RATE_22050,
MA_SAMPLE_RATE_88200, /* Highs */
MA_SAMPLE_RATE_96000,
MA_SAMPLE_RATE_176400,
MA_SAMPLE_RATE_192000,
MA_SAMPLE_RATE_16000, /* Extreme lows */
MA_SAMPLE_RATE_11025,
MA_SAMPLE_RATE_8000,
MA_SAMPLE_RATE_352800, /* Extreme highs */
MA_SAMPLE_RATE_384000
};
static ma_format g_maFormatPriorities[] = {
ma_format_s16, /* Most common */
ma_format_f32,
/*ma_format_s24_32,*/ /* Clean alignment */
ma_format_s32,
ma_format_s24, /* Unclean alignment */
ma_format_u8 /* Low quality */
};
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
MA_API void ma_version(ma_uint32* pMajor, ma_uint32* pMinor, ma_uint32* pRevision)
{
if (pMajor) {
*pMajor = MA_VERSION_MAJOR;
}
if (pMinor) {
*pMinor = MA_VERSION_MINOR;
}
if (pRevision) {
*pRevision = MA_VERSION_REVISION;
}
}
MA_API const char* ma_version_string()
{
return MA_VERSION_STRING;
}
/******************************************************************************
Standard Library Stuff
******************************************************************************/
#ifndef MA_MALLOC
#ifdef MA_WIN32
#define MA_MALLOC(sz) HeapAlloc(GetProcessHeap(), 0, (sz))
#else
#define MA_MALLOC(sz) malloc((sz))
#endif
#endif
#ifndef MA_REALLOC
#ifdef MA_WIN32
#define MA_REALLOC(p, sz) (((sz) > 0) ? ((p) ? HeapReAlloc(GetProcessHeap(), 0, (p), (sz)) : HeapAlloc(GetProcessHeap(), 0, (sz))) : ((VOID*)(size_t)(HeapFree(GetProcessHeap(), 0, (p)) & 0)))
#else
#define MA_REALLOC(p, sz) realloc((p), (sz))
#endif
#endif
#ifndef MA_FREE
#ifdef MA_WIN32
#define MA_FREE(p) HeapFree(GetProcessHeap(), 0, (p))
#else
#define MA_FREE(p) free((p))
#endif
#endif
#ifndef MA_ZERO_MEMORY
#ifdef MA_WIN32
#define MA_ZERO_MEMORY(p, sz) ZeroMemory((p), (sz))
#else
#define MA_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
#endif
#endif
#ifndef MA_COPY_MEMORY
#ifdef MA_WIN32
#define MA_COPY_MEMORY(dst, src, sz) CopyMemory((dst), (src), (sz))
#else
#define MA_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
#endif
#endif
#ifndef MA_ASSERT
#ifdef MA_WIN32
#define MA_ASSERT(condition) assert(condition)
#else
#define MA_ASSERT(condition) assert(condition)
#endif
#endif
#define MA_ZERO_OBJECT(p) MA_ZERO_MEMORY((p), sizeof(*(p)))
#define ma_countof(x) (sizeof(x) / sizeof(x[0]))
#define ma_max(x, y) (((x) > (y)) ? (x) : (y))
#define ma_min(x, y) (((x) < (y)) ? (x) : (y))
#define ma_abs(x) (((x) > 0) ? (x) : -(x))
#define ma_clamp(x, lo, hi) (ma_max(lo, ma_min(x, hi)))
#define ma_offset_ptr(p, offset) (((ma_uint8*)(p)) + (offset))
#define ma_buffer_frame_capacity(buffer, channels, format) (sizeof(buffer) / ma_get_bytes_per_sample(format) / (channels))
static MA_INLINE double ma_sin(double x)
{
/* TODO: Implement custom sin(x). */
return sin(x);
}
static MA_INLINE double ma_exp(double x)
{
/* TODO: Implement custom exp(x). */
return exp(x);
}
static MA_INLINE double ma_log(double x)
{
/* TODO: Implement custom log(x). */
return log(x);
}
static MA_INLINE double ma_pow(double x, double y)
{
/* TODO: Implement custom pow(x, y). */
return pow(x, y);
}
static MA_INLINE double ma_sqrt(double x)
{
/* TODO: Implement custom sqrt(x). */
return sqrt(x);
}
static MA_INLINE double ma_cos(double x)
{
return ma_sin((MA_PI_D*0.5) - x);
}
static MA_INLINE double ma_log10(double x)
{
return ma_log(x) * 0.43429448190325182765;
}
static MA_INLINE float ma_powf(float x, float y)
{
return (float)ma_pow((double)x, (double)y);
}
static MA_INLINE float ma_log10f(float x)
{
return (float)ma_log10((double)x);
}
/*
Return Values:
0: Success
22: EINVAL
34: ERANGE
Not using symbolic constants for errors because I want to avoid #including errno.h
*/
MA_API int ma_strcpy_s(char* dst, size_t dstSizeInBytes, const char* src)
{
size_t i;
if (dst == 0) {
return 22;
}
if (dstSizeInBytes == 0) {
return 34;
}
if (src == 0) {
dst[0] = '\0';
return 22;
}
for (i = 0; i < dstSizeInBytes && src[i] != '\0'; ++i) {
dst[i] = src[i];
}
if (i < dstSizeInBytes) {
dst[i] = '\0';
return 0;
}
dst[0] = '\0';
return 34;
}
MA_API int ma_strncpy_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count)
{
size_t maxcount;
size_t i;
if (dst == 0) {
return 22;
}
if (dstSizeInBytes == 0) {
return 34;
}
if (src == 0) {
dst[0] = '\0';
return 22;
}
maxcount = count;
if (count == ((size_t)-1) || count >= dstSizeInBytes) { /* -1 = _TRUNCATE */
maxcount = dstSizeInBytes - 1;
}
for (i = 0; i < maxcount && src[i] != '\0'; ++i) {
dst[i] = src[i];
}
if (src[i] == '\0' || i == count || count == ((size_t)-1)) {
dst[i] = '\0';
return 0;
}
dst[0] = '\0';
return 34;
}
MA_API int ma_strcat_s(char* dst, size_t dstSizeInBytes, const char* src)
{
char* dstorig;
if (dst == 0) {
return 22;
}
if (dstSizeInBytes == 0) {
return 34;
}
if (src == 0) {
dst[0] = '\0';
return 22;
}
dstorig = dst;
while (dstSizeInBytes > 0 && dst[0] != '\0') {
dst += 1;
dstSizeInBytes -= 1;
}
if (dstSizeInBytes == 0) {
return 22; /* Unterminated. */
}
while (dstSizeInBytes > 0 && src[0] != '\0') {
*dst++ = *src++;
dstSizeInBytes -= 1;
}
if (dstSizeInBytes > 0) {
dst[0] = '\0';
} else {
dstorig[0] = '\0';
return 34;
}
return 0;
}
MA_API int ma_strncat_s(char* dst, size_t dstSizeInBytes, const char* src, size_t count)
{
char* dstorig;
if (dst == 0) {
return 22;
}
if (dstSizeInBytes == 0) {
return 34;
}
if (src == 0) {
return 22;
}
dstorig = dst;
while (dstSizeInBytes > 0 && dst[0] != '\0') {
dst += 1;
dstSizeInBytes -= 1;
}
if (dstSizeInBytes == 0) {
return 22; /* Unterminated. */
}
if (count == ((size_t)-1)) { /* _TRUNCATE */
count = dstSizeInBytes - 1;
}
while (dstSizeInBytes > 0 && src[0] != '\0' && count > 0) {
*dst++ = *src++;
dstSizeInBytes -= 1;
count -= 1;
}
if (dstSizeInBytes > 0) {
dst[0] = '\0';
} else {
dstorig[0] = '\0';
return 34;
}
return 0;
}
MA_API int ma_itoa_s(int value, char* dst, size_t dstSizeInBytes, int radix)
{
int sign;
unsigned int valueU;
char* dstEnd;
if (dst == NULL || dstSizeInBytes == 0) {
return 22;
}
if (radix < 2 || radix > 36) {
dst[0] = '\0';
return 22;
}
sign = (value < 0 && radix == 10) ? -1 : 1; /* The negative sign is only used when the base is 10. */
if (value < 0) {
valueU = -value;
} else {
valueU = value;
}
dstEnd = dst;
do
{
int remainder = valueU % radix;
if (remainder > 9) {
*dstEnd = (char)((remainder - 10) + 'a');
} else {
*dstEnd = (char)(remainder + '0');
}
dstEnd += 1;
dstSizeInBytes -= 1;
valueU /= radix;
} while (dstSizeInBytes > 0 && valueU > 0);
if (dstSizeInBytes == 0) {
dst[0] = '\0';
return 22; /* Ran out of room in the output buffer. */
}
if (sign < 0) {
*dstEnd++ = '-';
dstSizeInBytes -= 1;
}
if (dstSizeInBytes == 0) {
dst[0] = '\0';
return 22; /* Ran out of room in the output buffer. */
}
*dstEnd = '\0';
/* At this point the string will be reversed. */
dstEnd -= 1;
while (dst < dstEnd) {
char temp = *dst;
*dst = *dstEnd;
*dstEnd = temp;
dst += 1;
dstEnd -= 1;
}
return 0;
}
MA_API int ma_strcmp(const char* str1, const char* str2)
{
if (str1 == str2) return 0;
/* These checks differ from the standard implementation. It's not important, but I prefer it just for sanity. */
if (str1 == NULL) return -1;
if (str2 == NULL) return 1;
for (;;) {
if (str1[0] == '\0') {
break;
}
if (str1[0] != str2[0]) {
break;
}
str1 += 1;
str2 += 1;
}
return ((unsigned char*)str1)[0] - ((unsigned char*)str2)[0];
}
MA_API int ma_strappend(char* dst, size_t dstSize, const char* srcA, const char* srcB)
{
int result;
result = ma_strncpy_s(dst, dstSize, srcA, (size_t)-1);
if (result != 0) {
return result;
}
result = ma_strncat_s(dst, dstSize, srcB, (size_t)-1);
if (result != 0) {
return result;
}
return result;
}
MA_API char* ma_copy_string(const char* src, const ma_allocation_callbacks* pAllocationCallbacks)
{
size_t sz = strlen(src)+1;
char* dst = (char*)ma_malloc(sz, pAllocationCallbacks);
if (dst == NULL) {
return NULL;
}
ma_strcpy_s(dst, sz, src);
return dst;
}
#include <errno.h>
static ma_result ma_result_from_errno(int e)
{
switch (e)
{
case 0: return MA_SUCCESS;
#ifdef EPERM
case EPERM: return MA_INVALID_OPERATION;
#endif
#ifdef ENOENT
case ENOENT: return MA_DOES_NOT_EXIST;
#endif
#ifdef ESRCH
case ESRCH: return MA_DOES_NOT_EXIST;
#endif
#ifdef EINTR
case EINTR: return MA_INTERRUPT;
#endif
#ifdef EIO
case EIO: return MA_IO_ERROR;
#endif
#ifdef ENXIO
case ENXIO: return MA_DOES_NOT_EXIST;
#endif
#ifdef E2BIG
case E2BIG: return MA_INVALID_ARGS;
#endif
#ifdef ENOEXEC
case ENOEXEC: return MA_INVALID_FILE;
#endif
#ifdef EBADF
case EBADF: return MA_INVALID_FILE;
#endif
#ifdef ECHILD
case ECHILD: return MA_ERROR;
#endif
#ifdef EAGAIN
case EAGAIN: return MA_UNAVAILABLE;
#endif
#ifdef ENOMEM
case ENOMEM: return MA_OUT_OF_MEMORY;
#endif
#ifdef EACCES
case EACCES: return MA_ACCESS_DENIED;
#endif
#ifdef EFAULT
case EFAULT: return MA_BAD_ADDRESS;
#endif
#ifdef ENOTBLK
case ENOTBLK: return MA_ERROR;
#endif
#ifdef EBUSY
case EBUSY: return MA_BUSY;
#endif
#ifdef EEXIST
case EEXIST: return MA_ALREADY_EXISTS;
#endif
#ifdef EXDEV
case EXDEV: return MA_ERROR;
#endif
#ifdef ENODEV
case ENODEV: return MA_DOES_NOT_EXIST;
#endif
#ifdef ENOTDIR
case ENOTDIR: return MA_NOT_DIRECTORY;
#endif
#ifdef EISDIR
case EISDIR: return MA_IS_DIRECTORY;
#endif
#ifdef EINVAL
case EINVAL: return MA_INVALID_ARGS;
#endif
#ifdef ENFILE
case ENFILE: return MA_TOO_MANY_OPEN_FILES;
#endif
#ifdef EMFILE
case EMFILE: return MA_TOO_MANY_OPEN_FILES;
#endif
#ifdef ENOTTY
case ENOTTY: return MA_INVALID_OPERATION;
#endif
#ifdef ETXTBSY
case ETXTBSY: return MA_BUSY;
#endif
#ifdef EFBIG
case EFBIG: return MA_TOO_BIG;
#endif
#ifdef ENOSPC
case ENOSPC: return MA_NO_SPACE;
#endif
#ifdef ESPIPE
case ESPIPE: return MA_BAD_SEEK;
#endif
#ifdef EROFS
case EROFS: return MA_ACCESS_DENIED;
#endif
#ifdef EMLINK
case EMLINK: return MA_TOO_MANY_LINKS;
#endif
#ifdef EPIPE
case EPIPE: return MA_BAD_PIPE;
#endif
#ifdef EDOM
case EDOM: return MA_OUT_OF_RANGE;
#endif
#ifdef ERANGE
case ERANGE: return MA_OUT_OF_RANGE;
#endif
#ifdef EDEADLK
case EDEADLK: return MA_DEADLOCK;
#endif
#ifdef ENAMETOOLONG
case ENAMETOOLONG: return MA_PATH_TOO_LONG;
#endif
#ifdef ENOLCK
case ENOLCK: return MA_ERROR;
#endif
#ifdef ENOSYS
case ENOSYS: return MA_NOT_IMPLEMENTED;
#endif
#ifdef ENOTEMPTY
case ENOTEMPTY: return MA_DIRECTORY_NOT_EMPTY;
#endif
#ifdef ELOOP
case ELOOP: return MA_TOO_MANY_LINKS;
#endif
#ifdef ENOMSG
case ENOMSG: return MA_NO_MESSAGE;
#endif
#ifdef EIDRM
case EIDRM: return MA_ERROR;
#endif
#ifdef ECHRNG
case ECHRNG: return MA_ERROR;
#endif
#ifdef EL2NSYNC
case EL2NSYNC: return MA_ERROR;
#endif
#ifdef EL3HLT
case EL3HLT: return MA_ERROR;
#endif
#ifdef EL3RST
case EL3RST: return MA_ERROR;
#endif
#ifdef ELNRNG
case ELNRNG: return MA_OUT_OF_RANGE;
#endif
#ifdef EUNATCH
case EUNATCH: return MA_ERROR;
#endif
#ifdef ENOCSI
case ENOCSI: return MA_ERROR;
#endif
#ifdef EL2HLT
case EL2HLT: return MA_ERROR;
#endif
#ifdef EBADE
case EBADE: return MA_ERROR;
#endif
#ifdef EBADR
case EBADR: return MA_ERROR;
#endif
#ifdef EXFULL
case EXFULL: return MA_ERROR;
#endif
#ifdef ENOANO
case ENOANO: return MA_ERROR;
#endif
#ifdef EBADRQC
case EBADRQC: return MA_ERROR;
#endif
#ifdef EBADSLT
case EBADSLT: return MA_ERROR;
#endif
#ifdef EBFONT
case EBFONT: return MA_INVALID_FILE;
#endif
#ifdef ENOSTR
case ENOSTR: return MA_ERROR;
#endif
#ifdef ENODATA
case ENODATA: return MA_NO_DATA_AVAILABLE;
#endif
#ifdef ETIME
case ETIME: return MA_TIMEOUT;
#endif
#ifdef ENOSR
case ENOSR: return MA_NO_DATA_AVAILABLE;
#endif
#ifdef ENONET
case ENONET: return MA_NO_NETWORK;
#endif
#ifdef ENOPKG
case ENOPKG: return MA_ERROR;
#endif
#ifdef EREMOTE
case EREMOTE: return MA_ERROR;
#endif
#ifdef ENOLINK
case ENOLINK: return MA_ERROR;
#endif
#ifdef EADV
case EADV: return MA_ERROR;
#endif
#ifdef ESRMNT
case ESRMNT: return MA_ERROR;
#endif
#ifdef ECOMM
case ECOMM: return MA_ERROR;
#endif
#ifdef EPROTO
case EPROTO: return MA_ERROR;
#endif
#ifdef EMULTIHOP
case EMULTIHOP: return MA_ERROR;
#endif
#ifdef EDOTDOT
case EDOTDOT: return MA_ERROR;
#endif
#ifdef EBADMSG
case EBADMSG: return MA_BAD_MESSAGE;
#endif
#ifdef EOVERFLOW
case EOVERFLOW: return MA_TOO_BIG;
#endif
#ifdef ENOTUNIQ
case ENOTUNIQ: return MA_NOT_UNIQUE;
#endif
#ifdef EBADFD
case EBADFD: return MA_ERROR;
#endif
#ifdef EREMCHG
case EREMCHG: return MA_ERROR;
#endif
#ifdef ELIBACC
case ELIBACC: return MA_ACCESS_DENIED;
#endif
#ifdef ELIBBAD
case ELIBBAD: return MA_INVALID_FILE;
#endif
#ifdef ELIBSCN
case ELIBSCN: return MA_INVALID_FILE;
#endif
#ifdef ELIBMAX
case ELIBMAX: return MA_ERROR;
#endif
#ifdef ELIBEXEC
case ELIBEXEC: return MA_ERROR;
#endif
#ifdef EILSEQ
case EILSEQ: return MA_INVALID_DATA;
#endif
#ifdef ERESTART
case ERESTART: return MA_ERROR;
#endif
#ifdef ESTRPIPE
case ESTRPIPE: return MA_ERROR;
#endif
#ifdef EUSERS
case EUSERS: return MA_ERROR;
#endif
#ifdef ENOTSOCK
case ENOTSOCK: return MA_NOT_SOCKET;
#endif
#ifdef EDESTADDRREQ
case EDESTADDRREQ: return MA_NO_ADDRESS;
#endif
#ifdef EMSGSIZE
case EMSGSIZE: return MA_TOO_BIG;
#endif
#ifdef EPROTOTYPE
case EPROTOTYPE: return MA_BAD_PROTOCOL;
#endif
#ifdef ENOPROTOOPT
case ENOPROTOOPT: return MA_PROTOCOL_UNAVAILABLE;
#endif
#ifdef EPROTONOSUPPORT
case EPROTONOSUPPORT: return MA_PROTOCOL_NOT_SUPPORTED;
#endif
#ifdef ESOCKTNOSUPPORT
case ESOCKTNOSUPPORT: return MA_SOCKET_NOT_SUPPORTED;
#endif
#ifdef EOPNOTSUPP
case EOPNOTSUPP: return MA_INVALID_OPERATION;
#endif
#ifdef EPFNOSUPPORT
case EPFNOSUPPORT: return MA_PROTOCOL_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EAFNOSUPPORT
case EAFNOSUPPORT: return MA_ADDRESS_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EADDRINUSE
case EADDRINUSE: return MA_ALREADY_IN_USE;
#endif
#ifdef EADDRNOTAVAIL
case EADDRNOTAVAIL: return MA_ERROR;
#endif
#ifdef ENETDOWN
case ENETDOWN: return MA_NO_NETWORK;
#endif
#ifdef ENETUNREACH
case ENETUNREACH: return MA_NO_NETWORK;
#endif
#ifdef ENETRESET
case ENETRESET: return MA_NO_NETWORK;
#endif
#ifdef ECONNABORTED
case ECONNABORTED: return MA_NO_NETWORK;
#endif
#ifdef ECONNRESET
case ECONNRESET: return MA_CONNECTION_RESET;
#endif
#ifdef ENOBUFS
case ENOBUFS: return MA_NO_SPACE;
#endif
#ifdef EISCONN
case EISCONN: return MA_ALREADY_CONNECTED;
#endif
#ifdef ENOTCONN
case ENOTCONN: return MA_NOT_CONNECTED;
#endif
#ifdef ESHUTDOWN
case ESHUTDOWN: return MA_ERROR;
#endif
#ifdef ETOOMANYREFS
case ETOOMANYREFS: return MA_ERROR;
#endif
#ifdef ETIMEDOUT
case ETIMEDOUT: return MA_TIMEOUT;
#endif
#ifdef ECONNREFUSED
case ECONNREFUSED: return MA_CONNECTION_REFUSED;
#endif
#ifdef EHOSTDOWN
case EHOSTDOWN: return MA_NO_HOST;
#endif
#ifdef EHOSTUNREACH
case EHOSTUNREACH: return MA_NO_HOST;
#endif
#ifdef EALREADY
case EALREADY: return MA_IN_PROGRESS;
#endif
#ifdef EINPROGRESS
case EINPROGRESS: return MA_IN_PROGRESS;
#endif
#ifdef ESTALE
case ESTALE: return MA_INVALID_FILE;
#endif
#ifdef EUCLEAN
case EUCLEAN: return MA_ERROR;
#endif
#ifdef ENOTNAM
case ENOTNAM: return MA_ERROR;
#endif
#ifdef ENAVAIL
case ENAVAIL: return MA_ERROR;
#endif
#ifdef EISNAM
case EISNAM: return MA_ERROR;
#endif
#ifdef EREMOTEIO
case EREMOTEIO: return MA_IO_ERROR;
#endif
#ifdef EDQUOT
case EDQUOT: return MA_NO_SPACE;
#endif
#ifdef ENOMEDIUM
case ENOMEDIUM: return MA_DOES_NOT_EXIST;
#endif
#ifdef EMEDIUMTYPE
case EMEDIUMTYPE: return MA_ERROR;
#endif
#ifdef ECANCELED
case ECANCELED: return MA_CANCELLED;
#endif
#ifdef ENOKEY
case ENOKEY: return MA_ERROR;
#endif
#ifdef EKEYEXPIRED
case EKEYEXPIRED: return MA_ERROR;
#endif
#ifdef EKEYREVOKED
case EKEYREVOKED: return MA_ERROR;
#endif
#ifdef EKEYREJECTED
case EKEYREJECTED: return MA_ERROR;
#endif
#ifdef EOWNERDEAD
case EOWNERDEAD: return MA_ERROR;
#endif
#ifdef ENOTRECOVERABLE
case ENOTRECOVERABLE: return MA_ERROR;
#endif
#ifdef ERFKILL
case ERFKILL: return MA_ERROR;
#endif
#ifdef EHWPOISON
case EHWPOISON: return MA_ERROR;
#endif
default: return MA_ERROR;
}
}
MA_API ma_result ma_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
{
#if _MSC_VER && _MSC_VER >= 1400
errno_t err;
#endif
if (ppFile != NULL) {
*ppFile = NULL; /* Safety. */
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return MA_INVALID_ARGS;
}
#if _MSC_VER && _MSC_VER >= 1400
err = fopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return ma_result_from_errno(err);
}
#else
#if defined(_WIN32) || defined(__APPLE__)
*ppFile = fopen(pFilePath, pOpenMode);
#else
#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
*ppFile = fopen64(pFilePath, pOpenMode);
#else
*ppFile = fopen(pFilePath, pOpenMode);
#endif
#endif
if (*ppFile == NULL) {
ma_result result = ma_result_from_errno(errno);
if (result == MA_SUCCESS) {
result = MA_ERROR; /* Just a safety check to make sure we never ever return success when pFile == NULL. */
}
return result;
}
#endif
return MA_SUCCESS;
}
/*
_wfopen() isn't always available in all compilation environments.
* Windows only.
* MSVC seems to support it universally as far back as VC6 from what I can tell (haven't checked further back).
* MinGW-64 (both 32- and 64-bit) seems to support it.
* MinGW wraps it in !defined(__STRICT_ANSI__).
This can be reviewed as compatibility issues arise. The preference is to use _wfopen_s() and _wfopen() as opposed to the wcsrtombs()
fallback, so if you notice your compiler not detecting this properly I'm happy to look at adding support.
*/
#if defined(_WIN32)
#if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
#define MA_HAS_WFOPEN
#endif
#endif
MA_API ma_result ma_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (ppFile != NULL) {
*ppFile = NULL; /* Safety. */
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return MA_INVALID_ARGS;
}
#if defined(MA_HAS_WFOPEN)
{
/* Use _wfopen() on Windows. */
#if defined(_MSC_VER) && _MSC_VER >= 1400
errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return ma_result_from_errno(err);
}
#else
*ppFile = _wfopen(pFilePath, pOpenMode);
if (*ppFile == NULL) {
return ma_result_from_errno(errno);
}
#endif
(void)pAllocationCallbacks;
}
#else
/*
Use fopen() on anything other than Windows. Requires a conversion. This is annoying because fopen() is locale specific. The only real way I can
think of to do this is with wcsrtombs(). Note that wcstombs() is apparently not thread-safe because it uses a static global mbstate_t object for
maintaining state. I've checked this with -std=c89 and it works, but if somebody get's a compiler error I'll look into improving compatibility.
*/
{
mbstate_t mbs;
size_t lenMB;
const wchar_t* pFilePathTemp = pFilePath;
char* pFilePathMB = NULL;
char pOpenModeMB[32] = {0};
/* Get the length first. */
MA_ZERO_OBJECT(&mbs);
lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
if (lenMB == (size_t)-1) {
return ma_result_from_errno(errno);
}
pFilePathMB = (char*)ma_malloc(lenMB + 1, pAllocationCallbacks);
if (pFilePathMB == NULL) {
return MA_OUT_OF_MEMORY;
}
pFilePathTemp = pFilePath;
MA_ZERO_OBJECT(&mbs);
wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
/* The open mode should always consist of ASCII characters so we should be able to do a trivial conversion. */
{
size_t i = 0;
for (;;) {
if (pOpenMode[i] == 0) {
pOpenModeMB[i] = '\0';
break;
}
pOpenModeMB[i] = (char)pOpenMode[i];
i += 1;
}
}
*ppFile = fopen(pFilePathMB, pOpenModeMB);
ma_free(pFilePathMB, pAllocationCallbacks);
}
if (*ppFile == NULL) {
return MA_ERROR;
}
#endif
return MA_SUCCESS;
}
static MA_INLINE void ma_copy_memory_64(void* dst, const void* src, ma_uint64 sizeInBytes)
{
#if 0xFFFFFFFFFFFFFFFF <= MA_SIZE_MAX
MA_COPY_MEMORY(dst, src, (size_t)sizeInBytes);
#else
while (sizeInBytes > 0) {
ma_uint64 bytesToCopyNow = sizeInBytes;
if (bytesToCopyNow > MA_SIZE_MAX) {
bytesToCopyNow = MA_SIZE_MAX;
}
MA_COPY_MEMORY(dst, src, (size_t)bytesToCopyNow); /* Safe cast to size_t. */
sizeInBytes -= bytesToCopyNow;
dst = ( void*)(( ma_uint8*)dst + bytesToCopyNow);
src = (const void*)((const ma_uint8*)src + bytesToCopyNow);
}
#endif
}
static MA_INLINE void ma_zero_memory_64(void* dst, ma_uint64 sizeInBytes)
{
#if 0xFFFFFFFFFFFFFFFF <= MA_SIZE_MAX
MA_ZERO_MEMORY(dst, (size_t)sizeInBytes);
#else
while (sizeInBytes > 0) {
ma_uint64 bytesToZeroNow = sizeInBytes;
if (bytesToZeroNow > MA_SIZE_MAX) {
bytesToZeroNow = MA_SIZE_MAX;
}
MA_ZERO_MEMORY(dst, (size_t)bytesToZeroNow); /* Safe cast to size_t. */
sizeInBytes -= bytesToZeroNow;
dst = (void*)((ma_uint8*)dst + bytesToZeroNow);
}
#endif
}
/* Thanks to good old Bit Twiddling Hacks for this one: http://graphics.stanford.edu/~seander/bithacks.html#RoundUpPowerOf2 */
static MA_INLINE unsigned int ma_next_power_of_2(unsigned int x)
{
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
return x;
}
static MA_INLINE unsigned int ma_prev_power_of_2(unsigned int x)
{
return ma_next_power_of_2(x) >> 1;
}
static MA_INLINE unsigned int ma_round_to_power_of_2(unsigned int x)
{
unsigned int prev = ma_prev_power_of_2(x);
unsigned int next = ma_next_power_of_2(x);
if ((next - x) > (x - prev)) {
return prev;
} else {
return next;
}
}
static MA_INLINE unsigned int ma_count_set_bits(unsigned int x)
{
unsigned int count = 0;
while (x != 0) {
if (x & 1) {
count += 1;
}
x = x >> 1;
}
return count;
}
/* Clamps an f32 sample to -1..1 */
static MA_INLINE float ma_clip_f32(float x)
{
if (x < -1) return -1;
if (x > +1) return +1;
return x;
}
static MA_INLINE float ma_mix_f32(float x, float y, float a)
{
return x*(1-a) + y*a;
}
static MA_INLINE float ma_mix_f32_fast(float x, float y, float a)
{
float r0 = (y - x);
float r1 = r0*a;
return x + r1;
/*return x + (y - x)*a;*/
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE __m128 ma_mix_f32_fast__sse2(__m128 x, __m128 y, __m128 a)
{
return _mm_add_ps(x, _mm_mul_ps(_mm_sub_ps(y, x), a));
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE __m256 ma_mix_f32_fast__avx2(__m256 x, __m256 y, __m256 a)
{
return _mm256_add_ps(x, _mm256_mul_ps(_mm256_sub_ps(y, x), a));
}
#endif
#if defined(MA_SUPPORT_AVX512)
static MA_INLINE __m512 ma_mix_f32_fast__avx512(__m512 x, __m512 y, __m512 a)
{
return _mm512_add_ps(x, _mm512_mul_ps(_mm512_sub_ps(y, x), a));
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE float32x4_t ma_mix_f32_fast__neon(float32x4_t x, float32x4_t y, float32x4_t a)
{
return vaddq_f32(x, vmulq_f32(vsubq_f32(y, x), a));
}
#endif
static MA_INLINE double ma_mix_f64(double x, double y, double a)
{
return x*(1-a) + y*a;
}
static MA_INLINE double ma_mix_f64_fast(double x, double y, double a)
{
return x + (y - x)*a;
}
static MA_INLINE float ma_scale_to_range_f32(float x, float lo, float hi)
{
return lo + x*(hi-lo);
}
/*
Greatest common factor using Euclid's algorithm iteratively.
*/
static MA_INLINE ma_uint32 ma_gcf_u32(ma_uint32 a, ma_uint32 b)
{
for (;;) {
if (b == 0) {
break;
} else {
ma_uint32 t = a;
a = b;
b = t % a;
}
}
return a;
}
/*
Random Number Generation
miniaudio uses the LCG random number generation algorithm. This is good enough for audio.
Note that miniaudio's global LCG implementation uses global state which is _not_ thread-local. When this is called across
multiple threads, results will be unpredictable. However, it won't crash and results will still be random enough for
miniaudio's purposes.
*/
#ifndef MA_DEFAULT_LCG_SEED
#define MA_DEFAULT_LCG_SEED 4321
#endif
#define MA_LCG_M 2147483647
#define MA_LCG_A 48271
#define MA_LCG_C 0
static ma_lcg g_maLCG = {MA_DEFAULT_LCG_SEED}; /* Non-zero initial seed. Use ma_seed() to use an explicit seed. */
static MA_INLINE void ma_lcg_seed(ma_lcg* pLCG, ma_int32 seed)
{
MA_ASSERT(pLCG != NULL);
pLCG->state = seed;
}
static MA_INLINE ma_int32 ma_lcg_rand_s32(ma_lcg* pLCG)
{
pLCG->state = (MA_LCG_A * pLCG->state + MA_LCG_C) % MA_LCG_M;
return pLCG->state;
}
static MA_INLINE ma_uint32 ma_lcg_rand_u32(ma_lcg* pLCG)
{
return (ma_uint32)ma_lcg_rand_s32(pLCG);
}
static MA_INLINE ma_int16 ma_lcg_rand_s16(ma_lcg* pLCG)
{
return (ma_int16)(ma_lcg_rand_s32(pLCG) & 0xFFFF);
}
static MA_INLINE double ma_lcg_rand_f64(ma_lcg* pLCG)
{
return ma_lcg_rand_s32(pLCG) / (double)0x7FFFFFFF;
}
static MA_INLINE float ma_lcg_rand_f32(ma_lcg* pLCG)
{
return (float)ma_lcg_rand_f64(pLCG);
}
static MA_INLINE float ma_lcg_rand_range_f32(ma_lcg* pLCG, float lo, float hi)
{
return ma_scale_to_range_f32(ma_lcg_rand_f32(pLCG), lo, hi);
}
static MA_INLINE ma_int32 ma_lcg_rand_range_s32(ma_lcg* pLCG, ma_int32 lo, ma_int32 hi)
{
if (lo == hi) {
return lo;
}
return lo + ma_lcg_rand_u32(pLCG) / (0xFFFFFFFF / (hi - lo + 1) + 1);
}
static MA_INLINE void ma_seed(ma_int32 seed)
{
ma_lcg_seed(&g_maLCG, seed);
}
static MA_INLINE ma_int32 ma_rand_s32(void)
{
return ma_lcg_rand_s32(&g_maLCG);
}
static MA_INLINE ma_uint32 ma_rand_u32(void)
{
return ma_lcg_rand_u32(&g_maLCG);
}
static MA_INLINE double ma_rand_f64(void)
{
return ma_lcg_rand_f64(&g_maLCG);
}
static MA_INLINE float ma_rand_f32(void)
{
return ma_lcg_rand_f32(&g_maLCG);
}
static MA_INLINE float ma_rand_range_f32(float lo, float hi)
{
return ma_lcg_rand_range_f32(&g_maLCG, lo, hi);
}
static MA_INLINE ma_int32 ma_rand_range_s32(ma_int32 lo, ma_int32 hi)
{
return ma_lcg_rand_range_s32(&g_maLCG, lo, hi);
}
static MA_INLINE float ma_dither_f32_rectangle(float ditherMin, float ditherMax)
{
return ma_rand_range_f32(ditherMin, ditherMax);
}
static MA_INLINE float ma_dither_f32_triangle(float ditherMin, float ditherMax)
{
float a = ma_rand_range_f32(ditherMin, 0);
float b = ma_rand_range_f32(0, ditherMax);
return a + b;
}
static MA_INLINE float ma_dither_f32(ma_dither_mode ditherMode, float ditherMin, float ditherMax)
{
if (ditherMode == ma_dither_mode_rectangle) {
return ma_dither_f32_rectangle(ditherMin, ditherMax);
}
if (ditherMode == ma_dither_mode_triangle) {
return ma_dither_f32_triangle(ditherMin, ditherMax);
}
return 0;
}
static MA_INLINE ma_int32 ma_dither_s32(ma_dither_mode ditherMode, ma_int32 ditherMin, ma_int32 ditherMax)
{
if (ditherMode == ma_dither_mode_rectangle) {
ma_int32 a = ma_rand_range_s32(ditherMin, ditherMax);
return a;
}
if (ditherMode == ma_dither_mode_triangle) {
ma_int32 a = ma_rand_range_s32(ditherMin, 0);
ma_int32 b = ma_rand_range_s32(0, ditherMax);
return a + b;
}
return 0;
}
/**************************************************************************************************************************************************************
Atomics
**************************************************************************************************************************************************************/
/* c89atomic.h begin */
#ifndef c89atomic_h
#define c89atomic_h
#if defined(__cplusplus)
extern "C" {
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wlong-long"
#if defined(__clang__)
#pragma GCC diagnostic ignored "-Wc++11-long-long"
#endif
#endif
typedef signed char c89atomic_int8;
typedef unsigned char c89atomic_uint8;
typedef signed short c89atomic_int16;
typedef unsigned short c89atomic_uint16;
typedef signed int c89atomic_int32;
typedef unsigned int c89atomic_uint32;
#if defined(_MSC_VER)
typedef signed __int64 c89atomic_int64;
typedef unsigned __int64 c89atomic_uint64;
#else
typedef unsigned long long c89atomic_int64;
typedef unsigned long long c89atomic_uint64;
#endif
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
typedef int c89atomic_memory_order;
typedef unsigned char c89atomic_bool;
typedef unsigned char c89atomic_flag;
#if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT)
#ifdef _WIN32
#ifdef _WIN64
#define C89ATOMIC_64BIT
#else
#define C89ATOMIC_32BIT
#endif
#endif
#endif
#if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT)
#ifdef __GNUC__
#ifdef __LP64__
#define C89ATOMIC_64BIT
#else
#define C89ATOMIC_32BIT
#endif
#endif
#endif
#if !defined(C89ATOMIC_64BIT) && !defined(C89ATOMIC_32BIT)
#include <stdint.h>
#if INTPTR_MAX == INT64_MAX
#define C89ATOMIC_64BIT
#else
#define C89ATOMIC_32BIT
#endif
#endif
#if defined(__x86_64__) || defined(_M_X64)
#define C89ATOMIC_X64
#elif defined(__i386) || defined(_M_IX86)
#define C89ATOMIC_X86
#elif defined(__arm__) || defined(_M_ARM)
#define C89ATOMIC_ARM
#endif
#ifdef _MSC_VER
#define C89ATOMIC_INLINE __forceinline
#elif defined(__GNUC__)
#if defined(__STRICT_ANSI__)
#define C89ATOMIC_INLINE __inline__ __attribute__((always_inline))
#else
#define C89ATOMIC_INLINE inline __attribute__((always_inline))
#endif
#else
#define C89ATOMIC_INLINE
#endif
#if defined(_MSC_VER)
#define c89atomic_memory_order_relaxed 0
#define c89atomic_memory_order_consume 1
#define c89atomic_memory_order_acquire 2
#define c89atomic_memory_order_release 3
#define c89atomic_memory_order_acq_rel 4
#define c89atomic_memory_order_seq_cst 5
#if _MSC_VER >= 1400
#include <intrin.h>
#define c89atomic_exchange_explicit_8( dst, src, order) (c89atomic_uint8 )_InterlockedExchange8 ((volatile char* )dst, (char )src)
#define c89atomic_exchange_explicit_16(dst, src, order) (c89atomic_uint16)_InterlockedExchange16((volatile short*)dst, (short)src)
#define c89atomic_exchange_explicit_32(dst, src, order) (c89atomic_uint32)_InterlockedExchange ((volatile long* )dst, (long )src)
#if defined(C89ATOMIC_64BIT)
#define c89atomic_exchange_explicit_64(dst, src, order) (c89atomic_uint64)_InterlockedExchange64((volatile long long*)dst, (long long)src)
#endif
#define c89atomic_fetch_add_explicit_8( dst, src, order) (c89atomic_uint8 )_InterlockedExchangeAdd8 ((volatile char* )dst, (char )src)
#define c89atomic_fetch_add_explicit_16(dst, src, order) (c89atomic_uint16)_InterlockedExchangeAdd16((volatile short*)dst, (short)src)
#define c89atomic_fetch_add_explicit_32(dst, src, order) (c89atomic_uint32)_InterlockedExchangeAdd ((volatile long* )dst, (long )src)
#if defined(C89ATOMIC_64BIT)
#define c89atomic_fetch_add_explicit_64(dst, src, order) (c89atomic_uint64)_InterlockedExchangeAdd64((volatile long long*)dst, (long long)src)
#endif
#define c89atomic_compare_and_swap_8( dst, expected, desired) (c89atomic_uint8 )_InterlockedCompareExchange8 ((volatile char* )dst, (char )desired, (char )expected)
#define c89atomic_compare_and_swap_16(dst, expected, desired) (c89atomic_uint16)_InterlockedCompareExchange16((volatile short* )dst, (short )desired, (short )expected)
#define c89atomic_compare_and_swap_32(dst, expected, desired) (c89atomic_uint32)_InterlockedCompareExchange ((volatile long* )dst, (long )desired, (long )expected)
#define c89atomic_compare_and_swap_64(dst, expected, desired) (c89atomic_uint64)_InterlockedCompareExchange64((volatile long long*)dst, (long long)desired, (long long)expected)
#if defined(C89ATOMIC_X64)
#define c89atomic_thread_fence(order) __faststorefence()
#else
static C89ATOMIC_INLINE void c89atomic_thread_fence(c89atomic_memory_order order)
{
volatile c89atomic_uint32 barrier = 0;
(void)order;
c89atomic_fetch_add_explicit_32(&barrier, 0, order);
}
#endif
#else
#if defined(__i386) || defined(_M_IX86)
static C89ATOMIC_INLINE void __stdcall c89atomic_thread_fence(int order)
{
volatile c89atomic_uint32 barrier;
__asm {
xchg barrier, eax
}
}
static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
{
(void)order;
__asm {
mov ecx, dst
mov al, src
lock xchg [ecx], al
}
}
static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
{
(void)order;
__asm {
mov ecx, dst
mov ax, src
lock xchg [ecx], ax
}
}
static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
{
(void)order;
__asm {
mov ecx, dst
mov eax, src
lock xchg [ecx], eax
}
}
static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_add_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
{
(void)order;
__asm {
mov ecx, dst
mov al, src
lock xadd [ecx], al
}
}
static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_add_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
{
(void)order;
__asm {
mov ecx, dst
mov ax, src
lock xadd [ecx], ax
}
}
static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_add_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
{
(void)order;
__asm {
mov ecx, dst
mov eax, src
lock xadd [ecx], eax
}
}
static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_compare_and_swap_8(volatile c89atomic_uint8* dst, c89atomic_uint8 expected, c89atomic_uint8 desired)
{
__asm {
mov ecx, dst
mov al, expected
mov dl, desired
lock cmpxchg [ecx], dl
}
}
static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_compare_and_swap_16(volatile c89atomic_uint16* dst, c89atomic_uint16 expected, c89atomic_uint16 desired)
{
__asm {
mov ecx, dst
mov ax, expected
mov dx, desired
lock cmpxchg [ecx], dx
}
}
static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_compare_and_swap_32(volatile c89atomic_uint32* dst, c89atomic_uint32 expected, c89atomic_uint32 desired)
{
__asm {
mov ecx, dst
mov eax, expected
mov edx, desired
lock cmpxchg [ecx], edx
}
}
static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_compare_and_swap_64(volatile c89atomic_uint64* dst, c89atomic_uint64 expected, c89atomic_uint64 desired)
{
__asm {
mov esi, dst
mov eax, dword ptr expected
mov edx, dword ptr expected + 4
mov ebx, dword ptr desired
mov ecx, dword ptr desired + 4
lock cmpxchg8b qword ptr [esi]
}
}
#else
error "Unsupported architecture."
#endif
#endif
#define c89atomic_compiler_fence() c89atomic_thread_fence(c89atomic_memory_order_seq_cst)
#define c89atomic_signal_fence(order) c89atomic_thread_fence(order)
#define c89atomic_load_explicit_8( ptr, order) c89atomic_compare_and_swap_8 (ptr, 0, 0)
#define c89atomic_load_explicit_16(ptr, order) c89atomic_compare_and_swap_16(ptr, 0, 0)
#define c89atomic_load_explicit_32(ptr, order) c89atomic_compare_and_swap_32(ptr, 0, 0)
#define c89atomic_load_explicit_64(ptr, order) c89atomic_compare_and_swap_64(ptr, 0, 0)
#define c89atomic_store_explicit_8( dst, src, order) (void)c89atomic_exchange_explicit_8 (dst, src, order)
#define c89atomic_store_explicit_16(dst, src, order) (void)c89atomic_exchange_explicit_16(dst, src, order)
#define c89atomic_store_explicit_32(dst, src, order) (void)c89atomic_exchange_explicit_32(dst, src, order)
#define c89atomic_store_explicit_64(dst, src, order) (void)c89atomic_exchange_explicit_64(dst, src, order)
#if defined(C89ATOMIC_32BIT)
static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
{
volatile c89atomic_uint64 oldValue;
do {
oldValue = *dst;
} while (c89atomic_compare_and_swap_64(dst, oldValue, src) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_add_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
{
volatile c89atomic_uint64 oldValue;
volatile c89atomic_uint64 newValue;
do {
oldValue = *dst;
newValue = oldValue + src;
} while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
#endif
static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_sub_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
{
volatile c89atomic_uint8 oldValue;
volatile c89atomic_uint8 newValue;
do {
oldValue = *dst;
newValue = oldValue - src;
} while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_sub_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
{
volatile c89atomic_uint16 oldValue;
volatile c89atomic_uint16 newValue;
do {
oldValue = *dst;
newValue = oldValue - src;
} while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_sub_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
{
volatile c89atomic_uint32 oldValue;
volatile c89atomic_uint32 newValue;
do {
oldValue = *dst;
newValue = oldValue - src;
} while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_sub_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
{
volatile c89atomic_uint64 oldValue;
volatile c89atomic_uint64 newValue;
do {
oldValue = *dst;
newValue = oldValue - src;
} while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_and_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
{
volatile c89atomic_uint8 oldValue;
volatile c89atomic_uint8 newValue;
do {
oldValue = *dst;
newValue = oldValue & src;
} while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_and_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
{
volatile c89atomic_uint16 oldValue;
volatile c89atomic_uint16 newValue;
do {
oldValue = *dst;
newValue = oldValue & src;
} while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_and_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
{
volatile c89atomic_uint32 oldValue;
volatile c89atomic_uint32 newValue;
do {
oldValue = *dst;
newValue = oldValue & src;
} while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_and_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
{
volatile c89atomic_uint64 oldValue;
volatile c89atomic_uint64 newValue;
do {
oldValue = *dst;
newValue = oldValue & src;
} while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_xor_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
{
volatile c89atomic_uint8 oldValue;
volatile c89atomic_uint8 newValue;
do {
oldValue = *dst;
newValue = oldValue ^ src;
} while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_xor_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
{
volatile c89atomic_uint16 oldValue;
volatile c89atomic_uint16 newValue;
do {
oldValue = *dst;
newValue = oldValue ^ src;
} while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_xor_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
{
volatile c89atomic_uint32 oldValue;
volatile c89atomic_uint32 newValue;
do {
oldValue = *dst;
newValue = oldValue ^ src;
} while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_xor_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
{
volatile c89atomic_uint64 oldValue;
volatile c89atomic_uint64 newValue;
do {
oldValue = *dst;
newValue = oldValue ^ src;
} while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint8 __stdcall c89atomic_fetch_or_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, int order)
{
volatile c89atomic_uint8 oldValue;
volatile c89atomic_uint8 newValue;
do {
oldValue = *dst;
newValue = oldValue | src;
} while (c89atomic_compare_and_swap_8(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint16 __stdcall c89atomic_fetch_or_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, int order)
{
volatile c89atomic_uint16 oldValue;
volatile c89atomic_uint16 newValue;
do {
oldValue = *dst;
newValue = oldValue | src;
} while (c89atomic_compare_and_swap_16(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint32 __stdcall c89atomic_fetch_or_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, int order)
{
volatile c89atomic_uint32 oldValue;
volatile c89atomic_uint32 newValue;
do {
oldValue = *dst;
newValue = oldValue | src;
} while (c89atomic_compare_and_swap_32(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint64 __stdcall c89atomic_fetch_or_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, int order)
{
volatile c89atomic_uint64 oldValue;
volatile c89atomic_uint64 newValue;
do {
oldValue = *dst;
newValue = oldValue | src;
} while (c89atomic_compare_and_swap_64(dst, oldValue, newValue) != oldValue);
(void)order;
return oldValue;
}
#define c89atomic_test_and_set_explicit_8( dst, order) c89atomic_exchange_explicit_8 (dst, 1, order)
#define c89atomic_test_and_set_explicit_16(dst, order) c89atomic_exchange_explicit_16(dst, 1, order)
#define c89atomic_test_and_set_explicit_32(dst, order) c89atomic_exchange_explicit_32(dst, 1, order)
#define c89atomic_test_and_set_explicit_64(dst, order) c89atomic_exchange_explicit_64(dst, 1, order)
#define c89atomic_clear_explicit_8( dst, order) c89atomic_store_explicit_8 (dst, 0, order)
#define c89atomic_clear_explicit_16(dst, order) c89atomic_store_explicit_16(dst, 0, order)
#define c89atomic_clear_explicit_32(dst, order) c89atomic_store_explicit_32(dst, 0, order)
#define c89atomic_clear_explicit_64(dst, order) c89atomic_store_explicit_64(dst, 0, order)
#define c89atomic_flag_test_and_set_explicit(ptr, order) (c89atomic_flag)c89atomic_test_and_set_explicit_8(ptr, order)
#define c89atomic_flag_clear_explicit(ptr, order) c89atomic_clear_explicit_8(ptr, order)
#elif defined(__clang__) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC__ >= 7)))
#define C89ATOMIC_HAS_NATIVE_COMPARE_EXCHANGE
#define C89ATOMIC_HAS_NATIVE_IS_LOCK_FREE
#define c89atomic_memory_order_relaxed __ATOMIC_RELAXED
#define c89atomic_memory_order_consume __ATOMIC_CONSUME
#define c89atomic_memory_order_acquire __ATOMIC_ACQUIRE
#define c89atomic_memory_order_release __ATOMIC_RELEASE
#define c89atomic_memory_order_acq_rel __ATOMIC_ACQ_REL
#define c89atomic_memory_order_seq_cst __ATOMIC_SEQ_CST
#define c89atomic_compiler_fence() __asm__ __volatile__("":::"memory")
#define c89atomic_thread_fence(order) __atomic_thread_fence(order)
#define c89atomic_signal_fence(order) __atomic_signal_fence(order)
#define c89atomic_is_lock_free_8(ptr) __atomic_is_lock_free(1, ptr)
#define c89atomic_is_lock_free_16(ptr) __atomic_is_lock_free(2, ptr)
#define c89atomic_is_lock_free_32(ptr) __atomic_is_lock_free(4, ptr)
#define c89atomic_is_lock_free_64(ptr) __atomic_is_lock_free(8, ptr)
#define c89atomic_flag_test_and_set_explicit(dst, order) (c89atomic_flag)__atomic_test_and_set(dst, order)
#define c89atomic_flag_clear_explicit(dst, order) __atomic_clear(dst, order)
#define c89atomic_test_and_set_explicit_8( dst, order) __atomic_exchange_n(dst, 1, order)
#define c89atomic_test_and_set_explicit_16(dst, order) __atomic_exchange_n(dst, 1, order)
#define c89atomic_test_and_set_explicit_32(dst, order) __atomic_exchange_n(dst, 1, order)
#define c89atomic_test_and_set_explicit_64(dst, order) __atomic_exchange_n(dst, 1, order)
#define c89atomic_clear_explicit_8( dst, order) __atomic_store_n(dst, 0, order)
#define c89atomic_clear_explicit_16(dst, order) __atomic_store_n(dst, 0, order)
#define c89atomic_clear_explicit_32(dst, order) __atomic_store_n(dst, 0, order)
#define c89atomic_clear_explicit_64(dst, order) __atomic_store_n(dst, 0, order)
#define c89atomic_store_explicit_8( dst, src, order) __atomic_store_n(dst, src, order)
#define c89atomic_store_explicit_16(dst, src, order) __atomic_store_n(dst, src, order)
#define c89atomic_store_explicit_32(dst, src, order) __atomic_store_n(dst, src, order)
#define c89atomic_store_explicit_64(dst, src, order) __atomic_store_n(dst, src, order)
#define c89atomic_load_explicit_8( dst, order) __atomic_load_n(dst, order)
#define c89atomic_load_explicit_16(dst, order) __atomic_load_n(dst, order)
#define c89atomic_load_explicit_32(dst, order) __atomic_load_n(dst, order)
#define c89atomic_load_explicit_64(dst, order) __atomic_load_n(dst, order)
#define c89atomic_exchange_explicit_8( dst, src, order) __atomic_exchange_n(dst, src, order)
#define c89atomic_exchange_explicit_16(dst, src, order) __atomic_exchange_n(dst, src, order)
#define c89atomic_exchange_explicit_32(dst, src, order) __atomic_exchange_n(dst, src, order)
#define c89atomic_exchange_explicit_64(dst, src, order) __atomic_exchange_n(dst, src, order)
#define c89atomic_compare_exchange_strong_explicit_8( dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder)
#define c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder)
#define c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder)
#define c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 0, successOrder, failureOrder)
#define c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder)
#define c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder)
#define c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder)
#define c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, successOrder, failureOrder) __atomic_compare_exchange_n(dst, expected, desired, 1, successOrder, failureOrder)
#define c89atomic_fetch_add_explicit_8( dst, src, order) __atomic_fetch_add(dst, src, order)
#define c89atomic_fetch_add_explicit_16(dst, src, order) __atomic_fetch_add(dst, src, order)
#define c89atomic_fetch_add_explicit_32(dst, src, order) __atomic_fetch_add(dst, src, order)
#define c89atomic_fetch_add_explicit_64(dst, src, order) __atomic_fetch_add(dst, src, order)
#define c89atomic_fetch_sub_explicit_8( dst, src, order) __atomic_fetch_sub(dst, src, order)
#define c89atomic_fetch_sub_explicit_16(dst, src, order) __atomic_fetch_sub(dst, src, order)
#define c89atomic_fetch_sub_explicit_32(dst, src, order) __atomic_fetch_sub(dst, src, order)
#define c89atomic_fetch_sub_explicit_64(dst, src, order) __atomic_fetch_sub(dst, src, order)
#define c89atomic_fetch_or_explicit_8( dst, src, order) __atomic_fetch_or(dst, src, order)
#define c89atomic_fetch_or_explicit_16(dst, src, order) __atomic_fetch_or(dst, src, order)
#define c89atomic_fetch_or_explicit_32(dst, src, order) __atomic_fetch_or(dst, src, order)
#define c89atomic_fetch_or_explicit_64(dst, src, order) __atomic_fetch_or(dst, src, order)
#define c89atomic_fetch_xor_explicit_8( dst, src, order) __atomic_fetch_xor(dst, src, order)
#define c89atomic_fetch_xor_explicit_16(dst, src, order) __atomic_fetch_xor(dst, src, order)
#define c89atomic_fetch_xor_explicit_32(dst, src, order) __atomic_fetch_xor(dst, src, order)
#define c89atomic_fetch_xor_explicit_64(dst, src, order) __atomic_fetch_xor(dst, src, order)
#define c89atomic_fetch_and_explicit_8( dst, src, order) __atomic_fetch_and(dst, src, order)
#define c89atomic_fetch_and_explicit_16(dst, src, order) __atomic_fetch_and(dst, src, order)
#define c89atomic_fetch_and_explicit_32(dst, src, order) __atomic_fetch_and(dst, src, order)
#define c89atomic_fetch_and_explicit_64(dst, src, order) __atomic_fetch_and(dst, src, order)
#define c89atomic_compare_and_swap_8 (dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
#define c89atomic_compare_and_swap_16(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
#define c89atomic_compare_and_swap_32(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
#define c89atomic_compare_and_swap_64(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
#else
#define c89atomic_memory_order_relaxed 1
#define c89atomic_memory_order_consume 2
#define c89atomic_memory_order_acquire 3
#define c89atomic_memory_order_release 4
#define c89atomic_memory_order_acq_rel 5
#define c89atomic_memory_order_seq_cst 6
#define c89atomic_compiler_fence() __asm__ __volatile__("":::"memory")
#define c89atomic_thread_fence(order) __sync_synchronize()
#define c89atomic_signal_fence(order) c89atomic_thread_fence(order)
static C89ATOMIC_INLINE c89atomic_uint8 c89atomic_exchange_explicit_8(volatile c89atomic_uint8* dst, c89atomic_uint8 src, c89atomic_memory_order order)
{
if (order > c89atomic_memory_order_acquire) {
__sync_synchronize();
}
return __sync_lock_test_and_set(dst, src);
}
static C89ATOMIC_INLINE c89atomic_uint16 c89atomic_exchange_explicit_16(volatile c89atomic_uint16* dst, c89atomic_uint16 src, c89atomic_memory_order order)
{
volatile c89atomic_uint16 oldValue;
do {
oldValue = *dst;
} while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint32 c89atomic_exchange_explicit_32(volatile c89atomic_uint32* dst, c89atomic_uint32 src, c89atomic_memory_order order)
{
volatile c89atomic_uint32 oldValue;
do {
oldValue = *dst;
} while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue);
(void)order;
return oldValue;
}
static C89ATOMIC_INLINE c89atomic_uint64 c89atomic_exchange_explicit_64(volatile c89atomic_uint64* dst, c89atomic_uint64 src, c89atomic_memory_order order)
{
volatile c89atomic_uint64 oldValue;
do {
oldValue = *dst;
} while (__sync_val_compare_and_swap(dst, oldValue, src) != oldValue);
(void)order;
return oldValue;
}
#define c89atomic_fetch_add_explicit_8( dst, src, order) __sync_fetch_and_add(dst, src)
#define c89atomic_fetch_add_explicit_16(dst, src, order) __sync_fetch_and_add(dst, src)
#define c89atomic_fetch_add_explicit_32(dst, src, order) __sync_fetch_and_add(dst, src)
#define c89atomic_fetch_add_explicit_64(dst, src, order) __sync_fetch_and_add(dst, src)
#define c89atomic_fetch_sub_explicit_8( dst, src, order) __sync_fetch_and_sub(dst, src)
#define c89atomic_fetch_sub_explicit_16(dst, src, order) __sync_fetch_and_sub(dst, src)
#define c89atomic_fetch_sub_explicit_32(dst, src, order) __sync_fetch_and_sub(dst, src)
#define c89atomic_fetch_sub_explicit_64(dst, src, order) __sync_fetch_and_sub(dst, src)
#define c89atomic_fetch_or_explicit_8( dst, src, order) __sync_fetch_and_or(dst, src)
#define c89atomic_fetch_or_explicit_16(dst, src, order) __sync_fetch_and_or(dst, src)
#define c89atomic_fetch_or_explicit_32(dst, src, order) __sync_fetch_and_or(dst, src)
#define c89atomic_fetch_or_explicit_64(dst, src, order) __sync_fetch_and_or(dst, src)
#define c89atomic_fetch_xor_explicit_8( dst, src, order) __sync_fetch_and_xor(dst, src)
#define c89atomic_fetch_xor_explicit_16(dst, src, order) __sync_fetch_and_xor(dst, src)
#define c89atomic_fetch_xor_explicit_32(dst, src, order) __sync_fetch_and_xor(dst, src)
#define c89atomic_fetch_xor_explicit_64(dst, src, order) __sync_fetch_and_xor(dst, src)
#define c89atomic_fetch_and_explicit_8( dst, src, order) __sync_fetch_and_and(dst, src)
#define c89atomic_fetch_and_explicit_16(dst, src, order) __sync_fetch_and_and(dst, src)
#define c89atomic_fetch_and_explicit_32(dst, src, order) __sync_fetch_and_and(dst, src)
#define c89atomic_fetch_and_explicit_64(dst, src, order) __sync_fetch_and_and(dst, src)
#define c89atomic_compare_and_swap_8( dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
#define c89atomic_compare_and_swap_16(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
#define c89atomic_compare_and_swap_32(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
#define c89atomic_compare_and_swap_64(dst, expected, desired) __sync_val_compare_and_swap(dst, expected, desired)
#define c89atomic_load_explicit_8( ptr, order) c89atomic_compare_and_swap_8 (ptr, 0, 0)
#define c89atomic_load_explicit_16(ptr, order) c89atomic_compare_and_swap_16(ptr, 0, 0)
#define c89atomic_load_explicit_32(ptr, order) c89atomic_compare_and_swap_32(ptr, 0, 0)
#define c89atomic_load_explicit_64(ptr, order) c89atomic_compare_and_swap_64(ptr, 0, 0)
#define c89atomic_store_explicit_8( dst, src, order) (void)c89atomic_exchange_explicit_8 (dst, src, order)
#define c89atomic_store_explicit_16(dst, src, order) (void)c89atomic_exchange_explicit_16(dst, src, order)
#define c89atomic_store_explicit_32(dst, src, order) (void)c89atomic_exchange_explicit_32(dst, src, order)
#define c89atomic_store_explicit_64(dst, src, order) (void)c89atomic_exchange_explicit_64(dst, src, order)
#define c89atomic_test_and_set_explicit_8( dst, order) c89atomic_exchange_explicit_8 (dst, 1, order)
#define c89atomic_test_and_set_explicit_16(dst, order) c89atomic_exchange_explicit_16(dst, 1, order)
#define c89atomic_test_and_set_explicit_32(dst, order) c89atomic_exchange_explicit_32(dst, 1, order)
#define c89atomic_test_and_set_explicit_64(dst, order) c89atomic_exchange_explicit_64(dst, 1, order)
#define c89atomic_clear_explicit_8( dst, order) c89atomic_store_explicit_8 (dst, 0, order)
#define c89atomic_clear_explicit_16(dst, order) c89atomic_store_explicit_16(dst, 0, order)
#define c89atomic_clear_explicit_32(dst, order) c89atomic_store_explicit_32(dst, 0, order)
#define c89atomic_clear_explicit_64(dst, order) c89atomic_store_explicit_64(dst, 0, order)
#define c89atomic_flag_test_and_set_explicit(ptr, order) (c89atomic_flag)c89atomic_test_and_set_explicit_8(ptr, order)
#define c89atomic_flag_clear_explicit(ptr, order) c89atomic_clear_explicit_8(ptr, order)
#endif
#if !defined(C89ATOMIC_HAS_NATIVE_COMPARE_EXCHANGE)
c89atomic_bool c89atomic_compare_exchange_strong_explicit_8(volatile c89atomic_uint8* dst, volatile c89atomic_uint8* expected, c89atomic_uint8 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder)
{
c89atomic_uint8 expectedValue;
c89atomic_uint8 result;
(void)successOrder;
(void)failureOrder;
expectedValue = c89atomic_load_explicit_8(expected, c89atomic_memory_order_seq_cst);
result = c89atomic_compare_and_swap_8(dst, expectedValue, desired);
if (result == expectedValue) {
return 1;
} else {
c89atomic_store_explicit_8(expected, result, failureOrder);
return 0;
}
}
c89atomic_bool c89atomic_compare_exchange_strong_explicit_16(volatile c89atomic_uint16* dst, volatile c89atomic_uint16* expected, c89atomic_uint16 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder)
{
c89atomic_uint16 expectedValue;
c89atomic_uint16 result;
(void)successOrder;
(void)failureOrder;
expectedValue = c89atomic_load_explicit_16(expected, c89atomic_memory_order_seq_cst);
result = c89atomic_compare_and_swap_16(dst, expectedValue, desired);
if (result == expectedValue) {
return 1;
} else {
c89atomic_store_explicit_16(expected, result, failureOrder);
return 0;
}
}
c89atomic_bool c89atomic_compare_exchange_strong_explicit_32(volatile c89atomic_uint32* dst, volatile c89atomic_uint32* expected, c89atomic_uint32 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder)
{
c89atomic_uint32 expectedValue;
c89atomic_uint32 result;
(void)successOrder;
(void)failureOrder;
expectedValue = c89atomic_load_explicit_32(expected, c89atomic_memory_order_seq_cst);
result = c89atomic_compare_and_swap_32(dst, expectedValue, desired);
if (result == expectedValue) {
return 1;
} else {
c89atomic_store_explicit_32(expected, result, failureOrder);
return 0;
}
}
c89atomic_bool c89atomic_compare_exchange_strong_explicit_64(volatile c89atomic_uint64* dst, volatile c89atomic_uint64* expected, c89atomic_uint64 desired, c89atomic_memory_order successOrder, c89atomic_memory_order failureOrder)
{
c89atomic_uint64 expectedValue;
c89atomic_uint64 result;
(void)successOrder;
(void)failureOrder;
expectedValue = c89atomic_load_explicit_64(expected, c89atomic_memory_order_seq_cst);
result = c89atomic_compare_and_swap_64(dst, expectedValue, desired);
if (result == expectedValue) {
return 1;
} else {
c89atomic_store_explicit_64(expected, result, failureOrder);
return 0;
}
}
#define c89atomic_compare_exchange_weak_explicit_8( dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_8 (dst, expected, desired, successOrder, failureOrder)
#define c89atomic_compare_exchange_weak_explicit_16(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_16(dst, expected, desired, successOrder, failureOrder)
#define c89atomic_compare_exchange_weak_explicit_32(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_32(dst, expected, desired, successOrder, failureOrder)
#define c89atomic_compare_exchange_weak_explicit_64(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_64(dst, expected, desired, successOrder, failureOrder)
#endif
#if !defined(C89ATOMIC_HAS_NATIVE_IS_LOCK_FREE)
#define c89atomic_is_lock_free_8( ptr) 1
#define c89atomic_is_lock_free_16(ptr) 1
#define c89atomic_is_lock_free_32(ptr) 1
#if defined(C89ATOMIC_64BIT)
#define c89atomic_is_lock_free_64(ptr) 1
#else
#if defined(C89ATOMIC_X86) || defined(C89ATOMIC_X64)
#define c89atomic_is_lock_free_64(ptr) 1
#else
#define c89atomic_is_lock_free_64(ptr) 0
#endif
#endif
#endif
#if defined(C89ATOMIC_64BIT)
#define c89atomic_is_lock_free_ptr(ptr) c89atomic_is_lock_free_64((volatile c89atomic_uint64*)ptr)
#define c89atomic_load_explicit_ptr(ptr, order) (void*)c89atomic_load_explicit_64((volatile c89atomic_uint64*)ptr, order)
#define c89atomic_store_explicit_ptr(dst, src, order) (void*)c89atomic_store_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)src, order)
#define c89atomic_exchange_explicit_ptr(dst, src, order) (void*)c89atomic_exchange_explicit_64((volatile c89atomic_uint64*)dst, (c89atomic_uint64)src, order)
#define c89atomic_compare_exchange_strong_explicit_ptr(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_64((volatile c89atomic_uint64*)dst, (volatile c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder)
#define c89atomic_compare_exchange_weak_explicit_ptr(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_64((volatile c89atomic_uint64*)dst, (volatile c89atomic_uint64*)expected, (c89atomic_uint64)desired, successOrder, failureOrder)
#define c89atomic_compare_and_swap_ptr(dst, expected, desired) (void*)c89atomic_compare_and_swap_64 ((volatile c89atomic_uint64*)dst, (c89atomic_uint64)expected, (c89atomic_uint64)desired)
#elif defined(C89ATOMIC_32BIT)
#define c89atomic_is_lock_free_ptr(ptr) c89atomic_is_lock_free_32((volatile c89atomic_uint32*)ptr)
#define c89atomic_load_explicit_ptr(ptr, order) (void*)c89atomic_load_explicit_32((volatile c89atomic_uint32*)ptr, order)
#define c89atomic_store_explicit_ptr(dst, src, order) (void*)c89atomic_store_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)src, order)
#define c89atomic_exchange_explicit_ptr(dst, src, order) (void*)c89atomic_exchange_explicit_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)src, order)
#define c89atomic_compare_exchange_strong_explicit_ptr(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_strong_explicit_32((volatile c89atomic_uint32*)dst, (volatile c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder)
#define c89atomic_compare_exchange_weak_explicit_ptr(dst, expected, desired, successOrder, failureOrder) c89atomic_compare_exchange_weak_explicit_32((volatile c89atomic_uint32*)dst, (volatile c89atomic_uint32*)expected, (c89atomic_uint32)desired, successOrder, failureOrder)
#define c89atomic_compare_and_swap_ptr(dst, expected, desired) (void*)c89atomic_compare_and_swap_32((volatile c89atomic_uint32*)dst, (c89atomic_uint32)expected, (c89atomic_uint32)desired)
#else
error "Unsupported architecture."
#endif
#define c89atomic_flag_test_and_set(ptr) c89atomic_flag_test_and_set_explicit(ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_flag_clear(ptr) c89atomic_flag_clear_explicit(ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_test_and_set_8( ptr) c89atomic_test_and_set_explicit_8 (ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_test_and_set_16(ptr) c89atomic_test_and_set_explicit_16(ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_test_and_set_32(ptr) c89atomic_test_and_set_explicit_32(ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_test_and_set_64(ptr) c89atomic_test_and_set_explicit_64(ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_clear_8( ptr) c89atomic_clear_explicit_8 (ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_clear_16(ptr) c89atomic_clear_explicit_16(ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_clear_32(ptr) c89atomic_clear_explicit_32(ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_clear_64(ptr) c89atomic_clear_explicit_64(ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_store_8( dst, src) c89atomic_store_explicit_8 ( dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_store_16( dst, src) c89atomic_store_explicit_16( dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_store_32( dst, src) c89atomic_store_explicit_32( dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_store_64( dst, src) c89atomic_store_explicit_64( dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_store_ptr(dst, src) c89atomic_store_explicit_ptr(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_load_8( ptr) c89atomic_load_explicit_8 ( ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_load_16( ptr) c89atomic_load_explicit_16( ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_load_32( ptr) c89atomic_load_explicit_32( ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_load_64( ptr) c89atomic_load_explicit_64( ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_load_ptr(ptr) c89atomic_load_explicit_ptr(ptr, c89atomic_memory_order_seq_cst)
#define c89atomic_exchange_8( dst, src) c89atomic_exchange_explicit_8 ( dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_exchange_16( dst, src) c89atomic_exchange_explicit_16( dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_exchange_32( dst, src) c89atomic_exchange_explicit_32( dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_exchange_64( dst, src) c89atomic_exchange_explicit_64( dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_exchange_ptr(dst, src) c89atomic_exchange_explicit_ptr(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_strong_8( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_8 ( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_strong_16( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_16( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_strong_32( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_32( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_strong_64( dst, expected, desired) c89atomic_compare_exchange_strong_explicit_64( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_strong_ptr(dst, expected, desired) c89atomic_compare_exchange_strong_explicit_ptr(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_weak_8( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_8 ( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_weak_16( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_16( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_weak_32( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_32( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_weak_64( dst, expected, desired) c89atomic_compare_exchange_weak_explicit_64( dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_compare_exchange_weak_ptr(dst, expected, desired) c89atomic_compare_exchange_weak_explicit_ptr(dst, expected, desired, c89atomic_memory_order_seq_cst, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_add_8( dst, src) c89atomic_fetch_add_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_add_16(dst, src) c89atomic_fetch_add_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_add_32(dst, src) c89atomic_fetch_add_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_add_64(dst, src) c89atomic_fetch_add_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_sub_8( dst, src) c89atomic_fetch_sub_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_sub_16(dst, src) c89atomic_fetch_sub_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_sub_32(dst, src) c89atomic_fetch_sub_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_sub_64(dst, src) c89atomic_fetch_sub_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_or_8( dst, src) c89atomic_fetch_or_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_or_16(dst, src) c89atomic_fetch_or_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_or_32(dst, src) c89atomic_fetch_or_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_or_64(dst, src) c89atomic_fetch_or_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_xor_8( dst, src) c89atomic_fetch_xor_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_xor_16(dst, src) c89atomic_fetch_xor_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_xor_32(dst, src) c89atomic_fetch_xor_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_xor_64(dst, src) c89atomic_fetch_xor_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_and_8( dst, src) c89atomic_fetch_and_explicit_8 (dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_and_16(dst, src) c89atomic_fetch_and_explicit_16(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_and_32(dst, src) c89atomic_fetch_and_explicit_32(dst, src, c89atomic_memory_order_seq_cst)
#define c89atomic_fetch_and_64(dst, src) c89atomic_fetch_and_explicit_64(dst, src, c89atomic_memory_order_seq_cst)
#if defined(__cplusplus)
}
#endif
#endif
/* c89atomic.h end */
static void* ma__malloc_default(size_t sz, void* pUserData)
{
(void)pUserData;
return MA_MALLOC(sz);
}
static void* ma__realloc_default(void* p, size_t sz, void* pUserData)
{
(void)pUserData;
return MA_REALLOC(p, sz);
}
static void ma__free_default(void* p, void* pUserData)
{
(void)pUserData;
MA_FREE(p);
}
static void* ma__malloc_from_callbacks(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onMalloc != NULL) {
return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
}
/* Try using realloc(). */
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
}
return NULL;
}
static void* ma__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
}
/* Try emulating realloc() in terms of malloc()/free(). */
if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
void* p2;
p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
if (p2 == NULL) {
return NULL;
}
if (p != NULL) {
MA_COPY_MEMORY(p2, p, szOld);
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
return p2;
}
return NULL;
}
static MA_INLINE void* ma__calloc_from_callbacks(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
{
void* p = ma__malloc_from_callbacks(sz, pAllocationCallbacks);
if (p != NULL) {
MA_ZERO_MEMORY(p, sz);
}
return p;
}
static void ma__free_from_callbacks(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (p == NULL || pAllocationCallbacks == NULL) {
return;
}
if (pAllocationCallbacks->onFree != NULL) {
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
}
static ma_allocation_callbacks ma_allocation_callbacks_init_default(void)
{
ma_allocation_callbacks callbacks;
callbacks.pUserData = NULL;
callbacks.onMalloc = ma__malloc_default;
callbacks.onRealloc = ma__realloc_default;
callbacks.onFree = ma__free_default;
return callbacks;
}
static ma_result ma_allocation_callbacks_init_copy(ma_allocation_callbacks* pDst, const ma_allocation_callbacks* pSrc)
{
if (pDst == NULL) {
return MA_INVALID_ARGS;
}
if (pSrc == NULL) {
*pDst = ma_allocation_callbacks_init_default();
} else {
if (pSrc->pUserData == NULL && pSrc->onFree == NULL && pSrc->onMalloc == NULL && pSrc->onRealloc == NULL) {
*pDst = ma_allocation_callbacks_init_default();
} else {
if (pSrc->onFree == NULL || (pSrc->onMalloc == NULL && pSrc->onRealloc == NULL)) {
return MA_INVALID_ARGS; /* Invalid allocation callbacks. */
} else {
*pDst = *pSrc;
}
}
}
return MA_SUCCESS;
}
MA_API ma_uint64 ma_calculate_frame_count_after_resampling(ma_uint32 sampleRateOut, ma_uint32 sampleRateIn, ma_uint64 frameCountIn)
{
/* For robustness we're going to use a resampler object to calculate this since that already has a way of calculating this. */
ma_result result;
ma_uint64 frameCountOut;
ma_resampler_config config;
ma_resampler resampler;
if (sampleRateOut == sampleRateIn) {
return frameCountIn;
}
config = ma_resampler_config_init(ma_format_s16, 1, sampleRateIn, sampleRateOut, ma_resample_algorithm_linear);
result = ma_resampler_init(&config, &resampler);
if (result != MA_SUCCESS) {
return 0;
}
frameCountOut = ma_resampler_get_expected_output_frame_count(&resampler, frameCountIn);
ma_resampler_uninit(&resampler);
return frameCountOut;
}
#ifndef MA_DATA_CONVERTER_STACK_BUFFER_SIZE
#define MA_DATA_CONVERTER_STACK_BUFFER_SIZE 4096
#endif
#if defined(MA_WIN32)
static ma_result ma_result_from_GetLastError(DWORD error)
{
switch (error)
{
case ERROR_SUCCESS: return MA_SUCCESS;
case ERROR_PATH_NOT_FOUND: return MA_DOES_NOT_EXIST;
case ERROR_TOO_MANY_OPEN_FILES: return MA_TOO_MANY_OPEN_FILES;
case ERROR_NOT_ENOUGH_MEMORY: return MA_OUT_OF_MEMORY;
case ERROR_DISK_FULL: return MA_NO_SPACE;
case ERROR_HANDLE_EOF: return MA_END_OF_FILE;
case ERROR_NEGATIVE_SEEK: return MA_BAD_SEEK;
case ERROR_INVALID_PARAMETER: return MA_INVALID_ARGS;
case ERROR_ACCESS_DENIED: return MA_ACCESS_DENIED;
case ERROR_SEM_TIMEOUT: return MA_TIMEOUT;
case ERROR_FILE_NOT_FOUND: return MA_DOES_NOT_EXIST;
default: break;
}
return MA_ERROR;
}
#endif /* MA_WIN32 */
/*******************************************************************************
Threading
*******************************************************************************/
#ifdef MA_WIN32
#define MA_THREADCALL WINAPI
typedef unsigned long ma_thread_result;
#else
#define MA_THREADCALL
typedef void* ma_thread_result;
#endif
typedef ma_thread_result (MA_THREADCALL * ma_thread_entry_proc)(void* pData);
#ifdef MA_WIN32
static int ma_thread_priority_to_win32(ma_thread_priority priority)
{
switch (priority) {
case ma_thread_priority_idle: return THREAD_PRIORITY_IDLE;
case ma_thread_priority_lowest: return THREAD_PRIORITY_LOWEST;
case ma_thread_priority_low: return THREAD_PRIORITY_BELOW_NORMAL;
case ma_thread_priority_normal: return THREAD_PRIORITY_NORMAL;
case ma_thread_priority_high: return THREAD_PRIORITY_ABOVE_NORMAL;
case ma_thread_priority_highest: return THREAD_PRIORITY_HIGHEST;
case ma_thread_priority_realtime: return THREAD_PRIORITY_TIME_CRITICAL;
default: return THREAD_PRIORITY_NORMAL;
}
}
static ma_result ma_thread_create__win32(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData)
{
*pThread = CreateThread(NULL, stackSize, entryProc, pData, 0, NULL);
if (*pThread == NULL) {
return ma_result_from_GetLastError(GetLastError());
}
SetThreadPriority((HANDLE)*pThread, ma_thread_priority_to_win32(priority));
return MA_SUCCESS;
}
static void ma_thread_wait__win32(ma_thread* pThread)
{
WaitForSingleObject((HANDLE)*pThread, INFINITE);
}
static void ma_sleep__win32(ma_uint32 milliseconds)
{
Sleep((DWORD)milliseconds);
}
static ma_result ma_mutex_init__win32(ma_mutex* pMutex)
{
*pMutex = CreateEventW(NULL, FALSE, TRUE, NULL);
if (*pMutex == NULL) {
return ma_result_from_GetLastError(GetLastError());
}
return MA_SUCCESS;
}
static void ma_mutex_uninit__win32(ma_mutex* pMutex)
{
CloseHandle((HANDLE)*pMutex);
}
static void ma_mutex_lock__win32(ma_mutex* pMutex)
{
WaitForSingleObject((HANDLE)*pMutex, INFINITE);
}
static void ma_mutex_unlock__win32(ma_mutex* pMutex)
{
SetEvent((HANDLE)*pMutex);
}
static ma_result ma_event_init__win32(ma_event* pEvent)
{
*pEvent = CreateEventW(NULL, FALSE, FALSE, NULL);
if (*pEvent == NULL) {
return ma_result_from_GetLastError(GetLastError());
}
return MA_SUCCESS;
}
static void ma_event_uninit__win32(ma_event* pEvent)
{
CloseHandle((HANDLE)*pEvent);
}
static ma_result ma_event_wait__win32(ma_event* pEvent)
{
DWORD result = WaitForSingleObject((HANDLE)*pEvent, INFINITE);
if (result == WAIT_OBJECT_0) {
return MA_SUCCESS;
}
if (result == WAIT_TIMEOUT) {
return MA_TIMEOUT;
}
return ma_result_from_GetLastError(GetLastError());
}
static ma_result ma_event_signal__win32(ma_event* pEvent)
{
BOOL result = SetEvent((HANDLE)*pEvent);
if (result == 0) {
return ma_result_from_GetLastError(GetLastError());
}
return MA_SUCCESS;
}
static ma_result ma_semaphore_init__win32(int initialValue, ma_semaphore* pSemaphore)
{
*pSemaphore = CreateSemaphoreW(NULL, (LONG)initialValue, LONG_MAX, NULL);
if (*pSemaphore == NULL) {
return ma_result_from_GetLastError(GetLastError());
}
return MA_SUCCESS;
}
static void ma_semaphore_uninit__win32(ma_semaphore* pSemaphore)
{
CloseHandle((HANDLE)*pSemaphore);
}
static ma_result ma_semaphore_wait__win32(ma_semaphore* pSemaphore)
{
DWORD result = WaitForSingleObject((HANDLE)*pSemaphore, INFINITE);
if (result == WAIT_OBJECT_0) {
return MA_SUCCESS;
}
if (result == WAIT_TIMEOUT) {
return MA_TIMEOUT;
}
return ma_result_from_GetLastError(GetLastError());
}
static ma_result ma_semaphore_release__win32(ma_semaphore* pSemaphore)
{
BOOL result = ReleaseSemaphore((HANDLE)*pSemaphore, 1, NULL);
if (result == 0) {
return ma_result_from_GetLastError(GetLastError());
}
return MA_SUCCESS;
}
#endif
#ifdef MA_POSIX
#include <sched.h>
#include <sys/time.h>
static ma_result ma_thread_create__posix(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData)
{
int result;
pthread_attr_t* pAttr = NULL;
#if !defined(__EMSCRIPTEN__)
/* Try setting the thread priority. It's not critical if anything fails here. */
pthread_attr_t attr;
if (pthread_attr_init(&attr) == 0) {
int scheduler = -1;
if (priority == ma_thread_priority_idle) {
#ifdef SCHED_IDLE
if (pthread_attr_setschedpolicy(&attr, SCHED_IDLE) == 0) {
scheduler = SCHED_IDLE;
}
#endif
} else if (priority == ma_thread_priority_realtime) {
#ifdef SCHED_FIFO
if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) == 0) {
scheduler = SCHED_FIFO;
}
#endif
#ifdef MA_LINUX
} else {
scheduler = sched_getscheduler(0);
#endif
}
if (stackSize > 0) {
pthread_attr_setstacksize(&attr, stackSize);
}
if (scheduler != -1) {
int priorityMin = sched_get_priority_min(scheduler);
int priorityMax = sched_get_priority_max(scheduler);
int priorityStep = (priorityMax - priorityMin) / 7; /* 7 = number of priorities supported by miniaudio. */
struct sched_param sched;
if (pthread_attr_getschedparam(&attr, &sched) == 0) {
if (priority == ma_thread_priority_idle) {
sched.sched_priority = priorityMin;
} else if (priority == ma_thread_priority_realtime) {
sched.sched_priority = priorityMax;
} else {
sched.sched_priority += ((int)priority + 5) * priorityStep; /* +5 because the lowest priority is -5. */
if (sched.sched_priority < priorityMin) {
sched.sched_priority = priorityMin;
}
if (sched.sched_priority > priorityMax) {
sched.sched_priority = priorityMax;
}
}
if (pthread_attr_setschedparam(&attr, &sched) == 0) {
pAttr = &attr;
}
}
}
pthread_attr_destroy(&attr);
}
#endif
result = pthread_create(pThread, pAttr, entryProc, pData);
if (result != 0) {
return ma_result_from_errno(result);
}
return MA_SUCCESS;
}
static void ma_thread_wait__posix(ma_thread* pThread)
{
pthread_join(*pThread, NULL);
}
#if !defined(MA_EMSCRIPTEN)
static void ma_sleep__posix(ma_uint32 milliseconds)
{
#ifdef MA_EMSCRIPTEN
(void)milliseconds;
MA_ASSERT(MA_FALSE); /* The Emscripten build should never sleep. */
#else
#if _POSIX_C_SOURCE >= 199309L
struct timespec ts;
ts.tv_sec = milliseconds / 1000;
ts.tv_nsec = milliseconds % 1000 * 1000000;
nanosleep(&ts, NULL);
#else
struct timeval tv;
tv.tv_sec = milliseconds / 1000;
tv.tv_usec = milliseconds % 1000 * 1000;
select(0, NULL, NULL, NULL, &tv);
#endif
#endif
}
#endif /* MA_EMSCRIPTEN */
static ma_result ma_mutex_init__posix(ma_mutex* pMutex)
{
int result = pthread_mutex_init((pthread_mutex_t*)pMutex, NULL);
if (result != 0) {
return ma_result_from_errno(result);
}
return MA_SUCCESS;
}
static void ma_mutex_uninit__posix(ma_mutex* pMutex)
{
pthread_mutex_destroy((pthread_mutex_t*)pMutex);
}
static void ma_mutex_lock__posix(ma_mutex* pMutex)
{
pthread_mutex_lock((pthread_mutex_t*)pMutex);
}
static void ma_mutex_unlock__posix(ma_mutex* pMutex)
{
pthread_mutex_unlock((pthread_mutex_t*)pMutex);
}
static ma_result ma_event_init__posix(ma_event* pEvent)
{
int result;
result = pthread_mutex_init(&pEvent->lock, NULL);
if (result != 0) {
return ma_result_from_errno(result);
}
result = pthread_cond_init(&pEvent->cond, NULL);
if (result != 0) {
pthread_mutex_destroy(&pEvent->lock);
return ma_result_from_errno(result);
}
pEvent->value = 0;
return MA_SUCCESS;
}
static void ma_event_uninit__posix(ma_event* pEvent)
{
pthread_cond_destroy(&pEvent->cond);
pthread_mutex_destroy(&pEvent->lock);
}
static ma_result ma_event_wait__posix(ma_event* pEvent)
{
pthread_mutex_lock(&pEvent->lock);
{
while (pEvent->value == 0) {
pthread_cond_wait(&pEvent->cond, &pEvent->lock);
}
pEvent->value = 0; /* Auto-reset. */
}
pthread_mutex_unlock(&pEvent->lock);
return MA_SUCCESS;
}
static ma_result ma_event_signal__posix(ma_event* pEvent)
{
pthread_mutex_lock(&pEvent->lock);
{
pEvent->value = 1;
pthread_cond_signal(&pEvent->cond);
}
pthread_mutex_unlock(&pEvent->lock);
return MA_SUCCESS;
}
static ma_result ma_semaphore_init__posix(int initialValue, ma_semaphore* pSemaphore)
{
int result;
if (pSemaphore == NULL) {
return MA_INVALID_ARGS;
}
pSemaphore->value = initialValue;
result = pthread_mutex_init(&pSemaphore->lock, NULL);
if (result != 0) {
return ma_result_from_errno(result); /* Failed to create mutex. */
}
result = pthread_cond_init(&pSemaphore->cond, NULL);
if (result != 0) {
pthread_mutex_destroy(&pSemaphore->lock);
return ma_result_from_errno(result); /* Failed to create condition variable. */
}
return MA_SUCCESS;
}
static void ma_semaphore_uninit__posix(ma_semaphore* pSemaphore)
{
if (pSemaphore == NULL) {
return;
}
pthread_cond_destroy(&pSemaphore->cond);
pthread_mutex_destroy(&pSemaphore->lock);
}
static ma_result ma_semaphore_wait__posix(ma_semaphore* pSemaphore)
{
if (pSemaphore == NULL) {
return MA_INVALID_ARGS;
}
pthread_mutex_lock(&pSemaphore->lock);
{
/* We need to wait on a condition variable before escaping. We can't return from this function until the semaphore has been signaled. */
while (pSemaphore->value == 0) {
pthread_cond_wait(&pSemaphore->cond, &pSemaphore->lock);
}
pSemaphore->value -= 1;
}
pthread_mutex_unlock(&pSemaphore->lock);
return MA_SUCCESS;
}
static ma_result ma_semaphore_release__posix(ma_semaphore* pSemaphore)
{
if (pSemaphore == NULL) {
return MA_INVALID_ARGS;
}
pthread_mutex_lock(&pSemaphore->lock);
{
pSemaphore->value += 1;
pthread_cond_signal(&pSemaphore->cond);
}
pthread_mutex_unlock(&pSemaphore->lock);
return MA_SUCCESS;
}
#endif
static ma_result ma_thread_create(ma_thread* pThread, ma_thread_priority priority, size_t stackSize, ma_thread_entry_proc entryProc, void* pData)
{
if (pThread == NULL || entryProc == NULL) {
return MA_FALSE;
}
#ifdef MA_WIN32
return ma_thread_create__win32(pThread, priority, stackSize, entryProc, pData);
#endif
#ifdef MA_POSIX
return ma_thread_create__posix(pThread, priority, stackSize, entryProc, pData);
#endif
}
static void ma_thread_wait(ma_thread* pThread)
{
if (pThread == NULL) {
return;
}
#ifdef MA_WIN32
ma_thread_wait__win32(pThread);
#endif
#ifdef MA_POSIX
ma_thread_wait__posix(pThread);
#endif
}
#if !defined(MA_EMSCRIPTEN)
static void ma_sleep(ma_uint32 milliseconds)
{
#ifdef MA_WIN32
ma_sleep__win32(milliseconds);
#endif
#ifdef MA_POSIX
ma_sleep__posix(milliseconds);
#endif
}
#endif
#if !defined(MA_EMSCRIPTEN)
static MA_INLINE void ma_yield()
{
#if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
/* x86/x64 */
#if defined(_MSC_VER) && !defined(__clang__)
#if _MSC_VER >= 1400
_mm_pause();
#else
__asm pause;
#endif
#else
__asm__ __volatile__ ("pause");
#endif
#elif (defined(__arm__) && defined(__ARM_ARCH) && __ARM_ARCH >= 6) || (defined(_M_ARM) && _M_ARM >= 6)
/* ARM */
#if defined(_MSC_VER)
/* Apparently there is a __yield() intrinsic that's compatible with ARM, but I cannot find documentation for it nor can I find where it's declared. */
__yield();
#else
__asm__ __volatile__ ("yield");
#endif
#else
/* Unknown or unsupported architecture. No-op. */
#endif
}
#endif
MA_API ma_result ma_mutex_init(ma_mutex* pMutex)
{
if (pMutex == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return MA_INVALID_ARGS;
}
#ifdef MA_WIN32
return ma_mutex_init__win32(pMutex);
#endif
#ifdef MA_POSIX
return ma_mutex_init__posix(pMutex);
#endif
}
MA_API void ma_mutex_uninit(ma_mutex* pMutex)
{
if (pMutex == NULL) {
return;
}
#ifdef MA_WIN32
ma_mutex_uninit__win32(pMutex);
#endif
#ifdef MA_POSIX
ma_mutex_uninit__posix(pMutex);
#endif
}
MA_API void ma_mutex_lock(ma_mutex* pMutex)
{
if (pMutex == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return;
}
#ifdef MA_WIN32
ma_mutex_lock__win32(pMutex);
#endif
#ifdef MA_POSIX
ma_mutex_lock__posix(pMutex);
#endif
}
MA_API void ma_mutex_unlock(ma_mutex* pMutex)
{
if (pMutex == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return;
}
#ifdef MA_WIN32
ma_mutex_unlock__win32(pMutex);
#endif
#ifdef MA_POSIX
ma_mutex_unlock__posix(pMutex);
#endif
}
MA_API ma_result ma_event_init(ma_event* pEvent)
{
if (pEvent == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return MA_INVALID_ARGS;
}
#ifdef MA_WIN32
return ma_event_init__win32(pEvent);
#endif
#ifdef MA_POSIX
return ma_event_init__posix(pEvent);
#endif
}
#if 0
static ma_result ma_event_alloc_and_init(ma_event** ppEvent, ma_allocation_callbacks* pAllocationCallbacks)
{
ma_result result;
ma_event* pEvent;
if (ppEvent == NULL) {
return MA_INVALID_ARGS;
}
*ppEvent = NULL;
pEvent = ma_malloc(sizeof(*pEvent), pAllocationCallbacks/*, MA_ALLOCATION_TYPE_EVENT*/);
if (pEvent == NULL) {
return MA_OUT_OF_MEMORY;
}
result = ma_event_init(pEvent);
if (result != MA_SUCCESS) {
ma_free(pEvent, pAllocationCallbacks/*, MA_ALLOCATION_TYPE_EVENT*/);
return result;
}
*ppEvent = pEvent;
return result;
}
#endif
MA_API void ma_event_uninit(ma_event* pEvent)
{
if (pEvent == NULL) {
return;
}
#ifdef MA_WIN32
ma_event_uninit__win32(pEvent);
#endif
#ifdef MA_POSIX
ma_event_uninit__posix(pEvent);
#endif
}
#if 0
static void ma_event_uninit_and_free(ma_event* pEvent, ma_allocation_callbacks* pAllocationCallbacks)
{
if (pEvent == NULL) {
return;
}
ma_event_uninit(pEvent);
ma_free(pEvent, pAllocationCallbacks/*, MA_ALLOCATION_TYPE_EVENT*/);
}
#endif
MA_API ma_result ma_event_wait(ma_event* pEvent)
{
if (pEvent == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return MA_INVALID_ARGS;
}
#ifdef MA_WIN32
return ma_event_wait__win32(pEvent);
#endif
#ifdef MA_POSIX
return ma_event_wait__posix(pEvent);
#endif
}
MA_API ma_result ma_event_signal(ma_event* pEvent)
{
if (pEvent == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return MA_INVALID_ARGS;
}
#ifdef MA_WIN32
return ma_event_signal__win32(pEvent);
#endif
#ifdef MA_POSIX
return ma_event_signal__posix(pEvent);
#endif
}
MA_API ma_result ma_semaphore_init(int initialValue, ma_semaphore* pSemaphore)
{
if (pSemaphore == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return MA_INVALID_ARGS;
}
#ifdef MA_WIN32
return ma_semaphore_init__win32(initialValue, pSemaphore);
#endif
#ifdef MA_POSIX
return ma_semaphore_init__posix(initialValue, pSemaphore);
#endif
}
MA_API void ma_semaphore_uninit(ma_semaphore* pSemaphore)
{
if (pSemaphore == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return;
}
#ifdef MA_WIN32
ma_semaphore_uninit__win32(pSemaphore);
#endif
#ifdef MA_POSIX
ma_semaphore_uninit__posix(pSemaphore);
#endif
}
MA_API ma_result ma_semaphore_wait(ma_semaphore* pSemaphore)
{
if (pSemaphore == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return MA_INVALID_ARGS;
}
#ifdef MA_WIN32
return ma_semaphore_wait__win32(pSemaphore);
#endif
#ifdef MA_POSIX
return ma_semaphore_wait__posix(pSemaphore);
#endif
}
MA_API ma_result ma_semaphore_release(ma_semaphore* pSemaphore)
{
if (pSemaphore == NULL) {
MA_ASSERT(MA_FALSE); /* Fire an assert to the caller is aware of this bug. */
return MA_INVALID_ARGS;
}
#ifdef MA_WIN32
return ma_semaphore_release__win32(pSemaphore);
#endif
#ifdef MA_POSIX
return ma_semaphore_release__posix(pSemaphore);
#endif
}
/************************************************************************************************************************************************************
*************************************************************************************************************************************************************
DEVICE I/O
==========
*************************************************************************************************************************************************************
************************************************************************************************************************************************************/
#ifndef MA_NO_DEVICE_IO
#ifdef MA_WIN32
#include <objbase.h>
#include <mmreg.h>
#include <mmsystem.h>
#endif
#if defined(MA_APPLE) && (__MAC_OS_X_VERSION_MIN_REQUIRED < 101200)
#include <mach/mach_time.h> /* For mach_absolute_time() */
#endif
#ifdef MA_POSIX
#include <sys/types.h>
#include <unistd.h>
#include <dlfcn.h>
#endif
/*
Unfortunately using runtime linking for pthreads causes problems. This has occurred for me when testing on FreeBSD. When
using runtime linking, deadlocks can occur (for me it happens when loading data from fread()). It turns out that doing
compile-time linking fixes this. I'm not sure why this happens, but the safest way I can think of to fix this is to simply
disable runtime linking by default. To enable runtime linking, #define this before the implementation of this file. I am
not officially supporting this, but I'm leaving it here in case it's useful for somebody, somewhere.
*/
/*#define MA_USE_RUNTIME_LINKING_FOR_PTHREAD*/
/* Disable run-time linking on certain backends. */
#ifndef MA_NO_RUNTIME_LINKING
#if defined(MA_ANDROID) || defined(MA_EMSCRIPTEN)
#define MA_NO_RUNTIME_LINKING
#endif
#endif
/*
Check if we have the necessary development packages for each backend at the top so we can use this to determine whether or not
certain unused functions and variables can be excluded from the build to avoid warnings.
*/
#ifdef MA_ENABLE_WASAPI
#define MA_HAS_WASAPI /* Every compiler should support WASAPI */
#endif
#ifdef MA_ENABLE_DSOUND
#define MA_HAS_DSOUND /* Every compiler should support DirectSound. */
#endif
#ifdef MA_ENABLE_WINMM
#define MA_HAS_WINMM /* Every compiler I'm aware of supports WinMM. */
#endif
#ifdef MA_ENABLE_ALSA
#define MA_HAS_ALSA
#ifdef MA_NO_RUNTIME_LINKING
#ifdef __has_include
#if !__has_include(<alsa/asoundlib.h>)
#undef MA_HAS_ALSA
#endif
#endif
#endif
#endif
#ifdef MA_ENABLE_PULSEAUDIO
#define MA_HAS_PULSEAUDIO
#ifdef MA_NO_RUNTIME_LINKING
#ifdef __has_include
#if !__has_include(<pulse/pulseaudio.h>)
#undef MA_HAS_PULSEAUDIO
#endif
#endif
#endif
#endif
#ifdef MA_ENABLE_JACK
#define MA_HAS_JACK
#ifdef MA_NO_RUNTIME_LINKING
#ifdef __has_include
#if !__has_include(<jack/jack.h>)
#undef MA_HAS_JACK
#endif
#endif
#endif
#endif
#ifdef MA_ENABLE_COREAUDIO
#define MA_HAS_COREAUDIO
#endif
#ifdef MA_ENABLE_SNDIO
#define MA_HAS_SNDIO
#endif
#ifdef MA_ENABLE_AUDIO4
#define MA_HAS_AUDIO4
#endif
#ifdef MA_ENABLE_OSS
#define MA_HAS_OSS
#endif
#ifdef MA_ENABLE_AAUDIO
#define MA_HAS_AAUDIO
#endif
#ifdef MA_ENABLE_OPENSL
#define MA_HAS_OPENSL
#endif
#ifdef MA_ENABLE_WEBAUDIO
#define MA_HAS_WEBAUDIO
#endif
#ifdef MA_ENABLE_NULL
#define MA_HAS_NULL /* Everything supports the null backend. */
#endif
MA_API const char* ma_get_backend_name(ma_backend backend)
{
switch (backend)
{
case ma_backend_wasapi: return "WASAPI";
case ma_backend_dsound: return "DirectSound";
case ma_backend_winmm: return "WinMM";
case ma_backend_coreaudio: return "Core Audio";
case ma_backend_sndio: return "sndio";
case ma_backend_audio4: return "audio(4)";
case ma_backend_oss: return "OSS";
case ma_backend_pulseaudio: return "PulseAudio";
case ma_backend_alsa: return "ALSA";
case ma_backend_jack: return "JACK";
case ma_backend_aaudio: return "AAudio";
case ma_backend_opensl: return "OpenSL|ES";
case ma_backend_webaudio: return "Web Audio";
case ma_backend_null: return "Null";
default: return "Unknown";
}
}
MA_API ma_bool32 ma_is_loopback_supported(ma_backend backend)
{
switch (backend)
{
case ma_backend_wasapi: return MA_TRUE;
case ma_backend_dsound: return MA_FALSE;
case ma_backend_winmm: return MA_FALSE;
case ma_backend_coreaudio: return MA_FALSE;
case ma_backend_sndio: return MA_FALSE;
case ma_backend_audio4: return MA_FALSE;
case ma_backend_oss: return MA_FALSE;
case ma_backend_pulseaudio: return MA_FALSE;
case ma_backend_alsa: return MA_FALSE;
case ma_backend_jack: return MA_FALSE;
case ma_backend_aaudio: return MA_FALSE;
case ma_backend_opensl: return MA_FALSE;
case ma_backend_webaudio: return MA_FALSE;
case ma_backend_null: return MA_FALSE;
default: return MA_FALSE;
}
}
#ifdef MA_WIN32
/* WASAPI error codes. */
#define MA_AUDCLNT_E_NOT_INITIALIZED ((HRESULT)0x88890001)
#define MA_AUDCLNT_E_ALREADY_INITIALIZED ((HRESULT)0x88890002)
#define MA_AUDCLNT_E_WRONG_ENDPOINT_TYPE ((HRESULT)0x88890003)
#define MA_AUDCLNT_E_DEVICE_INVALIDATED ((HRESULT)0x88890004)
#define MA_AUDCLNT_E_NOT_STOPPED ((HRESULT)0x88890005)
#define MA_AUDCLNT_E_BUFFER_TOO_LARGE ((HRESULT)0x88890006)
#define MA_AUDCLNT_E_OUT_OF_ORDER ((HRESULT)0x88890007)
#define MA_AUDCLNT_E_UNSUPPORTED_FORMAT ((HRESULT)0x88890008)
#define MA_AUDCLNT_E_INVALID_SIZE ((HRESULT)0x88890009)
#define MA_AUDCLNT_E_DEVICE_IN_USE ((HRESULT)0x8889000A)
#define MA_AUDCLNT_E_BUFFER_OPERATION_PENDING ((HRESULT)0x8889000B)
#define MA_AUDCLNT_E_THREAD_NOT_REGISTERED ((HRESULT)0x8889000C)
#define MA_AUDCLNT_E_NO_SINGLE_PROCESS ((HRESULT)0x8889000D)
#define MA_AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED ((HRESULT)0x8889000E)
#define MA_AUDCLNT_E_ENDPOINT_CREATE_FAILED ((HRESULT)0x8889000F)
#define MA_AUDCLNT_E_SERVICE_NOT_RUNNING ((HRESULT)0x88890010)
#define MA_AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED ((HRESULT)0x88890011)
#define MA_AUDCLNT_E_EXCLUSIVE_MODE_ONLY ((HRESULT)0x88890012)
#define MA_AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL ((HRESULT)0x88890013)
#define MA_AUDCLNT_E_EVENTHANDLE_NOT_SET ((HRESULT)0x88890014)
#define MA_AUDCLNT_E_INCORRECT_BUFFER_SIZE ((HRESULT)0x88890015)
#define MA_AUDCLNT_E_BUFFER_SIZE_ERROR ((HRESULT)0x88890016)
#define MA_AUDCLNT_E_CPUUSAGE_EXCEEDED ((HRESULT)0x88890017)
#define MA_AUDCLNT_E_BUFFER_ERROR ((HRESULT)0x88890018)
#define MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED ((HRESULT)0x88890019)
#define MA_AUDCLNT_E_INVALID_DEVICE_PERIOD ((HRESULT)0x88890020)
#define MA_AUDCLNT_E_INVALID_STREAM_FLAG ((HRESULT)0x88890021)
#define MA_AUDCLNT_E_ENDPOINT_OFFLOAD_NOT_CAPABLE ((HRESULT)0x88890022)
#define MA_AUDCLNT_E_OUT_OF_OFFLOAD_RESOURCES ((HRESULT)0x88890023)
#define MA_AUDCLNT_E_OFFLOAD_MODE_ONLY ((HRESULT)0x88890024)
#define MA_AUDCLNT_E_NONOFFLOAD_MODE_ONLY ((HRESULT)0x88890025)
#define MA_AUDCLNT_E_RESOURCES_INVALIDATED ((HRESULT)0x88890026)
#define MA_AUDCLNT_E_RAW_MODE_UNSUPPORTED ((HRESULT)0x88890027)
#define MA_AUDCLNT_E_ENGINE_PERIODICITY_LOCKED ((HRESULT)0x88890028)
#define MA_AUDCLNT_E_ENGINE_FORMAT_LOCKED ((HRESULT)0x88890029)
#define MA_AUDCLNT_E_HEADTRACKING_ENABLED ((HRESULT)0x88890030)
#define MA_AUDCLNT_E_HEADTRACKING_UNSUPPORTED ((HRESULT)0x88890040)
#define MA_AUDCLNT_S_BUFFER_EMPTY ((HRESULT)0x08890001)
#define MA_AUDCLNT_S_THREAD_ALREADY_REGISTERED ((HRESULT)0x08890002)
#define MA_AUDCLNT_S_POSITION_STALLED ((HRESULT)0x08890003)
#define MA_DS_OK ((HRESULT)0)
#define MA_DS_NO_VIRTUALIZATION ((HRESULT)0x0878000A)
#define MA_DSERR_ALLOCATED ((HRESULT)0x8878000A)
#define MA_DSERR_CONTROLUNAVAIL ((HRESULT)0x8878001E)
#define MA_DSERR_INVALIDPARAM ((HRESULT)0x80070057) /*E_INVALIDARG*/
#define MA_DSERR_INVALIDCALL ((HRESULT)0x88780032)
#define MA_DSERR_GENERIC ((HRESULT)0x80004005) /*E_FAIL*/
#define MA_DSERR_PRIOLEVELNEEDED ((HRESULT)0x88780046)
#define MA_DSERR_OUTOFMEMORY ((HRESULT)0x8007000E) /*E_OUTOFMEMORY*/
#define MA_DSERR_BADFORMAT ((HRESULT)0x88780064)
#define MA_DSERR_UNSUPPORTED ((HRESULT)0x80004001) /*E_NOTIMPL*/
#define MA_DSERR_NODRIVER ((HRESULT)0x88780078)
#define MA_DSERR_ALREADYINITIALIZED ((HRESULT)0x88780082)
#define MA_DSERR_NOAGGREGATION ((HRESULT)0x80040110) /*CLASS_E_NOAGGREGATION*/
#define MA_DSERR_BUFFERLOST ((HRESULT)0x88780096)
#define MA_DSERR_OTHERAPPHASPRIO ((HRESULT)0x887800A0)
#define MA_DSERR_UNINITIALIZED ((HRESULT)0x887800AA)
#define MA_DSERR_NOINTERFACE ((HRESULT)0x80004002) /*E_NOINTERFACE*/
#define MA_DSERR_ACCESSDENIED ((HRESULT)0x80070005) /*E_ACCESSDENIED*/
#define MA_DSERR_BUFFERTOOSMALL ((HRESULT)0x887800B4)
#define MA_DSERR_DS8_REQUIRED ((HRESULT)0x887800BE)
#define MA_DSERR_SENDLOOP ((HRESULT)0x887800C8)
#define MA_DSERR_BADSENDBUFFERGUID ((HRESULT)0x887800D2)
#define MA_DSERR_OBJECTNOTFOUND ((HRESULT)0x88781161)
#define MA_DSERR_FXUNAVAILABLE ((HRESULT)0x887800DC)
static ma_result ma_result_from_HRESULT(HRESULT hr)
{
switch (hr)
{
case NOERROR: return MA_SUCCESS;
/*case S_OK: return MA_SUCCESS;*/
case E_POINTER: return MA_INVALID_ARGS;
case E_UNEXPECTED: return MA_ERROR;
case E_NOTIMPL: return MA_NOT_IMPLEMENTED;
case E_OUTOFMEMORY: return MA_OUT_OF_MEMORY;
case E_INVALIDARG: return MA_INVALID_ARGS;
case E_NOINTERFACE: return MA_API_NOT_FOUND;
case E_HANDLE: return MA_INVALID_ARGS;
case E_ABORT: return MA_ERROR;
case E_FAIL: return MA_ERROR;
case E_ACCESSDENIED: return MA_ACCESS_DENIED;
/* WASAPI */
case MA_AUDCLNT_E_NOT_INITIALIZED: return MA_DEVICE_NOT_INITIALIZED;
case MA_AUDCLNT_E_ALREADY_INITIALIZED: return MA_DEVICE_ALREADY_INITIALIZED;
case MA_AUDCLNT_E_WRONG_ENDPOINT_TYPE: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_DEVICE_INVALIDATED: return MA_UNAVAILABLE;
case MA_AUDCLNT_E_NOT_STOPPED: return MA_DEVICE_NOT_STOPPED;
case MA_AUDCLNT_E_BUFFER_TOO_LARGE: return MA_TOO_BIG;
case MA_AUDCLNT_E_OUT_OF_ORDER: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_UNSUPPORTED_FORMAT: return MA_FORMAT_NOT_SUPPORTED;
case MA_AUDCLNT_E_INVALID_SIZE: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_DEVICE_IN_USE: return MA_BUSY;
case MA_AUDCLNT_E_BUFFER_OPERATION_PENDING: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_THREAD_NOT_REGISTERED: return MA_DOES_NOT_EXIST;
case MA_AUDCLNT_E_NO_SINGLE_PROCESS: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_EXCLUSIVE_MODE_NOT_ALLOWED: return MA_SHARE_MODE_NOT_SUPPORTED;
case MA_AUDCLNT_E_ENDPOINT_CREATE_FAILED: return MA_FAILED_TO_OPEN_BACKEND_DEVICE;
case MA_AUDCLNT_E_SERVICE_NOT_RUNNING: return MA_NOT_CONNECTED;
case MA_AUDCLNT_E_EVENTHANDLE_NOT_EXPECTED: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_EXCLUSIVE_MODE_ONLY: return MA_SHARE_MODE_NOT_SUPPORTED;
case MA_AUDCLNT_E_BUFDURATION_PERIOD_NOT_EQUAL: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_EVENTHANDLE_NOT_SET: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_INCORRECT_BUFFER_SIZE: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_BUFFER_SIZE_ERROR: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_CPUUSAGE_EXCEEDED: return MA_ERROR;
case MA_AUDCLNT_E_BUFFER_ERROR: return MA_ERROR;
case MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_INVALID_DEVICE_PERIOD: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_INVALID_STREAM_FLAG: return MA_INVALID_ARGS;
case MA_AUDCLNT_E_ENDPOINT_OFFLOAD_NOT_CAPABLE: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_OUT_OF_OFFLOAD_RESOURCES: return MA_OUT_OF_MEMORY;
case MA_AUDCLNT_E_OFFLOAD_MODE_ONLY: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_NONOFFLOAD_MODE_ONLY: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_RESOURCES_INVALIDATED: return MA_INVALID_DATA;
case MA_AUDCLNT_E_RAW_MODE_UNSUPPORTED: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_ENGINE_PERIODICITY_LOCKED: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_ENGINE_FORMAT_LOCKED: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_HEADTRACKING_ENABLED: return MA_INVALID_OPERATION;
case MA_AUDCLNT_E_HEADTRACKING_UNSUPPORTED: return MA_INVALID_OPERATION;
case MA_AUDCLNT_S_BUFFER_EMPTY: return MA_NO_SPACE;
case MA_AUDCLNT_S_THREAD_ALREADY_REGISTERED: return MA_ALREADY_EXISTS;
case MA_AUDCLNT_S_POSITION_STALLED: return MA_ERROR;
/* DirectSound */
/*case MA_DS_OK: return MA_SUCCESS;*/ /* S_OK */
case MA_DS_NO_VIRTUALIZATION: return MA_SUCCESS;
case MA_DSERR_ALLOCATED: return MA_ALREADY_IN_USE;
case MA_DSERR_CONTROLUNAVAIL: return MA_INVALID_OPERATION;
/*case MA_DSERR_INVALIDPARAM: return MA_INVALID_ARGS;*/ /* E_INVALIDARG */
case MA_DSERR_INVALIDCALL: return MA_INVALID_OPERATION;
/*case MA_DSERR_GENERIC: return MA_ERROR;*/ /* E_FAIL */
case MA_DSERR_PRIOLEVELNEEDED: return MA_INVALID_OPERATION;
/*case MA_DSERR_OUTOFMEMORY: return MA_OUT_OF_MEMORY;*/ /* E_OUTOFMEMORY */
case MA_DSERR_BADFORMAT: return MA_FORMAT_NOT_SUPPORTED;
/*case MA_DSERR_UNSUPPORTED: return MA_NOT_IMPLEMENTED;*/ /* E_NOTIMPL */
case MA_DSERR_NODRIVER: return MA_FAILED_TO_INIT_BACKEND;
case MA_DSERR_ALREADYINITIALIZED: return MA_DEVICE_ALREADY_INITIALIZED;
case MA_DSERR_NOAGGREGATION: return MA_ERROR;
case MA_DSERR_BUFFERLOST: return MA_UNAVAILABLE;
case MA_DSERR_OTHERAPPHASPRIO: return MA_ACCESS_DENIED;
case MA_DSERR_UNINITIALIZED: return MA_DEVICE_NOT_INITIALIZED;
/*case MA_DSERR_NOINTERFACE: return MA_API_NOT_FOUND;*/ /* E_NOINTERFACE */
/*case MA_DSERR_ACCESSDENIED: return MA_ACCESS_DENIED;*/ /* E_ACCESSDENIED */
case MA_DSERR_BUFFERTOOSMALL: return MA_NO_SPACE;
case MA_DSERR_DS8_REQUIRED: return MA_INVALID_OPERATION;
case MA_DSERR_SENDLOOP: return MA_DEADLOCK;
case MA_DSERR_BADSENDBUFFERGUID: return MA_INVALID_ARGS;
case MA_DSERR_OBJECTNOTFOUND: return MA_NO_DEVICE;
case MA_DSERR_FXUNAVAILABLE: return MA_UNAVAILABLE;
default: return MA_ERROR;
}
}
typedef HRESULT (WINAPI * MA_PFN_CoInitializeEx)(LPVOID pvReserved, DWORD dwCoInit);
typedef void (WINAPI * MA_PFN_CoUninitialize)(void);
typedef HRESULT (WINAPI * MA_PFN_CoCreateInstance)(REFCLSID rclsid, LPUNKNOWN pUnkOuter, DWORD dwClsContext, REFIID riid, LPVOID *ppv);
typedef void (WINAPI * MA_PFN_CoTaskMemFree)(LPVOID pv);
typedef HRESULT (WINAPI * MA_PFN_PropVariantClear)(PROPVARIANT *pvar);
typedef int (WINAPI * MA_PFN_StringFromGUID2)(const GUID* const rguid, LPOLESTR lpsz, int cchMax);
typedef HWND (WINAPI * MA_PFN_GetForegroundWindow)(void);
typedef HWND (WINAPI * MA_PFN_GetDesktopWindow)(void);
/* Microsoft documents these APIs as returning LSTATUS, but the Win32 API shipping with some compilers do not define it. It's just a LONG. */
typedef LONG (WINAPI * MA_PFN_RegOpenKeyExA)(HKEY hKey, LPCSTR lpSubKey, DWORD ulOptions, REGSAM samDesired, PHKEY phkResult);
typedef LONG (WINAPI * MA_PFN_RegCloseKey)(HKEY hKey);
typedef LONG (WINAPI * MA_PFN_RegQueryValueExA)(HKEY hKey, LPCSTR lpValueName, LPDWORD lpReserved, LPDWORD lpType, LPBYTE lpData, LPDWORD lpcbData);
#endif
#define MA_STATE_UNINITIALIZED 0
#define MA_STATE_STOPPED 1 /* The device's default state after initialization. */
#define MA_STATE_STARTED 2 /* The worker thread is in it's main loop waiting for the driver to request or deliver audio data. */
#define MA_STATE_STARTING 3 /* Transitioning from a stopped state to started. */
#define MA_STATE_STOPPING 4 /* Transitioning from a started state to stopped. */
#define MA_DEFAULT_PLAYBACK_DEVICE_NAME "Default Playback Device"
#define MA_DEFAULT_CAPTURE_DEVICE_NAME "Default Capture Device"
MA_API const char* ma_log_level_to_string(ma_uint32 logLevel)
{
switch (logLevel)
{
case MA_LOG_LEVEL_VERBOSE: return "";
case MA_LOG_LEVEL_INFO: return "INFO";
case MA_LOG_LEVEL_WARNING: return "WARNING";
case MA_LOG_LEVEL_ERROR: return "ERROR";
default: return "ERROR";
}
}
/* Posts a log message. */
static void ma_post_log_message(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message)
{
if (pContext == NULL) {
if (pDevice != NULL) {
pContext = pDevice->pContext;
}
}
/* All logs must be output when debug output is enabled. */
#if defined(MA_DEBUG_OUTPUT)
printf("%s: %s\n", ma_log_level_to_string(logLevel), message);
#endif
if (pContext == NULL) {
return;
}
#if defined(MA_LOG_LEVEL)
if (logLevel <= MA_LOG_LEVEL) {
ma_log_proc onLog;
onLog = pContext->logCallback;
if (onLog) {
onLog(pContext, pDevice, logLevel, message);
}
}
#endif
}
/*
We need to emulate _vscprintf() for the VC6 build. This can be more efficient, but since it's only VC6, and it's just a
logging function, I'm happy to keep this simple. In the VC6 build we can implement this in terms of _vsnprintf().
*/
#if defined(_MSC_VER) && _MSC_VER < 1900
int ma_vscprintf(const char* format, va_list args)
{
#if _MSC_VER > 1200
return _vscprintf(format, args);
#else
int result;
char* pTempBuffer = NULL;
size_t tempBufferCap = 1024;
if (format == NULL) {
errno = EINVAL;
return -1;
}
for (;;) {
char* pNewTempBuffer = (char*)ma_realloc(pTempBuffer, tempBufferCap, NULL); /* TODO: Add support for custom memory allocators? */
if (pNewTempBuffer == NULL) {
ma_free(pTempBuffer, NULL);
errno = ENOMEM;
return -1; /* Out of memory. */
}
pTempBuffer = pNewTempBuffer;
result = _vsnprintf(pTempBuffer, tempBufferCap, format, args);
ma_free(pTempBuffer, NULL);
if (result != -1) {
break; /* Got it. */
}
/* Buffer wasn't big enough. Ideally it'd be nice to use an error code to know the reason for sure, but this is reliable enough. */
tempBufferCap *= 2;
}
return result;
#endif
}
#endif
/* Posts a formatted log message. */
static void ma_post_log_messagev(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* pFormat, va_list args)
{
#if (!defined(_MSC_VER) || _MSC_VER >= 1900) && !defined(__STRICT_ANSI__)
{
char pFormattedMessage[1024];
vsnprintf(pFormattedMessage, sizeof(pFormattedMessage), pFormat, args);
ma_post_log_message(pContext, pDevice, logLevel, pFormattedMessage);
}
#else
{
/*
Without snprintf() we need to first measure the string and then heap allocate it. I'm only aware of Visual Studio having support for this without snprintf(), so we'll
need to restrict this branch to Visual Studio. For other compilers we need to just not support formatted logging because I don't want the security risk of overflowing
a fixed sized stack allocated buffer.
*/
#if defined(_MSC_VER) && _MSC_VER >= 1200 /* 1200 = VC6 */
int formattedLen;
va_list args2;
#if _MSC_VER >= 1800
va_copy(args2, args);
#else
args2 = args;
#endif
formattedLen = ma_vscprintf(pFormat, args2);
va_end(args2);
if (formattedLen > 0) {
char* pFormattedMessage = NULL;
ma_allocation_callbacks* pAllocationCallbacks = NULL;
/* Make sure we have a context so we can allocate memory. */
if (pContext == NULL) {
if (pDevice != NULL) {
pContext = pDevice->pContext;
}
}
if (pContext != NULL) {
pAllocationCallbacks = &pContext->allocationCallbacks;
}
pFormattedMessage = (char*)ma_malloc(formattedLen + 1, pAllocationCallbacks);
if (pFormattedMessage != NULL) {
/* We'll get errors on newer versions of Visual Studio if we try to use vsprintf(). */
#if _MSC_VER >= 1400 /* 1400 = Visual Studio 2005 */
vsprintf_s(pFormattedMessage, formattedLen + 1, pFormat, args);
#else
vsprintf(pFormattedMessage, pFormat, args);
#endif
ma_post_log_message(pContext, pDevice, logLevel, pFormattedMessage);
ma_free(pFormattedMessage, pAllocationCallbacks);
}
}
#else
/* Can't do anything because we don't have a safe way of to emulate vsnprintf() without a manual solution. */
(void)pContext;
(void)pDevice;
(void)logLevel;
(void)pFormat;
(void)args;
#endif
}
#endif
}
MA_API void ma_post_log_messagef(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* pFormat, ...)
{
va_list args;
va_start(args, pFormat);
{
ma_post_log_messagev(pContext, pDevice, logLevel, pFormat, args);
}
va_end(args);
}
/* Posts an log message. Throw a breakpoint in here if you're needing to debug. The return value is always "resultCode". */
static ma_result ma_context_post_error(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message, ma_result resultCode)
{
ma_post_log_message(pContext, pDevice, logLevel, message);
return resultCode;
}
static ma_result ma_post_error(ma_device* pDevice, ma_uint32 logLevel, const char* message, ma_result resultCode)
{
return ma_context_post_error(NULL, pDevice, logLevel, message, resultCode);
}
/*******************************************************************************
Timing
*******************************************************************************/
#ifdef MA_WIN32
static LARGE_INTEGER g_ma_TimerFrequency = {{0}};
static void ma_timer_init(ma_timer* pTimer)
{
LARGE_INTEGER counter;
if (g_ma_TimerFrequency.QuadPart == 0) {
QueryPerformanceFrequency(&g_ma_TimerFrequency);
}
QueryPerformanceCounter(&counter);
pTimer->counter = counter.QuadPart;
}
static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
LARGE_INTEGER counter;
if (!QueryPerformanceCounter(&counter)) {
return 0;
}
return (double)(counter.QuadPart - pTimer->counter) / g_ma_TimerFrequency.QuadPart;
}
#elif defined(MA_APPLE) && (__MAC_OS_X_VERSION_MIN_REQUIRED < 101200)
static ma_uint64 g_ma_TimerFrequency = 0;
static void ma_timer_init(ma_timer* pTimer)
{
mach_timebase_info_data_t baseTime;
mach_timebase_info(&baseTime);
g_ma_TimerFrequency = (baseTime.denom * 1e9) / baseTime.numer;
pTimer->counter = mach_absolute_time();
}
static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
ma_uint64 newTimeCounter = mach_absolute_time();
ma_uint64 oldTimeCounter = pTimer->counter;
return (newTimeCounter - oldTimeCounter) / g_ma_TimerFrequency;
}
#elif defined(MA_EMSCRIPTEN)
static MA_INLINE void ma_timer_init(ma_timer* pTimer)
{
pTimer->counterD = emscripten_get_now();
}
static MA_INLINE double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
return (emscripten_get_now() - pTimer->counterD) / 1000; /* Emscripten is in milliseconds. */
}
#else
#if _POSIX_C_SOURCE >= 199309L
#if defined(CLOCK_MONOTONIC)
#define MA_CLOCK_ID CLOCK_MONOTONIC
#else
#define MA_CLOCK_ID CLOCK_REALTIME
#endif
static void ma_timer_init(ma_timer* pTimer)
{
struct timespec newTime;
clock_gettime(MA_CLOCK_ID, &newTime);
pTimer->counter = (newTime.tv_sec * 1000000000) + newTime.tv_nsec;
}
static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
ma_uint64 newTimeCounter;
ma_uint64 oldTimeCounter;
struct timespec newTime;
clock_gettime(MA_CLOCK_ID, &newTime);
newTimeCounter = (newTime.tv_sec * 1000000000) + newTime.tv_nsec;
oldTimeCounter = pTimer->counter;
return (newTimeCounter - oldTimeCounter) / 1000000000.0;
}
#else
static void ma_timer_init(ma_timer* pTimer)
{
struct timeval newTime;
gettimeofday(&newTime, NULL);
pTimer->counter = (newTime.tv_sec * 1000000) + newTime.tv_usec;
}
static double ma_timer_get_time_in_seconds(ma_timer* pTimer)
{
ma_uint64 newTimeCounter;
ma_uint64 oldTimeCounter;
struct timeval newTime;
gettimeofday(&newTime, NULL);
newTimeCounter = (newTime.tv_sec * 1000000) + newTime.tv_usec;
oldTimeCounter = pTimer->counter;
return (newTimeCounter - oldTimeCounter) / 1000000.0;
}
#endif
#endif
/*******************************************************************************
Dynamic Linking
*******************************************************************************/
MA_API ma_handle ma_dlopen(ma_context* pContext, const char* filename)
{
ma_handle handle;
#if MA_LOG_LEVEL >= MA_LOG_LEVEL_VERBOSE
if (pContext != NULL) {
char message[256];
ma_strappend(message, sizeof(message), "Loading library: ", filename);
ma_post_log_message(pContext, NULL, MA_LOG_LEVEL_VERBOSE, message);
}
#endif
#ifdef _WIN32
#ifdef MA_WIN32_DESKTOP
handle = (ma_handle)LoadLibraryA(filename);
#else
/* *sigh* It appears there is no ANSI version of LoadPackagedLibrary()... */
WCHAR filenameW[4096];
if (MultiByteToWideChar(CP_UTF8, 0, filename, -1, filenameW, sizeof(filenameW)) == 0) {
handle = NULL;
} else {
handle = (ma_handle)LoadPackagedLibrary(filenameW, 0);
}
#endif
#else
handle = (ma_handle)dlopen(filename, RTLD_NOW);
#endif
/*
I'm not considering failure to load a library an error nor a warning because seamlessly falling through to a lower-priority
backend is a deliberate design choice. Instead I'm logging it as an informational message.
*/
#if MA_LOG_LEVEL >= MA_LOG_LEVEL_INFO
if (handle == NULL) {
char message[256];
ma_strappend(message, sizeof(message), "Failed to load library: ", filename);
ma_post_log_message(pContext, NULL, MA_LOG_LEVEL_INFO, message);
}
#endif
(void)pContext; /* It's possible for pContext to be unused. */
return handle;
}
MA_API void ma_dlclose(ma_context* pContext, ma_handle handle)
{
#ifdef _WIN32
FreeLibrary((HMODULE)handle);
#else
dlclose((void*)handle);
#endif
(void)pContext;
}
MA_API ma_proc ma_dlsym(ma_context* pContext, ma_handle handle, const char* symbol)
{
ma_proc proc;
#if MA_LOG_LEVEL >= MA_LOG_LEVEL_VERBOSE
if (pContext != NULL) {
char message[256];
ma_strappend(message, sizeof(message), "Loading symbol: ", symbol);
ma_post_log_message(pContext, NULL, MA_LOG_LEVEL_VERBOSE, message);
}
#endif
#ifdef _WIN32
proc = (ma_proc)GetProcAddress((HMODULE)handle, symbol);
#else
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpedantic"
#endif
proc = (ma_proc)dlsym((void*)handle, symbol);
#if defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6))
#pragma GCC diagnostic pop
#endif
#endif
#if MA_LOG_LEVEL >= MA_LOG_LEVEL_WARNING
if (handle == NULL) {
char message[256];
ma_strappend(message, sizeof(message), "Failed to load symbol: ", symbol);
ma_post_log_message(pContext, NULL, MA_LOG_LEVEL_WARNING, message);
}
#endif
(void)pContext; /* It's possible for pContext to be unused. */
return proc;
}
#if 0
static ma_uint32 ma_get_closest_standard_sample_rate(ma_uint32 sampleRateIn)
{
ma_uint32 closestRate = 0;
ma_uint32 closestDiff = 0xFFFFFFFF;
size_t iStandardRate;
for (iStandardRate = 0; iStandardRate < ma_countof(g_maStandardSampleRatePriorities); ++iStandardRate) {
ma_uint32 standardRate = g_maStandardSampleRatePriorities[iStandardRate];
ma_uint32 diff;
if (sampleRateIn > standardRate) {
diff = sampleRateIn - standardRate;
} else {
diff = standardRate - sampleRateIn;
}
if (diff == 0) {
return standardRate; /* The input sample rate is a standard rate. */
}
if (closestDiff > diff) {
closestDiff = diff;
closestRate = standardRate;
}
}
return closestRate;
}
#endif
static void ma_device__on_data(ma_device* pDevice, void* pFramesOut, const void* pFramesIn, ma_uint32 frameCount)
{
float masterVolumeFactor;
masterVolumeFactor = pDevice->masterVolumeFactor;
if (pDevice->onData) {
if (!pDevice->noPreZeroedOutputBuffer && pFramesOut != NULL) {
ma_silence_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels);
}
/* Volume control of input makes things a bit awkward because the input buffer is read-only. We'll need to use a temp buffer and loop in this case. */
if (pFramesIn != NULL && masterVolumeFactor < 1) {
ma_uint8 tempFramesIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 bpfCapture = ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 bpfPlayback = ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint32 totalFramesProcessed = 0;
while (totalFramesProcessed < frameCount) {
ma_uint32 framesToProcessThisIteration = frameCount - totalFramesProcessed;
if (framesToProcessThisIteration > sizeof(tempFramesIn)/bpfCapture) {
framesToProcessThisIteration = sizeof(tempFramesIn)/bpfCapture;
}
ma_copy_and_apply_volume_factor_pcm_frames(tempFramesIn, ma_offset_ptr(pFramesIn, totalFramesProcessed*bpfCapture), framesToProcessThisIteration, pDevice->capture.format, pDevice->capture.channels, masterVolumeFactor);
pDevice->onData(pDevice, ma_offset_ptr(pFramesOut, totalFramesProcessed*bpfPlayback), tempFramesIn, framesToProcessThisIteration);
totalFramesProcessed += framesToProcessThisIteration;
}
} else {
pDevice->onData(pDevice, pFramesOut, pFramesIn, frameCount);
}
/* Volume control and clipping for playback devices. */
if (pFramesOut != NULL) {
if (masterVolumeFactor < 1) {
if (pFramesIn == NULL) { /* <-- In full-duplex situations, the volume will have been applied to the input samples before the data callback. Applying it again post-callback will incorrectly compound it. */
ma_apply_volume_factor_pcm_frames(pFramesOut, frameCount, pDevice->playback.format, pDevice->playback.channels, masterVolumeFactor);
}
}
if (!pDevice->noClip && pDevice->playback.format == ma_format_f32) {
ma_clip_pcm_frames_f32((float*)pFramesOut, frameCount, pDevice->playback.channels);
}
}
}
}
/* A helper function for reading sample data from the client. */
static void ma_device__read_frames_from_client(ma_device* pDevice, ma_uint32 frameCount, void* pFramesOut)
{
MA_ASSERT(pDevice != NULL);
MA_ASSERT(frameCount > 0);
MA_ASSERT(pFramesOut != NULL);
if (pDevice->playback.converter.isPassthrough) {
ma_device__on_data(pDevice, pFramesOut, NULL, frameCount);
} else {
ma_result result;
ma_uint64 totalFramesReadOut;
ma_uint64 totalFramesReadIn;
void* pRunningFramesOut;
totalFramesReadOut = 0;
totalFramesReadIn = 0;
pRunningFramesOut = pFramesOut;
while (totalFramesReadOut < frameCount) {
ma_uint8 pIntermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In client format. */
ma_uint64 intermediaryBufferCap = sizeof(pIntermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint64 framesToReadThisIterationIn;
ma_uint64 framesReadThisIterationIn;
ma_uint64 framesToReadThisIterationOut;
ma_uint64 framesReadThisIterationOut;
ma_uint64 requiredInputFrameCount;
framesToReadThisIterationOut = (frameCount - totalFramesReadOut);
framesToReadThisIterationIn = framesToReadThisIterationOut;
if (framesToReadThisIterationIn > intermediaryBufferCap) {
framesToReadThisIterationIn = intermediaryBufferCap;
}
requiredInputFrameCount = ma_data_converter_get_required_input_frame_count(&pDevice->playback.converter, framesToReadThisIterationOut);
if (framesToReadThisIterationIn > requiredInputFrameCount) {
framesToReadThisIterationIn = requiredInputFrameCount;
}
if (framesToReadThisIterationIn > 0) {
ma_device__on_data(pDevice, pIntermediaryBuffer, NULL, (ma_uint32)framesToReadThisIterationIn);
totalFramesReadIn += framesToReadThisIterationIn;
}
/*
At this point we have our decoded data in input format and now we need to convert to output format. Note that even if we didn't read any
input frames, we still want to try processing frames because there may some output frames generated from cached input data.
*/
framesReadThisIterationIn = framesToReadThisIterationIn;
framesReadThisIterationOut = framesToReadThisIterationOut;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, pIntermediaryBuffer, &framesReadThisIterationIn, pRunningFramesOut, &framesReadThisIterationOut);
if (result != MA_SUCCESS) {
break;
}
totalFramesReadOut += framesReadThisIterationOut;
pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
if (framesReadThisIterationIn == 0 && framesReadThisIterationOut == 0) {
break; /* We're done. */
}
}
}
}
/* A helper for sending sample data to the client. */
static void ma_device__send_frames_to_client(ma_device* pDevice, ma_uint32 frameCountInDeviceFormat, const void* pFramesInDeviceFormat)
{
MA_ASSERT(pDevice != NULL);
MA_ASSERT(frameCountInDeviceFormat > 0);
MA_ASSERT(pFramesInDeviceFormat != NULL);
if (pDevice->capture.converter.isPassthrough) {
ma_device__on_data(pDevice, NULL, pFramesInDeviceFormat, frameCountInDeviceFormat);
} else {
ma_result result;
ma_uint8 pFramesInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint64 framesInClientFormatCap = sizeof(pFramesInClientFormat) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint64 totalDeviceFramesProcessed = 0;
ma_uint64 totalClientFramesProcessed = 0;
const void* pRunningFramesInDeviceFormat = pFramesInDeviceFormat;
/* We just keep going until we've exhaused all of our input frames and cannot generate any more output frames. */
for (;;) {
ma_uint64 deviceFramesProcessedThisIteration;
ma_uint64 clientFramesProcessedThisIteration;
deviceFramesProcessedThisIteration = (frameCountInDeviceFormat - totalDeviceFramesProcessed);
clientFramesProcessedThisIteration = framesInClientFormatCap;
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningFramesInDeviceFormat, &deviceFramesProcessedThisIteration, pFramesInClientFormat, &clientFramesProcessedThisIteration);
if (result != MA_SUCCESS) {
break;
}
if (clientFramesProcessedThisIteration > 0) {
ma_device__on_data(pDevice, NULL, pFramesInClientFormat, (ma_uint32)clientFramesProcessedThisIteration); /* Safe cast. */
}
pRunningFramesInDeviceFormat = ma_offset_ptr(pRunningFramesInDeviceFormat, deviceFramesProcessedThisIteration * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
totalDeviceFramesProcessed += deviceFramesProcessedThisIteration;
totalClientFramesProcessed += clientFramesProcessedThisIteration;
if (deviceFramesProcessedThisIteration == 0 && clientFramesProcessedThisIteration == 0) {
break; /* We're done. */
}
}
}
}
/* We only want to expose ma_device__handle_duplex_callback_capture() and ma_device__handle_duplex_callback_playback() if we have an asynchronous backend enabled. */
#if defined(MA_HAS_JACK) || \
defined(MA_HAS_COREAUDIO) || \
defined(MA_HAS_AAUDIO) || \
defined(MA_HAS_OPENSL) || \
defined(MA_HAS_WEBAUDIO)
static ma_result ma_device__handle_duplex_callback_capture(ma_device* pDevice, ma_uint32 frameCountInDeviceFormat, const void* pFramesInDeviceFormat, ma_pcm_rb* pRB)
{
ma_result result;
ma_uint32 totalDeviceFramesProcessed = 0;
const void* pRunningFramesInDeviceFormat = pFramesInDeviceFormat;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(frameCountInDeviceFormat > 0);
MA_ASSERT(pFramesInDeviceFormat != NULL);
MA_ASSERT(pRB != NULL);
/* Write to the ring buffer. The ring buffer is in the client format which means we need to convert. */
for (;;) {
ma_uint32 framesToProcessInDeviceFormat = (frameCountInDeviceFormat - totalDeviceFramesProcessed);
ma_uint32 framesToProcessInClientFormat = MA_DATA_CONVERTER_STACK_BUFFER_SIZE / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint64 framesProcessedInDeviceFormat;
ma_uint64 framesProcessedInClientFormat;
void* pFramesInClientFormat;
result = ma_pcm_rb_acquire_write(pRB, &framesToProcessInClientFormat, &pFramesInClientFormat);
if (result != MA_SUCCESS) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "Failed to acquire capture PCM frames from ring buffer.", result);
break;
}
if (framesToProcessInClientFormat == 0) {
if (ma_pcm_rb_pointer_distance(pRB) == (ma_int32)ma_pcm_rb_get_subbuffer_size(pRB)) {
break; /* Overrun. Not enough room in the ring buffer for input frame. Excess frames are dropped. */
}
}
/* Convert. */
framesProcessedInDeviceFormat = framesToProcessInDeviceFormat;
framesProcessedInClientFormat = framesToProcessInClientFormat;
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningFramesInDeviceFormat, &framesProcessedInDeviceFormat, pFramesInClientFormat, &framesProcessedInClientFormat);
if (result != MA_SUCCESS) {
break;
}
result = ma_pcm_rb_commit_write(pRB, (ma_uint32)framesProcessedInDeviceFormat, pFramesInClientFormat); /* Safe cast. */
if (result != MA_SUCCESS) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "Failed to commit capture PCM frames to ring buffer.", result);
break;
}
pRunningFramesInDeviceFormat = ma_offset_ptr(pRunningFramesInDeviceFormat, framesProcessedInDeviceFormat * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
totalDeviceFramesProcessed += (ma_uint32)framesProcessedInDeviceFormat; /* Safe cast. */
/* We're done when we're unable to process any client nor device frames. */
if (framesProcessedInClientFormat == 0 && framesProcessedInDeviceFormat == 0) {
break; /* Done. */
}
}
return MA_SUCCESS;
}
static ma_result ma_device__handle_duplex_callback_playback(ma_device* pDevice, ma_uint32 frameCount, void* pFramesInInternalFormat, ma_pcm_rb* pRB)
{
ma_result result;
ma_uint8 playbackFramesInExternalFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 silentInputFrames[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 totalFramesToReadFromClient;
ma_uint32 totalFramesReadFromClient;
ma_uint32 totalFramesReadOut = 0;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(frameCount > 0);
MA_ASSERT(pFramesInInternalFormat != NULL);
MA_ASSERT(pRB != NULL);
/*
Sitting in the ring buffer should be captured data from the capture callback in external format. If there's not enough data in there for
the whole frameCount frames we just use silence instead for the input data.
*/
MA_ZERO_MEMORY(silentInputFrames, sizeof(silentInputFrames));
/* We need to calculate how many output frames are required to be read from the client to completely fill frameCount internal frames. */
totalFramesToReadFromClient = (ma_uint32)ma_data_converter_get_required_input_frame_count(&pDevice->playback.converter, frameCount);
totalFramesReadFromClient = 0;
while (totalFramesReadFromClient < totalFramesToReadFromClient && ma_device_is_started(pDevice)) {
ma_uint32 framesRemainingFromClient;
ma_uint32 framesToProcessFromClient;
ma_uint32 inputFrameCount;
void* pInputFrames;
framesRemainingFromClient = (totalFramesToReadFromClient - totalFramesReadFromClient);
framesToProcessFromClient = sizeof(playbackFramesInExternalFormat) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
if (framesToProcessFromClient > framesRemainingFromClient) {
framesToProcessFromClient = framesRemainingFromClient;
}
/* We need to grab captured samples before firing the callback. If there's not enough input samples we just pass silence. */
inputFrameCount = framesToProcessFromClient;
result = ma_pcm_rb_acquire_read(pRB, &inputFrameCount, &pInputFrames);
if (result == MA_SUCCESS) {
if (inputFrameCount > 0) {
/* Use actual input frames. */
ma_device__on_data(pDevice, playbackFramesInExternalFormat, pInputFrames, inputFrameCount);
} else {
if (ma_pcm_rb_pointer_distance(pRB) == 0) {
break; /* Underrun. */
}
}
/* We're done with the captured samples. */
result = ma_pcm_rb_commit_read(pRB, inputFrameCount, pInputFrames);
if (result != MA_SUCCESS) {
break; /* Don't know what to do here... Just abandon ship. */
}
} else {
/* Use silent input frames. */
inputFrameCount = ma_min(
sizeof(playbackFramesInExternalFormat) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels),
sizeof(silentInputFrames) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels)
);
ma_device__on_data(pDevice, playbackFramesInExternalFormat, silentInputFrames, inputFrameCount);
}
/* We have samples in external format so now we need to convert to internal format and output to the device. */
{
ma_uint64 framesConvertedIn = inputFrameCount;
ma_uint64 framesConvertedOut = (frameCount - totalFramesReadOut);
ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackFramesInExternalFormat, &framesConvertedIn, pFramesInInternalFormat, &framesConvertedOut);
totalFramesReadFromClient += (ma_uint32)framesConvertedIn; /* Safe cast. */
totalFramesReadOut += (ma_uint32)framesConvertedOut; /* Safe cast. */
pFramesInInternalFormat = ma_offset_ptr(pFramesInInternalFormat, framesConvertedOut * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
}
}
return MA_SUCCESS;
}
#endif /* Asynchronous backends. */
/* A helper for changing the state of the device. */
static MA_INLINE void ma_device__set_state(ma_device* pDevice, ma_uint32 newState)
{
c89atomic_exchange_32(&pDevice->state, newState);
}
/* A helper for getting the state of the device. */
static MA_INLINE ma_uint32 ma_device__get_state(ma_device* pDevice)
{
return pDevice->state;
}
#ifdef MA_WIN32
GUID MA_GUID_KSDATAFORMAT_SUBTYPE_PCM = {0x00000001, 0x0000, 0x0010, {0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71}};
GUID MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT = {0x00000003, 0x0000, 0x0010, {0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71}};
/*GUID MA_GUID_KSDATAFORMAT_SUBTYPE_ALAW = {0x00000006, 0x0000, 0x0010, {0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71}};*/
/*GUID MA_GUID_KSDATAFORMAT_SUBTYPE_MULAW = {0x00000007, 0x0000, 0x0010, {0x80, 0x00, 0x00, 0xaa, 0x00, 0x38, 0x9b, 0x71}};*/
#endif
typedef struct
{
ma_device_type deviceType;
const ma_device_id* pDeviceID;
char* pName;
size_t nameBufferSize;
ma_bool32 foundDevice;
} ma_context__try_get_device_name_by_id__enum_callback_data;
static ma_bool32 ma_context__try_get_device_name_by_id__enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pDeviceInfo, void* pUserData)
{
ma_context__try_get_device_name_by_id__enum_callback_data* pData = (ma_context__try_get_device_name_by_id__enum_callback_data*)pUserData;
MA_ASSERT(pData != NULL);
if (pData->deviceType == deviceType) {
if (pContext->onDeviceIDEqual(pContext, pData->pDeviceID, &pDeviceInfo->id)) {
ma_strncpy_s(pData->pName, pData->nameBufferSize, pDeviceInfo->name, (size_t)-1);
pData->foundDevice = MA_TRUE;
}
}
return !pData->foundDevice;
}
/*
Generic function for retrieving the name of a device by it's ID.
This function simply enumerates every device and then retrieves the name of the first device that has the same ID.
*/
static ma_result ma_context__try_get_device_name_by_id(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, char* pName, size_t nameBufferSize)
{
ma_result result;
ma_context__try_get_device_name_by_id__enum_callback_data data;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pName != NULL);
if (pDeviceID == NULL) {
return MA_NO_DEVICE;
}
data.deviceType = deviceType;
data.pDeviceID = pDeviceID;
data.pName = pName;
data.nameBufferSize = nameBufferSize;
data.foundDevice = MA_FALSE;
result = ma_context_enumerate_devices(pContext, ma_context__try_get_device_name_by_id__enum_callback, &data);
if (result != MA_SUCCESS) {
return result;
}
if (!data.foundDevice) {
return MA_NO_DEVICE;
} else {
return MA_SUCCESS;
}
}
MA_API ma_uint32 ma_get_format_priority_index(ma_format format) /* Lower = better. */
{
ma_uint32 i;
for (i = 0; i < ma_countof(g_maFormatPriorities); ++i) {
if (g_maFormatPriorities[i] == format) {
return i;
}
}
/* Getting here means the format could not be found or is equal to ma_format_unknown. */
return (ma_uint32)-1;
}
static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType);
/*******************************************************************************
Null Backend
*******************************************************************************/
#ifdef MA_HAS_NULL
#define MA_DEVICE_OP_NONE__NULL 0
#define MA_DEVICE_OP_START__NULL 1
#define MA_DEVICE_OP_SUSPEND__NULL 2
#define MA_DEVICE_OP_KILL__NULL 3
static ma_thread_result MA_THREADCALL ma_device_thread__null(void* pData)
{
ma_device* pDevice = (ma_device*)pData;
MA_ASSERT(pDevice != NULL);
for (;;) { /* Keep the thread alive until the device is uninitialized. */
/* Wait for an operation to be requested. */
ma_event_wait(&pDevice->null_device.operationEvent);
/* At this point an event should have been triggered. */
/* Starting the device needs to put the thread into a loop. */
if (pDevice->null_device.operation == MA_DEVICE_OP_START__NULL) {
c89atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL);
/* Reset the timer just in case. */
ma_timer_init(&pDevice->null_device.timer);
/* Keep looping until an operation has been requested. */
while (pDevice->null_device.operation != MA_DEVICE_OP_NONE__NULL && pDevice->null_device.operation != MA_DEVICE_OP_START__NULL) {
ma_sleep(10); /* Don't hog the CPU. */
}
/* Getting here means a suspend or kill operation has been requested. */
c89atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS);
ma_event_signal(&pDevice->null_device.operationCompletionEvent);
continue;
}
/* Suspending the device means we need to stop the timer and just continue the loop. */
if (pDevice->null_device.operation == MA_DEVICE_OP_SUSPEND__NULL) {
c89atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL);
/* We need to add the current run time to the prior run time, then reset the timer. */
pDevice->null_device.priorRunTime += ma_timer_get_time_in_seconds(&pDevice->null_device.timer);
ma_timer_init(&pDevice->null_device.timer);
/* We're done. */
c89atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS);
ma_event_signal(&pDevice->null_device.operationCompletionEvent);
continue;
}
/* Killing the device means we need to get out of this loop so that this thread can terminate. */
if (pDevice->null_device.operation == MA_DEVICE_OP_KILL__NULL) {
c89atomic_exchange_32(&pDevice->null_device.operation, MA_DEVICE_OP_NONE__NULL);
c89atomic_exchange_32(&pDevice->null_device.operationResult, MA_SUCCESS);
ma_event_signal(&pDevice->null_device.operationCompletionEvent);
break;
}
/* Getting a signal on a "none" operation probably means an error. Return invalid operation. */
if (pDevice->null_device.operation == MA_DEVICE_OP_NONE__NULL) {
MA_ASSERT(MA_FALSE); /* <-- Trigger this in debug mode to ensure developers are aware they're doing something wrong (or there's a bug in a miniaudio). */
c89atomic_exchange_32(&pDevice->null_device.operationResult, MA_INVALID_OPERATION);
ma_event_signal(&pDevice->null_device.operationCompletionEvent);
continue; /* Continue the loop. Don't terminate. */
}
}
return (ma_thread_result)0;
}
static ma_result ma_device_do_operation__null(ma_device* pDevice, ma_uint32 operation)
{
c89atomic_exchange_32(&pDevice->null_device.operation, operation);
if (ma_event_signal(&pDevice->null_device.operationEvent) != MA_SUCCESS) {
return MA_ERROR;
}
if (ma_event_wait(&pDevice->null_device.operationCompletionEvent) != MA_SUCCESS) {
return MA_ERROR;
}
return pDevice->null_device.operationResult;
}
static ma_uint64 ma_device_get_total_run_time_in_frames__null(ma_device* pDevice)
{
ma_uint32 internalSampleRate;
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
internalSampleRate = pDevice->capture.internalSampleRate;
} else {
internalSampleRate = pDevice->playback.internalSampleRate;
}
return (ma_uint64)((pDevice->null_device.priorRunTime + ma_timer_get_time_in_seconds(&pDevice->null_device.timer)) * internalSampleRate);
}
static ma_bool32 ma_context_is_device_id_equal__null(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->nullbackend == pID1->nullbackend;
}
static ma_result ma_context_enumerate_devices__null(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult = MA_TRUE;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), "NULL Playback Device", (size_t)-1);
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), "NULL Capture Device", (size_t)-1);
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__null(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_uint32 iFormat;
MA_ASSERT(pContext != NULL);
if (pDeviceID != NULL && pDeviceID->nullbackend != 0) {
return MA_NO_DEVICE; /* Don't know the device. */
}
/* Name / Description */
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), "NULL Playback Device", (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), "NULL Capture Device", (size_t)-1);
}
/* Support everything on the null backend. */
pDeviceInfo->formatCount = ma_format_count - 1; /* Minus one because we don't want to include ma_format_unknown. */
for (iFormat = 0; iFormat < pDeviceInfo->formatCount; ++iFormat) {
pDeviceInfo->formats[iFormat] = (ma_format)(iFormat + 1); /* +1 to skip over ma_format_unknown. */
}
pDeviceInfo->minChannels = 1;
pDeviceInfo->maxChannels = MA_MAX_CHANNELS;
pDeviceInfo->minSampleRate = MA_SAMPLE_RATE_8000;
pDeviceInfo->maxSampleRate = MA_SAMPLE_RATE_384000;
(void)pContext;
(void)shareMode;
return MA_SUCCESS;
}
static void ma_device_uninit__null(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
/* Keep it clean and wait for the device thread to finish before returning. */
ma_device_do_operation__null(pDevice, MA_DEVICE_OP_KILL__NULL);
/* At this point the loop in the device thread is as good as terminated so we can uninitialize our events. */
ma_event_uninit(&pDevice->null_device.operationCompletionEvent);
ma_event_uninit(&pDevice->null_device.operationEvent);
}
static ma_result ma_device_init__null(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
ma_uint32 periodSizeInFrames;
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->null_device);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
periodSizeInFrames = pConfig->periodSizeInFrames;
if (periodSizeInFrames == 0) {
periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pConfig->sampleRate);
}
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), "NULL Capture Device", (size_t)-1);
pDevice->capture.internalFormat = pConfig->capture.format;
pDevice->capture.internalChannels = pConfig->capture.channels;
ma_channel_map_copy(pDevice->capture.internalChannelMap, pConfig->capture.channelMap, pConfig->capture.channels);
pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->capture.internalPeriods = pConfig->periods;
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), "NULL Playback Device", (size_t)-1);
pDevice->playback.internalFormat = pConfig->playback.format;
pDevice->playback.internalChannels = pConfig->playback.channels;
ma_channel_map_copy(pDevice->playback.internalChannelMap, pConfig->playback.channelMap, pConfig->playback.channels);
pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->playback.internalPeriods = pConfig->periods;
}
/*
In order to get timing right, we need to create a thread that does nothing but keeps track of the timer. This timer is started when the
first period is "written" to it, and then stopped in ma_device_stop__null().
*/
result = ma_event_init(&pDevice->null_device.operationEvent);
if (result != MA_SUCCESS) {
return result;
}
result = ma_event_init(&pDevice->null_device.operationCompletionEvent);
if (result != MA_SUCCESS) {
return result;
}
result = ma_thread_create(&pDevice->thread, pContext->threadPriority, 0, ma_device_thread__null, pDevice);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
static ma_result ma_device_start__null(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
ma_device_do_operation__null(pDevice, MA_DEVICE_OP_START__NULL);
c89atomic_exchange_32(&pDevice->null_device.isStarted, MA_TRUE);
return MA_SUCCESS;
}
static ma_result ma_device_stop__null(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
ma_device_do_operation__null(pDevice, MA_DEVICE_OP_SUSPEND__NULL);
c89atomic_exchange_32(&pDevice->null_device.isStarted, MA_FALSE);
return MA_SUCCESS;
}
static ma_result ma_device_write__null(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
ma_result result = MA_SUCCESS;
ma_uint32 totalPCMFramesProcessed;
ma_bool32 wasStartedOnEntry;
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
}
wasStartedOnEntry = pDevice->null_device.isStarted;
/* Keep going until everything has been read. */
totalPCMFramesProcessed = 0;
while (totalPCMFramesProcessed < frameCount) {
ma_uint64 targetFrame;
/* If there are any frames remaining in the current period, consume those first. */
if (pDevice->null_device.currentPeriodFramesRemainingPlayback > 0) {
ma_uint32 framesRemaining = (frameCount - totalPCMFramesProcessed);
ma_uint32 framesToProcess = pDevice->null_device.currentPeriodFramesRemainingPlayback;
if (framesToProcess > framesRemaining) {
framesToProcess = framesRemaining;
}
/* We don't actually do anything with pPCMFrames, so just mark it as unused to prevent a warning. */
(void)pPCMFrames;
pDevice->null_device.currentPeriodFramesRemainingPlayback -= framesToProcess;
totalPCMFramesProcessed += framesToProcess;
}
/* If we've consumed the current period we'll need to mark it as such an ensure the device is started if it's not already. */
if (pDevice->null_device.currentPeriodFramesRemainingPlayback == 0) {
pDevice->null_device.currentPeriodFramesRemainingPlayback = 0;
if (!pDevice->null_device.isStarted && !wasStartedOnEntry) {
result = ma_device_start__null(pDevice);
if (result != MA_SUCCESS) {
break;
}
}
}
/* If we've consumed the whole buffer we can return now. */
MA_ASSERT(totalPCMFramesProcessed <= frameCount);
if (totalPCMFramesProcessed == frameCount) {
break;
}
/* Getting here means we've still got more frames to consume, we but need to wait for it to become available. */
targetFrame = pDevice->null_device.lastProcessedFramePlayback;
for (;;) {
ma_uint64 currentFrame;
/* Stop waiting if the device has been stopped. */
if (!pDevice->null_device.isStarted) {
break;
}
currentFrame = ma_device_get_total_run_time_in_frames__null(pDevice);
if (currentFrame >= targetFrame) {
break;
}
/* Getting here means we haven't yet reached the target sample, so continue waiting. */
ma_sleep(10);
}
pDevice->null_device.lastProcessedFramePlayback += pDevice->playback.internalPeriodSizeInFrames;
pDevice->null_device.currentPeriodFramesRemainingPlayback = pDevice->playback.internalPeriodSizeInFrames;
}
if (pFramesWritten != NULL) {
*pFramesWritten = totalPCMFramesProcessed;
}
return result;
}
static ma_result ma_device_read__null(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
ma_result result = MA_SUCCESS;
ma_uint32 totalPCMFramesProcessed;
if (pFramesRead != NULL) {
*pFramesRead = 0;
}
/* Keep going until everything has been read. */
totalPCMFramesProcessed = 0;
while (totalPCMFramesProcessed < frameCount) {
ma_uint64 targetFrame;
/* If there are any frames remaining in the current period, consume those first. */
if (pDevice->null_device.currentPeriodFramesRemainingCapture > 0) {
ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 framesRemaining = (frameCount - totalPCMFramesProcessed);
ma_uint32 framesToProcess = pDevice->null_device.currentPeriodFramesRemainingCapture;
if (framesToProcess > framesRemaining) {
framesToProcess = framesRemaining;
}
/* We need to ensure the output buffer is zeroed. */
MA_ZERO_MEMORY(ma_offset_ptr(pPCMFrames, totalPCMFramesProcessed*bpf), framesToProcess*bpf);
pDevice->null_device.currentPeriodFramesRemainingCapture -= framesToProcess;
totalPCMFramesProcessed += framesToProcess;
}
/* If we've consumed the current period we'll need to mark it as such an ensure the device is started if it's not already. */
if (pDevice->null_device.currentPeriodFramesRemainingCapture == 0) {
pDevice->null_device.currentPeriodFramesRemainingCapture = 0;
}
/* If we've consumed the whole buffer we can return now. */
MA_ASSERT(totalPCMFramesProcessed <= frameCount);
if (totalPCMFramesProcessed == frameCount) {
break;
}
/* Getting here means we've still got more frames to consume, we but need to wait for it to become available. */
targetFrame = pDevice->null_device.lastProcessedFrameCapture + pDevice->capture.internalPeriodSizeInFrames;
for (;;) {
ma_uint64 currentFrame;
/* Stop waiting if the device has been stopped. */
if (!pDevice->null_device.isStarted) {
break;
}
currentFrame = ma_device_get_total_run_time_in_frames__null(pDevice);
if (currentFrame >= targetFrame) {
break;
}
/* Getting here means we haven't yet reached the target sample, so continue waiting. */
ma_sleep(10);
}
pDevice->null_device.lastProcessedFrameCapture += pDevice->capture.internalPeriodSizeInFrames;
pDevice->null_device.currentPeriodFramesRemainingCapture = pDevice->capture.internalPeriodSizeInFrames;
}
if (pFramesRead != NULL) {
*pFramesRead = totalPCMFramesProcessed;
}
return result;
}
static ma_result ma_device_main_loop__null(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
MA_ASSERT(pDevice != NULL);
/* The capture device needs to be started immediately. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
result = ma_device_start__null(pDevice);
if (result != MA_SUCCESS) {
return result;
}
}
while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) {
switch (pDevice->type)
{
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
ma_uint32 totalCapturedDeviceFramesProcessed = 0;
ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 capturedDeviceFramesRemaining;
ma_uint32 capturedDeviceFramesProcessed;
ma_uint32 capturedDeviceFramesToProcess;
ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
result = ma_device_read__null(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
capturedDeviceFramesProcessed = 0;
/* At this point we have our captured data in device format and we now need to convert it to client format. */
for (;;) {
ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
/* Convert capture data from device format to client format. */
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
if (result != MA_SUCCESS) {
break;
}
/*
If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
*/
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
/* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
if (result != MA_SUCCESS) {
break;
}
result = ma_device_write__null(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
/* In case an error happened from ma_device_write__null()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
case ma_device_type_capture:
{
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToReadThisIteration = framesRemainingInPeriod;
if (framesToReadThisIteration > intermediaryBufferSizeInFrames) {
framesToReadThisIteration = intermediaryBufferSizeInFrames;
}
result = ma_device_read__null(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer);
framesReadThisPeriod += framesProcessed;
}
} break;
case ma_device_type_playback:
{
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod;
if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) {
framesToWriteThisIteration = intermediaryBufferSizeInFrames;
}
ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer);
result = ma_device_write__null(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
framesWrittenThisPeriod += framesProcessed;
}
} break;
/* To silence a warning. Will never hit this. */
case ma_device_type_loopback:
default: break;
}
}
/* Here is where the device is started. */
ma_device_stop__null(pDevice);
return result;
}
static ma_result ma_context_uninit__null(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_null);
(void)pContext;
return MA_SUCCESS;
}
static ma_result ma_context_init__null(const ma_context_config* pConfig, ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
(void)pConfig;
pContext->onUninit = ma_context_uninit__null;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__null;
pContext->onEnumDevices = ma_context_enumerate_devices__null;
pContext->onGetDeviceInfo = ma_context_get_device_info__null;
pContext->onDeviceInit = ma_device_init__null;
pContext->onDeviceUninit = ma_device_uninit__null;
pContext->onDeviceStart = NULL; /* Not required for synchronous backends. */
pContext->onDeviceStop = NULL; /* Not required for synchronous backends. */
pContext->onDeviceMainLoop = ma_device_main_loop__null;
/* The null backend always works. */
return MA_SUCCESS;
}
#endif
/*******************************************************************************
WIN32 COMMON
*******************************************************************************/
#if defined(MA_WIN32)
#if defined(MA_WIN32_DESKTOP)
#define ma_CoInitializeEx(pContext, pvReserved, dwCoInit) ((MA_PFN_CoInitializeEx)pContext->win32.CoInitializeEx)(pvReserved, dwCoInit)
#define ma_CoUninitialize(pContext) ((MA_PFN_CoUninitialize)pContext->win32.CoUninitialize)()
#define ma_CoCreateInstance(pContext, rclsid, pUnkOuter, dwClsContext, riid, ppv) ((MA_PFN_CoCreateInstance)pContext->win32.CoCreateInstance)(rclsid, pUnkOuter, dwClsContext, riid, ppv)
#define ma_CoTaskMemFree(pContext, pv) ((MA_PFN_CoTaskMemFree)pContext->win32.CoTaskMemFree)(pv)
#define ma_PropVariantClear(pContext, pvar) ((MA_PFN_PropVariantClear)pContext->win32.PropVariantClear)(pvar)
#else
#define ma_CoInitializeEx(pContext, pvReserved, dwCoInit) CoInitializeEx(pvReserved, dwCoInit)
#define ma_CoUninitialize(pContext) CoUninitialize()
#define ma_CoCreateInstance(pContext, rclsid, pUnkOuter, dwClsContext, riid, ppv) CoCreateInstance(rclsid, pUnkOuter, dwClsContext, riid, ppv)
#define ma_CoTaskMemFree(pContext, pv) CoTaskMemFree(pv)
#define ma_PropVariantClear(pContext, pvar) PropVariantClear(pvar)
#endif
#if !defined(MAXULONG_PTR)
typedef size_t DWORD_PTR;
#endif
#if !defined(WAVE_FORMAT_44M08)
#define WAVE_FORMAT_44M08 0x00000100
#define WAVE_FORMAT_44S08 0x00000200
#define WAVE_FORMAT_44M16 0x00000400
#define WAVE_FORMAT_44S16 0x00000800
#define WAVE_FORMAT_48M08 0x00001000
#define WAVE_FORMAT_48S08 0x00002000
#define WAVE_FORMAT_48M16 0x00004000
#define WAVE_FORMAT_48S16 0x00008000
#define WAVE_FORMAT_96M08 0x00010000
#define WAVE_FORMAT_96S08 0x00020000
#define WAVE_FORMAT_96M16 0x00040000
#define WAVE_FORMAT_96S16 0x00080000
#endif
#ifndef SPEAKER_FRONT_LEFT
#define SPEAKER_FRONT_LEFT 0x1
#define SPEAKER_FRONT_RIGHT 0x2
#define SPEAKER_FRONT_CENTER 0x4
#define SPEAKER_LOW_FREQUENCY 0x8
#define SPEAKER_BACK_LEFT 0x10
#define SPEAKER_BACK_RIGHT 0x20
#define SPEAKER_FRONT_LEFT_OF_CENTER 0x40
#define SPEAKER_FRONT_RIGHT_OF_CENTER 0x80
#define SPEAKER_BACK_CENTER 0x100
#define SPEAKER_SIDE_LEFT 0x200
#define SPEAKER_SIDE_RIGHT 0x400
#define SPEAKER_TOP_CENTER 0x800
#define SPEAKER_TOP_FRONT_LEFT 0x1000
#define SPEAKER_TOP_FRONT_CENTER 0x2000
#define SPEAKER_TOP_FRONT_RIGHT 0x4000
#define SPEAKER_TOP_BACK_LEFT 0x8000
#define SPEAKER_TOP_BACK_CENTER 0x10000
#define SPEAKER_TOP_BACK_RIGHT 0x20000
#endif
/*
The SDK that comes with old versions of MSVC (VC6, for example) does not appear to define WAVEFORMATEXTENSIBLE. We
define our own implementation in this case.
*/
#if (defined(_MSC_VER) && !defined(_WAVEFORMATEXTENSIBLE_)) || defined(__DMC__)
typedef struct
{
WAVEFORMATEX Format;
union
{
WORD wValidBitsPerSample;
WORD wSamplesPerBlock;
WORD wReserved;
} Samples;
DWORD dwChannelMask;
GUID SubFormat;
} WAVEFORMATEXTENSIBLE;
#endif
#ifndef WAVE_FORMAT_EXTENSIBLE
#define WAVE_FORMAT_EXTENSIBLE 0xFFFE
#endif
#ifndef WAVE_FORMAT_IEEE_FLOAT
#define WAVE_FORMAT_IEEE_FLOAT 0x0003
#endif
static GUID MA_GUID_NULL = {0x00000000, 0x0000, 0x0000, {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}};
/* Converts an individual Win32-style channel identifier (SPEAKER_FRONT_LEFT, etc.) to miniaudio. */
static ma_uint8 ma_channel_id_to_ma__win32(DWORD id)
{
switch (id)
{
case SPEAKER_FRONT_LEFT: return MA_CHANNEL_FRONT_LEFT;
case SPEAKER_FRONT_RIGHT: return MA_CHANNEL_FRONT_RIGHT;
case SPEAKER_FRONT_CENTER: return MA_CHANNEL_FRONT_CENTER;
case SPEAKER_LOW_FREQUENCY: return MA_CHANNEL_LFE;
case SPEAKER_BACK_LEFT: return MA_CHANNEL_BACK_LEFT;
case SPEAKER_BACK_RIGHT: return MA_CHANNEL_BACK_RIGHT;
case SPEAKER_FRONT_LEFT_OF_CENTER: return MA_CHANNEL_FRONT_LEFT_CENTER;
case SPEAKER_FRONT_RIGHT_OF_CENTER: return MA_CHANNEL_FRONT_RIGHT_CENTER;
case SPEAKER_BACK_CENTER: return MA_CHANNEL_BACK_CENTER;
case SPEAKER_SIDE_LEFT: return MA_CHANNEL_SIDE_LEFT;
case SPEAKER_SIDE_RIGHT: return MA_CHANNEL_SIDE_RIGHT;
case SPEAKER_TOP_CENTER: return MA_CHANNEL_TOP_CENTER;
case SPEAKER_TOP_FRONT_LEFT: return MA_CHANNEL_TOP_FRONT_LEFT;
case SPEAKER_TOP_FRONT_CENTER: return MA_CHANNEL_TOP_FRONT_CENTER;
case SPEAKER_TOP_FRONT_RIGHT: return MA_CHANNEL_TOP_FRONT_RIGHT;
case SPEAKER_TOP_BACK_LEFT: return MA_CHANNEL_TOP_BACK_LEFT;
case SPEAKER_TOP_BACK_CENTER: return MA_CHANNEL_TOP_BACK_CENTER;
case SPEAKER_TOP_BACK_RIGHT: return MA_CHANNEL_TOP_BACK_RIGHT;
default: return 0;
}
}
/* Converts an individual miniaudio channel identifier (MA_CHANNEL_FRONT_LEFT, etc.) to Win32-style. */
static DWORD ma_channel_id_to_win32(DWORD id)
{
switch (id)
{
case MA_CHANNEL_MONO: return SPEAKER_FRONT_CENTER;
case MA_CHANNEL_FRONT_LEFT: return SPEAKER_FRONT_LEFT;
case MA_CHANNEL_FRONT_RIGHT: return SPEAKER_FRONT_RIGHT;
case MA_CHANNEL_FRONT_CENTER: return SPEAKER_FRONT_CENTER;
case MA_CHANNEL_LFE: return SPEAKER_LOW_FREQUENCY;
case MA_CHANNEL_BACK_LEFT: return SPEAKER_BACK_LEFT;
case MA_CHANNEL_BACK_RIGHT: return SPEAKER_BACK_RIGHT;
case MA_CHANNEL_FRONT_LEFT_CENTER: return SPEAKER_FRONT_LEFT_OF_CENTER;
case MA_CHANNEL_FRONT_RIGHT_CENTER: return SPEAKER_FRONT_RIGHT_OF_CENTER;
case MA_CHANNEL_BACK_CENTER: return SPEAKER_BACK_CENTER;
case MA_CHANNEL_SIDE_LEFT: return SPEAKER_SIDE_LEFT;
case MA_CHANNEL_SIDE_RIGHT: return SPEAKER_SIDE_RIGHT;
case MA_CHANNEL_TOP_CENTER: return SPEAKER_TOP_CENTER;
case MA_CHANNEL_TOP_FRONT_LEFT: return SPEAKER_TOP_FRONT_LEFT;
case MA_CHANNEL_TOP_FRONT_CENTER: return SPEAKER_TOP_FRONT_CENTER;
case MA_CHANNEL_TOP_FRONT_RIGHT: return SPEAKER_TOP_FRONT_RIGHT;
case MA_CHANNEL_TOP_BACK_LEFT: return SPEAKER_TOP_BACK_LEFT;
case MA_CHANNEL_TOP_BACK_CENTER: return SPEAKER_TOP_BACK_CENTER;
case MA_CHANNEL_TOP_BACK_RIGHT: return SPEAKER_TOP_BACK_RIGHT;
default: return 0;
}
}
/* Converts a channel mapping to a Win32-style channel mask. */
static DWORD ma_channel_map_to_channel_mask__win32(const ma_channel channelMap[MA_MAX_CHANNELS], ma_uint32 channels)
{
DWORD dwChannelMask = 0;
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
dwChannelMask |= ma_channel_id_to_win32(channelMap[iChannel]);
}
return dwChannelMask;
}
/* Converts a Win32-style channel mask to a miniaudio channel map. */
static void ma_channel_mask_to_channel_map__win32(DWORD dwChannelMask, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
if (channels == 1 && dwChannelMask == 0) {
channelMap[0] = MA_CHANNEL_MONO;
} else if (channels == 2 && dwChannelMask == 0) {
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
} else {
if (channels == 1 && (dwChannelMask & SPEAKER_FRONT_CENTER) != 0) {
channelMap[0] = MA_CHANNEL_MONO;
} else {
/* Just iterate over each bit. */
ma_uint32 iChannel = 0;
ma_uint32 iBit;
for (iBit = 0; iBit < 32; ++iBit) {
DWORD bitValue = (dwChannelMask & (1UL << iBit));
if (bitValue != 0) {
/* The bit is set. */
channelMap[iChannel] = ma_channel_id_to_ma__win32(bitValue);
iChannel += 1;
}
}
}
}
}
#ifdef __cplusplus
static ma_bool32 ma_is_guid_equal(const void* a, const void* b)
{
return IsEqualGUID(*(const GUID*)a, *(const GUID*)b);
}
#else
#define ma_is_guid_equal(a, b) IsEqualGUID((const GUID*)a, (const GUID*)b)
#endif
static ma_format ma_format_from_WAVEFORMATEX(const WAVEFORMATEX* pWF)
{
MA_ASSERT(pWF != NULL);
if (pWF->wFormatTag == WAVE_FORMAT_EXTENSIBLE) {
const WAVEFORMATEXTENSIBLE* pWFEX = (const WAVEFORMATEXTENSIBLE*)pWF;
if (ma_is_guid_equal(&pWFEX->SubFormat, &MA_GUID_KSDATAFORMAT_SUBTYPE_PCM)) {
if (pWFEX->Samples.wValidBitsPerSample == 32) {
return ma_format_s32;
}
if (pWFEX->Samples.wValidBitsPerSample == 24) {
if (pWFEX->Format.wBitsPerSample == 32) {
/*return ma_format_s24_32;*/
}
if (pWFEX->Format.wBitsPerSample == 24) {
return ma_format_s24;
}
}
if (pWFEX->Samples.wValidBitsPerSample == 16) {
return ma_format_s16;
}
if (pWFEX->Samples.wValidBitsPerSample == 8) {
return ma_format_u8;
}
}
if (ma_is_guid_equal(&pWFEX->SubFormat, &MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)) {
if (pWFEX->Samples.wValidBitsPerSample == 32) {
return ma_format_f32;
}
/*
if (pWFEX->Samples.wValidBitsPerSample == 64) {
return ma_format_f64;
}
*/
}
} else {
if (pWF->wFormatTag == WAVE_FORMAT_PCM) {
if (pWF->wBitsPerSample == 32) {
return ma_format_s32;
}
if (pWF->wBitsPerSample == 24) {
return ma_format_s24;
}
if (pWF->wBitsPerSample == 16) {
return ma_format_s16;
}
if (pWF->wBitsPerSample == 8) {
return ma_format_u8;
}
}
if (pWF->wFormatTag == WAVE_FORMAT_IEEE_FLOAT) {
if (pWF->wBitsPerSample == 32) {
return ma_format_f32;
}
if (pWF->wBitsPerSample == 64) {
/*return ma_format_f64;*/
}
}
}
return ma_format_unknown;
}
#endif
/*******************************************************************************
WASAPI Backend
*******************************************************************************/
#ifdef MA_HAS_WASAPI
#if 0
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable:4091) /* 'typedef ': ignored on left of '' when no variable is declared */
#endif
#include <audioclient.h>
#include <mmdeviceapi.h>
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
#endif /* 0 */
/* Some compilers don't define VerifyVersionInfoW. Need to write this ourselves. */
#define MA_WIN32_WINNT_VISTA 0x0600
#define MA_VER_MINORVERSION 0x01
#define MA_VER_MAJORVERSION 0x02
#define MA_VER_SERVICEPACKMAJOR 0x20
#define MA_VER_GREATER_EQUAL 0x03
typedef struct {
DWORD dwOSVersionInfoSize;
DWORD dwMajorVersion;
DWORD dwMinorVersion;
DWORD dwBuildNumber;
DWORD dwPlatformId;
WCHAR szCSDVersion[128];
WORD wServicePackMajor;
WORD wServicePackMinor;
WORD wSuiteMask;
BYTE wProductType;
BYTE wReserved;
} ma_OSVERSIONINFOEXW;
typedef BOOL (WINAPI * ma_PFNVerifyVersionInfoW) (ma_OSVERSIONINFOEXW* lpVersionInfo, DWORD dwTypeMask, DWORDLONG dwlConditionMask);
typedef ULONGLONG (WINAPI * ma_PFNVerSetConditionMask)(ULONGLONG dwlConditionMask, DWORD dwTypeBitMask, BYTE dwConditionMask);
#ifndef PROPERTYKEY_DEFINED
#define PROPERTYKEY_DEFINED
typedef struct
{
GUID fmtid;
DWORD pid;
} PROPERTYKEY;
#endif
/* Some compilers don't define PropVariantInit(). We just do this ourselves since it's just a memset(). */
static MA_INLINE void ma_PropVariantInit(PROPVARIANT* pProp)
{
MA_ZERO_OBJECT(pProp);
}
static const PROPERTYKEY MA_PKEY_Device_FriendlyName = {{0xA45C254E, 0xDF1C, 0x4EFD, {0x80, 0x20, 0x67, 0xD1, 0x46, 0xA8, 0x50, 0xE0}}, 14};
static const PROPERTYKEY MA_PKEY_AudioEngine_DeviceFormat = {{0xF19F064D, 0x82C, 0x4E27, {0xBC, 0x73, 0x68, 0x82, 0xA1, 0xBB, 0x8E, 0x4C}}, 0};
static const IID MA_IID_IUnknown = {0x00000000, 0x0000, 0x0000, {0xC0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x46}}; /* 00000000-0000-0000-C000-000000000046 */
static const IID MA_IID_IAgileObject = {0x94EA2B94, 0xE9CC, 0x49E0, {0xC0, 0xFF, 0xEE, 0x64, 0xCA, 0x8F, 0x5B, 0x90}}; /* 94EA2B94-E9CC-49E0-C0FF-EE64CA8F5B90 */
static const IID MA_IID_IAudioClient = {0x1CB9AD4C, 0xDBFA, 0x4C32, {0xB1, 0x78, 0xC2, 0xF5, 0x68, 0xA7, 0x03, 0xB2}}; /* 1CB9AD4C-DBFA-4C32-B178-C2F568A703B2 = __uuidof(IAudioClient) */
static const IID MA_IID_IAudioClient2 = {0x726778CD, 0xF60A, 0x4EDA, {0x82, 0xDE, 0xE4, 0x76, 0x10, 0xCD, 0x78, 0xAA}}; /* 726778CD-F60A-4EDA-82DE-E47610CD78AA = __uuidof(IAudioClient2) */
static const IID MA_IID_IAudioClient3 = {0x7ED4EE07, 0x8E67, 0x4CD4, {0x8C, 0x1A, 0x2B, 0x7A, 0x59, 0x87, 0xAD, 0x42}}; /* 7ED4EE07-8E67-4CD4-8C1A-2B7A5987AD42 = __uuidof(IAudioClient3) */
static const IID MA_IID_IAudioRenderClient = {0xF294ACFC, 0x3146, 0x4483, {0xA7, 0xBF, 0xAD, 0xDC, 0xA7, 0xC2, 0x60, 0xE2}}; /* F294ACFC-3146-4483-A7BF-ADDCA7C260E2 = __uuidof(IAudioRenderClient) */
static const IID MA_IID_IAudioCaptureClient = {0xC8ADBD64, 0xE71E, 0x48A0, {0xA4, 0xDE, 0x18, 0x5C, 0x39, 0x5C, 0xD3, 0x17}}; /* C8ADBD64-E71E-48A0-A4DE-185C395CD317 = __uuidof(IAudioCaptureClient) */
static const IID MA_IID_IMMNotificationClient = {0x7991EEC9, 0x7E89, 0x4D85, {0x83, 0x90, 0x6C, 0x70, 0x3C, 0xEC, 0x60, 0xC0}}; /* 7991EEC9-7E89-4D85-8390-6C703CEC60C0 = __uuidof(IMMNotificationClient) */
#ifndef MA_WIN32_DESKTOP
static const IID MA_IID_DEVINTERFACE_AUDIO_RENDER = {0xE6327CAD, 0xDCEC, 0x4949, {0xAE, 0x8A, 0x99, 0x1E, 0x97, 0x6A, 0x79, 0xD2}}; /* E6327CAD-DCEC-4949-AE8A-991E976A79D2 */
static const IID MA_IID_DEVINTERFACE_AUDIO_CAPTURE = {0x2EEF81BE, 0x33FA, 0x4800, {0x96, 0x70, 0x1C, 0xD4, 0x74, 0x97, 0x2C, 0x3F}}; /* 2EEF81BE-33FA-4800-9670-1CD474972C3F */
static const IID MA_IID_IActivateAudioInterfaceCompletionHandler = {0x41D949AB, 0x9862, 0x444A, {0x80, 0xF6, 0xC2, 0x61, 0x33, 0x4D, 0xA5, 0xEB}}; /* 41D949AB-9862-444A-80F6-C261334DA5EB */
#endif
static const IID MA_CLSID_MMDeviceEnumerator_Instance = {0xBCDE0395, 0xE52F, 0x467C, {0x8E, 0x3D, 0xC4, 0x57, 0x92, 0x91, 0x69, 0x2E}}; /* BCDE0395-E52F-467C-8E3D-C4579291692E = __uuidof(MMDeviceEnumerator) */
static const IID MA_IID_IMMDeviceEnumerator_Instance = {0xA95664D2, 0x9614, 0x4F35, {0xA7, 0x46, 0xDE, 0x8D, 0xB6, 0x36, 0x17, 0xE6}}; /* A95664D2-9614-4F35-A746-DE8DB63617E6 = __uuidof(IMMDeviceEnumerator) */
#ifdef __cplusplus
#define MA_CLSID_MMDeviceEnumerator MA_CLSID_MMDeviceEnumerator_Instance
#define MA_IID_IMMDeviceEnumerator MA_IID_IMMDeviceEnumerator_Instance
#else
#define MA_CLSID_MMDeviceEnumerator &MA_CLSID_MMDeviceEnumerator_Instance
#define MA_IID_IMMDeviceEnumerator &MA_IID_IMMDeviceEnumerator_Instance
#endif
typedef struct ma_IUnknown ma_IUnknown;
#ifdef MA_WIN32_DESKTOP
#define MA_MM_DEVICE_STATE_ACTIVE 1
#define MA_MM_DEVICE_STATE_DISABLED 2
#define MA_MM_DEVICE_STATE_NOTPRESENT 4
#define MA_MM_DEVICE_STATE_UNPLUGGED 8
typedef struct ma_IMMDeviceEnumerator ma_IMMDeviceEnumerator;
typedef struct ma_IMMDeviceCollection ma_IMMDeviceCollection;
typedef struct ma_IMMDevice ma_IMMDevice;
#else
typedef struct ma_IActivateAudioInterfaceCompletionHandler ma_IActivateAudioInterfaceCompletionHandler;
typedef struct ma_IActivateAudioInterfaceAsyncOperation ma_IActivateAudioInterfaceAsyncOperation;
#endif
typedef struct ma_IPropertyStore ma_IPropertyStore;
typedef struct ma_IAudioClient ma_IAudioClient;
typedef struct ma_IAudioClient2 ma_IAudioClient2;
typedef struct ma_IAudioClient3 ma_IAudioClient3;
typedef struct ma_IAudioRenderClient ma_IAudioRenderClient;
typedef struct ma_IAudioCaptureClient ma_IAudioCaptureClient;
typedef ma_int64 MA_REFERENCE_TIME;
#define MA_AUDCLNT_STREAMFLAGS_CROSSPROCESS 0x00010000
#define MA_AUDCLNT_STREAMFLAGS_LOOPBACK 0x00020000
#define MA_AUDCLNT_STREAMFLAGS_EVENTCALLBACK 0x00040000
#define MA_AUDCLNT_STREAMFLAGS_NOPERSIST 0x00080000
#define MA_AUDCLNT_STREAMFLAGS_RATEADJUST 0x00100000
#define MA_AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY 0x08000000
#define MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM 0x80000000
#define MA_AUDCLNT_SESSIONFLAGS_EXPIREWHENUNOWNED 0x10000000
#define MA_AUDCLNT_SESSIONFLAGS_DISPLAY_HIDE 0x20000000
#define MA_AUDCLNT_SESSIONFLAGS_DISPLAY_HIDEWHENEXPIRED 0x40000000
/* Buffer flags. */
#define MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY 1
#define MA_AUDCLNT_BUFFERFLAGS_SILENT 2
#define MA_AUDCLNT_BUFFERFLAGS_TIMESTAMP_ERROR 4
typedef enum
{
ma_eRender = 0,
ma_eCapture = 1,
ma_eAll = 2
} ma_EDataFlow;
typedef enum
{
ma_eConsole = 0,
ma_eMultimedia = 1,
ma_eCommunications = 2
} ma_ERole;
typedef enum
{
MA_AUDCLNT_SHAREMODE_SHARED,
MA_AUDCLNT_SHAREMODE_EXCLUSIVE
} MA_AUDCLNT_SHAREMODE;
typedef enum
{
MA_AudioCategory_Other = 0 /* <-- miniaudio is only caring about Other. */
} MA_AUDIO_STREAM_CATEGORY;
typedef struct
{
UINT32 cbSize;
BOOL bIsOffload;
MA_AUDIO_STREAM_CATEGORY eCategory;
} ma_AudioClientProperties;
/* IUnknown */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IUnknown* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IUnknown* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IUnknown* pThis);
} ma_IUnknownVtbl;
struct ma_IUnknown
{
ma_IUnknownVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IUnknown_QueryInterface(ma_IUnknown* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IUnknown_AddRef(ma_IUnknown* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IUnknown_Release(ma_IUnknown* pThis) { return pThis->lpVtbl->Release(pThis); }
#ifdef MA_WIN32_DESKTOP
/* IMMNotificationClient */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IMMNotificationClient* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IMMNotificationClient* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IMMNotificationClient* pThis);
/* IMMNotificationClient */
HRESULT (STDMETHODCALLTYPE * OnDeviceStateChanged) (ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, DWORD dwNewState);
HRESULT (STDMETHODCALLTYPE * OnDeviceAdded) (ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID);
HRESULT (STDMETHODCALLTYPE * OnDeviceRemoved) (ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID);
HRESULT (STDMETHODCALLTYPE * OnDefaultDeviceChanged)(ma_IMMNotificationClient* pThis, ma_EDataFlow dataFlow, ma_ERole role, LPCWSTR pDefaultDeviceID);
HRESULT (STDMETHODCALLTYPE * OnPropertyValueChanged)(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, const PROPERTYKEY key);
} ma_IMMNotificationClientVtbl;
/* IMMDeviceEnumerator */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IMMDeviceEnumerator* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IMMDeviceEnumerator* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IMMDeviceEnumerator* pThis);
/* IMMDeviceEnumerator */
HRESULT (STDMETHODCALLTYPE * EnumAudioEndpoints) (ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, DWORD dwStateMask, ma_IMMDeviceCollection** ppDevices);
HRESULT (STDMETHODCALLTYPE * GetDefaultAudioEndpoint) (ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, ma_ERole role, ma_IMMDevice** ppEndpoint);
HRESULT (STDMETHODCALLTYPE * GetDevice) (ma_IMMDeviceEnumerator* pThis, LPCWSTR pID, ma_IMMDevice** ppDevice);
HRESULT (STDMETHODCALLTYPE * RegisterEndpointNotificationCallback) (ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient);
HRESULT (STDMETHODCALLTYPE * UnregisterEndpointNotificationCallback)(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient);
} ma_IMMDeviceEnumeratorVtbl;
struct ma_IMMDeviceEnumerator
{
ma_IMMDeviceEnumeratorVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IMMDeviceEnumerator_QueryInterface(ma_IMMDeviceEnumerator* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IMMDeviceEnumerator_AddRef(ma_IMMDeviceEnumerator* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IMMDeviceEnumerator_Release(ma_IMMDeviceEnumerator* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IMMDeviceEnumerator_EnumAudioEndpoints(ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, DWORD dwStateMask, ma_IMMDeviceCollection** ppDevices) { return pThis->lpVtbl->EnumAudioEndpoints(pThis, dataFlow, dwStateMask, ppDevices); }
static MA_INLINE HRESULT ma_IMMDeviceEnumerator_GetDefaultAudioEndpoint(ma_IMMDeviceEnumerator* pThis, ma_EDataFlow dataFlow, ma_ERole role, ma_IMMDevice** ppEndpoint) { return pThis->lpVtbl->GetDefaultAudioEndpoint(pThis, dataFlow, role, ppEndpoint); }
static MA_INLINE HRESULT ma_IMMDeviceEnumerator_GetDevice(ma_IMMDeviceEnumerator* pThis, LPCWSTR pID, ma_IMMDevice** ppDevice) { return pThis->lpVtbl->GetDevice(pThis, pID, ppDevice); }
static MA_INLINE HRESULT ma_IMMDeviceEnumerator_RegisterEndpointNotificationCallback(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient) { return pThis->lpVtbl->RegisterEndpointNotificationCallback(pThis, pClient); }
static MA_INLINE HRESULT ma_IMMDeviceEnumerator_UnregisterEndpointNotificationCallback(ma_IMMDeviceEnumerator* pThis, ma_IMMNotificationClient* pClient) { return pThis->lpVtbl->UnregisterEndpointNotificationCallback(pThis, pClient); }
/* IMMDeviceCollection */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IMMDeviceCollection* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IMMDeviceCollection* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IMMDeviceCollection* pThis);
/* IMMDeviceCollection */
HRESULT (STDMETHODCALLTYPE * GetCount)(ma_IMMDeviceCollection* pThis, UINT* pDevices);
HRESULT (STDMETHODCALLTYPE * Item) (ma_IMMDeviceCollection* pThis, UINT nDevice, ma_IMMDevice** ppDevice);
} ma_IMMDeviceCollectionVtbl;
struct ma_IMMDeviceCollection
{
ma_IMMDeviceCollectionVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IMMDeviceCollection_QueryInterface(ma_IMMDeviceCollection* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IMMDeviceCollection_AddRef(ma_IMMDeviceCollection* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IMMDeviceCollection_Release(ma_IMMDeviceCollection* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IMMDeviceCollection_GetCount(ma_IMMDeviceCollection* pThis, UINT* pDevices) { return pThis->lpVtbl->GetCount(pThis, pDevices); }
static MA_INLINE HRESULT ma_IMMDeviceCollection_Item(ma_IMMDeviceCollection* pThis, UINT nDevice, ma_IMMDevice** ppDevice) { return pThis->lpVtbl->Item(pThis, nDevice, ppDevice); }
/* IMMDevice */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IMMDevice* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IMMDevice* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IMMDevice* pThis);
/* IMMDevice */
HRESULT (STDMETHODCALLTYPE * Activate) (ma_IMMDevice* pThis, const IID* const iid, DWORD dwClsCtx, PROPVARIANT* pActivationParams, void** ppInterface);
HRESULT (STDMETHODCALLTYPE * OpenPropertyStore)(ma_IMMDevice* pThis, DWORD stgmAccess, ma_IPropertyStore** ppProperties);
HRESULT (STDMETHODCALLTYPE * GetId) (ma_IMMDevice* pThis, LPWSTR *pID);
HRESULT (STDMETHODCALLTYPE * GetState) (ma_IMMDevice* pThis, DWORD *pState);
} ma_IMMDeviceVtbl;
struct ma_IMMDevice
{
ma_IMMDeviceVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IMMDevice_QueryInterface(ma_IMMDevice* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IMMDevice_AddRef(ma_IMMDevice* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IMMDevice_Release(ma_IMMDevice* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IMMDevice_Activate(ma_IMMDevice* pThis, const IID* const iid, DWORD dwClsCtx, PROPVARIANT* pActivationParams, void** ppInterface) { return pThis->lpVtbl->Activate(pThis, iid, dwClsCtx, pActivationParams, ppInterface); }
static MA_INLINE HRESULT ma_IMMDevice_OpenPropertyStore(ma_IMMDevice* pThis, DWORD stgmAccess, ma_IPropertyStore** ppProperties) { return pThis->lpVtbl->OpenPropertyStore(pThis, stgmAccess, ppProperties); }
static MA_INLINE HRESULT ma_IMMDevice_GetId(ma_IMMDevice* pThis, LPWSTR *pID) { return pThis->lpVtbl->GetId(pThis, pID); }
static MA_INLINE HRESULT ma_IMMDevice_GetState(ma_IMMDevice* pThis, DWORD *pState) { return pThis->lpVtbl->GetState(pThis, pState); }
#else
/* IActivateAudioInterfaceAsyncOperation */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IActivateAudioInterfaceAsyncOperation* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IActivateAudioInterfaceAsyncOperation* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IActivateAudioInterfaceAsyncOperation* pThis);
/* IActivateAudioInterfaceAsyncOperation */
HRESULT (STDMETHODCALLTYPE * GetActivateResult)(ma_IActivateAudioInterfaceAsyncOperation* pThis, HRESULT *pActivateResult, ma_IUnknown** ppActivatedInterface);
} ma_IActivateAudioInterfaceAsyncOperationVtbl;
struct ma_IActivateAudioInterfaceAsyncOperation
{
ma_IActivateAudioInterfaceAsyncOperationVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IActivateAudioInterfaceAsyncOperation_QueryInterface(ma_IActivateAudioInterfaceAsyncOperation* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IActivateAudioInterfaceAsyncOperation_AddRef(ma_IActivateAudioInterfaceAsyncOperation* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IActivateAudioInterfaceAsyncOperation_Release(ma_IActivateAudioInterfaceAsyncOperation* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IActivateAudioInterfaceAsyncOperation_GetActivateResult(ma_IActivateAudioInterfaceAsyncOperation* pThis, HRESULT *pActivateResult, ma_IUnknown** ppActivatedInterface) { return pThis->lpVtbl->GetActivateResult(pThis, pActivateResult, ppActivatedInterface); }
#endif
/* IPropertyStore */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IPropertyStore* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IPropertyStore* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IPropertyStore* pThis);
/* IPropertyStore */
HRESULT (STDMETHODCALLTYPE * GetCount)(ma_IPropertyStore* pThis, DWORD* pPropCount);
HRESULT (STDMETHODCALLTYPE * GetAt) (ma_IPropertyStore* pThis, DWORD propIndex, PROPERTYKEY* pPropKey);
HRESULT (STDMETHODCALLTYPE * GetValue)(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, PROPVARIANT* pPropVar);
HRESULT (STDMETHODCALLTYPE * SetValue)(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, const PROPVARIANT* const pPropVar);
HRESULT (STDMETHODCALLTYPE * Commit) (ma_IPropertyStore* pThis);
} ma_IPropertyStoreVtbl;
struct ma_IPropertyStore
{
ma_IPropertyStoreVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IPropertyStore_QueryInterface(ma_IPropertyStore* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IPropertyStore_AddRef(ma_IPropertyStore* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IPropertyStore_Release(ma_IPropertyStore* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IPropertyStore_GetCount(ma_IPropertyStore* pThis, DWORD* pPropCount) { return pThis->lpVtbl->GetCount(pThis, pPropCount); }
static MA_INLINE HRESULT ma_IPropertyStore_GetAt(ma_IPropertyStore* pThis, DWORD propIndex, PROPERTYKEY* pPropKey) { return pThis->lpVtbl->GetAt(pThis, propIndex, pPropKey); }
static MA_INLINE HRESULT ma_IPropertyStore_GetValue(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, PROPVARIANT* pPropVar) { return pThis->lpVtbl->GetValue(pThis, pKey, pPropVar); }
static MA_INLINE HRESULT ma_IPropertyStore_SetValue(ma_IPropertyStore* pThis, const PROPERTYKEY* const pKey, const PROPVARIANT* const pPropVar) { return pThis->lpVtbl->SetValue(pThis, pKey, pPropVar); }
static MA_INLINE HRESULT ma_IPropertyStore_Commit(ma_IPropertyStore* pThis) { return pThis->lpVtbl->Commit(pThis); }
/* IAudioClient */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioClient* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioClient* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioClient* pThis);
/* IAudioClient */
HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid);
HRESULT (STDMETHODCALLTYPE * GetBufferSize) (ma_IAudioClient* pThis, ma_uint32* pNumBufferFrames);
HRESULT (STDMETHODCALLTYPE * GetStreamLatency) (ma_IAudioClient* pThis, MA_REFERENCE_TIME* pLatency);
HRESULT (STDMETHODCALLTYPE * GetCurrentPadding)(ma_IAudioClient* pThis, ma_uint32* pNumPaddingFrames);
HRESULT (STDMETHODCALLTYPE * IsFormatSupported)(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch);
HRESULT (STDMETHODCALLTYPE * GetMixFormat) (ma_IAudioClient* pThis, WAVEFORMATEX** ppDeviceFormat);
HRESULT (STDMETHODCALLTYPE * GetDevicePeriod) (ma_IAudioClient* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod);
HRESULT (STDMETHODCALLTYPE * Start) (ma_IAudioClient* pThis);
HRESULT (STDMETHODCALLTYPE * Stop) (ma_IAudioClient* pThis);
HRESULT (STDMETHODCALLTYPE * Reset) (ma_IAudioClient* pThis);
HRESULT (STDMETHODCALLTYPE * SetEventHandle) (ma_IAudioClient* pThis, HANDLE eventHandle);
HRESULT (STDMETHODCALLTYPE * GetService) (ma_IAudioClient* pThis, const IID* const riid, void** pp);
} ma_IAudioClientVtbl;
struct ma_IAudioClient
{
ma_IAudioClientVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IAudioClient_QueryInterface(ma_IAudioClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IAudioClient_AddRef(ma_IAudioClient* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IAudioClient_Release(ma_IAudioClient* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IAudioClient_Initialize(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); }
static MA_INLINE HRESULT ma_IAudioClient_GetBufferSize(ma_IAudioClient* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); }
static MA_INLINE HRESULT ma_IAudioClient_GetStreamLatency(ma_IAudioClient* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); }
static MA_INLINE HRESULT ma_IAudioClient_GetCurrentPadding(ma_IAudioClient* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); }
static MA_INLINE HRESULT ma_IAudioClient_IsFormatSupported(ma_IAudioClient* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); }
static MA_INLINE HRESULT ma_IAudioClient_GetMixFormat(ma_IAudioClient* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); }
static MA_INLINE HRESULT ma_IAudioClient_GetDevicePeriod(ma_IAudioClient* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); }
static MA_INLINE HRESULT ma_IAudioClient_Start(ma_IAudioClient* pThis) { return pThis->lpVtbl->Start(pThis); }
static MA_INLINE HRESULT ma_IAudioClient_Stop(ma_IAudioClient* pThis) { return pThis->lpVtbl->Stop(pThis); }
static MA_INLINE HRESULT ma_IAudioClient_Reset(ma_IAudioClient* pThis) { return pThis->lpVtbl->Reset(pThis); }
static MA_INLINE HRESULT ma_IAudioClient_SetEventHandle(ma_IAudioClient* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); }
static MA_INLINE HRESULT ma_IAudioClient_GetService(ma_IAudioClient* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); }
/* IAudioClient2 */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioClient2* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioClient2* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioClient2* pThis);
/* IAudioClient */
HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid);
HRESULT (STDMETHODCALLTYPE * GetBufferSize) (ma_IAudioClient2* pThis, ma_uint32* pNumBufferFrames);
HRESULT (STDMETHODCALLTYPE * GetStreamLatency) (ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pLatency);
HRESULT (STDMETHODCALLTYPE * GetCurrentPadding)(ma_IAudioClient2* pThis, ma_uint32* pNumPaddingFrames);
HRESULT (STDMETHODCALLTYPE * IsFormatSupported)(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch);
HRESULT (STDMETHODCALLTYPE * GetMixFormat) (ma_IAudioClient2* pThis, WAVEFORMATEX** ppDeviceFormat);
HRESULT (STDMETHODCALLTYPE * GetDevicePeriod) (ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod);
HRESULT (STDMETHODCALLTYPE * Start) (ma_IAudioClient2* pThis);
HRESULT (STDMETHODCALLTYPE * Stop) (ma_IAudioClient2* pThis);
HRESULT (STDMETHODCALLTYPE * Reset) (ma_IAudioClient2* pThis);
HRESULT (STDMETHODCALLTYPE * SetEventHandle) (ma_IAudioClient2* pThis, HANDLE eventHandle);
HRESULT (STDMETHODCALLTYPE * GetService) (ma_IAudioClient2* pThis, const IID* const riid, void** pp);
/* IAudioClient2 */
HRESULT (STDMETHODCALLTYPE * IsOffloadCapable) (ma_IAudioClient2* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable);
HRESULT (STDMETHODCALLTYPE * SetClientProperties)(ma_IAudioClient2* pThis, const ma_AudioClientProperties* pProperties);
HRESULT (STDMETHODCALLTYPE * GetBufferSizeLimits)(ma_IAudioClient2* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration);
} ma_IAudioClient2Vtbl;
struct ma_IAudioClient2
{
ma_IAudioClient2Vtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IAudioClient2_QueryInterface(ma_IAudioClient2* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IAudioClient2_AddRef(ma_IAudioClient2* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IAudioClient2_Release(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IAudioClient2_Initialize(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); }
static MA_INLINE HRESULT ma_IAudioClient2_GetBufferSize(ma_IAudioClient2* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); }
static MA_INLINE HRESULT ma_IAudioClient2_GetStreamLatency(ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); }
static MA_INLINE HRESULT ma_IAudioClient2_GetCurrentPadding(ma_IAudioClient2* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); }
static MA_INLINE HRESULT ma_IAudioClient2_IsFormatSupported(ma_IAudioClient2* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); }
static MA_INLINE HRESULT ma_IAudioClient2_GetMixFormat(ma_IAudioClient2* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); }
static MA_INLINE HRESULT ma_IAudioClient2_GetDevicePeriod(ma_IAudioClient2* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); }
static MA_INLINE HRESULT ma_IAudioClient2_Start(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Start(pThis); }
static MA_INLINE HRESULT ma_IAudioClient2_Stop(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Stop(pThis); }
static MA_INLINE HRESULT ma_IAudioClient2_Reset(ma_IAudioClient2* pThis) { return pThis->lpVtbl->Reset(pThis); }
static MA_INLINE HRESULT ma_IAudioClient2_SetEventHandle(ma_IAudioClient2* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); }
static MA_INLINE HRESULT ma_IAudioClient2_GetService(ma_IAudioClient2* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); }
static MA_INLINE HRESULT ma_IAudioClient2_IsOffloadCapable(ma_IAudioClient2* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable) { return pThis->lpVtbl->IsOffloadCapable(pThis, category, pOffloadCapable); }
static MA_INLINE HRESULT ma_IAudioClient2_SetClientProperties(ma_IAudioClient2* pThis, const ma_AudioClientProperties* pProperties) { return pThis->lpVtbl->SetClientProperties(pThis, pProperties); }
static MA_INLINE HRESULT ma_IAudioClient2_GetBufferSizeLimits(ma_IAudioClient2* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration) { return pThis->lpVtbl->GetBufferSizeLimits(pThis, pFormat, eventDriven, pMinBufferDuration, pMaxBufferDuration); }
/* IAudioClient3 */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioClient3* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioClient3* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioClient3* pThis);
/* IAudioClient */
HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid);
HRESULT (STDMETHODCALLTYPE * GetBufferSize) (ma_IAudioClient3* pThis, ma_uint32* pNumBufferFrames);
HRESULT (STDMETHODCALLTYPE * GetStreamLatency) (ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pLatency);
HRESULT (STDMETHODCALLTYPE * GetCurrentPadding)(ma_IAudioClient3* pThis, ma_uint32* pNumPaddingFrames);
HRESULT (STDMETHODCALLTYPE * IsFormatSupported)(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch);
HRESULT (STDMETHODCALLTYPE * GetMixFormat) (ma_IAudioClient3* pThis, WAVEFORMATEX** ppDeviceFormat);
HRESULT (STDMETHODCALLTYPE * GetDevicePeriod) (ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod);
HRESULT (STDMETHODCALLTYPE * Start) (ma_IAudioClient3* pThis);
HRESULT (STDMETHODCALLTYPE * Stop) (ma_IAudioClient3* pThis);
HRESULT (STDMETHODCALLTYPE * Reset) (ma_IAudioClient3* pThis);
HRESULT (STDMETHODCALLTYPE * SetEventHandle) (ma_IAudioClient3* pThis, HANDLE eventHandle);
HRESULT (STDMETHODCALLTYPE * GetService) (ma_IAudioClient3* pThis, const IID* const riid, void** pp);
/* IAudioClient2 */
HRESULT (STDMETHODCALLTYPE * IsOffloadCapable) (ma_IAudioClient3* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable);
HRESULT (STDMETHODCALLTYPE * SetClientProperties)(ma_IAudioClient3* pThis, const ma_AudioClientProperties* pProperties);
HRESULT (STDMETHODCALLTYPE * GetBufferSizeLimits)(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration);
/* IAudioClient3 */
HRESULT (STDMETHODCALLTYPE * GetSharedModeEnginePeriod) (ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, UINT32* pDefaultPeriodInFrames, UINT32* pFundamentalPeriodInFrames, UINT32* pMinPeriodInFrames, UINT32* pMaxPeriodInFrames);
HRESULT (STDMETHODCALLTYPE * GetCurrentSharedModeEnginePeriod)(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, UINT32* pCurrentPeriodInFrames);
HRESULT (STDMETHODCALLTYPE * InitializeSharedAudioStream) (ma_IAudioClient3* pThis, DWORD streamFlags, UINT32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid);
} ma_IAudioClient3Vtbl;
struct ma_IAudioClient3
{
ma_IAudioClient3Vtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IAudioClient3_QueryInterface(ma_IAudioClient3* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IAudioClient3_AddRef(ma_IAudioClient3* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IAudioClient3_Release(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IAudioClient3_Initialize(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, DWORD streamFlags, MA_REFERENCE_TIME bufferDuration, MA_REFERENCE_TIME periodicity, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGuid) { return pThis->lpVtbl->Initialize(pThis, shareMode, streamFlags, bufferDuration, periodicity, pFormat, pAudioSessionGuid); }
static MA_INLINE HRESULT ma_IAudioClient3_GetBufferSize(ma_IAudioClient3* pThis, ma_uint32* pNumBufferFrames) { return pThis->lpVtbl->GetBufferSize(pThis, pNumBufferFrames); }
static MA_INLINE HRESULT ma_IAudioClient3_GetStreamLatency(ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pLatency) { return pThis->lpVtbl->GetStreamLatency(pThis, pLatency); }
static MA_INLINE HRESULT ma_IAudioClient3_GetCurrentPadding(ma_IAudioClient3* pThis, ma_uint32* pNumPaddingFrames) { return pThis->lpVtbl->GetCurrentPadding(pThis, pNumPaddingFrames); }
static MA_INLINE HRESULT ma_IAudioClient3_IsFormatSupported(ma_IAudioClient3* pThis, MA_AUDCLNT_SHAREMODE shareMode, const WAVEFORMATEX* pFormat, WAVEFORMATEX** ppClosestMatch) { return pThis->lpVtbl->IsFormatSupported(pThis, shareMode, pFormat, ppClosestMatch); }
static MA_INLINE HRESULT ma_IAudioClient3_GetMixFormat(ma_IAudioClient3* pThis, WAVEFORMATEX** ppDeviceFormat) { return pThis->lpVtbl->GetMixFormat(pThis, ppDeviceFormat); }
static MA_INLINE HRESULT ma_IAudioClient3_GetDevicePeriod(ma_IAudioClient3* pThis, MA_REFERENCE_TIME* pDefaultDevicePeriod, MA_REFERENCE_TIME* pMinimumDevicePeriod) { return pThis->lpVtbl->GetDevicePeriod(pThis, pDefaultDevicePeriod, pMinimumDevicePeriod); }
static MA_INLINE HRESULT ma_IAudioClient3_Start(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Start(pThis); }
static MA_INLINE HRESULT ma_IAudioClient3_Stop(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Stop(pThis); }
static MA_INLINE HRESULT ma_IAudioClient3_Reset(ma_IAudioClient3* pThis) { return pThis->lpVtbl->Reset(pThis); }
static MA_INLINE HRESULT ma_IAudioClient3_SetEventHandle(ma_IAudioClient3* pThis, HANDLE eventHandle) { return pThis->lpVtbl->SetEventHandle(pThis, eventHandle); }
static MA_INLINE HRESULT ma_IAudioClient3_GetService(ma_IAudioClient3* pThis, const IID* const riid, void** pp) { return pThis->lpVtbl->GetService(pThis, riid, pp); }
static MA_INLINE HRESULT ma_IAudioClient3_IsOffloadCapable(ma_IAudioClient3* pThis, MA_AUDIO_STREAM_CATEGORY category, BOOL* pOffloadCapable) { return pThis->lpVtbl->IsOffloadCapable(pThis, category, pOffloadCapable); }
static MA_INLINE HRESULT ma_IAudioClient3_SetClientProperties(ma_IAudioClient3* pThis, const ma_AudioClientProperties* pProperties) { return pThis->lpVtbl->SetClientProperties(pThis, pProperties); }
static MA_INLINE HRESULT ma_IAudioClient3_GetBufferSizeLimits(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, BOOL eventDriven, MA_REFERENCE_TIME* pMinBufferDuration, MA_REFERENCE_TIME* pMaxBufferDuration) { return pThis->lpVtbl->GetBufferSizeLimits(pThis, pFormat, eventDriven, pMinBufferDuration, pMaxBufferDuration); }
static MA_INLINE HRESULT ma_IAudioClient3_GetSharedModeEnginePeriod(ma_IAudioClient3* pThis, const WAVEFORMATEX* pFormat, UINT32* pDefaultPeriodInFrames, UINT32* pFundamentalPeriodInFrames, UINT32* pMinPeriodInFrames, UINT32* pMaxPeriodInFrames) { return pThis->lpVtbl->GetSharedModeEnginePeriod(pThis, pFormat, pDefaultPeriodInFrames, pFundamentalPeriodInFrames, pMinPeriodInFrames, pMaxPeriodInFrames); }
static MA_INLINE HRESULT ma_IAudioClient3_GetCurrentSharedModeEnginePeriod(ma_IAudioClient3* pThis, WAVEFORMATEX** ppFormat, UINT32* pCurrentPeriodInFrames) { return pThis->lpVtbl->GetCurrentSharedModeEnginePeriod(pThis, ppFormat, pCurrentPeriodInFrames); }
static MA_INLINE HRESULT ma_IAudioClient3_InitializeSharedAudioStream(ma_IAudioClient3* pThis, DWORD streamFlags, UINT32 periodInFrames, const WAVEFORMATEX* pFormat, const GUID* pAudioSessionGUID) { return pThis->lpVtbl->InitializeSharedAudioStream(pThis, streamFlags, periodInFrames, pFormat, pAudioSessionGUID); }
/* IAudioRenderClient */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioRenderClient* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioRenderClient* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioRenderClient* pThis);
/* IAudioRenderClient */
HRESULT (STDMETHODCALLTYPE * GetBuffer) (ma_IAudioRenderClient* pThis, ma_uint32 numFramesRequested, BYTE** ppData);
HRESULT (STDMETHODCALLTYPE * ReleaseBuffer)(ma_IAudioRenderClient* pThis, ma_uint32 numFramesWritten, DWORD dwFlags);
} ma_IAudioRenderClientVtbl;
struct ma_IAudioRenderClient
{
ma_IAudioRenderClientVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IAudioRenderClient_QueryInterface(ma_IAudioRenderClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IAudioRenderClient_AddRef(ma_IAudioRenderClient* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IAudioRenderClient_Release(ma_IAudioRenderClient* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IAudioRenderClient_GetBuffer(ma_IAudioRenderClient* pThis, ma_uint32 numFramesRequested, BYTE** ppData) { return pThis->lpVtbl->GetBuffer(pThis, numFramesRequested, ppData); }
static MA_INLINE HRESULT ma_IAudioRenderClient_ReleaseBuffer(ma_IAudioRenderClient* pThis, ma_uint32 numFramesWritten, DWORD dwFlags) { return pThis->lpVtbl->ReleaseBuffer(pThis, numFramesWritten, dwFlags); }
/* IAudioCaptureClient */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IAudioCaptureClient* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IAudioCaptureClient* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IAudioCaptureClient* pThis);
/* IAudioRenderClient */
HRESULT (STDMETHODCALLTYPE * GetBuffer) (ma_IAudioCaptureClient* pThis, BYTE** ppData, ma_uint32* pNumFramesToRead, DWORD* pFlags, ma_uint64* pDevicePosition, ma_uint64* pQPCPosition);
HRESULT (STDMETHODCALLTYPE * ReleaseBuffer) (ma_IAudioCaptureClient* pThis, ma_uint32 numFramesRead);
HRESULT (STDMETHODCALLTYPE * GetNextPacketSize)(ma_IAudioCaptureClient* pThis, ma_uint32* pNumFramesInNextPacket);
} ma_IAudioCaptureClientVtbl;
struct ma_IAudioCaptureClient
{
ma_IAudioCaptureClientVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IAudioCaptureClient_QueryInterface(ma_IAudioCaptureClient* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IAudioCaptureClient_AddRef(ma_IAudioCaptureClient* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IAudioCaptureClient_Release(ma_IAudioCaptureClient* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IAudioCaptureClient_GetBuffer(ma_IAudioCaptureClient* pThis, BYTE** ppData, ma_uint32* pNumFramesToRead, DWORD* pFlags, ma_uint64* pDevicePosition, ma_uint64* pQPCPosition) { return pThis->lpVtbl->GetBuffer(pThis, ppData, pNumFramesToRead, pFlags, pDevicePosition, pQPCPosition); }
static MA_INLINE HRESULT ma_IAudioCaptureClient_ReleaseBuffer(ma_IAudioCaptureClient* pThis, ma_uint32 numFramesRead) { return pThis->lpVtbl->ReleaseBuffer(pThis, numFramesRead); }
static MA_INLINE HRESULT ma_IAudioCaptureClient_GetNextPacketSize(ma_IAudioCaptureClient* pThis, ma_uint32* pNumFramesInNextPacket) { return pThis->lpVtbl->GetNextPacketSize(pThis, pNumFramesInNextPacket); }
#ifndef MA_WIN32_DESKTOP
#include <mmdeviceapi.h>
typedef struct ma_completion_handler_uwp ma_completion_handler_uwp;
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_completion_handler_uwp* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_completion_handler_uwp* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_completion_handler_uwp* pThis);
/* IActivateAudioInterfaceCompletionHandler */
HRESULT (STDMETHODCALLTYPE * ActivateCompleted)(ma_completion_handler_uwp* pThis, ma_IActivateAudioInterfaceAsyncOperation* pActivateOperation);
} ma_completion_handler_uwp_vtbl;
struct ma_completion_handler_uwp
{
ma_completion_handler_uwp_vtbl* lpVtbl;
ma_uint32 counter;
HANDLE hEvent;
};
static HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_QueryInterface(ma_completion_handler_uwp* pThis, const IID* const riid, void** ppObject)
{
/*
We need to "implement" IAgileObject which is just an indicator that's used internally by WASAPI for some multithreading management. To
"implement" this, we just make sure we return pThis when the IAgileObject is requested.
*/
if (!ma_is_guid_equal(riid, &MA_IID_IUnknown) && !ma_is_guid_equal(riid, &MA_IID_IActivateAudioInterfaceCompletionHandler) && !ma_is_guid_equal(riid, &MA_IID_IAgileObject)) {
*ppObject = NULL;
return E_NOINTERFACE;
}
/* Getting here means the IID is IUnknown or IMMNotificationClient. */
*ppObject = (void*)pThis;
((ma_completion_handler_uwp_vtbl*)pThis->lpVtbl)->AddRef(pThis);
return S_OK;
}
static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_AddRef(ma_completion_handler_uwp* pThis)
{
return (ULONG)c89atomic_fetch_add_32(&pThis->counter, 1) + 1;
}
static ULONG STDMETHODCALLTYPE ma_completion_handler_uwp_Release(ma_completion_handler_uwp* pThis)
{
ma_uint32 newRefCount = c89atomic_fetch_sub_32(&pThis->counter, 1) - 1;
if (newRefCount == 0) {
return 0; /* We don't free anything here because we never allocate the object on the heap. */
}
return (ULONG)newRefCount;
}
static HRESULT STDMETHODCALLTYPE ma_completion_handler_uwp_ActivateCompleted(ma_completion_handler_uwp* pThis, ma_IActivateAudioInterfaceAsyncOperation* pActivateOperation)
{
(void)pActivateOperation;
SetEvent(pThis->hEvent);
return S_OK;
}
static ma_completion_handler_uwp_vtbl g_maCompletionHandlerVtblInstance = {
ma_completion_handler_uwp_QueryInterface,
ma_completion_handler_uwp_AddRef,
ma_completion_handler_uwp_Release,
ma_completion_handler_uwp_ActivateCompleted
};
static ma_result ma_completion_handler_uwp_init(ma_completion_handler_uwp* pHandler)
{
MA_ASSERT(pHandler != NULL);
MA_ZERO_OBJECT(pHandler);
pHandler->lpVtbl = &g_maCompletionHandlerVtblInstance;
pHandler->counter = 1;
pHandler->hEvent = CreateEventW(NULL, FALSE, FALSE, NULL);
if (pHandler->hEvent == NULL) {
return ma_result_from_GetLastError(GetLastError());
}
return MA_SUCCESS;
}
static void ma_completion_handler_uwp_uninit(ma_completion_handler_uwp* pHandler)
{
if (pHandler->hEvent != NULL) {
CloseHandle(pHandler->hEvent);
}
}
static void ma_completion_handler_uwp_wait(ma_completion_handler_uwp* pHandler)
{
WaitForSingleObject(pHandler->hEvent, INFINITE);
}
#endif /* !MA_WIN32_DESKTOP */
/* We need a virtual table for our notification client object that's used for detecting changes to the default device. */
#ifdef MA_WIN32_DESKTOP
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_QueryInterface(ma_IMMNotificationClient* pThis, const IID* const riid, void** ppObject)
{
/*
We care about two interfaces - IUnknown and IMMNotificationClient. If the requested IID is something else
we just return E_NOINTERFACE. Otherwise we need to increment the reference counter and return S_OK.
*/
if (!ma_is_guid_equal(riid, &MA_IID_IUnknown) && !ma_is_guid_equal(riid, &MA_IID_IMMNotificationClient)) {
*ppObject = NULL;
return E_NOINTERFACE;
}
/* Getting here means the IID is IUnknown or IMMNotificationClient. */
*ppObject = (void*)pThis;
((ma_IMMNotificationClientVtbl*)pThis->lpVtbl)->AddRef(pThis);
return S_OK;
}
static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_AddRef(ma_IMMNotificationClient* pThis)
{
return (ULONG)c89atomic_fetch_add_32(&pThis->counter, 1) + 1;
}
static ULONG STDMETHODCALLTYPE ma_IMMNotificationClient_Release(ma_IMMNotificationClient* pThis)
{
ma_uint32 newRefCount = c89atomic_fetch_sub_32(&pThis->counter, 1) - 1;
if (newRefCount == 0) {
return 0; /* We don't free anything here because we never allocate the object on the heap. */
}
return (ULONG)newRefCount;
}
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceStateChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, DWORD dwNewState)
{
#ifdef MA_DEBUG_OUTPUT
/*printf("IMMNotificationClient_OnDeviceStateChanged(pDeviceID=%S, dwNewState=%u)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)", (unsigned int)dwNewState);*/
#endif
(void)pThis;
(void)pDeviceID;
(void)dwNewState;
return S_OK;
}
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceAdded(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID)
{
#ifdef MA_DEBUG_OUTPUT
/*printf("IMMNotificationClient_OnDeviceAdded(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/
#endif
/* We don't need to worry about this event for our purposes. */
(void)pThis;
(void)pDeviceID;
return S_OK;
}
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDeviceRemoved(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID)
{
#ifdef MA_DEBUG_OUTPUT
/*printf("IMMNotificationClient_OnDeviceRemoved(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/
#endif
/* We don't need to worry about this event for our purposes. */
(void)pThis;
(void)pDeviceID;
return S_OK;
}
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnDefaultDeviceChanged(ma_IMMNotificationClient* pThis, ma_EDataFlow dataFlow, ma_ERole role, LPCWSTR pDefaultDeviceID)
{
#ifdef MA_DEBUG_OUTPUT
/*printf("IMMNotificationClient_OnDefaultDeviceChanged(dataFlow=%d, role=%d, pDefaultDeviceID=%S)\n", dataFlow, role, (pDefaultDeviceID != NULL) ? pDefaultDeviceID : L"(NULL)");*/
#endif
/* We only ever use the eConsole role in miniaudio. */
if (role != ma_eConsole) {
return S_OK;
}
/* We only care about devices with the same data flow and role as the current device. */
if ((pThis->pDevice->type == ma_device_type_playback && dataFlow != ma_eRender) ||
(pThis->pDevice->type == ma_device_type_capture && dataFlow != ma_eCapture)) {
return S_OK;
}
/* Don't do automatic stream routing if we're not allowed. */
if ((dataFlow == ma_eRender && pThis->pDevice->wasapi.allowPlaybackAutoStreamRouting == MA_FALSE) ||
(dataFlow == ma_eCapture && pThis->pDevice->wasapi.allowCaptureAutoStreamRouting == MA_FALSE)) {
return S_OK;
}
/*
Not currently supporting automatic stream routing in exclusive mode. This is not working correctly on my machine due to
AUDCLNT_E_DEVICE_IN_USE errors when reinitializing the device. If this is a bug in miniaudio, we can try re-enabling this once
it's fixed.
*/
if ((dataFlow == ma_eRender && pThis->pDevice->playback.shareMode == ma_share_mode_exclusive) ||
(dataFlow == ma_eCapture && pThis->pDevice->capture.shareMode == ma_share_mode_exclusive)) {
return S_OK;
}
/*
We don't change the device here - we change it in the worker thread to keep synchronization simple. To do this I'm just setting a flag to
indicate that the default device has changed. Loopback devices are treated as capture devices so we need to do a bit of a dance to handle
that properly.
*/
if (dataFlow == ma_eRender && pThis->pDevice->type != ma_device_type_loopback) {
c89atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_TRUE);
}
if (dataFlow == ma_eCapture || pThis->pDevice->type == ma_device_type_loopback) {
c89atomic_exchange_32(&pThis->pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_TRUE);
}
(void)pDefaultDeviceID;
return S_OK;
}
static HRESULT STDMETHODCALLTYPE ma_IMMNotificationClient_OnPropertyValueChanged(ma_IMMNotificationClient* pThis, LPCWSTR pDeviceID, const PROPERTYKEY key)
{
#ifdef MA_DEBUG_OUTPUT
/*printf("IMMNotificationClient_OnPropertyValueChanged(pDeviceID=%S)\n", (pDeviceID != NULL) ? pDeviceID : L"(NULL)");*/
#endif
(void)pThis;
(void)pDeviceID;
(void)key;
return S_OK;
}
static ma_IMMNotificationClientVtbl g_maNotificationCientVtbl = {
ma_IMMNotificationClient_QueryInterface,
ma_IMMNotificationClient_AddRef,
ma_IMMNotificationClient_Release,
ma_IMMNotificationClient_OnDeviceStateChanged,
ma_IMMNotificationClient_OnDeviceAdded,
ma_IMMNotificationClient_OnDeviceRemoved,
ma_IMMNotificationClient_OnDefaultDeviceChanged,
ma_IMMNotificationClient_OnPropertyValueChanged
};
#endif /* MA_WIN32_DESKTOP */
#ifdef MA_WIN32_DESKTOP
typedef ma_IMMDevice ma_WASAPIDeviceInterface;
#else
typedef ma_IUnknown ma_WASAPIDeviceInterface;
#endif
static ma_bool32 ma_context_is_device_id_equal__wasapi(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return memcmp(pID0->wasapi, pID1->wasapi, sizeof(pID0->wasapi)) == 0;
}
static void ma_set_device_info_from_WAVEFORMATEX(const WAVEFORMATEX* pWF, ma_device_info* pInfo)
{
MA_ASSERT(pWF != NULL);
MA_ASSERT(pInfo != NULL);
pInfo->formatCount = 1;
pInfo->formats[0] = ma_format_from_WAVEFORMATEX(pWF);
pInfo->minChannels = pWF->nChannels;
pInfo->maxChannels = pWF->nChannels;
pInfo->minSampleRate = pWF->nSamplesPerSec;
pInfo->maxSampleRate = pWF->nSamplesPerSec;
}
static ma_result ma_context_get_device_info_from_IAudioClient__wasapi(ma_context* pContext, /*ma_IMMDevice**/void* pMMDevice, ma_IAudioClient* pAudioClient, ma_share_mode shareMode, ma_device_info* pInfo)
{
MA_ASSERT(pAudioClient != NULL);
MA_ASSERT(pInfo != NULL);
/* We use a different technique to retrieve the device information depending on whether or not we are using shared or exclusive mode. */
if (shareMode == ma_share_mode_shared) {
/* Shared Mode. We use GetMixFormat() here. */
WAVEFORMATEX* pWF = NULL;
HRESULT hr = ma_IAudioClient_GetMixFormat((ma_IAudioClient*)pAudioClient, (WAVEFORMATEX**)&pWF);
if (SUCCEEDED(hr)) {
ma_set_device_info_from_WAVEFORMATEX(pWF, pInfo);
return MA_SUCCESS;
} else {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve mix format for device info retrieval.", ma_result_from_HRESULT(hr));
}
} else {
/* Exlcusive Mode. We repeatedly call IsFormatSupported() here. This is not currently support on UWP. */
#ifdef MA_WIN32_DESKTOP
/*
The first thing to do is get the format from PKEY_AudioEngine_DeviceFormat. This should give us a channel count we assume is
correct which will simplify our searching.
*/
ma_IPropertyStore *pProperties;
HRESULT hr = ma_IMMDevice_OpenPropertyStore((ma_IMMDevice*)pMMDevice, STGM_READ, &pProperties);
if (SUCCEEDED(hr)) {
PROPVARIANT var;
ma_PropVariantInit(&var);
hr = ma_IPropertyStore_GetValue(pProperties, &MA_PKEY_AudioEngine_DeviceFormat, &var);
if (SUCCEEDED(hr)) {
WAVEFORMATEX* pWF = (WAVEFORMATEX*)var.blob.pBlobData;
ma_set_device_info_from_WAVEFORMATEX(pWF, pInfo);
/*
In my testing, the format returned by PKEY_AudioEngine_DeviceFormat is suitable for exclusive mode so we check this format
first. If this fails, fall back to a search.
*/
hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, pWF, NULL);
ma_PropVariantClear(pContext, &var);
if (FAILED(hr)) {
/*
The format returned by PKEY_AudioEngine_DeviceFormat is not supported, so fall back to a search. We assume the channel
count returned by MA_PKEY_AudioEngine_DeviceFormat is valid and correct. For simplicity we're only returning one format.
*/
ma_uint32 channels = pInfo->minChannels;
ma_format formatsToSearch[] = {
ma_format_s16,
ma_format_s24,
/*ma_format_s24_32,*/
ma_format_f32,
ma_format_s32,
ma_format_u8
};
ma_channel defaultChannelMap[MA_MAX_CHANNELS];
WAVEFORMATEXTENSIBLE wf;
ma_bool32 found;
ma_uint32 iFormat;
ma_get_standard_channel_map(ma_standard_channel_map_microsoft, channels, defaultChannelMap);
MA_ZERO_OBJECT(&wf);
wf.Format.cbSize = sizeof(wf);
wf.Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE;
wf.Format.nChannels = (WORD)channels;
wf.dwChannelMask = ma_channel_map_to_channel_mask__win32(defaultChannelMap, channels);
found = MA_FALSE;
for (iFormat = 0; iFormat < ma_countof(formatsToSearch); ++iFormat) {
ma_format format = formatsToSearch[iFormat];
ma_uint32 iSampleRate;
wf.Format.wBitsPerSample = (WORD)(ma_get_bytes_per_sample(format)*8);
wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8);
wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec;
wf.Samples.wValidBitsPerSample = /*(format == ma_format_s24_32) ? 24 :*/ wf.Format.wBitsPerSample;
if (format == ma_format_f32) {
wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT;
} else {
wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM;
}
for (iSampleRate = 0; iSampleRate < ma_countof(g_maStandardSampleRatePriorities); ++iSampleRate) {
wf.Format.nSamplesPerSec = g_maStandardSampleRatePriorities[iSampleRate];
hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, (WAVEFORMATEX*)&wf, NULL);
if (SUCCEEDED(hr)) {
ma_set_device_info_from_WAVEFORMATEX((WAVEFORMATEX*)&wf, pInfo);
found = MA_TRUE;
break;
}
}
if (found) {
break;
}
}
if (!found) {
ma_IPropertyStore_Release(pProperties);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to find suitable device format for device info retrieval.", MA_FORMAT_NOT_SUPPORTED);
}
}
} else {
ma_IPropertyStore_Release(pProperties);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve device format for device info retrieval.", ma_result_from_HRESULT(hr));
}
ma_IPropertyStore_Release(pProperties);
} else {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to open property store for device info retrieval.", ma_result_from_HRESULT(hr));
}
return MA_SUCCESS;
#else
/* Exclusive mode not fully supported in UWP right now. */
return MA_ERROR;
#endif
}
}
#ifdef MA_WIN32_DESKTOP
static ma_EDataFlow ma_device_type_to_EDataFlow(ma_device_type deviceType)
{
if (deviceType == ma_device_type_playback) {
return ma_eRender;
} else if (deviceType == ma_device_type_capture) {
return ma_eCapture;
} else {
MA_ASSERT(MA_FALSE);
return ma_eRender; /* Should never hit this. */
}
}
static ma_result ma_context_create_IMMDeviceEnumerator__wasapi(ma_context* pContext, ma_IMMDeviceEnumerator** ppDeviceEnumerator)
{
HRESULT hr;
ma_IMMDeviceEnumerator* pDeviceEnumerator;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppDeviceEnumerator != NULL);
hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", ma_result_from_HRESULT(hr));
}
*ppDeviceEnumerator = pDeviceEnumerator;
return MA_SUCCESS;
}
static LPWSTR ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(ma_context* pContext, ma_IMMDeviceEnumerator* pDeviceEnumerator, ma_device_type deviceType)
{
HRESULT hr;
ma_IMMDevice* pMMDefaultDevice = NULL;
LPWSTR pDefaultDeviceID = NULL;
ma_EDataFlow dataFlow;
ma_ERole role;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pDeviceEnumerator != NULL);
/* Grab the EDataFlow type from the device type. */
dataFlow = ma_device_type_to_EDataFlow(deviceType);
/* The role is always eConsole, but we may make this configurable later. */
role = ma_eConsole;
hr = ma_IMMDeviceEnumerator_GetDefaultAudioEndpoint(pDeviceEnumerator, dataFlow, role, &pMMDefaultDevice);
if (FAILED(hr)) {
return NULL;
}
hr = ma_IMMDevice_GetId(pMMDefaultDevice, &pDefaultDeviceID);
ma_IMMDevice_Release(pMMDefaultDevice);
pMMDefaultDevice = NULL;
if (FAILED(hr)) {
return NULL;
}
return pDefaultDeviceID;
}
static LPWSTR ma_context_get_default_device_id__wasapi(ma_context* pContext, ma_device_type deviceType) /* Free the returned pointer with ma_CoTaskMemFree() */
{
ma_result result;
ma_IMMDeviceEnumerator* pDeviceEnumerator;
LPWSTR pDefaultDeviceID = NULL;
MA_ASSERT(pContext != NULL);
result = ma_context_create_IMMDeviceEnumerator__wasapi(pContext, &pDeviceEnumerator);
if (result != MA_SUCCESS) {
return NULL;
}
pDefaultDeviceID = ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(pContext, pDeviceEnumerator, deviceType);
ma_IMMDeviceEnumerator_Release(pDeviceEnumerator);
return pDefaultDeviceID;
}
static ma_result ma_context_get_MMDevice__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IMMDevice** ppMMDevice)
{
ma_IMMDeviceEnumerator* pDeviceEnumerator;
HRESULT hr;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppMMDevice != NULL);
hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create IMMDeviceEnumerator.", ma_result_from_HRESULT(hr));
}
if (pDeviceID == NULL) {
hr = ma_IMMDeviceEnumerator_GetDefaultAudioEndpoint(pDeviceEnumerator, (deviceType == ma_device_type_capture) ? ma_eCapture : ma_eRender, ma_eConsole, ppMMDevice);
} else {
hr = ma_IMMDeviceEnumerator_GetDevice(pDeviceEnumerator, pDeviceID->wasapi, ppMMDevice);
}
ma_IMMDeviceEnumerator_Release(pDeviceEnumerator);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve IMMDevice.", ma_result_from_HRESULT(hr));
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info_from_MMDevice__wasapi(ma_context* pContext, ma_IMMDevice* pMMDevice, ma_share_mode shareMode, LPWSTR pDefaultDeviceID, ma_bool32 onlySimpleInfo, ma_device_info* pInfo)
{
LPWSTR pDeviceID;
HRESULT hr;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pMMDevice != NULL);
MA_ASSERT(pInfo != NULL);
/* ID. */
hr = ma_IMMDevice_GetId(pMMDevice, &pDeviceID);
if (SUCCEEDED(hr)) {
size_t idlen = wcslen(pDeviceID);
if (idlen+1 > ma_countof(pInfo->id.wasapi)) {
ma_CoTaskMemFree(pContext, pDeviceID);
MA_ASSERT(MA_FALSE); /* NOTE: If this is triggered, please report it. It means the format of the ID must haved change and is too long to fit in our fixed sized buffer. */
return MA_ERROR;
}
MA_COPY_MEMORY(pInfo->id.wasapi, pDeviceID, idlen * sizeof(wchar_t));
pInfo->id.wasapi[idlen] = '\0';
if (pDefaultDeviceID != NULL) {
if (wcscmp(pDeviceID, pDefaultDeviceID) == 0) {
/* It's a default device. */
pInfo->_private.isDefault = MA_TRUE;
}
}
ma_CoTaskMemFree(pContext, pDeviceID);
}
{
ma_IPropertyStore *pProperties;
hr = ma_IMMDevice_OpenPropertyStore(pMMDevice, STGM_READ, &pProperties);
if (SUCCEEDED(hr)) {
PROPVARIANT var;
/* Description / Friendly Name */
ma_PropVariantInit(&var);
hr = ma_IPropertyStore_GetValue(pProperties, &MA_PKEY_Device_FriendlyName, &var);
if (SUCCEEDED(hr)) {
WideCharToMultiByte(CP_UTF8, 0, var.pwszVal, -1, pInfo->name, sizeof(pInfo->name), 0, FALSE);
ma_PropVariantClear(pContext, &var);
}
ma_IPropertyStore_Release(pProperties);
}
}
/* Format */
if (!onlySimpleInfo) {
ma_IAudioClient* pAudioClient;
hr = ma_IMMDevice_Activate(pMMDevice, &MA_IID_IAudioClient, CLSCTX_ALL, NULL, (void**)&pAudioClient);
if (SUCCEEDED(hr)) {
ma_result result = ma_context_get_device_info_from_IAudioClient__wasapi(pContext, pMMDevice, pAudioClient, shareMode, pInfo);
ma_IAudioClient_Release(pAudioClient);
return result;
} else {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to activate audio client for device info retrieval.", ma_result_from_HRESULT(hr));
}
}
return MA_SUCCESS;
}
static ma_result ma_context_enumerate_devices_by_type__wasapi(ma_context* pContext, ma_IMMDeviceEnumerator* pDeviceEnumerator, ma_device_type deviceType, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_result result = MA_SUCCESS;
UINT deviceCount;
HRESULT hr;
ma_uint32 iDevice;
LPWSTR pDefaultDeviceID = NULL;
ma_IMMDeviceCollection* pDeviceCollection = NULL;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
/* Grab the default device. We use this to know whether or not flag the returned device info as being the default. */
pDefaultDeviceID = ma_context_get_default_device_id_from_IMMDeviceEnumerator__wasapi(pContext, pDeviceEnumerator, deviceType);
/* We need to enumerate the devices which returns a device collection. */
hr = ma_IMMDeviceEnumerator_EnumAudioEndpoints(pDeviceEnumerator, ma_device_type_to_EDataFlow(deviceType), MA_MM_DEVICE_STATE_ACTIVE, &pDeviceCollection);
if (SUCCEEDED(hr)) {
hr = ma_IMMDeviceCollection_GetCount(pDeviceCollection, &deviceCount);
if (FAILED(hr)) {
result = ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to get device count.", ma_result_from_HRESULT(hr));
goto done;
}
for (iDevice = 0; iDevice < deviceCount; ++iDevice) {
ma_device_info deviceInfo;
ma_IMMDevice* pMMDevice;
MA_ZERO_OBJECT(&deviceInfo);
hr = ma_IMMDeviceCollection_Item(pDeviceCollection, iDevice, &pMMDevice);
if (SUCCEEDED(hr)) {
result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, ma_share_mode_shared, pDefaultDeviceID, MA_TRUE, &deviceInfo); /* MA_TRUE = onlySimpleInfo. */
ma_IMMDevice_Release(pMMDevice);
if (result == MA_SUCCESS) {
ma_bool32 cbResult = callback(pContext, deviceType, &deviceInfo, pUserData);
if (cbResult == MA_FALSE) {
break;
}
}
}
}
}
done:
if (pDefaultDeviceID != NULL) {
ma_CoTaskMemFree(pContext, pDefaultDeviceID);
pDefaultDeviceID = NULL;
}
if (pDeviceCollection != NULL) {
ma_IMMDeviceCollection_Release(pDeviceCollection);
pDeviceCollection = NULL;
}
return result;
}
static ma_result ma_context_get_IAudioClient_Desktop__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IAudioClient** ppAudioClient, ma_IMMDevice** ppMMDevice)
{
ma_result result;
HRESULT hr;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppAudioClient != NULL);
MA_ASSERT(ppMMDevice != NULL);
result = ma_context_get_MMDevice__wasapi(pContext, deviceType, pDeviceID, ppMMDevice);
if (result != MA_SUCCESS) {
return result;
}
hr = ma_IMMDevice_Activate(*ppMMDevice, &MA_IID_IAudioClient, CLSCTX_ALL, NULL, (void**)ppAudioClient);
if (FAILED(hr)) {
return ma_result_from_HRESULT(hr);
}
return MA_SUCCESS;
}
#else
static ma_result ma_context_get_IAudioClient_UWP__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IAudioClient** ppAudioClient, ma_IUnknown** ppActivatedInterface)
{
ma_IActivateAudioInterfaceAsyncOperation *pAsyncOp = NULL;
ma_completion_handler_uwp completionHandler;
IID iid;
LPOLESTR iidStr;
HRESULT hr;
ma_result result;
HRESULT activateResult;
ma_IUnknown* pActivatedInterface;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppAudioClient != NULL);
if (pDeviceID != NULL) {
MA_COPY_MEMORY(&iid, pDeviceID->wasapi, sizeof(iid));
} else {
if (deviceType == ma_device_type_playback) {
iid = MA_IID_DEVINTERFACE_AUDIO_RENDER;
} else {
iid = MA_IID_DEVINTERFACE_AUDIO_CAPTURE;
}
}
#if defined(__cplusplus)
hr = StringFromIID(iid, &iidStr);
#else
hr = StringFromIID(&iid, &iidStr);
#endif
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to convert device IID to string for ActivateAudioInterfaceAsync(). Out of memory.", ma_result_from_HRESULT(hr));
}
result = ma_completion_handler_uwp_init(&completionHandler);
if (result != MA_SUCCESS) {
ma_CoTaskMemFree(pContext, iidStr);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for waiting for ActivateAudioInterfaceAsync().", result);
}
#if defined(__cplusplus)
hr = ActivateAudioInterfaceAsync(iidStr, MA_IID_IAudioClient, NULL, (IActivateAudioInterfaceCompletionHandler*)&completionHandler, (IActivateAudioInterfaceAsyncOperation**)&pAsyncOp);
#else
hr = ActivateAudioInterfaceAsync(iidStr, &MA_IID_IAudioClient, NULL, (IActivateAudioInterfaceCompletionHandler*)&completionHandler, (IActivateAudioInterfaceAsyncOperation**)&pAsyncOp);
#endif
if (FAILED(hr)) {
ma_completion_handler_uwp_uninit(&completionHandler);
ma_CoTaskMemFree(pContext, iidStr);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] ActivateAudioInterfaceAsync() failed.", ma_result_from_HRESULT(hr));
}
ma_CoTaskMemFree(pContext, iidStr);
/* Wait for the async operation for finish. */
ma_completion_handler_uwp_wait(&completionHandler);
ma_completion_handler_uwp_uninit(&completionHandler);
hr = ma_IActivateAudioInterfaceAsyncOperation_GetActivateResult(pAsyncOp, &activateResult, &pActivatedInterface);
ma_IActivateAudioInterfaceAsyncOperation_Release(pAsyncOp);
if (FAILED(hr) || FAILED(activateResult)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to activate device.", FAILED(hr) ? ma_result_from_HRESULT(hr) : ma_result_from_HRESULT(activateResult));
}
/* Here is where we grab the IAudioClient interface. */
hr = ma_IUnknown_QueryInterface(pActivatedInterface, &MA_IID_IAudioClient, (void**)ppAudioClient);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to query IAudioClient interface.", ma_result_from_HRESULT(hr));
}
if (ppActivatedInterface) {
*ppActivatedInterface = pActivatedInterface;
} else {
ma_IUnknown_Release(pActivatedInterface);
}
return MA_SUCCESS;
}
#endif
static ma_result ma_context_get_IAudioClient__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_IAudioClient** ppAudioClient, ma_WASAPIDeviceInterface** ppDeviceInterface)
{
#ifdef MA_WIN32_DESKTOP
return ma_context_get_IAudioClient_Desktop__wasapi(pContext, deviceType, pDeviceID, ppAudioClient, ppDeviceInterface);
#else
return ma_context_get_IAudioClient_UWP__wasapi(pContext, deviceType, pDeviceID, ppAudioClient, ppDeviceInterface);
#endif
}
static ma_result ma_context_enumerate_devices__wasapi(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
/* Different enumeration for desktop and UWP. */
#ifdef MA_WIN32_DESKTOP
/* Desktop */
HRESULT hr;
ma_IMMDeviceEnumerator* pDeviceEnumerator;
hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", ma_result_from_HRESULT(hr));
}
ma_context_enumerate_devices_by_type__wasapi(pContext, pDeviceEnumerator, ma_device_type_playback, callback, pUserData);
ma_context_enumerate_devices_by_type__wasapi(pContext, pDeviceEnumerator, ma_device_type_capture, callback, pUserData);
ma_IMMDeviceEnumerator_Release(pDeviceEnumerator);
#else
/*
UWP
The MMDevice API is only supported on desktop applications. For now, while I'm still figuring out how to properly enumerate
over devices without using MMDevice, I'm restricting devices to defaults.
Hint: DeviceInformation::FindAllAsync() with DeviceClass.AudioCapture/AudioRender. https://blogs.windows.com/buildingapps/2014/05/15/real-time-audio-in-windows-store-and-windows-phone-apps/
*/
if (callback) {
ma_bool32 cbResult = MA_TRUE;
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
deviceInfo._private.isDefault = MA_TRUE;
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
deviceInfo._private.isDefault = MA_TRUE;
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
}
#endif
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
#ifdef MA_WIN32_DESKTOP
ma_result result;
ma_IMMDevice* pMMDevice = NULL;
LPWSTR pDefaultDeviceID = NULL;
result = ma_context_get_MMDevice__wasapi(pContext, deviceType, pDeviceID, &pMMDevice);
if (result != MA_SUCCESS) {
return result;
}
/* We need the default device ID so we can set the isDefault flag in the device info. */
pDefaultDeviceID = ma_context_get_default_device_id__wasapi(pContext, deviceType);
result = ma_context_get_device_info_from_MMDevice__wasapi(pContext, pMMDevice, shareMode, pDefaultDeviceID, MA_FALSE, pDeviceInfo); /* MA_FALSE = !onlySimpleInfo. */
if (pDefaultDeviceID != NULL) {
ma_CoTaskMemFree(pContext, pDefaultDeviceID);
pDefaultDeviceID = NULL;
}
ma_IMMDevice_Release(pMMDevice);
return result;
#else
ma_IAudioClient* pAudioClient;
ma_result result;
/* UWP currently only uses default devices. */
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
}
/* Not currently supporting exclusive mode on UWP. */
if (shareMode == ma_share_mode_exclusive) {
return MA_ERROR;
}
result = ma_context_get_IAudioClient_UWP__wasapi(pContext, deviceType, pDeviceID, &pAudioClient, NULL);
if (result != MA_SUCCESS) {
return result;
}
result = ma_context_get_device_info_from_IAudioClient__wasapi(pContext, NULL, pAudioClient, shareMode, pDeviceInfo);
pDeviceInfo->_private.isDefault = MA_TRUE; /* UWP only supports default devices. */
ma_IAudioClient_Release(pAudioClient);
return result;
#endif
}
static void ma_device_uninit__wasapi(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
#ifdef MA_WIN32_DESKTOP
if (pDevice->wasapi.pDeviceEnumerator) {
((ma_IMMDeviceEnumerator*)pDevice->wasapi.pDeviceEnumerator)->lpVtbl->UnregisterEndpointNotificationCallback((ma_IMMDeviceEnumerator*)pDevice->wasapi.pDeviceEnumerator, &pDevice->wasapi.notificationClient);
ma_IMMDeviceEnumerator_Release((ma_IMMDeviceEnumerator*)pDevice->wasapi.pDeviceEnumerator);
}
#endif
if (pDevice->wasapi.pRenderClient) {
ma_IAudioRenderClient_Release((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient);
}
if (pDevice->wasapi.pCaptureClient) {
ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient);
}
if (pDevice->wasapi.pAudioClientPlayback) {
ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
}
if (pDevice->wasapi.pAudioClientCapture) {
ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
}
if (pDevice->wasapi.hEventPlayback) {
CloseHandle(pDevice->wasapi.hEventPlayback);
}
if (pDevice->wasapi.hEventCapture) {
CloseHandle(pDevice->wasapi.hEventCapture);
}
}
typedef struct
{
/* Input. */
ma_format formatIn;
ma_uint32 channelsIn;
ma_uint32 sampleRateIn;
ma_channel channelMapIn[MA_MAX_CHANNELS];
ma_uint32 periodSizeInFramesIn;
ma_uint32 periodSizeInMillisecondsIn;
ma_uint32 periodsIn;
ma_bool32 usingDefaultFormat;
ma_bool32 usingDefaultChannels;
ma_bool32 usingDefaultSampleRate;
ma_bool32 usingDefaultChannelMap;
ma_share_mode shareMode;
ma_bool32 noAutoConvertSRC;
ma_bool32 noDefaultQualitySRC;
ma_bool32 noHardwareOffloading;
/* Output. */
ma_IAudioClient* pAudioClient;
ma_IAudioRenderClient* pRenderClient;
ma_IAudioCaptureClient* pCaptureClient;
ma_format formatOut;
ma_uint32 channelsOut;
ma_uint32 sampleRateOut;
ma_channel channelMapOut[MA_MAX_CHANNELS];
ma_uint32 periodSizeInFramesOut;
ma_uint32 periodsOut;
ma_bool32 usingAudioClient3;
char deviceName[256];
} ma_device_init_internal_data__wasapi;
static ma_result ma_device_init_internal__wasapi(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_init_internal_data__wasapi* pData)
{
HRESULT hr;
ma_result result = MA_SUCCESS;
const char* errorMsg = "";
MA_AUDCLNT_SHAREMODE shareMode = MA_AUDCLNT_SHAREMODE_SHARED;
DWORD streamFlags = 0;
MA_REFERENCE_TIME periodDurationInMicroseconds;
ma_bool32 wasInitializedUsingIAudioClient3 = MA_FALSE;
WAVEFORMATEXTENSIBLE wf;
ma_WASAPIDeviceInterface* pDeviceInterface = NULL;
ma_IAudioClient2* pAudioClient2;
ma_uint32 nativeSampleRate;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pData != NULL);
/* This function is only used to initialize one device type: either playback, capture or loopback. Never full-duplex. */
if (deviceType == ma_device_type_duplex) {
return MA_INVALID_ARGS;
}
pData->pAudioClient = NULL;
pData->pRenderClient = NULL;
pData->pCaptureClient = NULL;
streamFlags = MA_AUDCLNT_STREAMFLAGS_EVENTCALLBACK;
if (!pData->noAutoConvertSRC && !pData->usingDefaultSampleRate && pData->shareMode != ma_share_mode_exclusive) { /* <-- Exclusive streams must use the native sample rate. */
streamFlags |= MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM;
}
if (!pData->noDefaultQualitySRC && !pData->usingDefaultSampleRate && (streamFlags & MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM) != 0) {
streamFlags |= MA_AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY;
}
if (deviceType == ma_device_type_loopback) {
streamFlags |= MA_AUDCLNT_STREAMFLAGS_LOOPBACK;
}
result = ma_context_get_IAudioClient__wasapi(pContext, deviceType, pDeviceID, &pData->pAudioClient, &pDeviceInterface);
if (result != MA_SUCCESS) {
goto done;
}
MA_ZERO_OBJECT(&wf);
/* Try enabling hardware offloading. */
if (!pData->noHardwareOffloading) {
hr = ma_IAudioClient_QueryInterface(pData->pAudioClient, &MA_IID_IAudioClient2, (void**)&pAudioClient2);
if (SUCCEEDED(hr)) {
BOOL isHardwareOffloadingSupported = 0;
hr = ma_IAudioClient2_IsOffloadCapable(pAudioClient2, MA_AudioCategory_Other, &isHardwareOffloadingSupported);
if (SUCCEEDED(hr) && isHardwareOffloadingSupported) {
ma_AudioClientProperties clientProperties;
MA_ZERO_OBJECT(&clientProperties);
clientProperties.cbSize = sizeof(clientProperties);
clientProperties.bIsOffload = 1;
clientProperties.eCategory = MA_AudioCategory_Other;
ma_IAudioClient2_SetClientProperties(pAudioClient2, &clientProperties);
}
pAudioClient2->lpVtbl->Release(pAudioClient2);
}
}
/* Here is where we try to determine the best format to use with the device. If the client if wanting exclusive mode, first try finding the best format for that. If this fails, fall back to shared mode. */
result = MA_FORMAT_NOT_SUPPORTED;
if (pData->shareMode == ma_share_mode_exclusive) {
#ifdef MA_WIN32_DESKTOP
/* In exclusive mode on desktop we always use the backend's native format. */
ma_IPropertyStore* pStore = NULL;
hr = ma_IMMDevice_OpenPropertyStore(pDeviceInterface, STGM_READ, &pStore);
if (SUCCEEDED(hr)) {
PROPVARIANT prop;
ma_PropVariantInit(&prop);
hr = ma_IPropertyStore_GetValue(pStore, &MA_PKEY_AudioEngine_DeviceFormat, &prop);
if (SUCCEEDED(hr)) {
WAVEFORMATEX* pActualFormat = (WAVEFORMATEX*)prop.blob.pBlobData;
hr = ma_IAudioClient_IsFormatSupported((ma_IAudioClient*)pData->pAudioClient, MA_AUDCLNT_SHAREMODE_EXCLUSIVE, pActualFormat, NULL);
if (SUCCEEDED(hr)) {
MA_COPY_MEMORY(&wf, pActualFormat, sizeof(WAVEFORMATEXTENSIBLE));
}
ma_PropVariantClear(pContext, &prop);
}
ma_IPropertyStore_Release(pStore);
}
#else
/*
I do not know how to query the device's native format on UWP so for now I'm just disabling support for
exclusive mode. The alternative is to enumerate over different formats and check IsFormatSupported()
until you find one that works.
TODO: Add support for exclusive mode to UWP.
*/
hr = S_FALSE;
#endif
if (hr == S_OK) {
shareMode = MA_AUDCLNT_SHAREMODE_EXCLUSIVE;
result = MA_SUCCESS;
} else {
result = MA_SHARE_MODE_NOT_SUPPORTED;
}
} else {
/* In shared mode we are always using the format reported by the operating system. */
WAVEFORMATEXTENSIBLE* pNativeFormat = NULL;
hr = ma_IAudioClient_GetMixFormat((ma_IAudioClient*)pData->pAudioClient, (WAVEFORMATEX**)&pNativeFormat);
if (hr != S_OK) {
result = MA_FORMAT_NOT_SUPPORTED;
} else {
MA_COPY_MEMORY(&wf, pNativeFormat, sizeof(wf));
result = MA_SUCCESS;
}
ma_CoTaskMemFree(pContext, pNativeFormat);
shareMode = MA_AUDCLNT_SHAREMODE_SHARED;
}
/* Return an error if we still haven't found a format. */
if (result != MA_SUCCESS) {
errorMsg = "[WASAPI] Failed to find best device mix format.";
goto done;
}
/*
Override the native sample rate with the one requested by the caller, but only if we're not using the default sample rate. We'll use
WASAPI to perform the sample rate conversion.
*/
nativeSampleRate = wf.Format.nSamplesPerSec;
if (streamFlags & MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM) {
wf.Format.nSamplesPerSec = pData->sampleRateIn;
wf.Format.nAvgBytesPerSec = wf.Format.nSamplesPerSec * wf.Format.nBlockAlign;
}
pData->formatOut = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)&wf);
pData->channelsOut = wf.Format.nChannels;
pData->sampleRateOut = wf.Format.nSamplesPerSec;
/* Get the internal channel map based on the channel mask. */
ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pData->channelsOut, pData->channelMapOut);
/* Period size. */
pData->periodsOut = pData->periodsIn;
pData->periodSizeInFramesOut = pData->periodSizeInFramesIn;
if (pData->periodSizeInFramesOut == 0) {
pData->periodSizeInFramesOut = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->periodSizeInMillisecondsIn, wf.Format.nSamplesPerSec);
}
periodDurationInMicroseconds = ((ma_uint64)pData->periodSizeInFramesOut * 1000 * 1000) / wf.Format.nSamplesPerSec;
/* Slightly different initialization for shared and exclusive modes. We try exclusive mode first, and if it fails, fall back to shared mode. */
if (shareMode == MA_AUDCLNT_SHAREMODE_EXCLUSIVE) {
MA_REFERENCE_TIME bufferDuration = periodDurationInMicroseconds * 10;
/*
If the periodicy is too small, Initialize() will fail with AUDCLNT_E_INVALID_DEVICE_PERIOD. In this case we should just keep increasing
it and trying it again.
*/
hr = E_FAIL;
for (;;) {
hr = ma_IAudioClient_Initialize((ma_IAudioClient*)pData->pAudioClient, shareMode, streamFlags, bufferDuration, bufferDuration, (WAVEFORMATEX*)&wf, NULL);
if (hr == MA_AUDCLNT_E_INVALID_DEVICE_PERIOD) {
if (bufferDuration > 500*10000) {
break;
} else {
if (bufferDuration == 0) { /* <-- Just a sanity check to prevent an infinit loop. Should never happen, but it makes me feel better. */
break;
}
bufferDuration = bufferDuration * 2;
continue;
}
} else {
break;
}
}
if (hr == MA_AUDCLNT_E_BUFFER_SIZE_NOT_ALIGNED) {
ma_uint32 bufferSizeInFrames;
hr = ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pData->pAudioClient, &bufferSizeInFrames);
if (SUCCEEDED(hr)) {
bufferDuration = (MA_REFERENCE_TIME)((10000.0 * 1000 / wf.Format.nSamplesPerSec * bufferSizeInFrames) + 0.5);
/* Unfortunately we need to release and re-acquire the audio client according to MSDN. Seems silly - why not just call IAudioClient_Initialize() again?! */
ma_IAudioClient_Release((ma_IAudioClient*)pData->pAudioClient);
#ifdef MA_WIN32_DESKTOP
hr = ma_IMMDevice_Activate(pDeviceInterface, &MA_IID_IAudioClient, CLSCTX_ALL, NULL, (void**)&pData->pAudioClient);
#else
hr = ma_IUnknown_QueryInterface(pDeviceInterface, &MA_IID_IAudioClient, (void**)&pData->pAudioClient);
#endif
if (SUCCEEDED(hr)) {
hr = ma_IAudioClient_Initialize((ma_IAudioClient*)pData->pAudioClient, shareMode, streamFlags, bufferDuration, bufferDuration, (WAVEFORMATEX*)&wf, NULL);
}
}
}
if (FAILED(hr)) {
/* Failed to initialize in exclusive mode. Don't fall back to shared mode - instead tell the client about it. They can reinitialize in shared mode if they want. */
if (hr == E_ACCESSDENIED) {
errorMsg = "[WASAPI] Failed to initialize device in exclusive mode. Access denied.", result = MA_ACCESS_DENIED;
} else if (hr == MA_AUDCLNT_E_DEVICE_IN_USE) {
errorMsg = "[WASAPI] Failed to initialize device in exclusive mode. Device in use.", result = MA_BUSY;
} else {
errorMsg = "[WASAPI] Failed to initialize device in exclusive mode."; result = ma_result_from_HRESULT(hr);
}
goto done;
}
}
if (shareMode == MA_AUDCLNT_SHAREMODE_SHARED) {
/*
Low latency shared mode via IAudioClient3.
NOTE
====
Contrary to the documentation on MSDN (https://docs.microsoft.com/en-us/windows/win32/api/audioclient/nf-audioclient-iaudioclient3-initializesharedaudiostream), the
use of AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM and AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY with IAudioClient3_InitializeSharedAudioStream() absolutely does not work. Using
any of these flags will result in HRESULT code 0x88890021. The other problem is that calling IAudioClient3_GetSharedModeEnginePeriod() with a sample rate different to
that returned by IAudioClient_GetMixFormat() also results in an error. I'm therefore disabling low-latency shared mode with AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM.
*/
#ifndef MA_WASAPI_NO_LOW_LATENCY_SHARED_MODE
if ((streamFlags & MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM) == 0 || nativeSampleRate == wf.Format.nSamplesPerSec) {
ma_IAudioClient3* pAudioClient3 = NULL;
hr = ma_IAudioClient_QueryInterface(pData->pAudioClient, &MA_IID_IAudioClient3, (void**)&pAudioClient3);
if (SUCCEEDED(hr)) {
UINT32 defaultPeriodInFrames;
UINT32 fundamentalPeriodInFrames;
UINT32 minPeriodInFrames;
UINT32 maxPeriodInFrames;
hr = ma_IAudioClient3_GetSharedModeEnginePeriod(pAudioClient3, (WAVEFORMATEX*)&wf, &defaultPeriodInFrames, &fundamentalPeriodInFrames, &minPeriodInFrames, &maxPeriodInFrames);
if (SUCCEEDED(hr)) {
UINT32 desiredPeriodInFrames = pData->periodSizeInFramesOut;
UINT32 actualPeriodInFrames = desiredPeriodInFrames;
/* Make sure the period size is a multiple of fundamentalPeriodInFrames. */
actualPeriodInFrames = actualPeriodInFrames / fundamentalPeriodInFrames;
actualPeriodInFrames = actualPeriodInFrames * fundamentalPeriodInFrames;
/* The period needs to be clamped between minPeriodInFrames and maxPeriodInFrames. */
actualPeriodInFrames = ma_clamp(actualPeriodInFrames, minPeriodInFrames, maxPeriodInFrames);
#if defined(MA_DEBUG_OUTPUT)
printf("[WASAPI] Trying IAudioClient3_InitializeSharedAudioStream(actualPeriodInFrames=%d)\n", actualPeriodInFrames);
printf(" defaultPeriodInFrames=%d\n", defaultPeriodInFrames);
printf(" fundamentalPeriodInFrames=%d\n", fundamentalPeriodInFrames);
printf(" minPeriodInFrames=%d\n", minPeriodInFrames);
printf(" maxPeriodInFrames=%d\n", maxPeriodInFrames);
#endif
/* If the client requested a largish buffer than we don't actually want to use low latency shared mode because it forces small buffers. */
if (actualPeriodInFrames >= desiredPeriodInFrames) {
/*
MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM | MA_AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY must not be in the stream flags. If either of these are specified,
IAudioClient3_InitializeSharedAudioStream() will fail.
*/
hr = ma_IAudioClient3_InitializeSharedAudioStream(pAudioClient3, streamFlags & ~(MA_AUDCLNT_STREAMFLAGS_AUTOCONVERTPCM | MA_AUDCLNT_STREAMFLAGS_SRC_DEFAULT_QUALITY), actualPeriodInFrames, (WAVEFORMATEX*)&wf, NULL);
if (SUCCEEDED(hr)) {
wasInitializedUsingIAudioClient3 = MA_TRUE;
pData->periodSizeInFramesOut = actualPeriodInFrames;
#if defined(MA_DEBUG_OUTPUT)
printf("[WASAPI] Using IAudioClient3\n");
printf(" periodSizeInFramesOut=%d\n", pData->periodSizeInFramesOut);
#endif
} else {
#if defined(MA_DEBUG_OUTPUT)
printf("[WASAPI] IAudioClient3_InitializeSharedAudioStream failed. Falling back to IAudioClient.\n");
#endif
}
} else {
#if defined(MA_DEBUG_OUTPUT)
printf("[WASAPI] Not using IAudioClient3 because the desired period size is larger than the maximum supported by IAudioClient3.\n");
#endif
}
} else {
#if defined(MA_DEBUG_OUTPUT)
printf("[WASAPI] IAudioClient3_GetSharedModeEnginePeriod failed. Falling back to IAudioClient.\n");
#endif
}
ma_IAudioClient3_Release(pAudioClient3);
pAudioClient3 = NULL;
}
}
#else
#if defined(MA_DEBUG_OUTPUT)
printf("[WASAPI] Not using IAudioClient3 because MA_WASAPI_NO_LOW_LATENCY_SHARED_MODE is enabled.\n");
#endif
#endif
/* If we don't have an IAudioClient3 then we need to use the normal initialization routine. */
if (!wasInitializedUsingIAudioClient3) {
MA_REFERENCE_TIME bufferDuration = periodDurationInMicroseconds * pData->periodsOut * 10; /* <-- Multiply by 10 for microseconds to 100-nanoseconds. */
hr = ma_IAudioClient_Initialize((ma_IAudioClient*)pData->pAudioClient, shareMode, streamFlags, bufferDuration, 0, (WAVEFORMATEX*)&wf, NULL);
if (FAILED(hr)) {
if (hr == E_ACCESSDENIED) {
errorMsg = "[WASAPI] Failed to initialize device. Access denied.", result = MA_ACCESS_DENIED;
} else if (hr == MA_AUDCLNT_E_DEVICE_IN_USE) {
errorMsg = "[WASAPI] Failed to initialize device. Device in use.", result = MA_BUSY;
} else {
errorMsg = "[WASAPI] Failed to initialize device.", result = ma_result_from_HRESULT(hr);
}
goto done;
}
}
}
if (!wasInitializedUsingIAudioClient3) {
ma_uint32 bufferSizeInFrames;
hr = ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pData->pAudioClient, &bufferSizeInFrames);
if (FAILED(hr)) {
errorMsg = "[WASAPI] Failed to get audio client's actual buffer size.", result = ma_result_from_HRESULT(hr);
goto done;
}
pData->periodSizeInFramesOut = bufferSizeInFrames / pData->periodsOut;
}
pData->usingAudioClient3 = wasInitializedUsingIAudioClient3;
if (deviceType == ma_device_type_playback) {
hr = ma_IAudioClient_GetService((ma_IAudioClient*)pData->pAudioClient, &MA_IID_IAudioRenderClient, (void**)&pData->pRenderClient);
} else {
hr = ma_IAudioClient_GetService((ma_IAudioClient*)pData->pAudioClient, &MA_IID_IAudioCaptureClient, (void**)&pData->pCaptureClient);
}
if (FAILED(hr)) {
errorMsg = "[WASAPI] Failed to get audio client service.", result = ma_result_from_HRESULT(hr);
goto done;
}
/* Grab the name of the device. */
#ifdef MA_WIN32_DESKTOP
{
ma_IPropertyStore *pProperties;
hr = ma_IMMDevice_OpenPropertyStore(pDeviceInterface, STGM_READ, &pProperties);
if (SUCCEEDED(hr)) {
PROPVARIANT varName;
ma_PropVariantInit(&varName);
hr = ma_IPropertyStore_GetValue(pProperties, &MA_PKEY_Device_FriendlyName, &varName);
if (SUCCEEDED(hr)) {
WideCharToMultiByte(CP_UTF8, 0, varName.pwszVal, -1, pData->deviceName, sizeof(pData->deviceName), 0, FALSE);
ma_PropVariantClear(pContext, &varName);
}
ma_IPropertyStore_Release(pProperties);
}
}
#endif
done:
/* Clean up. */
#ifdef MA_WIN32_DESKTOP
if (pDeviceInterface != NULL) {
ma_IMMDevice_Release(pDeviceInterface);
}
#else
if (pDeviceInterface != NULL) {
ma_IUnknown_Release(pDeviceInterface);
}
#endif
if (result != MA_SUCCESS) {
if (pData->pRenderClient) {
ma_IAudioRenderClient_Release((ma_IAudioRenderClient*)pData->pRenderClient);
pData->pRenderClient = NULL;
}
if (pData->pCaptureClient) {
ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pData->pCaptureClient);
pData->pCaptureClient = NULL;
}
if (pData->pAudioClient) {
ma_IAudioClient_Release((ma_IAudioClient*)pData->pAudioClient);
pData->pAudioClient = NULL;
}
if (errorMsg != NULL && errorMsg[0] != '\0') {
ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, errorMsg, result);
}
return result;
} else {
return MA_SUCCESS;
}
}
static ma_result ma_device_reinit__wasapi(ma_device* pDevice, ma_device_type deviceType)
{
ma_device_init_internal_data__wasapi data;
ma_result result;
MA_ASSERT(pDevice != NULL);
/* We only re-initialize the playback or capture device. Never a full-duplex device. */
if (deviceType == ma_device_type_duplex) {
return MA_INVALID_ARGS;
}
if (deviceType == ma_device_type_playback) {
data.formatIn = pDevice->playback.format;
data.channelsIn = pDevice->playback.channels;
MA_COPY_MEMORY(data.channelMapIn, pDevice->playback.channelMap, sizeof(pDevice->playback.channelMap));
data.shareMode = pDevice->playback.shareMode;
data.usingDefaultFormat = pDevice->playback.usingDefaultFormat;
data.usingDefaultChannels = pDevice->playback.usingDefaultChannels;
data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap;
} else {
data.formatIn = pDevice->capture.format;
data.channelsIn = pDevice->capture.channels;
MA_COPY_MEMORY(data.channelMapIn, pDevice->capture.channelMap, sizeof(pDevice->capture.channelMap));
data.shareMode = pDevice->capture.shareMode;
data.usingDefaultFormat = pDevice->capture.usingDefaultFormat;
data.usingDefaultChannels = pDevice->capture.usingDefaultChannels;
data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap;
}
data.sampleRateIn = pDevice->sampleRate;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.periodSizeInFramesIn = pDevice->wasapi.originalPeriodSizeInFrames;
data.periodSizeInMillisecondsIn = pDevice->wasapi.originalPeriodSizeInMilliseconds;
data.periodsIn = pDevice->wasapi.originalPeriods;
data.noAutoConvertSRC = pDevice->wasapi.noAutoConvertSRC;
data.noDefaultQualitySRC = pDevice->wasapi.noDefaultQualitySRC;
data.noHardwareOffloading = pDevice->wasapi.noHardwareOffloading;
result = ma_device_init_internal__wasapi(pDevice->pContext, deviceType, NULL, &data);
if (result != MA_SUCCESS) {
return result;
}
/* At this point we have some new objects ready to go. We need to uninitialize the previous ones and then set the new ones. */
if (deviceType == ma_device_type_capture || deviceType == ma_device_type_loopback) {
if (pDevice->wasapi.pCaptureClient) {
ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient);
pDevice->wasapi.pCaptureClient = NULL;
}
if (pDevice->wasapi.pAudioClientCapture) {
ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
pDevice->wasapi.pAudioClientCapture = NULL;
}
pDevice->wasapi.pAudioClientCapture = data.pAudioClient;
pDevice->wasapi.pCaptureClient = data.pCaptureClient;
pDevice->capture.internalFormat = data.formatOut;
pDevice->capture.internalChannels = data.channelsOut;
pDevice->capture.internalSampleRate = data.sampleRateOut;
MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->capture.internalPeriods = data.periodsOut;
ma_strcpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), data.deviceName);
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, pDevice->wasapi.hEventCapture);
pDevice->wasapi.periodSizeInFramesCapture = data.periodSizeInFramesOut;
ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &pDevice->wasapi.actualPeriodSizeInFramesCapture);
/* The device may be in a started state. If so we need to immediately restart it. */
if (pDevice->wasapi.isStartedCapture) {
HRESULT hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal capture device after reinitialization.", ma_result_from_HRESULT(hr));
}
}
}
if (deviceType == ma_device_type_playback) {
if (pDevice->wasapi.pRenderClient) {
ma_IAudioRenderClient_Release((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient);
pDevice->wasapi.pRenderClient = NULL;
}
if (pDevice->wasapi.pAudioClientPlayback) {
ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
pDevice->wasapi.pAudioClientPlayback = NULL;
}
pDevice->wasapi.pAudioClientPlayback = data.pAudioClient;
pDevice->wasapi.pRenderClient = data.pRenderClient;
pDevice->playback.internalFormat = data.formatOut;
pDevice->playback.internalChannels = data.channelsOut;
pDevice->playback.internalSampleRate = data.sampleRateOut;
MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->playback.internalPeriods = data.periodsOut;
ma_strcpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), data.deviceName);
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, pDevice->wasapi.hEventPlayback);
pDevice->wasapi.periodSizeInFramesPlayback = data.periodSizeInFramesOut;
ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &pDevice->wasapi.actualPeriodSizeInFramesPlayback);
/* The device may be in a started state. If so we need to immediately restart it. */
if (pDevice->wasapi.isStartedPlayback) {
HRESULT hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device after reinitialization.", ma_result_from_HRESULT(hr));
}
}
}
return MA_SUCCESS;
}
static ma_result ma_device_init__wasapi(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
(void)pContext;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->wasapi);
pDevice->wasapi.originalPeriodSizeInFrames = pConfig->periodSizeInFrames;
pDevice->wasapi.originalPeriodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
pDevice->wasapi.originalPeriods = pConfig->periods;
pDevice->wasapi.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC;
pDevice->wasapi.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC;
pDevice->wasapi.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading;
/* Exclusive mode is not allowed with loopback. */
if (pConfig->deviceType == ma_device_type_loopback && pConfig->playback.shareMode == ma_share_mode_exclusive) {
return MA_INVALID_DEVICE_CONFIG;
}
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex || pConfig->deviceType == ma_device_type_loopback) {
ma_device_init_internal_data__wasapi data;
data.formatIn = pConfig->capture.format;
data.channelsIn = pConfig->capture.channels;
data.sampleRateIn = pConfig->sampleRate;
MA_COPY_MEMORY(data.channelMapIn, pConfig->capture.channelMap, sizeof(pConfig->capture.channelMap));
data.usingDefaultFormat = pDevice->capture.usingDefaultFormat;
data.usingDefaultChannels = pDevice->capture.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap;
data.shareMode = pConfig->capture.shareMode;
data.periodSizeInFramesIn = pConfig->periodSizeInFrames;
data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds;
data.periodsIn = pConfig->periods;
data.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC;
data.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC;
data.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading;
result = ma_device_init_internal__wasapi(pDevice->pContext, (pConfig->deviceType == ma_device_type_loopback) ? ma_device_type_loopback : ma_device_type_capture, pConfig->capture.pDeviceID, &data);
if (result != MA_SUCCESS) {
return result;
}
pDevice->wasapi.pAudioClientCapture = data.pAudioClient;
pDevice->wasapi.pCaptureClient = data.pCaptureClient;
pDevice->capture.internalFormat = data.formatOut;
pDevice->capture.internalChannels = data.channelsOut;
pDevice->capture.internalSampleRate = data.sampleRateOut;
MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->capture.internalPeriods = data.periodsOut;
ma_strcpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), data.deviceName);
/*
The event for capture needs to be manual reset for the same reason as playback. We keep the initial state set to unsignaled,
however, because we want to block until we actually have something for the first call to ma_device_read().
*/
pDevice->wasapi.hEventCapture = CreateEventW(NULL, FALSE, FALSE, NULL); /* Auto reset, unsignaled by default. */
if (pDevice->wasapi.hEventCapture == NULL) {
result = ma_result_from_GetLastError(GetLastError());
if (pDevice->wasapi.pCaptureClient != NULL) {
ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient);
pDevice->wasapi.pCaptureClient = NULL;
}
if (pDevice->wasapi.pAudioClientCapture != NULL) {
ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
pDevice->wasapi.pAudioClientCapture = NULL;
}
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for capture.", result);
}
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, pDevice->wasapi.hEventCapture);
pDevice->wasapi.periodSizeInFramesCapture = data.periodSizeInFramesOut;
ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &pDevice->wasapi.actualPeriodSizeInFramesCapture);
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_device_init_internal_data__wasapi data;
data.formatIn = pConfig->playback.format;
data.channelsIn = pConfig->playback.channels;
data.sampleRateIn = pConfig->sampleRate;
MA_COPY_MEMORY(data.channelMapIn, pConfig->playback.channelMap, sizeof(pConfig->playback.channelMap));
data.usingDefaultFormat = pDevice->playback.usingDefaultFormat;
data.usingDefaultChannels = pDevice->playback.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap;
data.shareMode = pConfig->playback.shareMode;
data.periodSizeInFramesIn = pConfig->periodSizeInFrames;
data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds;
data.periodsIn = pConfig->periods;
data.noAutoConvertSRC = pConfig->wasapi.noAutoConvertSRC;
data.noDefaultQualitySRC = pConfig->wasapi.noDefaultQualitySRC;
data.noHardwareOffloading = pConfig->wasapi.noHardwareOffloading;
result = ma_device_init_internal__wasapi(pDevice->pContext, ma_device_type_playback, pConfig->playback.pDeviceID, &data);
if (result != MA_SUCCESS) {
if (pConfig->deviceType == ma_device_type_duplex) {
if (pDevice->wasapi.pCaptureClient != NULL) {
ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient);
pDevice->wasapi.pCaptureClient = NULL;
}
if (pDevice->wasapi.pAudioClientCapture != NULL) {
ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
pDevice->wasapi.pAudioClientCapture = NULL;
}
CloseHandle(pDevice->wasapi.hEventCapture);
pDevice->wasapi.hEventCapture = NULL;
}
return result;
}
pDevice->wasapi.pAudioClientPlayback = data.pAudioClient;
pDevice->wasapi.pRenderClient = data.pRenderClient;
pDevice->playback.internalFormat = data.formatOut;
pDevice->playback.internalChannels = data.channelsOut;
pDevice->playback.internalSampleRate = data.sampleRateOut;
MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->playback.internalPeriods = data.periodsOut;
ma_strcpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), data.deviceName);
/*
The event for playback is needs to be manual reset because we want to explicitly control the fact that it becomes signalled
only after the whole available space has been filled, never before.
The playback event also needs to be initially set to a signaled state so that the first call to ma_device_write() is able
to get passed WaitForMultipleObjects().
*/
pDevice->wasapi.hEventPlayback = CreateEventW(NULL, FALSE, TRUE, NULL); /* Auto reset, signaled by default. */
if (pDevice->wasapi.hEventPlayback == NULL) {
result = ma_result_from_GetLastError(GetLastError());
if (pConfig->deviceType == ma_device_type_duplex) {
if (pDevice->wasapi.pCaptureClient != NULL) {
ma_IAudioCaptureClient_Release((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient);
pDevice->wasapi.pCaptureClient = NULL;
}
if (pDevice->wasapi.pAudioClientCapture != NULL) {
ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
pDevice->wasapi.pAudioClientCapture = NULL;
}
CloseHandle(pDevice->wasapi.hEventCapture);
pDevice->wasapi.hEventCapture = NULL;
}
if (pDevice->wasapi.pRenderClient != NULL) {
ma_IAudioRenderClient_Release((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient);
pDevice->wasapi.pRenderClient = NULL;
}
if (pDevice->wasapi.pAudioClientPlayback != NULL) {
ma_IAudioClient_Release((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
pDevice->wasapi.pAudioClientPlayback = NULL;
}
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create event for playback.", result);
}
ma_IAudioClient_SetEventHandle((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, pDevice->wasapi.hEventPlayback);
pDevice->wasapi.periodSizeInFramesPlayback = data.periodSizeInFramesOut;
ma_IAudioClient_GetBufferSize((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &pDevice->wasapi.actualPeriodSizeInFramesPlayback);
}
/*
We need to get notifications of when the default device changes. We do this through a device enumerator by
registering a IMMNotificationClient with it. We only care about this if it's the default device.
*/
#ifdef MA_WIN32_DESKTOP
if (pConfig->wasapi.noAutoStreamRouting == MA_FALSE) {
if ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.pDeviceID == NULL) {
pDevice->wasapi.allowCaptureAutoStreamRouting = MA_TRUE;
}
if ((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.pDeviceID == NULL) {
pDevice->wasapi.allowPlaybackAutoStreamRouting = MA_TRUE;
}
if (pDevice->wasapi.allowCaptureAutoStreamRouting || pDevice->wasapi.allowPlaybackAutoStreamRouting) {
ma_IMMDeviceEnumerator* pDeviceEnumerator;
HRESULT hr = ma_CoCreateInstance(pContext, MA_CLSID_MMDeviceEnumerator, NULL, CLSCTX_ALL, MA_IID_IMMDeviceEnumerator, (void**)&pDeviceEnumerator);
if (FAILED(hr)) {
ma_device_uninit__wasapi(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to create device enumerator.", ma_result_from_HRESULT(hr));
}
pDevice->wasapi.notificationClient.lpVtbl = (void*)&g_maNotificationCientVtbl;
pDevice->wasapi.notificationClient.counter = 1;
pDevice->wasapi.notificationClient.pDevice = pDevice;
hr = pDeviceEnumerator->lpVtbl->RegisterEndpointNotificationCallback(pDeviceEnumerator, &pDevice->wasapi.notificationClient);
if (SUCCEEDED(hr)) {
pDevice->wasapi.pDeviceEnumerator = (ma_ptr)pDeviceEnumerator;
} else {
/* Not the end of the world if we fail to register the notification callback. We just won't support automatic stream routing. */
ma_IMMDeviceEnumerator_Release(pDeviceEnumerator);
}
}
}
#endif
c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE);
c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE);
return MA_SUCCESS;
}
static ma_result ma_device__get_available_frames__wasapi(ma_device* pDevice, ma_IAudioClient* pAudioClient, ma_uint32* pFrameCount)
{
ma_uint32 paddingFramesCount;
HRESULT hr;
ma_share_mode shareMode;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(pFrameCount != NULL);
*pFrameCount = 0;
if ((ma_ptr)pAudioClient != pDevice->wasapi.pAudioClientPlayback && (ma_ptr)pAudioClient != pDevice->wasapi.pAudioClientCapture) {
return MA_INVALID_OPERATION;
}
hr = ma_IAudioClient_GetCurrentPadding(pAudioClient, &paddingFramesCount);
if (FAILED(hr)) {
return ma_result_from_HRESULT(hr);
}
/* Slightly different rules for exclusive and shared modes. */
shareMode = ((ma_ptr)pAudioClient == pDevice->wasapi.pAudioClientPlayback) ? pDevice->playback.shareMode : pDevice->capture.shareMode;
if (shareMode == ma_share_mode_exclusive) {
*pFrameCount = paddingFramesCount;
} else {
if ((ma_ptr)pAudioClient == pDevice->wasapi.pAudioClientPlayback) {
*pFrameCount = pDevice->wasapi.actualPeriodSizeInFramesPlayback - paddingFramesCount;
} else {
*pFrameCount = paddingFramesCount;
}
}
return MA_SUCCESS;
}
static ma_bool32 ma_device_is_reroute_required__wasapi(ma_device* pDevice, ma_device_type deviceType)
{
MA_ASSERT(pDevice != NULL);
if (deviceType == ma_device_type_playback) {
return pDevice->wasapi.hasDefaultPlaybackDeviceChanged;
}
if (deviceType == ma_device_type_capture || deviceType == ma_device_type_loopback) {
return pDevice->wasapi.hasDefaultCaptureDeviceChanged;
}
return MA_FALSE;
}
static ma_result ma_device_reroute__wasapi(ma_device* pDevice, ma_device_type deviceType)
{
ma_result result;
if (deviceType == ma_device_type_duplex) {
return MA_INVALID_ARGS;
}
if (deviceType == ma_device_type_playback) {
c89atomic_exchange_32(&pDevice->wasapi.hasDefaultPlaybackDeviceChanged, MA_FALSE);
}
if (deviceType == ma_device_type_capture || deviceType == ma_device_type_loopback) {
c89atomic_exchange_32(&pDevice->wasapi.hasDefaultCaptureDeviceChanged, MA_FALSE);
}
#ifdef MA_DEBUG_OUTPUT
printf("=== CHANGING DEVICE ===\n");
#endif
result = ma_device_reinit__wasapi(pDevice, deviceType);
if (result != MA_SUCCESS) {
return result;
}
ma_device__post_init_setup(pDevice, deviceType);
return MA_SUCCESS;
}
static ma_result ma_device_stop__wasapi(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
/*
We need to explicitly signal the capture event in loopback mode to ensure we return from WaitForSingleObject() when nothing is being played. When nothing
is being played, the event is never signalled internally by WASAPI which means we will deadlock when stopping the device.
*/
if (pDevice->type == ma_device_type_loopback) {
SetEvent((HANDLE)pDevice->wasapi.hEventCapture);
}
return MA_SUCCESS;
}
static ma_result ma_device_main_loop__wasapi(ma_device* pDevice)
{
ma_result result;
HRESULT hr;
ma_bool32 exitLoop = MA_FALSE;
ma_uint32 framesWrittenToPlaybackDevice = 0;
ma_uint32 mappedDeviceBufferSizeInFramesCapture = 0;
ma_uint32 mappedDeviceBufferSizeInFramesPlayback = 0;
ma_uint32 mappedDeviceBufferFramesRemainingCapture = 0;
ma_uint32 mappedDeviceBufferFramesRemainingPlayback = 0;
BYTE* pMappedDeviceBufferCapture = NULL;
BYTE* pMappedDeviceBufferPlayback = NULL;
ma_uint32 bpfCaptureDevice = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 bpfPlaybackDevice = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 bpfCaptureClient = ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 bpfPlaybackClient = ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint8 inputDataInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 inputDataInClientFormatCap = sizeof(inputDataInClientFormat) / bpfCaptureClient;
ma_uint8 outputDataInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 outputDataInClientFormatCap = sizeof(outputDataInClientFormat) / bpfPlaybackClient;
ma_uint32 outputDataInClientFormatCount = 0;
ma_uint32 outputDataInClientFormatConsumed = 0;
ma_uint32 periodSizeInFramesCapture = 0;
MA_ASSERT(pDevice != NULL);
/* The capture device needs to be started immediately. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) {
periodSizeInFramesCapture = pDevice->capture.internalPeriodSizeInFrames;
hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal capture device.", ma_result_from_HRESULT(hr));
}
c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_TRUE);
}
while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) {
/* We may need to reroute the device. */
if (ma_device_is_reroute_required__wasapi(pDevice, ma_device_type_playback)) {
result = ma_device_reroute__wasapi(pDevice, ma_device_type_playback);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
if (ma_device_is_reroute_required__wasapi(pDevice, ma_device_type_capture)) {
result = ma_device_reroute__wasapi(pDevice, (pDevice->type == ma_device_type_loopback) ? ma_device_type_loopback : ma_device_type_capture);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
switch (pDevice->type)
{
case ma_device_type_duplex:
{
ma_uint32 framesAvailableCapture;
ma_uint32 framesAvailablePlayback;
DWORD flagsCapture; /* Passed to IAudioCaptureClient_GetBuffer(). */
/* The process is to map the playback buffer and fill it as quickly as possible from input data. */
if (pMappedDeviceBufferPlayback == NULL) {
/* WASAPI is weird with exclusive mode. You need to wait on the event _before_ querying the available frames. */
if (pDevice->playback.shareMode == ma_share_mode_exclusive) {
if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) == WAIT_FAILED) {
return MA_ERROR; /* Wait failed. */
}
}
result = ma_device__get_available_frames__wasapi(pDevice, (ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &framesAvailablePlayback);
if (result != MA_SUCCESS) {
return result;
}
/*printf("TRACE 1: framesAvailablePlayback=%d\n", framesAvailablePlayback);*/
/* In exclusive mode, the frame count needs to exactly match the value returned by GetCurrentPadding(). */
if (pDevice->playback.shareMode != ma_share_mode_exclusive) {
if (framesAvailablePlayback > pDevice->wasapi.periodSizeInFramesPlayback) {
framesAvailablePlayback = pDevice->wasapi.periodSizeInFramesPlayback;
}
}
/* If there's no frames available in the playback device we need to wait for more. */
if (framesAvailablePlayback == 0) {
/* In exclusive mode we waited at the top. */
if (pDevice->playback.shareMode != ma_share_mode_exclusive) {
if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) == WAIT_FAILED) {
return MA_ERROR; /* Wait failed. */
}
}
continue;
}
/* We're ready to map the playback device's buffer. We don't release this until it's been entirely filled. */
hr = ma_IAudioRenderClient_GetBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, &pMappedDeviceBufferPlayback);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from playback device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
mappedDeviceBufferSizeInFramesPlayback = framesAvailablePlayback;
mappedDeviceBufferFramesRemainingPlayback = framesAvailablePlayback;
}
/* At this point we should have a buffer available for output. We need to keep writing input samples to it. */
for (;;) {
/* Try grabbing some captured data if we haven't already got a mapped buffer. */
if (pMappedDeviceBufferCapture == NULL) {
if (pDevice->capture.shareMode == ma_share_mode_shared) {
if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) == WAIT_FAILED) {
return MA_ERROR; /* Wait failed. */
}
}
result = ma_device__get_available_frames__wasapi(pDevice, (ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &framesAvailableCapture);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
/*printf("TRACE 2: framesAvailableCapture=%d\n", framesAvailableCapture);*/
/* Wait for more if nothing is available. */
if (framesAvailableCapture == 0) {
/* In exclusive mode we waited at the top. */
if (pDevice->capture.shareMode != ma_share_mode_shared) {
if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) == WAIT_FAILED) {
return MA_ERROR; /* Wait failed. */
}
}
continue;
}
/* Getting here means there's data available for writing to the output device. */
mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
/* Overrun detection. */
if ((flagsCapture & MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY) != 0) {
/* Glitched. Probably due to an overrun. */
#ifdef MA_DEBUG_OUTPUT
printf("[WASAPI] Data discontinuity (possible overrun). framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedDeviceBufferSizeInFramesCapture);
#endif
/*
Exeriment: If we get an overrun it probably means we're straddling the end of the buffer. In order to prevent a never-ending sequence of glitches let's experiment
by dropping every frame until we're left with only a single period. To do this we just keep retrieving and immediately releasing buffers until we're down to the
last period.
*/
if (framesAvailableCapture >= pDevice->wasapi.actualPeriodSizeInFramesCapture) {
#ifdef MA_DEBUG_OUTPUT
printf("[WASAPI] Synchronizing capture stream. ");
#endif
do
{
hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
if (FAILED(hr)) {
break;
}
framesAvailableCapture -= mappedDeviceBufferSizeInFramesCapture;
if (framesAvailableCapture > 0) {
mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
} else {
pMappedDeviceBufferCapture = NULL;
mappedDeviceBufferSizeInFramesCapture = 0;
}
} while (framesAvailableCapture > periodSizeInFramesCapture);
#ifdef MA_DEBUG_OUTPUT
printf("framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedDeviceBufferSizeInFramesCapture);
#endif
}
} else {
#ifdef MA_DEBUG_OUTPUT
if (flagsCapture != 0) {
printf("[WASAPI] Capture Flags: %ld\n", flagsCapture);
}
#endif
}
mappedDeviceBufferFramesRemainingCapture = mappedDeviceBufferSizeInFramesCapture;
}
/* At this point we should have both input and output data available. We now need to convert the data and post it to the client. */
for (;;) {
BYTE* pRunningDeviceBufferCapture;
BYTE* pRunningDeviceBufferPlayback;
ma_uint32 framesToProcess;
ma_uint32 framesProcessed;
pRunningDeviceBufferCapture = pMappedDeviceBufferCapture + ((mappedDeviceBufferSizeInFramesCapture - mappedDeviceBufferFramesRemainingCapture ) * bpfCaptureDevice);
pRunningDeviceBufferPlayback = pMappedDeviceBufferPlayback + ((mappedDeviceBufferSizeInFramesPlayback - mappedDeviceBufferFramesRemainingPlayback) * bpfPlaybackDevice);
/* There may be some data sitting in the converter that needs to be processed first. Once this is exhaused, run the data callback again. */
if (!pDevice->playback.converter.isPassthrough && outputDataInClientFormatConsumed < outputDataInClientFormatCount) {
ma_uint64 convertedFrameCountClient = (outputDataInClientFormatCount - outputDataInClientFormatConsumed);
ma_uint64 convertedFrameCountDevice = mappedDeviceBufferFramesRemainingPlayback;
void* pConvertedFramesClient = outputDataInClientFormat + (outputDataInClientFormatConsumed * bpfPlaybackClient);
void* pConvertedFramesDevice = pRunningDeviceBufferPlayback;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, pConvertedFramesClient, &convertedFrameCountClient, pConvertedFramesDevice, &convertedFrameCountDevice);
if (result != MA_SUCCESS) {
break;
}
outputDataInClientFormatConsumed += (ma_uint32)convertedFrameCountClient; /* Safe cast. */
mappedDeviceBufferFramesRemainingPlayback -= (ma_uint32)convertedFrameCountDevice; /* Safe cast. */
if (mappedDeviceBufferFramesRemainingPlayback == 0) {
break;
}
}
/*
Getting here means we need to fire the callback. If format conversion is unnecessary, we can optimize this by passing the pointers to the internal
buffers directly to the callback.
*/
if (pDevice->capture.converter.isPassthrough && pDevice->playback.converter.isPassthrough) {
/* Optimal path. We can pass mapped pointers directly to the callback. */
framesToProcess = ma_min(mappedDeviceBufferFramesRemainingCapture, mappedDeviceBufferFramesRemainingPlayback);
framesProcessed = framesToProcess;
ma_device__on_data(pDevice, pRunningDeviceBufferPlayback, pRunningDeviceBufferCapture, framesToProcess);
mappedDeviceBufferFramesRemainingCapture -= framesProcessed;
mappedDeviceBufferFramesRemainingPlayback -= framesProcessed;
if (mappedDeviceBufferFramesRemainingCapture == 0) {
break; /* Exhausted input data. */
}
if (mappedDeviceBufferFramesRemainingPlayback == 0) {
break; /* Exhausted output data. */
}
} else if (pDevice->capture.converter.isPassthrough) {
/* The input buffer is a passthrough, but the playback buffer requires a conversion. */
framesToProcess = ma_min(mappedDeviceBufferFramesRemainingCapture, outputDataInClientFormatCap);
framesProcessed = framesToProcess;
ma_device__on_data(pDevice, outputDataInClientFormat, pRunningDeviceBufferCapture, framesToProcess);
outputDataInClientFormatCount = framesProcessed;
outputDataInClientFormatConsumed = 0;
mappedDeviceBufferFramesRemainingCapture -= framesProcessed;
if (mappedDeviceBufferFramesRemainingCapture == 0) {
break; /* Exhausted input data. */
}
} else if (pDevice->playback.converter.isPassthrough) {
/* The input buffer requires conversion, the playback buffer is passthrough. */
ma_uint64 capturedDeviceFramesToProcess = mappedDeviceBufferFramesRemainingCapture;
ma_uint64 capturedClientFramesToProcess = ma_min(inputDataInClientFormatCap, mappedDeviceBufferFramesRemainingPlayback);
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningDeviceBufferCapture, &capturedDeviceFramesToProcess, inputDataInClientFormat, &capturedClientFramesToProcess);
if (result != MA_SUCCESS) {
break;
}
if (capturedClientFramesToProcess == 0) {
break;
}
ma_device__on_data(pDevice, pRunningDeviceBufferPlayback, inputDataInClientFormat, (ma_uint32)capturedClientFramesToProcess); /* Safe cast. */
mappedDeviceBufferFramesRemainingCapture -= (ma_uint32)capturedDeviceFramesToProcess;
mappedDeviceBufferFramesRemainingPlayback -= (ma_uint32)capturedClientFramesToProcess;
} else {
ma_uint64 capturedDeviceFramesToProcess = mappedDeviceBufferFramesRemainingCapture;
ma_uint64 capturedClientFramesToProcess = ma_min(inputDataInClientFormatCap, outputDataInClientFormatCap);
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningDeviceBufferCapture, &capturedDeviceFramesToProcess, inputDataInClientFormat, &capturedClientFramesToProcess);
if (result != MA_SUCCESS) {
break;
}
if (capturedClientFramesToProcess == 0) {
break;
}
ma_device__on_data(pDevice, outputDataInClientFormat, inputDataInClientFormat, (ma_uint32)capturedClientFramesToProcess);
mappedDeviceBufferFramesRemainingCapture -= (ma_uint32)capturedDeviceFramesToProcess;
outputDataInClientFormatCount = (ma_uint32)capturedClientFramesToProcess;
outputDataInClientFormatConsumed = 0;
}
}
/* If at this point we've run out of capture data we need to release the buffer. */
if (mappedDeviceBufferFramesRemainingCapture == 0 && pMappedDeviceBufferCapture != NULL) {
hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from capture device after reading from the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
/*printf("TRACE: Released capture buffer\n");*/
pMappedDeviceBufferCapture = NULL;
mappedDeviceBufferFramesRemainingCapture = 0;
mappedDeviceBufferSizeInFramesCapture = 0;
}
/* Get out of this loop if we're run out of room in the playback buffer. */
if (mappedDeviceBufferFramesRemainingPlayback == 0) {
break;
}
}
/* If at this point we've run out of data we need to release the buffer. */
if (mappedDeviceBufferFramesRemainingPlayback == 0 && pMappedDeviceBufferPlayback != NULL) {
hr = ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, mappedDeviceBufferSizeInFramesPlayback, 0);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from playback device after writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
/*printf("TRACE: Released playback buffer\n");*/
framesWrittenToPlaybackDevice += mappedDeviceBufferSizeInFramesPlayback;
pMappedDeviceBufferPlayback = NULL;
mappedDeviceBufferFramesRemainingPlayback = 0;
mappedDeviceBufferSizeInFramesPlayback = 0;
}
if (!pDevice->wasapi.isStartedPlayback) {
ma_uint32 startThreshold = pDevice->playback.internalPeriodSizeInFrames * 1;
/* Prevent a deadlock. If we don't clamp against the actual buffer size we'll never end up starting the playback device which will result in a deadlock. */
if (startThreshold > pDevice->wasapi.actualPeriodSizeInFramesPlayback) {
startThreshold = pDevice->wasapi.actualPeriodSizeInFramesPlayback;
}
if (pDevice->playback.shareMode == ma_share_mode_exclusive || framesWrittenToPlaybackDevice >= startThreshold) {
hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
ma_IAudioClient_Stop((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
ma_IAudioClient_Reset((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device.", ma_result_from_HRESULT(hr));
}
c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE);
}
}
} break;
case ma_device_type_capture:
case ma_device_type_loopback:
{
ma_uint32 framesAvailableCapture;
DWORD flagsCapture; /* Passed to IAudioCaptureClient_GetBuffer(). */
/* Wait for data to become available first. */
if (WaitForSingleObject(pDevice->wasapi.hEventCapture, INFINITE) == WAIT_FAILED) {
exitLoop = MA_TRUE;
break; /* Wait failed. */
}
/* See how many frames are available. Since we waited at the top, I don't think this should ever return 0. I'm checking for this anyway. */
result = ma_device__get_available_frames__wasapi(pDevice, (ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture, &framesAvailableCapture);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
if (framesAvailableCapture < pDevice->wasapi.periodSizeInFramesCapture) {
continue; /* Nothing available. Keep waiting. */
}
/* Map the data buffer in preparation for sending to the client. */
mappedDeviceBufferSizeInFramesCapture = framesAvailableCapture;
hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
/* Overrun detection. */
if ((flagsCapture & MA_AUDCLNT_BUFFERFLAGS_DATA_DISCONTINUITY) != 0) {
/* Glitched. Probably due to an overrun. */
#ifdef MA_DEBUG_OUTPUT
printf("[WASAPI] Data discontinuity (possible overrun). framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedDeviceBufferSizeInFramesCapture);
#endif
/*
Exeriment: If we get an overrun it probably means we're straddling the end of the buffer. In order to prevent a never-ending sequence of glitches let's experiment
by dropping every frame until we're left with only a single period. To do this we just keep retrieving and immediately releasing buffers until we're down to the
last period.
*/
if (framesAvailableCapture >= pDevice->wasapi.actualPeriodSizeInFramesCapture) {
#ifdef MA_DEBUG_OUTPUT
printf("[WASAPI] Synchronizing capture stream. ");
#endif
do
{
hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
if (FAILED(hr)) {
break;
}
framesAvailableCapture -= mappedDeviceBufferSizeInFramesCapture;
if (framesAvailableCapture > 0) {
mappedDeviceBufferSizeInFramesCapture = ma_min(framesAvailableCapture, periodSizeInFramesCapture);
hr = ma_IAudioCaptureClient_GetBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, (BYTE**)&pMappedDeviceBufferCapture, &mappedDeviceBufferSizeInFramesCapture, &flagsCapture, NULL, NULL);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
} else {
pMappedDeviceBufferCapture = NULL;
mappedDeviceBufferSizeInFramesCapture = 0;
}
} while (framesAvailableCapture > periodSizeInFramesCapture);
#ifdef MA_DEBUG_OUTPUT
printf("framesAvailableCapture=%d, mappedBufferSizeInFramesCapture=%d\n", framesAvailableCapture, mappedDeviceBufferSizeInFramesCapture);
#endif
}
} else {
#ifdef MA_DEBUG_OUTPUT
if (flagsCapture != 0) {
printf("[WASAPI] Capture Flags: %ld\n", flagsCapture);
}
#endif
}
/* We should have a buffer at this point, but let's just do a sanity check anyway. */
if (mappedDeviceBufferSizeInFramesCapture > 0 && pMappedDeviceBufferCapture != NULL) {
ma_device__send_frames_to_client(pDevice, mappedDeviceBufferSizeInFramesCapture, pMappedDeviceBufferCapture);
/* At this point we're done with the buffer. */
hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
pMappedDeviceBufferCapture = NULL; /* <-- Important. Not doing this can result in an error once we leave this loop because it will use this to know whether or not a final ReleaseBuffer() needs to be called. */
mappedDeviceBufferSizeInFramesCapture = 0;
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from capture device after reading from the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
}
} break;
case ma_device_type_playback:
{
ma_uint32 framesAvailablePlayback;
/* Wait for space to become available first. */
if (WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE) == WAIT_FAILED) {
exitLoop = MA_TRUE;
break; /* Wait failed. */
}
/* Check how much space is available. If this returns 0 we just keep waiting. */
result = ma_device__get_available_frames__wasapi(pDevice, (ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &framesAvailablePlayback);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
if (framesAvailablePlayback < pDevice->wasapi.periodSizeInFramesPlayback) {
continue; /* No space available. */
}
/* Map a the data buffer in preparation for the callback. */
hr = ma_IAudioRenderClient_GetBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, &pMappedDeviceBufferPlayback);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to retrieve internal buffer from playback device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
/* We should have a buffer at this point. */
ma_device__read_frames_from_client(pDevice, framesAvailablePlayback, pMappedDeviceBufferPlayback);
/* At this point we're done writing to the device and we just need to release the buffer. */
hr = ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, framesAvailablePlayback, 0);
pMappedDeviceBufferPlayback = NULL; /* <-- Important. Not doing this can result in an error once we leave this loop because it will use this to know whether or not a final ReleaseBuffer() needs to be called. */
mappedDeviceBufferSizeInFramesPlayback = 0;
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to release internal buffer from playback device after writing to the device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
framesWrittenToPlaybackDevice += framesAvailablePlayback;
if (!pDevice->wasapi.isStartedPlayback) {
if (pDevice->playback.shareMode == ma_share_mode_exclusive || framesWrittenToPlaybackDevice >= pDevice->playback.internalPeriodSizeInFrames*1) {
hr = ma_IAudioClient_Start((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to start internal playback device.", ma_result_from_HRESULT(hr));
exitLoop = MA_TRUE;
break;
}
c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_TRUE);
}
}
} break;
default: return MA_INVALID_ARGS;
}
}
/* Here is where the device needs to be stopped. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) {
/* Any mapped buffers need to be released. */
if (pMappedDeviceBufferCapture != NULL) {
hr = ma_IAudioCaptureClient_ReleaseBuffer((ma_IAudioCaptureClient*)pDevice->wasapi.pCaptureClient, mappedDeviceBufferSizeInFramesCapture);
}
hr = ma_IAudioClient_Stop((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to stop internal capture device.", ma_result_from_HRESULT(hr));
}
/* The audio client needs to be reset otherwise restarting will fail. */
hr = ma_IAudioClient_Reset((ma_IAudioClient*)pDevice->wasapi.pAudioClientCapture);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal capture device.", ma_result_from_HRESULT(hr));
}
c89atomic_exchange_32(&pDevice->wasapi.isStartedCapture, MA_FALSE);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
/* Any mapped buffers need to be released. */
if (pMappedDeviceBufferPlayback != NULL) {
hr = ma_IAudioRenderClient_ReleaseBuffer((ma_IAudioRenderClient*)pDevice->wasapi.pRenderClient, mappedDeviceBufferSizeInFramesPlayback, 0);
}
/*
The buffer needs to be drained before stopping the device. Not doing this will result in the last few frames not getting output to
the speakers. This is a problem for very short sounds because it'll result in a significant portion of it not getting played.
*/
if (pDevice->wasapi.isStartedPlayback) {
if (pDevice->playback.shareMode == ma_share_mode_exclusive) {
WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE);
} else {
ma_uint32 prevFramesAvaialablePlayback = (ma_uint32)-1;
ma_uint32 framesAvailablePlayback;
for (;;) {
result = ma_device__get_available_frames__wasapi(pDevice, (ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback, &framesAvailablePlayback);
if (result != MA_SUCCESS) {
break;
}
if (framesAvailablePlayback >= pDevice->wasapi.actualPeriodSizeInFramesPlayback) {
break;
}
/*
Just a safety check to avoid an infinite loop. If this iteration results in a situation where the number of available frames
has not changed, get out of the loop. I don't think this should ever happen, but I think it's nice to have just in case.
*/
if (framesAvailablePlayback == prevFramesAvaialablePlayback) {
break;
}
prevFramesAvaialablePlayback = framesAvailablePlayback;
WaitForSingleObject(pDevice->wasapi.hEventPlayback, INFINITE);
ResetEvent(pDevice->wasapi.hEventPlayback); /* Manual reset. */
}
}
}
hr = ma_IAudioClient_Stop((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to stop internal playback device.", ma_result_from_HRESULT(hr));
}
/* The audio client needs to be reset otherwise restarting will fail. */
hr = ma_IAudioClient_Reset((ma_IAudioClient*)pDevice->wasapi.pAudioClientPlayback);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WASAPI] Failed to reset internal playback device.", ma_result_from_HRESULT(hr));
}
c89atomic_exchange_32(&pDevice->wasapi.isStartedPlayback, MA_FALSE);
}
return MA_SUCCESS;
}
static ma_result ma_context_uninit__wasapi(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_wasapi);
(void)pContext;
return MA_SUCCESS;
}
static ma_result ma_context_init__wasapi(const ma_context_config* pConfig, ma_context* pContext)
{
ma_result result = MA_SUCCESS;
MA_ASSERT(pContext != NULL);
(void)pConfig;
#ifdef MA_WIN32_DESKTOP
/*
WASAPI is only supported in Vista SP1 and newer. The reason for SP1 and not the base version of Vista is that event-driven
exclusive mode does not work until SP1.
Unfortunately older compilers don't define these functions so we need to dynamically load them in order to avoid a lin error.
*/
{
ma_OSVERSIONINFOEXW osvi;
ma_handle kernel32DLL;
ma_PFNVerifyVersionInfoW _VerifyVersionInfoW;
ma_PFNVerSetConditionMask _VerSetConditionMask;
kernel32DLL = ma_dlopen(pContext, "kernel32.dll");
if (kernel32DLL == NULL) {
return MA_NO_BACKEND;
}
_VerifyVersionInfoW = (ma_PFNVerifyVersionInfoW)ma_dlsym(pContext, kernel32DLL, "VerifyVersionInfoW");
_VerSetConditionMask = (ma_PFNVerSetConditionMask)ma_dlsym(pContext, kernel32DLL, "VerSetConditionMask");
if (_VerifyVersionInfoW == NULL || _VerSetConditionMask == NULL) {
ma_dlclose(pContext, kernel32DLL);
return MA_NO_BACKEND;
}
MA_ZERO_OBJECT(&osvi);
osvi.dwOSVersionInfoSize = sizeof(osvi);
osvi.dwMajorVersion = ((MA_WIN32_WINNT_VISTA >> 8) & 0xFF);
osvi.dwMinorVersion = ((MA_WIN32_WINNT_VISTA >> 0) & 0xFF);
osvi.wServicePackMajor = 1;
if (_VerifyVersionInfoW(&osvi, MA_VER_MAJORVERSION | MA_VER_MINORVERSION | MA_VER_SERVICEPACKMAJOR, _VerSetConditionMask(_VerSetConditionMask(_VerSetConditionMask(0, MA_VER_MAJORVERSION, MA_VER_GREATER_EQUAL), MA_VER_MINORVERSION, MA_VER_GREATER_EQUAL), MA_VER_SERVICEPACKMAJOR, MA_VER_GREATER_EQUAL))) {
result = MA_SUCCESS;
} else {
result = MA_NO_BACKEND;
}
ma_dlclose(pContext, kernel32DLL);
}
#endif
if (result != MA_SUCCESS) {
return result;
}
pContext->onUninit = ma_context_uninit__wasapi;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__wasapi;
pContext->onEnumDevices = ma_context_enumerate_devices__wasapi;
pContext->onGetDeviceInfo = ma_context_get_device_info__wasapi;
pContext->onDeviceInit = ma_device_init__wasapi;
pContext->onDeviceUninit = ma_device_uninit__wasapi;
pContext->onDeviceStart = NULL; /* Not used. Started in onDeviceMainLoop. */
pContext->onDeviceStop = ma_device_stop__wasapi; /* Required to ensure the capture event is signalled when stopping a loopback device while nothing is playing. */
pContext->onDeviceMainLoop = ma_device_main_loop__wasapi;
return result;
}
#endif
/******************************************************************************
DirectSound Backend
******************************************************************************/
#ifdef MA_HAS_DSOUND
/*#include <dsound.h>*/
static const GUID MA_GUID_IID_DirectSoundNotify = {0xb0210783, 0x89cd, 0x11d0, {0xaf, 0x08, 0x00, 0xa0, 0xc9, 0x25, 0xcd, 0x16}};
/* miniaudio only uses priority or exclusive modes. */
#define MA_DSSCL_NORMAL 1
#define MA_DSSCL_PRIORITY 2
#define MA_DSSCL_EXCLUSIVE 3
#define MA_DSSCL_WRITEPRIMARY 4
#define MA_DSCAPS_PRIMARYMONO 0x00000001
#define MA_DSCAPS_PRIMARYSTEREO 0x00000002
#define MA_DSCAPS_PRIMARY8BIT 0x00000004
#define MA_DSCAPS_PRIMARY16BIT 0x00000008
#define MA_DSCAPS_CONTINUOUSRATE 0x00000010
#define MA_DSCAPS_EMULDRIVER 0x00000020
#define MA_DSCAPS_CERTIFIED 0x00000040
#define MA_DSCAPS_SECONDARYMONO 0x00000100
#define MA_DSCAPS_SECONDARYSTEREO 0x00000200
#define MA_DSCAPS_SECONDARY8BIT 0x00000400
#define MA_DSCAPS_SECONDARY16BIT 0x00000800
#define MA_DSBCAPS_PRIMARYBUFFER 0x00000001
#define MA_DSBCAPS_STATIC 0x00000002
#define MA_DSBCAPS_LOCHARDWARE 0x00000004
#define MA_DSBCAPS_LOCSOFTWARE 0x00000008
#define MA_DSBCAPS_CTRL3D 0x00000010
#define MA_DSBCAPS_CTRLFREQUENCY 0x00000020
#define MA_DSBCAPS_CTRLPAN 0x00000040
#define MA_DSBCAPS_CTRLVOLUME 0x00000080
#define MA_DSBCAPS_CTRLPOSITIONNOTIFY 0x00000100
#define MA_DSBCAPS_CTRLFX 0x00000200
#define MA_DSBCAPS_STICKYFOCUS 0x00004000
#define MA_DSBCAPS_GLOBALFOCUS 0x00008000
#define MA_DSBCAPS_GETCURRENTPOSITION2 0x00010000
#define MA_DSBCAPS_MUTE3DATMAXDISTANCE 0x00020000
#define MA_DSBCAPS_LOCDEFER 0x00040000
#define MA_DSBCAPS_TRUEPLAYPOSITION 0x00080000
#define MA_DSBPLAY_LOOPING 0x00000001
#define MA_DSBPLAY_LOCHARDWARE 0x00000002
#define MA_DSBPLAY_LOCSOFTWARE 0x00000004
#define MA_DSBPLAY_TERMINATEBY_TIME 0x00000008
#define MA_DSBPLAY_TERMINATEBY_DISTANCE 0x00000010
#define MA_DSBPLAY_TERMINATEBY_PRIORITY 0x00000020
#define MA_DSCBSTART_LOOPING 0x00000001
typedef struct
{
DWORD dwSize;
DWORD dwFlags;
DWORD dwBufferBytes;
DWORD dwReserved;
WAVEFORMATEX* lpwfxFormat;
GUID guid3DAlgorithm;
} MA_DSBUFFERDESC;
typedef struct
{
DWORD dwSize;
DWORD dwFlags;
DWORD dwBufferBytes;
DWORD dwReserved;
WAVEFORMATEX* lpwfxFormat;
DWORD dwFXCount;
void* lpDSCFXDesc; /* <-- miniaudio doesn't use this, so set to void*. */
} MA_DSCBUFFERDESC;
typedef struct
{
DWORD dwSize;
DWORD dwFlags;
DWORD dwMinSecondarySampleRate;
DWORD dwMaxSecondarySampleRate;
DWORD dwPrimaryBuffers;
DWORD dwMaxHwMixingAllBuffers;
DWORD dwMaxHwMixingStaticBuffers;
DWORD dwMaxHwMixingStreamingBuffers;
DWORD dwFreeHwMixingAllBuffers;
DWORD dwFreeHwMixingStaticBuffers;
DWORD dwFreeHwMixingStreamingBuffers;
DWORD dwMaxHw3DAllBuffers;
DWORD dwMaxHw3DStaticBuffers;
DWORD dwMaxHw3DStreamingBuffers;
DWORD dwFreeHw3DAllBuffers;
DWORD dwFreeHw3DStaticBuffers;
DWORD dwFreeHw3DStreamingBuffers;
DWORD dwTotalHwMemBytes;
DWORD dwFreeHwMemBytes;
DWORD dwMaxContigFreeHwMemBytes;
DWORD dwUnlockTransferRateHwBuffers;
DWORD dwPlayCpuOverheadSwBuffers;
DWORD dwReserved1;
DWORD dwReserved2;
} MA_DSCAPS;
typedef struct
{
DWORD dwSize;
DWORD dwFlags;
DWORD dwBufferBytes;
DWORD dwUnlockTransferRate;
DWORD dwPlayCpuOverhead;
} MA_DSBCAPS;
typedef struct
{
DWORD dwSize;
DWORD dwFlags;
DWORD dwFormats;
DWORD dwChannels;
} MA_DSCCAPS;
typedef struct
{
DWORD dwSize;
DWORD dwFlags;
DWORD dwBufferBytes;
DWORD dwReserved;
} MA_DSCBCAPS;
typedef struct
{
DWORD dwOffset;
HANDLE hEventNotify;
} MA_DSBPOSITIONNOTIFY;
typedef struct ma_IDirectSound ma_IDirectSound;
typedef struct ma_IDirectSoundBuffer ma_IDirectSoundBuffer;
typedef struct ma_IDirectSoundCapture ma_IDirectSoundCapture;
typedef struct ma_IDirectSoundCaptureBuffer ma_IDirectSoundCaptureBuffer;
typedef struct ma_IDirectSoundNotify ma_IDirectSoundNotify;
/*
COM objects. The way these work is that you have a vtable (a list of function pointers, kind of
like how C++ works internally), and then you have a structure with a single member, which is a
pointer to the vtable. The vtable is where the methods of the object are defined. Methods need
to be in a specific order, and parent classes need to have their methods declared first.
*/
/* IDirectSound */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSound* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSound* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSound* pThis);
/* IDirectSound */
HRESULT (STDMETHODCALLTYPE * CreateSoundBuffer) (ma_IDirectSound* pThis, const MA_DSBUFFERDESC* pDSBufferDesc, ma_IDirectSoundBuffer** ppDSBuffer, void* pUnkOuter);
HRESULT (STDMETHODCALLTYPE * GetCaps) (ma_IDirectSound* pThis, MA_DSCAPS* pDSCaps);
HRESULT (STDMETHODCALLTYPE * DuplicateSoundBuffer)(ma_IDirectSound* pThis, ma_IDirectSoundBuffer* pDSBufferOriginal, ma_IDirectSoundBuffer** ppDSBufferDuplicate);
HRESULT (STDMETHODCALLTYPE * SetCooperativeLevel) (ma_IDirectSound* pThis, HWND hwnd, DWORD dwLevel);
HRESULT (STDMETHODCALLTYPE * Compact) (ma_IDirectSound* pThis);
HRESULT (STDMETHODCALLTYPE * GetSpeakerConfig) (ma_IDirectSound* pThis, DWORD* pSpeakerConfig);
HRESULT (STDMETHODCALLTYPE * SetSpeakerConfig) (ma_IDirectSound* pThis, DWORD dwSpeakerConfig);
HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IDirectSound* pThis, const GUID* pGuidDevice);
} ma_IDirectSoundVtbl;
struct ma_IDirectSound
{
ma_IDirectSoundVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IDirectSound_QueryInterface(ma_IDirectSound* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IDirectSound_AddRef(ma_IDirectSound* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IDirectSound_Release(ma_IDirectSound* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IDirectSound_CreateSoundBuffer(ma_IDirectSound* pThis, const MA_DSBUFFERDESC* pDSBufferDesc, ma_IDirectSoundBuffer** ppDSBuffer, void* pUnkOuter) { return pThis->lpVtbl->CreateSoundBuffer(pThis, pDSBufferDesc, ppDSBuffer, pUnkOuter); }
static MA_INLINE HRESULT ma_IDirectSound_GetCaps(ma_IDirectSound* pThis, MA_DSCAPS* pDSCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCaps); }
static MA_INLINE HRESULT ma_IDirectSound_DuplicateSoundBuffer(ma_IDirectSound* pThis, ma_IDirectSoundBuffer* pDSBufferOriginal, ma_IDirectSoundBuffer** ppDSBufferDuplicate) { return pThis->lpVtbl->DuplicateSoundBuffer(pThis, pDSBufferOriginal, ppDSBufferDuplicate); }
static MA_INLINE HRESULT ma_IDirectSound_SetCooperativeLevel(ma_IDirectSound* pThis, HWND hwnd, DWORD dwLevel) { return pThis->lpVtbl->SetCooperativeLevel(pThis, hwnd, dwLevel); }
static MA_INLINE HRESULT ma_IDirectSound_Compact(ma_IDirectSound* pThis) { return pThis->lpVtbl->Compact(pThis); }
static MA_INLINE HRESULT ma_IDirectSound_GetSpeakerConfig(ma_IDirectSound* pThis, DWORD* pSpeakerConfig) { return pThis->lpVtbl->GetSpeakerConfig(pThis, pSpeakerConfig); }
static MA_INLINE HRESULT ma_IDirectSound_SetSpeakerConfig(ma_IDirectSound* pThis, DWORD dwSpeakerConfig) { return pThis->lpVtbl->SetSpeakerConfig(pThis, dwSpeakerConfig); }
static MA_INLINE HRESULT ma_IDirectSound_Initialize(ma_IDirectSound* pThis, const GUID* pGuidDevice) { return pThis->lpVtbl->Initialize(pThis, pGuidDevice); }
/* IDirectSoundBuffer */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSoundBuffer* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSoundBuffer* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSoundBuffer* pThis);
/* IDirectSoundBuffer */
HRESULT (STDMETHODCALLTYPE * GetCaps) (ma_IDirectSoundBuffer* pThis, MA_DSBCAPS* pDSBufferCaps);
HRESULT (STDMETHODCALLTYPE * GetCurrentPosition)(ma_IDirectSoundBuffer* pThis, DWORD* pCurrentPlayCursor, DWORD* pCurrentWriteCursor);
HRESULT (STDMETHODCALLTYPE * GetFormat) (ma_IDirectSoundBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten);
HRESULT (STDMETHODCALLTYPE * GetVolume) (ma_IDirectSoundBuffer* pThis, LONG* pVolume);
HRESULT (STDMETHODCALLTYPE * GetPan) (ma_IDirectSoundBuffer* pThis, LONG* pPan);
HRESULT (STDMETHODCALLTYPE * GetFrequency) (ma_IDirectSoundBuffer* pThis, DWORD* pFrequency);
HRESULT (STDMETHODCALLTYPE * GetStatus) (ma_IDirectSoundBuffer* pThis, DWORD* pStatus);
HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IDirectSoundBuffer* pThis, ma_IDirectSound* pDirectSound, const MA_DSBUFFERDESC* pDSBufferDesc);
HRESULT (STDMETHODCALLTYPE * Lock) (ma_IDirectSoundBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags);
HRESULT (STDMETHODCALLTYPE * Play) (ma_IDirectSoundBuffer* pThis, DWORD dwReserved1, DWORD dwPriority, DWORD dwFlags);
HRESULT (STDMETHODCALLTYPE * SetCurrentPosition)(ma_IDirectSoundBuffer* pThis, DWORD dwNewPosition);
HRESULT (STDMETHODCALLTYPE * SetFormat) (ma_IDirectSoundBuffer* pThis, const WAVEFORMATEX* pFormat);
HRESULT (STDMETHODCALLTYPE * SetVolume) (ma_IDirectSoundBuffer* pThis, LONG volume);
HRESULT (STDMETHODCALLTYPE * SetPan) (ma_IDirectSoundBuffer* pThis, LONG pan);
HRESULT (STDMETHODCALLTYPE * SetFrequency) (ma_IDirectSoundBuffer* pThis, DWORD dwFrequency);
HRESULT (STDMETHODCALLTYPE * Stop) (ma_IDirectSoundBuffer* pThis);
HRESULT (STDMETHODCALLTYPE * Unlock) (ma_IDirectSoundBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2);
HRESULT (STDMETHODCALLTYPE * Restore) (ma_IDirectSoundBuffer* pThis);
} ma_IDirectSoundBufferVtbl;
struct ma_IDirectSoundBuffer
{
ma_IDirectSoundBufferVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IDirectSoundBuffer_QueryInterface(ma_IDirectSoundBuffer* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IDirectSoundBuffer_AddRef(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IDirectSoundBuffer_Release(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetCaps(ma_IDirectSoundBuffer* pThis, MA_DSBCAPS* pDSBufferCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSBufferCaps); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetCurrentPosition(ma_IDirectSoundBuffer* pThis, DWORD* pCurrentPlayCursor, DWORD* pCurrentWriteCursor) { return pThis->lpVtbl->GetCurrentPosition(pThis, pCurrentPlayCursor, pCurrentWriteCursor); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetFormat(ma_IDirectSoundBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten) { return pThis->lpVtbl->GetFormat(pThis, pFormat, dwSizeAllocated, pSizeWritten); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetVolume(ma_IDirectSoundBuffer* pThis, LONG* pVolume) { return pThis->lpVtbl->GetVolume(pThis, pVolume); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetPan(ma_IDirectSoundBuffer* pThis, LONG* pPan) { return pThis->lpVtbl->GetPan(pThis, pPan); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetFrequency(ma_IDirectSoundBuffer* pThis, DWORD* pFrequency) { return pThis->lpVtbl->GetFrequency(pThis, pFrequency); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_GetStatus(ma_IDirectSoundBuffer* pThis, DWORD* pStatus) { return pThis->lpVtbl->GetStatus(pThis, pStatus); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_Initialize(ma_IDirectSoundBuffer* pThis, ma_IDirectSound* pDirectSound, const MA_DSBUFFERDESC* pDSBufferDesc) { return pThis->lpVtbl->Initialize(pThis, pDirectSound, pDSBufferDesc); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_Lock(ma_IDirectSoundBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags) { return pThis->lpVtbl->Lock(pThis, dwOffset, dwBytes, ppAudioPtr1, pAudioBytes1, ppAudioPtr2, pAudioBytes2, dwFlags); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_Play(ma_IDirectSoundBuffer* pThis, DWORD dwReserved1, DWORD dwPriority, DWORD dwFlags) { return pThis->lpVtbl->Play(pThis, dwReserved1, dwPriority, dwFlags); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetCurrentPosition(ma_IDirectSoundBuffer* pThis, DWORD dwNewPosition) { return pThis->lpVtbl->SetCurrentPosition(pThis, dwNewPosition); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetFormat(ma_IDirectSoundBuffer* pThis, const WAVEFORMATEX* pFormat) { return pThis->lpVtbl->SetFormat(pThis, pFormat); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetVolume(ma_IDirectSoundBuffer* pThis, LONG volume) { return pThis->lpVtbl->SetVolume(pThis, volume); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetPan(ma_IDirectSoundBuffer* pThis, LONG pan) { return pThis->lpVtbl->SetPan(pThis, pan); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_SetFrequency(ma_IDirectSoundBuffer* pThis, DWORD dwFrequency) { return pThis->lpVtbl->SetFrequency(pThis, dwFrequency); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_Stop(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Stop(pThis); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_Unlock(ma_IDirectSoundBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2) { return pThis->lpVtbl->Unlock(pThis, pAudioPtr1, dwAudioBytes1, pAudioPtr2, dwAudioBytes2); }
static MA_INLINE HRESULT ma_IDirectSoundBuffer_Restore(ma_IDirectSoundBuffer* pThis) { return pThis->lpVtbl->Restore(pThis); }
/* IDirectSoundCapture */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSoundCapture* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSoundCapture* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSoundCapture* pThis);
/* IDirectSoundCapture */
HRESULT (STDMETHODCALLTYPE * CreateCaptureBuffer)(ma_IDirectSoundCapture* pThis, const MA_DSCBUFFERDESC* pDSCBufferDesc, ma_IDirectSoundCaptureBuffer** ppDSCBuffer, void* pUnkOuter);
HRESULT (STDMETHODCALLTYPE * GetCaps) (ma_IDirectSoundCapture* pThis, MA_DSCCAPS* pDSCCaps);
HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IDirectSoundCapture* pThis, const GUID* pGuidDevice);
} ma_IDirectSoundCaptureVtbl;
struct ma_IDirectSoundCapture
{
ma_IDirectSoundCaptureVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IDirectSoundCapture_QueryInterface(ma_IDirectSoundCapture* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IDirectSoundCapture_AddRef(ma_IDirectSoundCapture* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IDirectSoundCapture_Release(ma_IDirectSoundCapture* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IDirectSoundCapture_CreateCaptureBuffer(ma_IDirectSoundCapture* pThis, const MA_DSCBUFFERDESC* pDSCBufferDesc, ma_IDirectSoundCaptureBuffer** ppDSCBuffer, void* pUnkOuter) { return pThis->lpVtbl->CreateCaptureBuffer(pThis, pDSCBufferDesc, ppDSCBuffer, pUnkOuter); }
static MA_INLINE HRESULT ma_IDirectSoundCapture_GetCaps (ma_IDirectSoundCapture* pThis, MA_DSCCAPS* pDSCCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCCaps); }
static MA_INLINE HRESULT ma_IDirectSoundCapture_Initialize (ma_IDirectSoundCapture* pThis, const GUID* pGuidDevice) { return pThis->lpVtbl->Initialize(pThis, pGuidDevice); }
/* IDirectSoundCaptureBuffer */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSoundCaptureBuffer* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSoundCaptureBuffer* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSoundCaptureBuffer* pThis);
/* IDirectSoundCaptureBuffer */
HRESULT (STDMETHODCALLTYPE * GetCaps) (ma_IDirectSoundCaptureBuffer* pThis, MA_DSCBCAPS* pDSCBCaps);
HRESULT (STDMETHODCALLTYPE * GetCurrentPosition)(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pCapturePosition, DWORD* pReadPosition);
HRESULT (STDMETHODCALLTYPE * GetFormat) (ma_IDirectSoundCaptureBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten);
HRESULT (STDMETHODCALLTYPE * GetStatus) (ma_IDirectSoundCaptureBuffer* pThis, DWORD* pStatus);
HRESULT (STDMETHODCALLTYPE * Initialize) (ma_IDirectSoundCaptureBuffer* pThis, ma_IDirectSoundCapture* pDirectSoundCapture, const MA_DSCBUFFERDESC* pDSCBufferDesc);
HRESULT (STDMETHODCALLTYPE * Lock) (ma_IDirectSoundCaptureBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags);
HRESULT (STDMETHODCALLTYPE * Start) (ma_IDirectSoundCaptureBuffer* pThis, DWORD dwFlags);
HRESULT (STDMETHODCALLTYPE * Stop) (ma_IDirectSoundCaptureBuffer* pThis);
HRESULT (STDMETHODCALLTYPE * Unlock) (ma_IDirectSoundCaptureBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2);
} ma_IDirectSoundCaptureBufferVtbl;
struct ma_IDirectSoundCaptureBuffer
{
ma_IDirectSoundCaptureBufferVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_QueryInterface(ma_IDirectSoundCaptureBuffer* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IDirectSoundCaptureBuffer_AddRef(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IDirectSoundCaptureBuffer_Release(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetCaps(ma_IDirectSoundCaptureBuffer* pThis, MA_DSCBCAPS* pDSCBCaps) { return pThis->lpVtbl->GetCaps(pThis, pDSCBCaps); }
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetCurrentPosition(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pCapturePosition, DWORD* pReadPosition) { return pThis->lpVtbl->GetCurrentPosition(pThis, pCapturePosition, pReadPosition); }
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetFormat(ma_IDirectSoundCaptureBuffer* pThis, WAVEFORMATEX* pFormat, DWORD dwSizeAllocated, DWORD* pSizeWritten) { return pThis->lpVtbl->GetFormat(pThis, pFormat, dwSizeAllocated, pSizeWritten); }
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_GetStatus(ma_IDirectSoundCaptureBuffer* pThis, DWORD* pStatus) { return pThis->lpVtbl->GetStatus(pThis, pStatus); }
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Initialize(ma_IDirectSoundCaptureBuffer* pThis, ma_IDirectSoundCapture* pDirectSoundCapture, const MA_DSCBUFFERDESC* pDSCBufferDesc) { return pThis->lpVtbl->Initialize(pThis, pDirectSoundCapture, pDSCBufferDesc); }
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Lock(ma_IDirectSoundCaptureBuffer* pThis, DWORD dwOffset, DWORD dwBytes, void** ppAudioPtr1, DWORD* pAudioBytes1, void** ppAudioPtr2, DWORD* pAudioBytes2, DWORD dwFlags) { return pThis->lpVtbl->Lock(pThis, dwOffset, dwBytes, ppAudioPtr1, pAudioBytes1, ppAudioPtr2, pAudioBytes2, dwFlags); }
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Start(ma_IDirectSoundCaptureBuffer* pThis, DWORD dwFlags) { return pThis->lpVtbl->Start(pThis, dwFlags); }
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Stop(ma_IDirectSoundCaptureBuffer* pThis) { return pThis->lpVtbl->Stop(pThis); }
static MA_INLINE HRESULT ma_IDirectSoundCaptureBuffer_Unlock(ma_IDirectSoundCaptureBuffer* pThis, void* pAudioPtr1, DWORD dwAudioBytes1, void* pAudioPtr2, DWORD dwAudioBytes2) { return pThis->lpVtbl->Unlock(pThis, pAudioPtr1, dwAudioBytes1, pAudioPtr2, dwAudioBytes2); }
/* IDirectSoundNotify */
typedef struct
{
/* IUnknown */
HRESULT (STDMETHODCALLTYPE * QueryInterface)(ma_IDirectSoundNotify* pThis, const IID* const riid, void** ppObject);
ULONG (STDMETHODCALLTYPE * AddRef) (ma_IDirectSoundNotify* pThis);
ULONG (STDMETHODCALLTYPE * Release) (ma_IDirectSoundNotify* pThis);
/* IDirectSoundNotify */
HRESULT (STDMETHODCALLTYPE * SetNotificationPositions)(ma_IDirectSoundNotify* pThis, DWORD dwPositionNotifies, const MA_DSBPOSITIONNOTIFY* pPositionNotifies);
} ma_IDirectSoundNotifyVtbl;
struct ma_IDirectSoundNotify
{
ma_IDirectSoundNotifyVtbl* lpVtbl;
};
static MA_INLINE HRESULT ma_IDirectSoundNotify_QueryInterface(ma_IDirectSoundNotify* pThis, const IID* const riid, void** ppObject) { return pThis->lpVtbl->QueryInterface(pThis, riid, ppObject); }
static MA_INLINE ULONG ma_IDirectSoundNotify_AddRef(ma_IDirectSoundNotify* pThis) { return pThis->lpVtbl->AddRef(pThis); }
static MA_INLINE ULONG ma_IDirectSoundNotify_Release(ma_IDirectSoundNotify* pThis) { return pThis->lpVtbl->Release(pThis); }
static MA_INLINE HRESULT ma_IDirectSoundNotify_SetNotificationPositions(ma_IDirectSoundNotify* pThis, DWORD dwPositionNotifies, const MA_DSBPOSITIONNOTIFY* pPositionNotifies) { return pThis->lpVtbl->SetNotificationPositions(pThis, dwPositionNotifies, pPositionNotifies); }
typedef BOOL (CALLBACK * ma_DSEnumCallbackAProc) (LPGUID pDeviceGUID, LPCSTR pDeviceDescription, LPCSTR pModule, LPVOID pContext);
typedef HRESULT (WINAPI * ma_DirectSoundCreateProc) (const GUID* pcGuidDevice, ma_IDirectSound** ppDS8, LPUNKNOWN pUnkOuter);
typedef HRESULT (WINAPI * ma_DirectSoundEnumerateAProc) (ma_DSEnumCallbackAProc pDSEnumCallback, LPVOID pContext);
typedef HRESULT (WINAPI * ma_DirectSoundCaptureCreateProc) (const GUID* pcGuidDevice, ma_IDirectSoundCapture** ppDSC8, LPUNKNOWN pUnkOuter);
typedef HRESULT (WINAPI * ma_DirectSoundCaptureEnumerateAProc)(ma_DSEnumCallbackAProc pDSEnumCallback, LPVOID pContext);
static ma_uint32 ma_get_best_sample_rate_within_range(ma_uint32 sampleRateMin, ma_uint32 sampleRateMax)
{
/* Normalize the range in case we were given something stupid. */
if (sampleRateMin < MA_MIN_SAMPLE_RATE) {
sampleRateMin = MA_MIN_SAMPLE_RATE;
}
if (sampleRateMax > MA_MAX_SAMPLE_RATE) {
sampleRateMax = MA_MAX_SAMPLE_RATE;
}
if (sampleRateMin > sampleRateMax) {
sampleRateMin = sampleRateMax;
}
if (sampleRateMin == sampleRateMax) {
return sampleRateMax;
} else {
size_t iStandardRate;
for (iStandardRate = 0; iStandardRate < ma_countof(g_maStandardSampleRatePriorities); ++iStandardRate) {
ma_uint32 standardRate = g_maStandardSampleRatePriorities[iStandardRate];
if (standardRate >= sampleRateMin && standardRate <= sampleRateMax) {
return standardRate;
}
}
}
/* Should never get here. */
MA_ASSERT(MA_FALSE);
return 0;
}
/*
Retrieves the channel count and channel map for the given speaker configuration. If the speaker configuration is unknown,
the channel count and channel map will be left unmodified.
*/
static void ma_get_channels_from_speaker_config__dsound(DWORD speakerConfig, WORD* pChannelsOut, DWORD* pChannelMapOut)
{
WORD channels;
DWORD channelMap;
channels = 0;
if (pChannelsOut != NULL) {
channels = *pChannelsOut;
}
channelMap = 0;
if (pChannelMapOut != NULL) {
channelMap = *pChannelMapOut;
}
/*
The speaker configuration is a combination of speaker config and speaker geometry. The lower 8 bits is what we care about. The upper
16 bits is for the geometry.
*/
switch ((BYTE)(speakerConfig)) {
case 1 /*DSSPEAKER_HEADPHONE*/: channels = 2; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT; break;
case 2 /*DSSPEAKER_MONO*/: channels = 1; channelMap = SPEAKER_FRONT_CENTER; break;
case 3 /*DSSPEAKER_QUAD*/: channels = 4; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT; break;
case 4 /*DSSPEAKER_STEREO*/: channels = 2; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT; break;
case 5 /*DSSPEAKER_SURROUND*/: channels = 4; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_BACK_CENTER; break;
case 6 /*DSSPEAKER_5POINT1_BACK*/ /*DSSPEAKER_5POINT1*/: channels = 6; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT; break;
case 7 /*DSSPEAKER_7POINT1_WIDE*/ /*DSSPEAKER_7POINT1*/: channels = 8; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT | SPEAKER_FRONT_LEFT_OF_CENTER | SPEAKER_FRONT_RIGHT_OF_CENTER; break;
case 8 /*DSSPEAKER_7POINT1_SURROUND*/: channels = 8; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_BACK_LEFT | SPEAKER_BACK_RIGHT | SPEAKER_SIDE_LEFT | SPEAKER_SIDE_RIGHT; break;
case 9 /*DSSPEAKER_5POINT1_SURROUND*/: channels = 6; channelMap = SPEAKER_FRONT_LEFT | SPEAKER_FRONT_RIGHT | SPEAKER_FRONT_CENTER | SPEAKER_LOW_FREQUENCY | SPEAKER_SIDE_LEFT | SPEAKER_SIDE_RIGHT; break;
default: break;
}
if (pChannelsOut != NULL) {
*pChannelsOut = channels;
}
if (pChannelMapOut != NULL) {
*pChannelMapOut = channelMap;
}
}
static ma_result ma_context_create_IDirectSound__dsound(ma_context* pContext, ma_share_mode shareMode, const ma_device_id* pDeviceID, ma_IDirectSound** ppDirectSound)
{
ma_IDirectSound* pDirectSound;
HWND hWnd;
HRESULT hr;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppDirectSound != NULL);
*ppDirectSound = NULL;
pDirectSound = NULL;
if (FAILED(((ma_DirectSoundCreateProc)pContext->dsound.DirectSoundCreate)((pDeviceID == NULL) ? NULL : (const GUID*)pDeviceID->dsound, &pDirectSound, NULL))) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] DirectSoundCreate() failed for playback device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
/* The cooperative level must be set before doing anything else. */
hWnd = ((MA_PFN_GetForegroundWindow)pContext->win32.GetForegroundWindow)();
if (hWnd == NULL) {
hWnd = ((MA_PFN_GetDesktopWindow)pContext->win32.GetDesktopWindow)();
}
hr = ma_IDirectSound_SetCooperativeLevel(pDirectSound, hWnd, (shareMode == ma_share_mode_exclusive) ? MA_DSSCL_EXCLUSIVE : MA_DSSCL_PRIORITY);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_SetCooperateiveLevel() failed for playback device.", ma_result_from_HRESULT(hr));
}
*ppDirectSound = pDirectSound;
return MA_SUCCESS;
}
static ma_result ma_context_create_IDirectSoundCapture__dsound(ma_context* pContext, ma_share_mode shareMode, const ma_device_id* pDeviceID, ma_IDirectSoundCapture** ppDirectSoundCapture)
{
ma_IDirectSoundCapture* pDirectSoundCapture;
HRESULT hr;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppDirectSoundCapture != NULL);
/* DirectSound does not support exclusive mode for capture. */
if (shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
*ppDirectSoundCapture = NULL;
pDirectSoundCapture = NULL;
hr = ((ma_DirectSoundCaptureCreateProc)pContext->dsound.DirectSoundCaptureCreate)((pDeviceID == NULL) ? NULL : (const GUID*)pDeviceID->dsound, &pDirectSoundCapture, NULL);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] DirectSoundCaptureCreate() failed for capture device.", ma_result_from_HRESULT(hr));
}
*ppDirectSoundCapture = pDirectSoundCapture;
return MA_SUCCESS;
}
static ma_result ma_context_get_format_info_for_IDirectSoundCapture__dsound(ma_context* pContext, ma_IDirectSoundCapture* pDirectSoundCapture, WORD* pChannels, WORD* pBitsPerSample, DWORD* pSampleRate)
{
HRESULT hr;
MA_DSCCAPS caps;
WORD bitsPerSample;
DWORD sampleRate;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pDirectSoundCapture != NULL);
if (pChannels) {
*pChannels = 0;
}
if (pBitsPerSample) {
*pBitsPerSample = 0;
}
if (pSampleRate) {
*pSampleRate = 0;
}
MA_ZERO_OBJECT(&caps);
caps.dwSize = sizeof(caps);
hr = ma_IDirectSoundCapture_GetCaps(pDirectSoundCapture, &caps);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCapture_GetCaps() failed for capture device.", ma_result_from_HRESULT(hr));
}
if (pChannels) {
*pChannels = (WORD)caps.dwChannels;
}
/* The device can support multiple formats. We just go through the different formats in order of priority and pick the first one. This the same type of system as the WinMM backend. */
bitsPerSample = 16;
sampleRate = 48000;
if (caps.dwChannels == 1) {
if ((caps.dwFormats & WAVE_FORMAT_48M16) != 0) {
sampleRate = 48000;
} else if ((caps.dwFormats & WAVE_FORMAT_44M16) != 0) {
sampleRate = 44100;
} else if ((caps.dwFormats & WAVE_FORMAT_2M16) != 0) {
sampleRate = 22050;
} else if ((caps.dwFormats & WAVE_FORMAT_1M16) != 0) {
sampleRate = 11025;
} else if ((caps.dwFormats & WAVE_FORMAT_96M16) != 0) {
sampleRate = 96000;
} else {
bitsPerSample = 8;
if ((caps.dwFormats & WAVE_FORMAT_48M08) != 0) {
sampleRate = 48000;
} else if ((caps.dwFormats & WAVE_FORMAT_44M08) != 0) {
sampleRate = 44100;
} else if ((caps.dwFormats & WAVE_FORMAT_2M08) != 0) {
sampleRate = 22050;
} else if ((caps.dwFormats & WAVE_FORMAT_1M08) != 0) {
sampleRate = 11025;
} else if ((caps.dwFormats & WAVE_FORMAT_96M08) != 0) {
sampleRate = 96000;
} else {
bitsPerSample = 16; /* Didn't find it. Just fall back to 16-bit. */
}
}
} else if (caps.dwChannels == 2) {
if ((caps.dwFormats & WAVE_FORMAT_48S16) != 0) {
sampleRate = 48000;
} else if ((caps.dwFormats & WAVE_FORMAT_44S16) != 0) {
sampleRate = 44100;
} else if ((caps.dwFormats & WAVE_FORMAT_2S16) != 0) {
sampleRate = 22050;
} else if ((caps.dwFormats & WAVE_FORMAT_1S16) != 0) {
sampleRate = 11025;
} else if ((caps.dwFormats & WAVE_FORMAT_96S16) != 0) {
sampleRate = 96000;
} else {
bitsPerSample = 8;
if ((caps.dwFormats & WAVE_FORMAT_48S08) != 0) {
sampleRate = 48000;
} else if ((caps.dwFormats & WAVE_FORMAT_44S08) != 0) {
sampleRate = 44100;
} else if ((caps.dwFormats & WAVE_FORMAT_2S08) != 0) {
sampleRate = 22050;
} else if ((caps.dwFormats & WAVE_FORMAT_1S08) != 0) {
sampleRate = 11025;
} else if ((caps.dwFormats & WAVE_FORMAT_96S08) != 0) {
sampleRate = 96000;
} else {
bitsPerSample = 16; /* Didn't find it. Just fall back to 16-bit. */
}
}
}
if (pBitsPerSample) {
*pBitsPerSample = bitsPerSample;
}
if (pSampleRate) {
*pSampleRate = sampleRate;
}
return MA_SUCCESS;
}
static ma_bool32 ma_context_is_device_id_equal__dsound(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return memcmp(pID0->dsound, pID1->dsound, sizeof(pID0->dsound)) == 0;
}
typedef struct
{
ma_context* pContext;
ma_device_type deviceType;
ma_enum_devices_callback_proc callback;
void* pUserData;
ma_bool32 terminated;
} ma_context_enumerate_devices_callback_data__dsound;
static BOOL CALLBACK ma_context_enumerate_devices_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext)
{
ma_context_enumerate_devices_callback_data__dsound* pData = (ma_context_enumerate_devices_callback_data__dsound*)lpContext;
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
/* ID. */
if (lpGuid != NULL) {
MA_COPY_MEMORY(deviceInfo.id.dsound, lpGuid, 16);
} else {
MA_ZERO_MEMORY(deviceInfo.id.dsound, 16);
}
/* Name / Description */
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), lpcstrDescription, (size_t)-1);
/* Call the callback function, but make sure we stop enumerating if the callee requested so. */
MA_ASSERT(pData != NULL);
pData->terminated = !pData->callback(pData->pContext, pData->deviceType, &deviceInfo, pData->pUserData);
if (pData->terminated) {
return FALSE; /* Stop enumeration. */
} else {
return TRUE; /* Continue enumeration. */
}
(void)lpcstrModule;
}
static ma_result ma_context_enumerate_devices__dsound(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_context_enumerate_devices_callback_data__dsound data;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
data.pContext = pContext;
data.callback = callback;
data.pUserData = pUserData;
data.terminated = MA_FALSE;
/* Playback. */
if (!data.terminated) {
data.deviceType = ma_device_type_playback;
((ma_DirectSoundEnumerateAProc)pContext->dsound.DirectSoundEnumerateA)(ma_context_enumerate_devices_callback__dsound, &data);
}
/* Capture. */
if (!data.terminated) {
data.deviceType = ma_device_type_capture;
((ma_DirectSoundCaptureEnumerateAProc)pContext->dsound.DirectSoundCaptureEnumerateA)(ma_context_enumerate_devices_callback__dsound, &data);
}
return MA_SUCCESS;
}
typedef struct
{
const ma_device_id* pDeviceID;
ma_device_info* pDeviceInfo;
ma_bool32 found;
} ma_context_get_device_info_callback_data__dsound;
static BOOL CALLBACK ma_context_get_device_info_callback__dsound(LPGUID lpGuid, LPCSTR lpcstrDescription, LPCSTR lpcstrModule, LPVOID lpContext)
{
ma_context_get_device_info_callback_data__dsound* pData = (ma_context_get_device_info_callback_data__dsound*)lpContext;
MA_ASSERT(pData != NULL);
if ((pData->pDeviceID == NULL || ma_is_guid_equal(pData->pDeviceID->dsound, &MA_GUID_NULL)) && (lpGuid == NULL || ma_is_guid_equal(lpGuid, &MA_GUID_NULL))) {
/* Default device. */
ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), lpcstrDescription, (size_t)-1);
pData->found = MA_TRUE;
return FALSE; /* Stop enumeration. */
} else {
/* Not the default device. */
if (lpGuid != NULL && pData->pDeviceID != NULL) {
if (memcmp(pData->pDeviceID->dsound, lpGuid, sizeof(pData->pDeviceID->dsound)) == 0) {
ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), lpcstrDescription, (size_t)-1);
pData->found = MA_TRUE;
return FALSE; /* Stop enumeration. */
}
}
}
(void)lpcstrModule;
return TRUE;
}
static ma_result ma_context_get_device_info__dsound(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_result result;
HRESULT hr;
/* Exclusive mode and capture not supported with DirectSound. */
if (deviceType == ma_device_type_capture && shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
if (pDeviceID != NULL) {
ma_context_get_device_info_callback_data__dsound data;
/* ID. */
MA_COPY_MEMORY(pDeviceInfo->id.dsound, pDeviceID->dsound, 16);
/* Name / Description. This is retrieved by enumerating over each device until we find that one that matches the input ID. */
data.pDeviceID = pDeviceID;
data.pDeviceInfo = pDeviceInfo;
data.found = MA_FALSE;
if (deviceType == ma_device_type_playback) {
((ma_DirectSoundEnumerateAProc)pContext->dsound.DirectSoundEnumerateA)(ma_context_get_device_info_callback__dsound, &data);
} else {
((ma_DirectSoundCaptureEnumerateAProc)pContext->dsound.DirectSoundCaptureEnumerateA)(ma_context_get_device_info_callback__dsound, &data);
}
if (!data.found) {
return MA_NO_DEVICE;
}
} else {
/* I don't think there's a way to get the name of the default device with DirectSound. In this case we just need to use defaults. */
/* ID */
MA_ZERO_MEMORY(pDeviceInfo->id.dsound, 16);
/* Name / Description */
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
}
}
/* Retrieving detailed information is slightly different depending on the device type. */
if (deviceType == ma_device_type_playback) {
/* Playback. */
ma_IDirectSound* pDirectSound;
MA_DSCAPS caps;
ma_uint32 iFormat;
result = ma_context_create_IDirectSound__dsound(pContext, shareMode, pDeviceID, &pDirectSound);
if (result != MA_SUCCESS) {
return result;
}
MA_ZERO_OBJECT(&caps);
caps.dwSize = sizeof(caps);
hr = ma_IDirectSound_GetCaps(pDirectSound, &caps);
if (FAILED(hr)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device.", ma_result_from_HRESULT(hr));
}
if ((caps.dwFlags & MA_DSCAPS_PRIMARYSTEREO) != 0) {
/* It supports at least stereo, but could support more. */
WORD channels = 2;
/* Look at the speaker configuration to get a better idea on the channel count. */
DWORD speakerConfig;
hr = ma_IDirectSound_GetSpeakerConfig(pDirectSound, &speakerConfig);
if (SUCCEEDED(hr)) {
ma_get_channels_from_speaker_config__dsound(speakerConfig, &channels, NULL);
}
pDeviceInfo->minChannels = channels;
pDeviceInfo->maxChannels = channels;
} else {
/* It does not support stereo, which means we are stuck with mono. */
pDeviceInfo->minChannels = 1;
pDeviceInfo->maxChannels = 1;
}
/* Sample rate. */
if ((caps.dwFlags & MA_DSCAPS_CONTINUOUSRATE) != 0) {
pDeviceInfo->minSampleRate = caps.dwMinSecondarySampleRate;
pDeviceInfo->maxSampleRate = caps.dwMaxSecondarySampleRate;
/*
On my machine the min and max sample rates can return 100 and 200000 respectively. I'd rather these be within
the range of our standard sample rates so I'm clamping.
*/
if (caps.dwMinSecondarySampleRate < MA_MIN_SAMPLE_RATE && caps.dwMaxSecondarySampleRate >= MA_MIN_SAMPLE_RATE) {
pDeviceInfo->minSampleRate = MA_MIN_SAMPLE_RATE;
}
if (caps.dwMaxSecondarySampleRate > MA_MAX_SAMPLE_RATE && caps.dwMinSecondarySampleRate <= MA_MAX_SAMPLE_RATE) {
pDeviceInfo->maxSampleRate = MA_MAX_SAMPLE_RATE;
}
} else {
/* Only supports a single sample rate. Set both min an max to the same thing. Do not clamp within the standard rates. */
pDeviceInfo->minSampleRate = caps.dwMaxSecondarySampleRate;
pDeviceInfo->maxSampleRate = caps.dwMaxSecondarySampleRate;
}
/* DirectSound can support all formats. */
pDeviceInfo->formatCount = ma_format_count - 1; /* Minus one because we don't want to include ma_format_unknown. */
for (iFormat = 0; iFormat < pDeviceInfo->formatCount; ++iFormat) {
pDeviceInfo->formats[iFormat] = (ma_format)(iFormat + 1); /* +1 to skip over ma_format_unknown. */
}
ma_IDirectSound_Release(pDirectSound);
} else {
/*
Capture. This is a little different to playback due to the say the supported formats are reported. Technically capture
devices can support a number of different formats, but for simplicity and consistency with ma_device_init() I'm just
reporting the best format.
*/
ma_IDirectSoundCapture* pDirectSoundCapture;
WORD channels;
WORD bitsPerSample;
DWORD sampleRate;
result = ma_context_create_IDirectSoundCapture__dsound(pContext, shareMode, pDeviceID, &pDirectSoundCapture);
if (result != MA_SUCCESS) {
return result;
}
result = ma_context_get_format_info_for_IDirectSoundCapture__dsound(pContext, pDirectSoundCapture, &channels, &bitsPerSample, &sampleRate);
if (result != MA_SUCCESS) {
ma_IDirectSoundCapture_Release(pDirectSoundCapture);
return result;
}
pDeviceInfo->minChannels = channels;
pDeviceInfo->maxChannels = channels;
pDeviceInfo->minSampleRate = sampleRate;
pDeviceInfo->maxSampleRate = sampleRate;
pDeviceInfo->formatCount = 1;
if (bitsPerSample == 8) {
pDeviceInfo->formats[0] = ma_format_u8;
} else if (bitsPerSample == 16) {
pDeviceInfo->formats[0] = ma_format_s16;
} else if (bitsPerSample == 24) {
pDeviceInfo->formats[0] = ma_format_s24;
} else if (bitsPerSample == 32) {
pDeviceInfo->formats[0] = ma_format_s32;
} else {
ma_IDirectSoundCapture_Release(pDirectSoundCapture);
return MA_FORMAT_NOT_SUPPORTED;
}
ma_IDirectSoundCapture_Release(pDirectSoundCapture);
}
return MA_SUCCESS;
}
static void ma_device_uninit__dsound(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->dsound.pCaptureBuffer != NULL) {
ma_IDirectSoundCaptureBuffer_Release((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
}
if (pDevice->dsound.pCapture != NULL) {
ma_IDirectSoundCapture_Release((ma_IDirectSoundCapture*)pDevice->dsound.pCapture);
}
if (pDevice->dsound.pPlaybackBuffer != NULL) {
ma_IDirectSoundBuffer_Release((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer);
}
if (pDevice->dsound.pPlaybackPrimaryBuffer != NULL) {
ma_IDirectSoundBuffer_Release((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer);
}
if (pDevice->dsound.pPlayback != NULL) {
ma_IDirectSound_Release((ma_IDirectSound*)pDevice->dsound.pPlayback);
}
}
static ma_result ma_config_to_WAVEFORMATEXTENSIBLE(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const ma_channel* pChannelMap, WAVEFORMATEXTENSIBLE* pWF)
{
GUID subformat;
switch (format)
{
case ma_format_u8:
case ma_format_s16:
case ma_format_s24:
/*case ma_format_s24_32:*/
case ma_format_s32:
{
subformat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM;
} break;
case ma_format_f32:
{
subformat = MA_GUID_KSDATAFORMAT_SUBTYPE_IEEE_FLOAT;
} break;
default:
return MA_FORMAT_NOT_SUPPORTED;
}
MA_ZERO_OBJECT(pWF);
pWF->Format.cbSize = sizeof(*pWF);
pWF->Format.wFormatTag = WAVE_FORMAT_EXTENSIBLE;
pWF->Format.nChannels = (WORD)channels;
pWF->Format.nSamplesPerSec = (DWORD)sampleRate;
pWF->Format.wBitsPerSample = (WORD)(ma_get_bytes_per_sample(format)*8);
pWF->Format.nBlockAlign = (WORD)(pWF->Format.nChannels * pWF->Format.wBitsPerSample / 8);
pWF->Format.nAvgBytesPerSec = pWF->Format.nBlockAlign * pWF->Format.nSamplesPerSec;
pWF->Samples.wValidBitsPerSample = pWF->Format.wBitsPerSample;
pWF->dwChannelMask = ma_channel_map_to_channel_mask__win32(pChannelMap, channels);
pWF->SubFormat = subformat;
return MA_SUCCESS;
}
static ma_result ma_device_init__dsound(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
HRESULT hr;
ma_uint32 periodSizeInMilliseconds;
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->dsound);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
if (periodSizeInMilliseconds == 0) {
periodSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->periodSizeInFrames, pConfig->sampleRate);
}
/* DirectSound should use a latency of about 20ms per period for low latency mode. */
if (pDevice->usingDefaultBufferSize) {
if (pConfig->performanceProfile == ma_performance_profile_low_latency) {
periodSizeInMilliseconds = 20;
} else {
periodSizeInMilliseconds = 200;
}
}
/* DirectSound breaks down with tiny buffer sizes (bad glitching and silent output). I am therefore restricting the size of the buffer to a minimum of 20 milliseconds. */
if (periodSizeInMilliseconds < 20) {
periodSizeInMilliseconds = 20;
}
/*
Unfortunately DirectSound uses different APIs and data structures for playback and catpure devices. We need to initialize
the capture device first because we'll want to match it's buffer size and period count on the playback side if we're using
full-duplex mode.
*/
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
WAVEFORMATEXTENSIBLE wf;
MA_DSCBUFFERDESC descDS;
ma_uint32 periodSizeInFrames;
char rawdata[1024]; /* <-- Ugly hack to avoid a malloc() due to a crappy DirectSound API. */
WAVEFORMATEXTENSIBLE* pActualFormat;
result = ma_config_to_WAVEFORMATEXTENSIBLE(pConfig->capture.format, pConfig->capture.channels, pConfig->sampleRate, pConfig->capture.channelMap, &wf);
if (result != MA_SUCCESS) {
return result;
}
result = ma_context_create_IDirectSoundCapture__dsound(pContext, pConfig->capture.shareMode, pConfig->capture.pDeviceID, (ma_IDirectSoundCapture**)&pDevice->dsound.pCapture);
if (result != MA_SUCCESS) {
ma_device_uninit__dsound(pDevice);
return result;
}
result = ma_context_get_format_info_for_IDirectSoundCapture__dsound(pContext, (ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &wf.Format.nChannels, &wf.Format.wBitsPerSample, &wf.Format.nSamplesPerSec);
if (result != MA_SUCCESS) {
ma_device_uninit__dsound(pDevice);
return result;
}
wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8);
wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec;
wf.Samples.wValidBitsPerSample = wf.Format.wBitsPerSample;
wf.SubFormat = MA_GUID_KSDATAFORMAT_SUBTYPE_PCM;
/* The size of the buffer must be a clean multiple of the period count. */
periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, wf.Format.nSamplesPerSec);
MA_ZERO_OBJECT(&descDS);
descDS.dwSize = sizeof(descDS);
descDS.dwFlags = 0;
descDS.dwBufferBytes = periodSizeInFrames * pConfig->periods * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels);
descDS.lpwfxFormat = (WAVEFORMATEX*)&wf;
hr = ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL);
if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCapture_CreateCaptureBuffer() failed for capture device.", ma_result_from_HRESULT(hr));
}
/* Get the _actual_ properties of the buffer. */
pActualFormat = (WAVEFORMATEXTENSIBLE*)rawdata;
hr = ma_IDirectSoundCaptureBuffer_GetFormat((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, (WAVEFORMATEX*)pActualFormat, sizeof(rawdata), NULL);
if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the capture device's buffer.", ma_result_from_HRESULT(hr));
}
pDevice->capture.internalFormat = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat);
pDevice->capture.internalChannels = pActualFormat->Format.nChannels;
pDevice->capture.internalSampleRate = pActualFormat->Format.nSamplesPerSec;
/* Get the internal channel map based on the channel mask. */
if (pActualFormat->Format.wFormatTag == WAVE_FORMAT_EXTENSIBLE) {
ma_channel_mask_to_channel_map__win32(pActualFormat->dwChannelMask, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
} else {
ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
}
/*
After getting the actual format the size of the buffer in frames may have actually changed. However, we want this to be as close to what the
user has asked for as possible, so let's go ahead and release the old capture buffer and create a new one in this case.
*/
if (periodSizeInFrames != (descDS.dwBufferBytes / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels) / pConfig->periods)) {
descDS.dwBufferBytes = periodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, wf.Format.nChannels) * pConfig->periods;
ma_IDirectSoundCaptureBuffer_Release((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
hr = ma_IDirectSoundCapture_CreateCaptureBuffer((ma_IDirectSoundCapture*)pDevice->dsound.pCapture, &descDS, (ma_IDirectSoundCaptureBuffer**)&pDevice->dsound.pCaptureBuffer, NULL);
if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Second attempt at IDirectSoundCapture_CreateCaptureBuffer() failed for capture device.", ma_result_from_HRESULT(hr));
}
}
/* DirectSound should give us a buffer exactly the size we asked for. */
pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->capture.internalPeriods = pConfig->periods;
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
WAVEFORMATEXTENSIBLE wf;
MA_DSBUFFERDESC descDSPrimary;
MA_DSCAPS caps;
char rawdata[1024]; /* <-- Ugly hack to avoid a malloc() due to a crappy DirectSound API. */
WAVEFORMATEXTENSIBLE* pActualFormat;
ma_uint32 periodSizeInFrames;
MA_DSBUFFERDESC descDS;
result = ma_config_to_WAVEFORMATEXTENSIBLE(pConfig->playback.format, pConfig->playback.channels, pConfig->sampleRate, pConfig->playback.channelMap, &wf);
if (result != MA_SUCCESS) {
return result;
}
result = ma_context_create_IDirectSound__dsound(pContext, pConfig->playback.shareMode, pConfig->playback.pDeviceID, (ma_IDirectSound**)&pDevice->dsound.pPlayback);
if (result != MA_SUCCESS) {
ma_device_uninit__dsound(pDevice);
return result;
}
MA_ZERO_OBJECT(&descDSPrimary);
descDSPrimary.dwSize = sizeof(MA_DSBUFFERDESC);
descDSPrimary.dwFlags = MA_DSBCAPS_PRIMARYBUFFER | MA_DSBCAPS_CTRLVOLUME;
hr = ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDSPrimary, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackPrimaryBuffer, NULL);
if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_CreateSoundBuffer() failed for playback device's primary buffer.", ma_result_from_HRESULT(hr));
}
/* We may want to make some adjustments to the format if we are using defaults. */
MA_ZERO_OBJECT(&caps);
caps.dwSize = sizeof(caps);
hr = ma_IDirectSound_GetCaps((ma_IDirectSound*)pDevice->dsound.pPlayback, &caps);
if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_GetCaps() failed for playback device.", ma_result_from_HRESULT(hr));
}
if (pDevice->playback.usingDefaultChannels) {
if ((caps.dwFlags & MA_DSCAPS_PRIMARYSTEREO) != 0) {
DWORD speakerConfig;
/* It supports at least stereo, but could support more. */
wf.Format.nChannels = 2;
/* Look at the speaker configuration to get a better idea on the channel count. */
if (SUCCEEDED(ma_IDirectSound_GetSpeakerConfig((ma_IDirectSound*)pDevice->dsound.pPlayback, &speakerConfig))) {
ma_get_channels_from_speaker_config__dsound(speakerConfig, &wf.Format.nChannels, &wf.dwChannelMask);
}
} else {
/* It does not support stereo, which means we are stuck with mono. */
wf.Format.nChannels = 1;
}
}
if (pDevice->usingDefaultSampleRate) {
/* We base the sample rate on the values returned by GetCaps(). */
if ((caps.dwFlags & MA_DSCAPS_CONTINUOUSRATE) != 0) {
wf.Format.nSamplesPerSec = ma_get_best_sample_rate_within_range(caps.dwMinSecondarySampleRate, caps.dwMaxSecondarySampleRate);
} else {
wf.Format.nSamplesPerSec = caps.dwMaxSecondarySampleRate;
}
}
wf.Format.nBlockAlign = (WORD)(wf.Format.nChannels * wf.Format.wBitsPerSample / 8);
wf.Format.nAvgBytesPerSec = wf.Format.nBlockAlign * wf.Format.nSamplesPerSec;
/*
From MSDN:
The method succeeds even if the hardware does not support the requested format; DirectSound sets the buffer to the closest
supported format. To determine whether this has happened, an application can call the GetFormat method for the primary buffer
and compare the result with the format that was requested with the SetFormat method.
*/
hr = ma_IDirectSoundBuffer_SetFormat((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer, (WAVEFORMATEX*)&wf);
if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to set format of playback device's primary buffer.", ma_result_from_HRESULT(hr));
}
/* Get the _actual_ properties of the buffer. */
pActualFormat = (WAVEFORMATEXTENSIBLE*)rawdata;
hr = ma_IDirectSoundBuffer_GetFormat((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackPrimaryBuffer, (WAVEFORMATEX*)pActualFormat, sizeof(rawdata), NULL);
if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to retrieve the actual format of the playback device's primary buffer.", ma_result_from_HRESULT(hr));
}
pDevice->playback.internalFormat = ma_format_from_WAVEFORMATEX((WAVEFORMATEX*)pActualFormat);
pDevice->playback.internalChannels = pActualFormat->Format.nChannels;
pDevice->playback.internalSampleRate = pActualFormat->Format.nSamplesPerSec;
/* Get the internal channel map based on the channel mask. */
if (pActualFormat->Format.wFormatTag == WAVE_FORMAT_EXTENSIBLE) {
ma_channel_mask_to_channel_map__win32(pActualFormat->dwChannelMask, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
} else {
ma_channel_mask_to_channel_map__win32(wf.dwChannelMask, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
}
/* The size of the buffer must be a clean multiple of the period count. */
periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, pDevice->playback.internalSampleRate);
/*
Meaning of dwFlags (from MSDN):
DSBCAPS_CTRLPOSITIONNOTIFY
The buffer has position notification capability.
DSBCAPS_GLOBALFOCUS
With this flag set, an application using DirectSound can continue to play its buffers if the user switches focus to
another application, even if the new application uses DirectSound.
DSBCAPS_GETCURRENTPOSITION2
In the first version of DirectSound, the play cursor was significantly ahead of the actual playing sound on emulated
sound cards; it was directly behind the write cursor. Now, if the DSBCAPS_GETCURRENTPOSITION2 flag is specified, the
application can get a more accurate play cursor.
*/
MA_ZERO_OBJECT(&descDS);
descDS.dwSize = sizeof(descDS);
descDS.dwFlags = MA_DSBCAPS_CTRLPOSITIONNOTIFY | MA_DSBCAPS_GLOBALFOCUS | MA_DSBCAPS_GETCURRENTPOSITION2;
descDS.dwBufferBytes = periodSizeInFrames * pConfig->periods * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
descDS.lpwfxFormat = (WAVEFORMATEX*)&wf;
hr = ma_IDirectSound_CreateSoundBuffer((ma_IDirectSound*)pDevice->dsound.pPlayback, &descDS, (ma_IDirectSoundBuffer**)&pDevice->dsound.pPlaybackBuffer, NULL);
if (FAILED(hr)) {
ma_device_uninit__dsound(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSound_CreateSoundBuffer() failed for playback device's secondary buffer.", ma_result_from_HRESULT(hr));
}
/* DirectSound should give us a buffer exactly the size we asked for. */
pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->playback.internalPeriods = pConfig->periods;
}
(void)pContext;
return MA_SUCCESS;
}
static ma_result ma_device_main_loop__dsound(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_uint32 bpfDeviceCapture = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 bpfDevicePlayback = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
HRESULT hr;
DWORD lockOffsetInBytesCapture;
DWORD lockSizeInBytesCapture;
DWORD mappedSizeInBytesCapture;
DWORD mappedDeviceFramesProcessedCapture;
void* pMappedDeviceBufferCapture;
DWORD lockOffsetInBytesPlayback;
DWORD lockSizeInBytesPlayback;
DWORD mappedSizeInBytesPlayback;
void* pMappedDeviceBufferPlayback;
DWORD prevReadCursorInBytesCapture = 0;
DWORD prevPlayCursorInBytesPlayback = 0;
ma_bool32 physicalPlayCursorLoopFlagPlayback = 0;
DWORD virtualWriteCursorInBytesPlayback = 0;
ma_bool32 virtualWriteCursorLoopFlagPlayback = 0;
ma_bool32 isPlaybackDeviceStarted = MA_FALSE;
ma_uint32 framesWrittenToPlaybackDevice = 0; /* For knowing whether or not the playback device needs to be started. */
ma_uint32 waitTimeInMilliseconds = 1;
MA_ASSERT(pDevice != NULL);
/* The first thing to do is start the capture device. The playback device is only started after the first period is written. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
if (FAILED(ma_IDirectSoundCaptureBuffer_Start((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, MA_DSCBSTART_LOOPING))) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCaptureBuffer_Start() failed.", MA_FAILED_TO_START_BACKEND_DEVICE);
}
}
while (ma_device__get_state(pDevice) == MA_STATE_STARTED) {
switch (pDevice->type)
{
case ma_device_type_duplex:
{
DWORD physicalCaptureCursorInBytes;
DWORD physicalReadCursorInBytes;
hr = ma_IDirectSoundCaptureBuffer_GetCurrentPosition((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, &physicalCaptureCursorInBytes, &physicalReadCursorInBytes);
if (FAILED(hr)) {
return ma_result_from_HRESULT(hr);
}
/* If nothing is available we just sleep for a bit and return from this iteration. */
if (physicalReadCursorInBytes == prevReadCursorInBytesCapture) {
ma_sleep(waitTimeInMilliseconds);
continue; /* Nothing is available in the capture buffer. */
}
/*
The current position has moved. We need to map all of the captured samples and write them to the playback device, making sure
we don't return until every frame has been copied over.
*/
if (prevReadCursorInBytesCapture < physicalReadCursorInBytes) {
/* The capture position has not looped. This is the simple case. */
lockOffsetInBytesCapture = prevReadCursorInBytesCapture;
lockSizeInBytesCapture = (physicalReadCursorInBytes - prevReadCursorInBytesCapture);
} else {
/*
The capture position has looped. This is the more complex case. Map to the end of the buffer. If this does not return anything,
do it again from the start.
*/
if (prevReadCursorInBytesCapture < pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) {
/* Lock up to the end of the buffer. */
lockOffsetInBytesCapture = prevReadCursorInBytesCapture;
lockSizeInBytesCapture = (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) - prevReadCursorInBytesCapture;
} else {
/* Lock starting from the start of the buffer. */
lockOffsetInBytesCapture = 0;
lockSizeInBytesCapture = physicalReadCursorInBytes;
}
}
if (lockSizeInBytesCapture == 0) {
ma_sleep(waitTimeInMilliseconds);
continue; /* Nothing is available in the capture buffer. */
}
hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedDeviceBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
}
/* At this point we have some input data that we need to output. We do not return until every mapped frame of the input data is written to the playback device. */
mappedDeviceFramesProcessedCapture = 0;
for (;;) { /* Keep writing to the playback device. */
ma_uint8 inputFramesInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 inputFramesInClientFormatCap = sizeof(inputFramesInClientFormat) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint8 outputFramesInClientFormat[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 outputFramesInClientFormatCap = sizeof(outputFramesInClientFormat) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint32 outputFramesInClientFormatCount;
ma_uint32 outputFramesInClientFormatConsumed = 0;
ma_uint64 clientCapturedFramesToProcess = ma_min(inputFramesInClientFormatCap, outputFramesInClientFormatCap);
ma_uint64 deviceCapturedFramesToProcess = (mappedSizeInBytesCapture / bpfDeviceCapture) - mappedDeviceFramesProcessedCapture;
void* pRunningMappedDeviceBufferCapture = ma_offset_ptr(pMappedDeviceBufferCapture, mappedDeviceFramesProcessedCapture * bpfDeviceCapture);
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningMappedDeviceBufferCapture, &deviceCapturedFramesToProcess, inputFramesInClientFormat, &clientCapturedFramesToProcess);
if (result != MA_SUCCESS) {
break;
}
outputFramesInClientFormatCount = (ma_uint32)clientCapturedFramesToProcess;
mappedDeviceFramesProcessedCapture += (ma_uint32)deviceCapturedFramesToProcess;
ma_device__on_data(pDevice, outputFramesInClientFormat, inputFramesInClientFormat, (ma_uint32)clientCapturedFramesToProcess);
/* At this point we have input and output data in client format. All we need to do now is convert it to the output device format. This may take a few passes. */
for (;;) {
ma_uint32 framesWrittenThisIteration;
DWORD physicalPlayCursorInBytes;
DWORD physicalWriteCursorInBytes;
DWORD availableBytesPlayback;
DWORD silentPaddingInBytes = 0; /* <-- Must be initialized to 0. */
/* We need the physical play and write cursors. */
if (FAILED(ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes))) {
break;
}
if (physicalPlayCursorInBytes < prevPlayCursorInBytesPlayback) {
physicalPlayCursorLoopFlagPlayback = !physicalPlayCursorLoopFlagPlayback;
}
prevPlayCursorInBytesPlayback = physicalPlayCursorInBytes;
/* If there's any bytes available for writing we can do that now. The space between the virtual cursor position and play cursor. */
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. The available bytes wraps all the way around from the virtual write cursor to the physical play cursor. */
if (physicalPlayCursorInBytes <= virtualWriteCursorInBytesPlayback) {
availableBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
availableBytesPlayback += physicalPlayCursorInBytes; /* Wrap around. */
} else {
/* This is an error. */
#ifdef MA_DEBUG_OUTPUT
printf("[DirectSound] (Duplex/Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
#endif
availableBytesPlayback = 0;
}
} else {
/* Different loop iterations. The available bytes only goes from the virtual write cursor to the physical play cursor. */
if (physicalPlayCursorInBytes >= virtualWriteCursorInBytesPlayback) {
availableBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback;
} else {
/* This is an error. */
#ifdef MA_DEBUG_OUTPUT
printf("[DirectSound] (Duplex/Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
#endif
availableBytesPlayback = 0;
}
}
#ifdef MA_DEBUG_OUTPUT
/*printf("[DirectSound] (Duplex/Playback) physicalPlayCursorInBytes=%d, availableBytesPlayback=%d\n", physicalPlayCursorInBytes, availableBytesPlayback);*/
#endif
/* If there's no room available for writing we need to wait for more. */
if (availableBytesPlayback == 0) {
/* If we haven't started the device yet, this will never get beyond 0. In this case we need to get the device started. */
if (!isPlaybackDeviceStarted) {
hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING);
if (FAILED(hr)) {
ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", ma_result_from_HRESULT(hr));
}
isPlaybackDeviceStarted = MA_TRUE;
} else {
ma_sleep(waitTimeInMilliseconds);
continue;
}
}
/* Getting here means there room available somewhere. We limit this to either the end of the buffer or the physical play cursor, whichever is closest. */
lockOffsetInBytesPlayback = virtualWriteCursorInBytesPlayback;
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. Go up to the end of the buffer. */
lockSizeInBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
} else {
/* Different loop iterations. Go up to the physical play cursor. */
lockSizeInBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback;
}
hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedDeviceBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0);
if (FAILED(hr)) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
break;
}
/*
Experiment: If the playback buffer is being starved, pad it with some silence to get it back in sync. This will cause a glitch, but it may prevent
endless glitching due to it constantly running out of data.
*/
if (isPlaybackDeviceStarted) {
DWORD bytesQueuedForPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - availableBytesPlayback;
if (bytesQueuedForPlayback < (pDevice->playback.internalPeriodSizeInFrames*bpfDevicePlayback)) {
silentPaddingInBytes = (pDevice->playback.internalPeriodSizeInFrames*2*bpfDevicePlayback) - bytesQueuedForPlayback;
if (silentPaddingInBytes > lockSizeInBytesPlayback) {
silentPaddingInBytes = lockSizeInBytesPlayback;
}
#ifdef MA_DEBUG_OUTPUT
printf("[DirectSound] (Duplex/Playback) Playback buffer starved. availableBytesPlayback=%ld, silentPaddingInBytes=%ld\n", availableBytesPlayback, silentPaddingInBytes);
#endif
}
}
/* At this point we have a buffer for output. */
if (silentPaddingInBytes > 0) {
MA_ZERO_MEMORY(pMappedDeviceBufferPlayback, silentPaddingInBytes);
framesWrittenThisIteration = silentPaddingInBytes/bpfDevicePlayback;
} else {
ma_uint64 convertedFrameCountIn = (outputFramesInClientFormatCount - outputFramesInClientFormatConsumed);
ma_uint64 convertedFrameCountOut = mappedSizeInBytesPlayback/bpfDevicePlayback;
void* pConvertedFramesIn = ma_offset_ptr(outputFramesInClientFormat, outputFramesInClientFormatConsumed * bpfDevicePlayback);
void* pConvertedFramesOut = pMappedDeviceBufferPlayback;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, pConvertedFramesIn, &convertedFrameCountIn, pConvertedFramesOut, &convertedFrameCountOut);
if (result != MA_SUCCESS) {
break;
}
outputFramesInClientFormatConsumed += (ma_uint32)convertedFrameCountOut;
framesWrittenThisIteration = (ma_uint32)convertedFrameCountOut;
}
hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedDeviceBufferPlayback, framesWrittenThisIteration*bpfDevicePlayback, NULL, 0);
if (FAILED(hr)) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device.", ma_result_from_HRESULT(hr));
break;
}
virtualWriteCursorInBytesPlayback += framesWrittenThisIteration*bpfDevicePlayback;
if ((virtualWriteCursorInBytesPlayback/bpfDevicePlayback) == pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods) {
virtualWriteCursorInBytesPlayback = 0;
virtualWriteCursorLoopFlagPlayback = !virtualWriteCursorLoopFlagPlayback;
}
/*
We may need to start the device. We want two full periods to be written before starting the playback device. Having an extra period adds
a bit of a buffer to prevent the playback buffer from getting starved.
*/
framesWrittenToPlaybackDevice += framesWrittenThisIteration;
if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= (pDevice->playback.internalPeriodSizeInFrames*2)) {
hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING);
if (FAILED(hr)) {
ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", ma_result_from_HRESULT(hr));
}
isPlaybackDeviceStarted = MA_TRUE;
}
if (framesWrittenThisIteration < mappedSizeInBytesPlayback/bpfDevicePlayback) {
break; /* We're finished with the output data.*/
}
}
if (clientCapturedFramesToProcess == 0) {
break; /* We just consumed every input sample. */
}
}
/* At this point we're done with the mapped portion of the capture buffer. */
hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedDeviceBufferCapture, mappedSizeInBytesCapture, NULL, 0);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device.", ma_result_from_HRESULT(hr));
}
prevReadCursorInBytesCapture = (lockOffsetInBytesCapture + mappedSizeInBytesCapture);
} break;
case ma_device_type_capture:
{
DWORD physicalCaptureCursorInBytes;
DWORD physicalReadCursorInBytes;
hr = ma_IDirectSoundCaptureBuffer_GetCurrentPosition((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, &physicalCaptureCursorInBytes, &physicalReadCursorInBytes);
if (FAILED(hr)) {
return MA_ERROR;
}
/* If the previous capture position is the same as the current position we need to wait a bit longer. */
if (prevReadCursorInBytesCapture == physicalReadCursorInBytes) {
ma_sleep(waitTimeInMilliseconds);
continue;
}
/* Getting here means we have capture data available. */
if (prevReadCursorInBytesCapture < physicalReadCursorInBytes) {
/* The capture position has not looped. This is the simple case. */
lockOffsetInBytesCapture = prevReadCursorInBytesCapture;
lockSizeInBytesCapture = (physicalReadCursorInBytes - prevReadCursorInBytesCapture);
} else {
/*
The capture position has looped. This is the more complex case. Map to the end of the buffer. If this does not return anything,
do it again from the start.
*/
if (prevReadCursorInBytesCapture < pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) {
/* Lock up to the end of the buffer. */
lockOffsetInBytesCapture = prevReadCursorInBytesCapture;
lockSizeInBytesCapture = (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture) - prevReadCursorInBytesCapture;
} else {
/* Lock starting from the start of the buffer. */
lockOffsetInBytesCapture = 0;
lockSizeInBytesCapture = physicalReadCursorInBytes;
}
}
#ifdef MA_DEBUG_OUTPUT
/*printf("[DirectSound] (Capture) physicalCaptureCursorInBytes=%d, physicalReadCursorInBytes=%d\n", physicalCaptureCursorInBytes, physicalReadCursorInBytes);*/
/*printf("[DirectSound] (Capture) lockOffsetInBytesCapture=%d, lockSizeInBytesCapture=%d\n", lockOffsetInBytesCapture, lockSizeInBytesCapture);*/
#endif
if (lockSizeInBytesCapture < pDevice->capture.internalPeriodSizeInFrames) {
ma_sleep(waitTimeInMilliseconds);
continue; /* Nothing is available in the capture buffer. */
}
hr = ma_IDirectSoundCaptureBuffer_Lock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, lockOffsetInBytesCapture, lockSizeInBytesCapture, &pMappedDeviceBufferCapture, &mappedSizeInBytesCapture, NULL, NULL, 0);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from capture device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
}
#ifdef MA_DEBUG_OUTPUT
if (lockSizeInBytesCapture != mappedSizeInBytesCapture) {
printf("[DirectSound] (Capture) lockSizeInBytesCapture=%ld != mappedSizeInBytesCapture=%ld\n", lockSizeInBytesCapture, mappedSizeInBytesCapture);
}
#endif
ma_device__send_frames_to_client(pDevice, mappedSizeInBytesCapture/bpfDeviceCapture, pMappedDeviceBufferCapture);
hr = ma_IDirectSoundCaptureBuffer_Unlock((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer, pMappedDeviceBufferCapture, mappedSizeInBytesCapture, NULL, 0);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from capture device after reading from the device.", ma_result_from_HRESULT(hr));
}
prevReadCursorInBytesCapture = lockOffsetInBytesCapture + mappedSizeInBytesCapture;
if (prevReadCursorInBytesCapture == (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*bpfDeviceCapture)) {
prevReadCursorInBytesCapture = 0;
}
} break;
case ma_device_type_playback:
{
DWORD availableBytesPlayback;
DWORD physicalPlayCursorInBytes;
DWORD physicalWriteCursorInBytes;
hr = ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes);
if (FAILED(hr)) {
break;
}
if (physicalPlayCursorInBytes < prevPlayCursorInBytesPlayback) {
physicalPlayCursorLoopFlagPlayback = !physicalPlayCursorLoopFlagPlayback;
}
prevPlayCursorInBytesPlayback = physicalPlayCursorInBytes;
/* If there's any bytes available for writing we can do that now. The space between the virtual cursor position and play cursor. */
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. The available bytes wraps all the way around from the virtual write cursor to the physical play cursor. */
if (physicalPlayCursorInBytes <= virtualWriteCursorInBytesPlayback) {
availableBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
availableBytesPlayback += physicalPlayCursorInBytes; /* Wrap around. */
} else {
/* This is an error. */
#ifdef MA_DEBUG_OUTPUT
printf("[DirectSound] (Playback) WARNING: Play cursor has moved in front of the write cursor (same loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
#endif
availableBytesPlayback = 0;
}
} else {
/* Different loop iterations. The available bytes only goes from the virtual write cursor to the physical play cursor. */
if (physicalPlayCursorInBytes >= virtualWriteCursorInBytesPlayback) {
availableBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback;
} else {
/* This is an error. */
#ifdef MA_DEBUG_OUTPUT
printf("[DirectSound] (Playback) WARNING: Write cursor has moved behind the play cursor (different loop iterations). physicalPlayCursorInBytes=%ld, virtualWriteCursorInBytes=%ld.\n", physicalPlayCursorInBytes, virtualWriteCursorInBytesPlayback);
#endif
availableBytesPlayback = 0;
}
}
#ifdef MA_DEBUG_OUTPUT
/*printf("[DirectSound] (Playback) physicalPlayCursorInBytes=%d, availableBytesPlayback=%d\n", physicalPlayCursorInBytes, availableBytesPlayback);*/
#endif
/* If there's no room available for writing we need to wait for more. */
if (availableBytesPlayback < pDevice->playback.internalPeriodSizeInFrames) {
/* If we haven't started the device yet, this will never get beyond 0. In this case we need to get the device started. */
if (availableBytesPlayback == 0 && !isPlaybackDeviceStarted) {
hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", ma_result_from_HRESULT(hr));
}
isPlaybackDeviceStarted = MA_TRUE;
} else {
ma_sleep(waitTimeInMilliseconds);
continue;
}
}
/* Getting here means there room available somewhere. We limit this to either the end of the buffer or the physical play cursor, whichever is closest. */
lockOffsetInBytesPlayback = virtualWriteCursorInBytesPlayback;
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. Go up to the end of the buffer. */
lockSizeInBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
} else {
/* Different loop iterations. Go up to the physical play cursor. */
lockSizeInBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback;
}
hr = ma_IDirectSoundBuffer_Lock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, lockOffsetInBytesPlayback, lockSizeInBytesPlayback, &pMappedDeviceBufferPlayback, &mappedSizeInBytesPlayback, NULL, NULL, 0);
if (FAILED(hr)) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to map buffer from playback device in preparation for writing to the device.", ma_result_from_HRESULT(hr));
break;
}
/* At this point we have a buffer for output. */
ma_device__read_frames_from_client(pDevice, (mappedSizeInBytesPlayback/bpfDevicePlayback), pMappedDeviceBufferPlayback);
hr = ma_IDirectSoundBuffer_Unlock((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, pMappedDeviceBufferPlayback, mappedSizeInBytesPlayback, NULL, 0);
if (FAILED(hr)) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] Failed to unlock internal buffer from playback device after writing to the device.", ma_result_from_HRESULT(hr));
break;
}
virtualWriteCursorInBytesPlayback += mappedSizeInBytesPlayback;
if (virtualWriteCursorInBytesPlayback == pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) {
virtualWriteCursorInBytesPlayback = 0;
virtualWriteCursorLoopFlagPlayback = !virtualWriteCursorLoopFlagPlayback;
}
/*
We may need to start the device. We want two full periods to be written before starting the playback device. Having an extra period adds
a bit of a buffer to prevent the playback buffer from getting starved.
*/
framesWrittenToPlaybackDevice += mappedSizeInBytesPlayback/bpfDevicePlayback;
if (!isPlaybackDeviceStarted && framesWrittenToPlaybackDevice >= pDevice->playback.internalPeriodSizeInFrames) {
hr = ma_IDirectSoundBuffer_Play((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0, 0, MA_DSBPLAY_LOOPING);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Play() failed.", ma_result_from_HRESULT(hr));
}
isPlaybackDeviceStarted = MA_TRUE;
}
} break;
default: return MA_INVALID_ARGS; /* Invalid device type. */
}
if (result != MA_SUCCESS) {
return result;
}
}
/* Getting here means the device is being stopped. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
hr = ma_IDirectSoundCaptureBuffer_Stop((ma_IDirectSoundCaptureBuffer*)pDevice->dsound.pCaptureBuffer);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundCaptureBuffer_Stop() failed.", ma_result_from_HRESULT(hr));
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
/* The playback device should be drained before stopping. All we do is wait until the available bytes is equal to the size of the buffer. */
if (isPlaybackDeviceStarted) {
for (;;) {
DWORD availableBytesPlayback = 0;
DWORD physicalPlayCursorInBytes;
DWORD physicalWriteCursorInBytes;
hr = ma_IDirectSoundBuffer_GetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, &physicalPlayCursorInBytes, &physicalWriteCursorInBytes);
if (FAILED(hr)) {
break;
}
if (physicalPlayCursorInBytes < prevPlayCursorInBytesPlayback) {
physicalPlayCursorLoopFlagPlayback = !physicalPlayCursorLoopFlagPlayback;
}
prevPlayCursorInBytesPlayback = physicalPlayCursorInBytes;
if (physicalPlayCursorLoopFlagPlayback == virtualWriteCursorLoopFlagPlayback) {
/* Same loop iteration. The available bytes wraps all the way around from the virtual write cursor to the physical play cursor. */
if (physicalPlayCursorInBytes <= virtualWriteCursorInBytesPlayback) {
availableBytesPlayback = (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback) - virtualWriteCursorInBytesPlayback;
availableBytesPlayback += physicalPlayCursorInBytes; /* Wrap around. */
} else {
break;
}
} else {
/* Different loop iterations. The available bytes only goes from the virtual write cursor to the physical play cursor. */
if (physicalPlayCursorInBytes >= virtualWriteCursorInBytesPlayback) {
availableBytesPlayback = physicalPlayCursorInBytes - virtualWriteCursorInBytesPlayback;
} else {
break;
}
}
if (availableBytesPlayback >= (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*bpfDevicePlayback)) {
break;
}
ma_sleep(waitTimeInMilliseconds);
}
}
hr = ma_IDirectSoundBuffer_Stop((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer);
if (FAILED(hr)) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[DirectSound] IDirectSoundBuffer_Stop() failed.", ma_result_from_HRESULT(hr));
}
ma_IDirectSoundBuffer_SetCurrentPosition((ma_IDirectSoundBuffer*)pDevice->dsound.pPlaybackBuffer, 0);
}
return MA_SUCCESS;
}
static ma_result ma_context_uninit__dsound(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_dsound);
ma_dlclose(pContext, pContext->dsound.hDSoundDLL);
return MA_SUCCESS;
}
static ma_result ma_context_init__dsound(const ma_context_config* pConfig, ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
(void)pConfig;
pContext->dsound.hDSoundDLL = ma_dlopen(pContext, "dsound.dll");
if (pContext->dsound.hDSoundDLL == NULL) {
return MA_API_NOT_FOUND;
}
pContext->dsound.DirectSoundCreate = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundCreate");
pContext->dsound.DirectSoundEnumerateA = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundEnumerateA");
pContext->dsound.DirectSoundCaptureCreate = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundCaptureCreate");
pContext->dsound.DirectSoundCaptureEnumerateA = ma_dlsym(pContext, pContext->dsound.hDSoundDLL, "DirectSoundCaptureEnumerateA");
pContext->onUninit = ma_context_uninit__dsound;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__dsound;
pContext->onEnumDevices = ma_context_enumerate_devices__dsound;
pContext->onGetDeviceInfo = ma_context_get_device_info__dsound;
pContext->onDeviceInit = ma_device_init__dsound;
pContext->onDeviceUninit = ma_device_uninit__dsound;
pContext->onDeviceStart = NULL; /* Not used. Started in onDeviceMainLoop. */
pContext->onDeviceStop = NULL; /* Not used. Stopped in onDeviceMainLoop. */
pContext->onDeviceMainLoop = ma_device_main_loop__dsound;
return MA_SUCCESS;
}
#endif
/******************************************************************************
WinMM Backend
******************************************************************************/
#ifdef MA_HAS_WINMM
/*
Some older compilers don't have WAVEOUTCAPS2A and WAVEINCAPS2A, so we'll need to write this ourselves. These structures
are exactly the same as the older ones but they have a few GUIDs for manufacturer/product/name identification. I'm keeping
the names the same as the Win32 library for consistency, but namespaced to avoid naming conflicts with the Win32 version.
*/
typedef struct
{
WORD wMid;
WORD wPid;
MMVERSION vDriverVersion;
CHAR szPname[MAXPNAMELEN];
DWORD dwFormats;
WORD wChannels;
WORD wReserved1;
DWORD dwSupport;
GUID ManufacturerGuid;
GUID ProductGuid;
GUID NameGuid;
} MA_WAVEOUTCAPS2A;
typedef struct
{
WORD wMid;
WORD wPid;
MMVERSION vDriverVersion;
CHAR szPname[MAXPNAMELEN];
DWORD dwFormats;
WORD wChannels;
WORD wReserved1;
GUID ManufacturerGuid;
GUID ProductGuid;
GUID NameGuid;
} MA_WAVEINCAPS2A;
typedef UINT (WINAPI * MA_PFN_waveOutGetNumDevs)(void);
typedef MMRESULT (WINAPI * MA_PFN_waveOutGetDevCapsA)(ma_uintptr uDeviceID, LPWAVEOUTCAPSA pwoc, UINT cbwoc);
typedef MMRESULT (WINAPI * MA_PFN_waveOutOpen)(LPHWAVEOUT phwo, UINT uDeviceID, LPCWAVEFORMATEX pwfx, DWORD_PTR dwCallback, DWORD_PTR dwInstance, DWORD fdwOpen);
typedef MMRESULT (WINAPI * MA_PFN_waveOutClose)(HWAVEOUT hwo);
typedef MMRESULT (WINAPI * MA_PFN_waveOutPrepareHeader)(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh);
typedef MMRESULT (WINAPI * MA_PFN_waveOutUnprepareHeader)(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh);
typedef MMRESULT (WINAPI * MA_PFN_waveOutWrite)(HWAVEOUT hwo, LPWAVEHDR pwh, UINT cbwh);
typedef MMRESULT (WINAPI * MA_PFN_waveOutReset)(HWAVEOUT hwo);
typedef UINT (WINAPI * MA_PFN_waveInGetNumDevs)(void);
typedef MMRESULT (WINAPI * MA_PFN_waveInGetDevCapsA)(ma_uintptr uDeviceID, LPWAVEINCAPSA pwic, UINT cbwic);
typedef MMRESULT (WINAPI * MA_PFN_waveInOpen)(LPHWAVEIN phwi, UINT uDeviceID, LPCWAVEFORMATEX pwfx, DWORD_PTR dwCallback, DWORD_PTR dwInstance, DWORD fdwOpen);
typedef MMRESULT (WINAPI * MA_PFN_waveInClose)(HWAVEIN hwi);
typedef MMRESULT (WINAPI * MA_PFN_waveInPrepareHeader)(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh);
typedef MMRESULT (WINAPI * MA_PFN_waveInUnprepareHeader)(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh);
typedef MMRESULT (WINAPI * MA_PFN_waveInAddBuffer)(HWAVEIN hwi, LPWAVEHDR pwh, UINT cbwh);
typedef MMRESULT (WINAPI * MA_PFN_waveInStart)(HWAVEIN hwi);
typedef MMRESULT (WINAPI * MA_PFN_waveInReset)(HWAVEIN hwi);
static ma_result ma_result_from_MMRESULT(MMRESULT resultMM)
{
switch (resultMM) {
case MMSYSERR_NOERROR: return MA_SUCCESS;
case MMSYSERR_BADDEVICEID: return MA_INVALID_ARGS;
case MMSYSERR_INVALHANDLE: return MA_INVALID_ARGS;
case MMSYSERR_NOMEM: return MA_OUT_OF_MEMORY;
case MMSYSERR_INVALFLAG: return MA_INVALID_ARGS;
case MMSYSERR_INVALPARAM: return MA_INVALID_ARGS;
case MMSYSERR_HANDLEBUSY: return MA_BUSY;
case MMSYSERR_ERROR: return MA_ERROR;
default: return MA_ERROR;
}
}
static char* ma_find_last_character(char* str, char ch)
{
char* last;
if (str == NULL) {
return NULL;
}
last = NULL;
while (*str != '\0') {
if (*str == ch) {
last = str;
}
str += 1;
}
return last;
}
static ma_uint32 ma_get_period_size_in_bytes(ma_uint32 periodSizeInFrames, ma_format format, ma_uint32 channels)
{
return periodSizeInFrames * ma_get_bytes_per_frame(format, channels);
}
/*
Our own "WAVECAPS" structure that contains generic information shared between WAVEOUTCAPS2 and WAVEINCAPS2 so
we can do things generically and typesafely. Names are being kept the same for consistency.
*/
typedef struct
{
CHAR szPname[MAXPNAMELEN];
DWORD dwFormats;
WORD wChannels;
GUID NameGuid;
} MA_WAVECAPSA;
static ma_result ma_get_best_info_from_formats_flags__winmm(DWORD dwFormats, WORD channels, WORD* pBitsPerSample, DWORD* pSampleRate)
{
WORD bitsPerSample = 0;
DWORD sampleRate = 0;
if (pBitsPerSample) {
*pBitsPerSample = 0;
}
if (pSampleRate) {
*pSampleRate = 0;
}
if (channels == 1) {
bitsPerSample = 16;
if ((dwFormats & WAVE_FORMAT_48M16) != 0) {
sampleRate = 48000;
} else if ((dwFormats & WAVE_FORMAT_44M16) != 0) {
sampleRate = 44100;
} else if ((dwFormats & WAVE_FORMAT_2M16) != 0) {
sampleRate = 22050;
} else if ((dwFormats & WAVE_FORMAT_1M16) != 0) {
sampleRate = 11025;
} else if ((dwFormats & WAVE_FORMAT_96M16) != 0) {
sampleRate = 96000;
} else {
bitsPerSample = 8;
if ((dwFormats & WAVE_FORMAT_48M08) != 0) {
sampleRate = 48000;
} else if ((dwFormats & WAVE_FORMAT_44M08) != 0) {
sampleRate = 44100;
} else if ((dwFormats & WAVE_FORMAT_2M08) != 0) {
sampleRate = 22050;
} else if ((dwFormats & WAVE_FORMAT_1M08) != 0) {
sampleRate = 11025;
} else if ((dwFormats & WAVE_FORMAT_96M08) != 0) {
sampleRate = 96000;
} else {
return MA_FORMAT_NOT_SUPPORTED;
}
}
} else {
bitsPerSample = 16;
if ((dwFormats & WAVE_FORMAT_48S16) != 0) {
sampleRate = 48000;
} else if ((dwFormats & WAVE_FORMAT_44S16) != 0) {
sampleRate = 44100;
} else if ((dwFormats & WAVE_FORMAT_2S16) != 0) {
sampleRate = 22050;
} else if ((dwFormats & WAVE_FORMAT_1S16) != 0) {
sampleRate = 11025;
} else if ((dwFormats & WAVE_FORMAT_96S16) != 0) {
sampleRate = 96000;
} else {
bitsPerSample = 8;
if ((dwFormats & WAVE_FORMAT_48S08) != 0) {
sampleRate = 48000;
} else if ((dwFormats & WAVE_FORMAT_44S08) != 0) {
sampleRate = 44100;
} else if ((dwFormats & WAVE_FORMAT_2S08) != 0) {
sampleRate = 22050;
} else if ((dwFormats & WAVE_FORMAT_1S08) != 0) {
sampleRate = 11025;
} else if ((dwFormats & WAVE_FORMAT_96S08) != 0) {
sampleRate = 96000;
} else {
return MA_FORMAT_NOT_SUPPORTED;
}
}
}
if (pBitsPerSample) {
*pBitsPerSample = bitsPerSample;
}
if (pSampleRate) {
*pSampleRate = sampleRate;
}
return MA_SUCCESS;
}
static ma_result ma_formats_flags_to_WAVEFORMATEX__winmm(DWORD dwFormats, WORD channels, WAVEFORMATEX* pWF)
{
MA_ASSERT(pWF != NULL);
MA_ZERO_OBJECT(pWF);
pWF->cbSize = sizeof(*pWF);
pWF->wFormatTag = WAVE_FORMAT_PCM;
pWF->nChannels = (WORD)channels;
if (pWF->nChannels > 2) {
pWF->nChannels = 2;
}
if (channels == 1) {
pWF->wBitsPerSample = 16;
if ((dwFormats & WAVE_FORMAT_48M16) != 0) {
pWF->nSamplesPerSec = 48000;
} else if ((dwFormats & WAVE_FORMAT_44M16) != 0) {
pWF->nSamplesPerSec = 44100;
} else if ((dwFormats & WAVE_FORMAT_2M16) != 0) {
pWF->nSamplesPerSec = 22050;
} else if ((dwFormats & WAVE_FORMAT_1M16) != 0) {
pWF->nSamplesPerSec = 11025;
} else if ((dwFormats & WAVE_FORMAT_96M16) != 0) {
pWF->nSamplesPerSec = 96000;
} else {
pWF->wBitsPerSample = 8;
if ((dwFormats & WAVE_FORMAT_48M08) != 0) {
pWF->nSamplesPerSec = 48000;
} else if ((dwFormats & WAVE_FORMAT_44M08) != 0) {
pWF->nSamplesPerSec = 44100;
} else if ((dwFormats & WAVE_FORMAT_2M08) != 0) {
pWF->nSamplesPerSec = 22050;
} else if ((dwFormats & WAVE_FORMAT_1M08) != 0) {
pWF->nSamplesPerSec = 11025;
} else if ((dwFormats & WAVE_FORMAT_96M08) != 0) {
pWF->nSamplesPerSec = 96000;
} else {
return MA_FORMAT_NOT_SUPPORTED;
}
}
} else {
pWF->wBitsPerSample = 16;
if ((dwFormats & WAVE_FORMAT_48S16) != 0) {
pWF->nSamplesPerSec = 48000;
} else if ((dwFormats & WAVE_FORMAT_44S16) != 0) {
pWF->nSamplesPerSec = 44100;
} else if ((dwFormats & WAVE_FORMAT_2S16) != 0) {
pWF->nSamplesPerSec = 22050;
} else if ((dwFormats & WAVE_FORMAT_1S16) != 0) {
pWF->nSamplesPerSec = 11025;
} else if ((dwFormats & WAVE_FORMAT_96S16) != 0) {
pWF->nSamplesPerSec = 96000;
} else {
pWF->wBitsPerSample = 8;
if ((dwFormats & WAVE_FORMAT_48S08) != 0) {
pWF->nSamplesPerSec = 48000;
} else if ((dwFormats & WAVE_FORMAT_44S08) != 0) {
pWF->nSamplesPerSec = 44100;
} else if ((dwFormats & WAVE_FORMAT_2S08) != 0) {
pWF->nSamplesPerSec = 22050;
} else if ((dwFormats & WAVE_FORMAT_1S08) != 0) {
pWF->nSamplesPerSec = 11025;
} else if ((dwFormats & WAVE_FORMAT_96S08) != 0) {
pWF->nSamplesPerSec = 96000;
} else {
return MA_FORMAT_NOT_SUPPORTED;
}
}
}
pWF->nBlockAlign = (WORD)(pWF->nChannels * pWF->wBitsPerSample / 8);
pWF->nAvgBytesPerSec = pWF->nBlockAlign * pWF->nSamplesPerSec;
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info_from_WAVECAPS(ma_context* pContext, MA_WAVECAPSA* pCaps, ma_device_info* pDeviceInfo)
{
WORD bitsPerSample;
DWORD sampleRate;
ma_result result;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pCaps != NULL);
MA_ASSERT(pDeviceInfo != NULL);
/*
Name / Description
Unfortunately the name specified in WAVE(OUT/IN)CAPS2 is limited to 31 characters. This results in an unprofessional looking
situation where the names of the devices are truncated. To help work around this, we need to look at the name GUID and try
looking in the registry for the full name. If we can't find it there, we need to just fall back to the default name.
*/
/* Set the default to begin with. */
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), pCaps->szPname, (size_t)-1);
/*
Now try the registry. There's a few things to consider here:
- The name GUID can be null, in which we case we just need to stick to the original 31 characters.
- If the name GUID is not present in the registry we'll also need to stick to the original 31 characters.
- I like consistency, so I want the returned device names to be consistent with those returned by WASAPI and DirectSound. The
problem, however is that WASAPI and DirectSound use "<component> (<name>)" format (such as "Speakers (High Definition Audio)"),
but WinMM does not specificy the component name. From my admittedly limited testing, I've notice the component name seems to
usually fit within the 31 characters of the fixed sized buffer, so what I'm going to do is parse that string for the component
name, and then concatenate the name from the registry.
*/
if (!ma_is_guid_equal(&pCaps->NameGuid, &MA_GUID_NULL)) {
wchar_t guidStrW[256];
if (((MA_PFN_StringFromGUID2)pContext->win32.StringFromGUID2)(&pCaps->NameGuid, guidStrW, ma_countof(guidStrW)) > 0) {
char guidStr[256];
char keyStr[1024];
HKEY hKey;
WideCharToMultiByte(CP_UTF8, 0, guidStrW, -1, guidStr, sizeof(guidStr), 0, FALSE);
ma_strcpy_s(keyStr, sizeof(keyStr), "SYSTEM\\CurrentControlSet\\Control\\MediaCategories\\");
ma_strcat_s(keyStr, sizeof(keyStr), guidStr);
if (((MA_PFN_RegOpenKeyExA)pContext->win32.RegOpenKeyExA)(HKEY_LOCAL_MACHINE, keyStr, 0, KEY_READ, &hKey) == ERROR_SUCCESS) {
BYTE nameFromReg[512];
DWORD nameFromRegSize = sizeof(nameFromReg);
result = ((MA_PFN_RegQueryValueExA)pContext->win32.RegQueryValueExA)(hKey, "Name", 0, NULL, (LPBYTE)nameFromReg, (LPDWORD)&nameFromRegSize);
((MA_PFN_RegCloseKey)pContext->win32.RegCloseKey)(hKey);
if (result == ERROR_SUCCESS) {
/* We have the value from the registry, so now we need to construct the name string. */
char name[1024];
if (ma_strcpy_s(name, sizeof(name), pDeviceInfo->name) == 0) {
char* nameBeg = ma_find_last_character(name, '(');
if (nameBeg != NULL) {
size_t leadingLen = (nameBeg - name);
ma_strncpy_s(nameBeg + 1, sizeof(name) - leadingLen, (const char*)nameFromReg, (size_t)-1);
/* The closing ")", if it can fit. */
if (leadingLen + nameFromRegSize < sizeof(name)-1) {
ma_strcat_s(name, sizeof(name), ")");
}
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), name, (size_t)-1);
}
}
}
}
}
}
result = ma_get_best_info_from_formats_flags__winmm(pCaps->dwFormats, pCaps->wChannels, &bitsPerSample, &sampleRate);
if (result != MA_SUCCESS) {
return result;
}
pDeviceInfo->minChannels = pCaps->wChannels;
pDeviceInfo->maxChannels = pCaps->wChannels;
pDeviceInfo->minSampleRate = sampleRate;
pDeviceInfo->maxSampleRate = sampleRate;
pDeviceInfo->formatCount = 1;
if (bitsPerSample == 8) {
pDeviceInfo->formats[0] = ma_format_u8;
} else if (bitsPerSample == 16) {
pDeviceInfo->formats[0] = ma_format_s16;
} else if (bitsPerSample == 24) {
pDeviceInfo->formats[0] = ma_format_s24;
} else if (bitsPerSample == 32) {
pDeviceInfo->formats[0] = ma_format_s32;
} else {
return MA_FORMAT_NOT_SUPPORTED;
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info_from_WAVEOUTCAPS2(ma_context* pContext, MA_WAVEOUTCAPS2A* pCaps, ma_device_info* pDeviceInfo)
{
MA_WAVECAPSA caps;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pCaps != NULL);
MA_ASSERT(pDeviceInfo != NULL);
MA_COPY_MEMORY(caps.szPname, pCaps->szPname, sizeof(caps.szPname));
caps.dwFormats = pCaps->dwFormats;
caps.wChannels = pCaps->wChannels;
caps.NameGuid = pCaps->NameGuid;
return ma_context_get_device_info_from_WAVECAPS(pContext, &caps, pDeviceInfo);
}
static ma_result ma_context_get_device_info_from_WAVEINCAPS2(ma_context* pContext, MA_WAVEINCAPS2A* pCaps, ma_device_info* pDeviceInfo)
{
MA_WAVECAPSA caps;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pCaps != NULL);
MA_ASSERT(pDeviceInfo != NULL);
MA_COPY_MEMORY(caps.szPname, pCaps->szPname, sizeof(caps.szPname));
caps.dwFormats = pCaps->dwFormats;
caps.wChannels = pCaps->wChannels;
caps.NameGuid = pCaps->NameGuid;
return ma_context_get_device_info_from_WAVECAPS(pContext, &caps, pDeviceInfo);
}
static ma_bool32 ma_context_is_device_id_equal__winmm(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->winmm == pID1->winmm;
}
static ma_result ma_context_enumerate_devices__winmm(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
UINT playbackDeviceCount;
UINT captureDeviceCount;
UINT iPlaybackDevice;
UINT iCaptureDevice;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
/* Playback. */
playbackDeviceCount = ((MA_PFN_waveOutGetNumDevs)pContext->winmm.waveOutGetNumDevs)();
for (iPlaybackDevice = 0; iPlaybackDevice < playbackDeviceCount; ++iPlaybackDevice) {
MMRESULT result;
MA_WAVEOUTCAPS2A caps;
MA_ZERO_OBJECT(&caps);
result = ((MA_PFN_waveOutGetDevCapsA)pContext->winmm.waveOutGetDevCapsA)(iPlaybackDevice, (WAVEOUTCAPSA*)&caps, sizeof(caps));
if (result == MMSYSERR_NOERROR) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.winmm = iPlaybackDevice;
if (ma_context_get_device_info_from_WAVEOUTCAPS2(pContext, &caps, &deviceInfo) == MA_SUCCESS) {
ma_bool32 cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
if (cbResult == MA_FALSE) {
return MA_SUCCESS; /* Enumeration was stopped. */
}
}
}
}
/* Capture. */
captureDeviceCount = ((MA_PFN_waveInGetNumDevs)pContext->winmm.waveInGetNumDevs)();
for (iCaptureDevice = 0; iCaptureDevice < captureDeviceCount; ++iCaptureDevice) {
MMRESULT result;
MA_WAVEINCAPS2A caps;
MA_ZERO_OBJECT(&caps);
result = ((MA_PFN_waveInGetDevCapsA)pContext->winmm.waveInGetDevCapsA)(iCaptureDevice, (WAVEINCAPSA*)&caps, sizeof(caps));
if (result == MMSYSERR_NOERROR) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.winmm = iCaptureDevice;
if (ma_context_get_device_info_from_WAVEINCAPS2(pContext, &caps, &deviceInfo) == MA_SUCCESS) {
ma_bool32 cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
if (cbResult == MA_FALSE) {
return MA_SUCCESS; /* Enumeration was stopped. */
}
}
}
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__winmm(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
UINT winMMDeviceID;
MA_ASSERT(pContext != NULL);
if (shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
winMMDeviceID = 0;
if (pDeviceID != NULL) {
winMMDeviceID = (UINT)pDeviceID->winmm;
}
pDeviceInfo->id.winmm = winMMDeviceID;
if (deviceType == ma_device_type_playback) {
MMRESULT result;
MA_WAVEOUTCAPS2A caps;
MA_ZERO_OBJECT(&caps);
result = ((MA_PFN_waveOutGetDevCapsA)pContext->winmm.waveOutGetDevCapsA)(winMMDeviceID, (WAVEOUTCAPSA*)&caps, sizeof(caps));
if (result == MMSYSERR_NOERROR) {
return ma_context_get_device_info_from_WAVEOUTCAPS2(pContext, &caps, pDeviceInfo);
}
} else {
MMRESULT result;
MA_WAVEINCAPS2A caps;
MA_ZERO_OBJECT(&caps);
result = ((MA_PFN_waveInGetDevCapsA)pContext->winmm.waveInGetDevCapsA)(winMMDeviceID, (WAVEINCAPSA*)&caps, sizeof(caps));
if (result == MMSYSERR_NOERROR) {
return ma_context_get_device_info_from_WAVEINCAPS2(pContext, &caps, pDeviceInfo);
}
}
return MA_NO_DEVICE;
}
static void ma_device_uninit__winmm(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((MA_PFN_waveInClose)pDevice->pContext->winmm.waveInClose)((HWAVEIN)pDevice->winmm.hDeviceCapture);
CloseHandle((HANDLE)pDevice->winmm.hEventCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
((MA_PFN_waveOutReset)pDevice->pContext->winmm.waveOutReset)((HWAVEOUT)pDevice->winmm.hDevicePlayback);
((MA_PFN_waveOutClose)pDevice->pContext->winmm.waveOutClose)((HWAVEOUT)pDevice->winmm.hDevicePlayback);
CloseHandle((HANDLE)pDevice->winmm.hEventPlayback);
}
ma__free_from_callbacks(pDevice->winmm._pHeapData, &pDevice->pContext->allocationCallbacks);
MA_ZERO_OBJECT(&pDevice->winmm); /* Safety. */
}
static ma_result ma_device_init__winmm(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
const char* errorMsg = "";
ma_result errorCode = MA_ERROR;
ma_result result = MA_SUCCESS;
ma_uint32 heapSize;
UINT winMMDeviceIDPlayback = 0;
UINT winMMDeviceIDCapture = 0;
ma_uint32 periodSizeInMilliseconds;
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->winmm);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
/* No exlusive mode with WinMM. */
if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) ||
((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
if (periodSizeInMilliseconds == 0) {
periodSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->periodSizeInFrames, pConfig->sampleRate);
}
/* WinMM has horrible latency. */
if (pDevice->usingDefaultBufferSize) {
if (pConfig->performanceProfile == ma_performance_profile_low_latency) {
periodSizeInMilliseconds = 40;
} else {
periodSizeInMilliseconds = 400;
}
}
if (pConfig->playback.pDeviceID != NULL) {
winMMDeviceIDPlayback = (UINT)pConfig->playback.pDeviceID->winmm;
}
if (pConfig->capture.pDeviceID != NULL) {
winMMDeviceIDCapture = (UINT)pConfig->capture.pDeviceID->winmm;
}
/* The capture device needs to be initialized first. */
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
WAVEINCAPSA caps;
WAVEFORMATEX wf;
MMRESULT resultMM;
/* We use an event to know when a new fragment needs to be enqueued. */
pDevice->winmm.hEventCapture = (ma_handle)CreateEventW(NULL, TRUE, TRUE, NULL);
if (pDevice->winmm.hEventCapture == NULL) {
errorMsg = "[WinMM] Failed to create event for fragment enqueing for the capture device.", errorCode = ma_result_from_GetLastError(GetLastError());
goto on_error;
}
/* The format should be based on the device's actual format. */
if (((MA_PFN_waveInGetDevCapsA)pContext->winmm.waveInGetDevCapsA)(winMMDeviceIDCapture, &caps, sizeof(caps)) != MMSYSERR_NOERROR) {
errorMsg = "[WinMM] Failed to retrieve internal device caps.", errorCode = MA_FORMAT_NOT_SUPPORTED;
goto on_error;
}
result = ma_formats_flags_to_WAVEFORMATEX__winmm(caps.dwFormats, caps.wChannels, &wf);
if (result != MA_SUCCESS) {
errorMsg = "[WinMM] Could not find appropriate format for internal device.", errorCode = result;
goto on_error;
}
resultMM = ((MA_PFN_waveInOpen)pDevice->pContext->winmm.waveInOpen)((LPHWAVEIN)&pDevice->winmm.hDeviceCapture, winMMDeviceIDCapture, &wf, (DWORD_PTR)pDevice->winmm.hEventCapture, (DWORD_PTR)pDevice, CALLBACK_EVENT | WAVE_ALLOWSYNC);
if (resultMM != MMSYSERR_NOERROR) {
errorMsg = "[WinMM] Failed to open capture device.", errorCode = MA_FAILED_TO_OPEN_BACKEND_DEVICE;
goto on_error;
}
pDevice->capture.internalFormat = ma_format_from_WAVEFORMATEX(&wf);
pDevice->capture.internalChannels = wf.nChannels;
pDevice->capture.internalSampleRate = wf.nSamplesPerSec;
ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
pDevice->capture.internalPeriods = pConfig->periods;
pDevice->capture.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, pDevice->capture.internalSampleRate);
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
WAVEOUTCAPSA caps;
WAVEFORMATEX wf;
MMRESULT resultMM;
/* We use an event to know when a new fragment needs to be enqueued. */
pDevice->winmm.hEventPlayback = (ma_handle)CreateEvent(NULL, TRUE, TRUE, NULL);
if (pDevice->winmm.hEventPlayback == NULL) {
errorMsg = "[WinMM] Failed to create event for fragment enqueing for the playback device.", errorCode = ma_result_from_GetLastError(GetLastError());
goto on_error;
}
/* The format should be based on the device's actual format. */
if (((MA_PFN_waveOutGetDevCapsA)pContext->winmm.waveOutGetDevCapsA)(winMMDeviceIDPlayback, &caps, sizeof(caps)) != MMSYSERR_NOERROR) {
errorMsg = "[WinMM] Failed to retrieve internal device caps.", errorCode = MA_FORMAT_NOT_SUPPORTED;
goto on_error;
}
result = ma_formats_flags_to_WAVEFORMATEX__winmm(caps.dwFormats, caps.wChannels, &wf);
if (result != MA_SUCCESS) {
errorMsg = "[WinMM] Could not find appropriate format for internal device.", errorCode = result;
goto on_error;
}
resultMM = ((MA_PFN_waveOutOpen)pContext->winmm.waveOutOpen)((LPHWAVEOUT)&pDevice->winmm.hDevicePlayback, winMMDeviceIDPlayback, &wf, (DWORD_PTR)pDevice->winmm.hEventPlayback, (DWORD_PTR)pDevice, CALLBACK_EVENT | WAVE_ALLOWSYNC);
if (resultMM != MMSYSERR_NOERROR) {
errorMsg = "[WinMM] Failed to open playback device.", errorCode = MA_FAILED_TO_OPEN_BACKEND_DEVICE;
goto on_error;
}
pDevice->playback.internalFormat = ma_format_from_WAVEFORMATEX(&wf);
pDevice->playback.internalChannels = wf.nChannels;
pDevice->playback.internalSampleRate = wf.nSamplesPerSec;
ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
pDevice->playback.internalPeriods = pConfig->periods;
pDevice->playback.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, pDevice->playback.internalSampleRate);
}
/*
The heap allocated data is allocated like so:
[Capture WAVEHDRs][Playback WAVEHDRs][Capture Intermediary Buffer][Playback Intermediary Buffer]
*/
heapSize = 0;
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
heapSize += sizeof(WAVEHDR)*pDevice->capture.internalPeriods + (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
heapSize += sizeof(WAVEHDR)*pDevice->playback.internalPeriods + (pDevice->playback.internalPeriodSizeInFrames*pDevice->playback.internalPeriods*ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
}
pDevice->winmm._pHeapData = (ma_uint8*)ma__calloc_from_callbacks(heapSize, &pContext->allocationCallbacks);
if (pDevice->winmm._pHeapData == NULL) {
errorMsg = "[WinMM] Failed to allocate memory for the intermediary buffer.", errorCode = MA_OUT_OF_MEMORY;
goto on_error;
}
MA_ZERO_MEMORY(pDevice->winmm._pHeapData, heapSize);
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_uint32 iPeriod;
if (pConfig->deviceType == ma_device_type_capture) {
pDevice->winmm.pWAVEHDRCapture = pDevice->winmm._pHeapData;
pDevice->winmm.pIntermediaryBufferCapture = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods));
} else {
pDevice->winmm.pWAVEHDRCapture = pDevice->winmm._pHeapData;
pDevice->winmm.pIntermediaryBufferCapture = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods + pDevice->playback.internalPeriods));
}
/* Prepare headers. */
for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) {
ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalFormat, pDevice->capture.internalChannels);
((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferCapture + (periodSizeInBytes*iPeriod));
((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwBufferLength = periodSizeInBytes;
((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwFlags = 0L;
((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwLoops = 0L;
((MA_PFN_waveInPrepareHeader)pContext->winmm.waveInPrepareHeader)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR));
/*
The user data of the WAVEHDR structure is a single flag the controls whether or not it is ready for writing. Consider it to be named "isLocked". A value of 0 means
it's unlocked and available for writing. A value of 1 means it's locked.
*/
((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod].dwUser = 0;
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_uint32 iPeriod;
if (pConfig->deviceType == ma_device_type_playback) {
pDevice->winmm.pWAVEHDRPlayback = pDevice->winmm._pHeapData;
pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*pDevice->playback.internalPeriods);
} else {
pDevice->winmm.pWAVEHDRPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods));
pDevice->winmm.pIntermediaryBufferPlayback = pDevice->winmm._pHeapData + (sizeof(WAVEHDR)*(pDevice->capture.internalPeriods + pDevice->playback.internalPeriods)) + (pDevice->capture.internalPeriodSizeInFrames*pDevice->capture.internalPeriods*ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
}
/* Prepare headers. */
for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; ++iPeriod) {
ma_uint32 periodSizeInBytes = ma_get_period_size_in_bytes(pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalFormat, pDevice->playback.internalChannels);
((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].lpData = (LPSTR)(pDevice->winmm.pIntermediaryBufferPlayback + (periodSizeInBytes*iPeriod));
((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwBufferLength = periodSizeInBytes;
((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwFlags = 0L;
((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwLoops = 0L;
((MA_PFN_waveOutPrepareHeader)pContext->winmm.waveOutPrepareHeader)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod], sizeof(WAVEHDR));
/*
The user data of the WAVEHDR structure is a single flag the controls whether or not it is ready for writing. Consider it to be named "isLocked". A value of 0 means
it's unlocked and available for writing. A value of 1 means it's locked.
*/
((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod].dwUser = 0;
}
}
return MA_SUCCESS;
on_error:
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
if (pDevice->winmm.pWAVEHDRCapture != NULL) {
ma_uint32 iPeriod;
for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) {
((MA_PFN_waveInUnprepareHeader)pContext->winmm.waveInUnprepareHeader)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((WAVEHDR*)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR));
}
}
((MA_PFN_waveInClose)pContext->winmm.waveInClose)((HWAVEIN)pDevice->winmm.hDeviceCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
if (pDevice->winmm.pWAVEHDRCapture != NULL) {
ma_uint32 iPeriod;
for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; ++iPeriod) {
((MA_PFN_waveOutUnprepareHeader)pContext->winmm.waveOutUnprepareHeader)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &((WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback)[iPeriod], sizeof(WAVEHDR));
}
}
((MA_PFN_waveOutClose)pContext->winmm.waveOutClose)((HWAVEOUT)pDevice->winmm.hDevicePlayback);
}
ma__free_from_callbacks(pDevice->winmm._pHeapData, &pContext->allocationCallbacks);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, errorMsg, errorCode);
}
static ma_result ma_device_stop__winmm(ma_device* pDevice)
{
MMRESULT resultMM;
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
if (pDevice->winmm.hDeviceCapture == NULL) {
return MA_INVALID_ARGS;
}
resultMM = ((MA_PFN_waveInReset)pDevice->pContext->winmm.waveInReset)((HWAVEIN)pDevice->winmm.hDeviceCapture);
if (resultMM != MMSYSERR_NOERROR) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] WARNING: Failed to reset capture device.", ma_result_from_MMRESULT(resultMM));
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_uint32 iPeriod;
WAVEHDR* pWAVEHDR;
if (pDevice->winmm.hDevicePlayback == NULL) {
return MA_INVALID_ARGS;
}
/* We need to drain the device. To do this we just loop over each header and if it's locked just wait for the event. */
pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback;
for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; iPeriod += 1) {
if (pWAVEHDR[iPeriod].dwUser == 1) { /* 1 = locked. */
if (WaitForSingleObject((HANDLE)pDevice->winmm.hEventPlayback, INFINITE) != WAIT_OBJECT_0) {
break; /* An error occurred so just abandon ship and stop the device without draining. */
}
pWAVEHDR[iPeriod].dwUser = 0;
}
}
resultMM = ((MA_PFN_waveOutReset)pDevice->pContext->winmm.waveOutReset)((HWAVEOUT)pDevice->winmm.hDevicePlayback);
if (resultMM != MMSYSERR_NOERROR) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] WARNING: Failed to reset playback device.", ma_result_from_MMRESULT(resultMM));
}
}
return MA_SUCCESS;
}
static ma_result ma_device_write__winmm(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
ma_result result = MA_SUCCESS;
MMRESULT resultMM;
ma_uint32 totalFramesWritten;
WAVEHDR* pWAVEHDR;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(pPCMFrames != NULL);
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
}
pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRPlayback;
/* Keep processing as much data as possible. */
totalFramesWritten = 0;
while (totalFramesWritten < frameCount) {
/* If the current header has some space available we need to write part of it. */
if (pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwUser == 0) { /* 0 = unlocked. */
/*
This header has room in it. We copy as much of it as we can. If we end up fully consuming the buffer we need to
write it out and move on to the next iteration.
*/
ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 framesRemainingInHeader = (pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwBufferLength/bpf) - pDevice->winmm.headerFramesConsumedPlayback;
ma_uint32 framesToCopy = ma_min(framesRemainingInHeader, (frameCount - totalFramesWritten));
const void* pSrc = ma_offset_ptr(pPCMFrames, totalFramesWritten*bpf);
void* pDst = ma_offset_ptr(pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].lpData, pDevice->winmm.headerFramesConsumedPlayback*bpf);
MA_COPY_MEMORY(pDst, pSrc, framesToCopy*bpf);
pDevice->winmm.headerFramesConsumedPlayback += framesToCopy;
totalFramesWritten += framesToCopy;
/* If we've consumed the buffer entirely we need to write it out to the device. */
if (pDevice->winmm.headerFramesConsumedPlayback == (pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwBufferLength/bpf)) {
pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwUser = 1; /* 1 = locked. */
pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwFlags &= ~WHDR_DONE; /* <-- Need to make sure the WHDR_DONE flag is unset. */
/* Make sure the event is reset to a non-signaled state to ensure we don't prematurely return from WaitForSingleObject(). */
ResetEvent((HANDLE)pDevice->winmm.hEventPlayback);
/* The device will be started here. */
resultMM = ((MA_PFN_waveOutWrite)pDevice->pContext->winmm.waveOutWrite)((HWAVEOUT)pDevice->winmm.hDevicePlayback, &pWAVEHDR[pDevice->winmm.iNextHeaderPlayback], sizeof(WAVEHDR));
if (resultMM != MMSYSERR_NOERROR) {
result = ma_result_from_MMRESULT(resultMM);
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] waveOutWrite() failed.", result);
break;
}
/* Make sure we move to the next header. */
pDevice->winmm.iNextHeaderPlayback = (pDevice->winmm.iNextHeaderPlayback + 1) % pDevice->playback.internalPeriods;
pDevice->winmm.headerFramesConsumedPlayback = 0;
}
/* If at this point we have consumed the entire input buffer we can return. */
MA_ASSERT(totalFramesWritten <= frameCount);
if (totalFramesWritten == frameCount) {
break;
}
/* Getting here means there's more to process. */
continue;
}
/* Getting here means there isn't enough room in the buffer and we need to wait for one to become available. */
if (WaitForSingleObject((HANDLE)pDevice->winmm.hEventPlayback, INFINITE) != WAIT_OBJECT_0) {
result = MA_ERROR;
break;
}
/* Something happened. If the next buffer has been marked as done we need to reset a bit of state. */
if ((pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwFlags & WHDR_DONE) != 0) {
pWAVEHDR[pDevice->winmm.iNextHeaderPlayback].dwUser = 0; /* 0 = unlocked (make it available for writing). */
pDevice->winmm.headerFramesConsumedPlayback = 0;
}
/* If the device has been stopped we need to break. */
if (ma_device__get_state(pDevice) != MA_STATE_STARTED) {
break;
}
}
if (pFramesWritten != NULL) {
*pFramesWritten = totalFramesWritten;
}
return result;
}
static ma_result ma_device_read__winmm(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
ma_result result = MA_SUCCESS;
MMRESULT resultMM;
ma_uint32 totalFramesRead;
WAVEHDR* pWAVEHDR;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(pPCMFrames != NULL);
if (pFramesRead != NULL) {
*pFramesRead = 0;
}
pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRCapture;
/* Keep processing as much data as possible. */
totalFramesRead = 0;
while (totalFramesRead < frameCount) {
/* If the current header has some space available we need to write part of it. */
if (pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwUser == 0) { /* 0 = unlocked. */
/* The buffer is available for reading. If we fully consume it we need to add it back to the buffer. */
ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 framesRemainingInHeader = (pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwBufferLength/bpf) - pDevice->winmm.headerFramesConsumedCapture;
ma_uint32 framesToCopy = ma_min(framesRemainingInHeader, (frameCount - totalFramesRead));
const void* pSrc = ma_offset_ptr(pWAVEHDR[pDevice->winmm.iNextHeaderCapture].lpData, pDevice->winmm.headerFramesConsumedCapture*bpf);
void* pDst = ma_offset_ptr(pPCMFrames, totalFramesRead*bpf);
MA_COPY_MEMORY(pDst, pSrc, framesToCopy*bpf);
pDevice->winmm.headerFramesConsumedCapture += framesToCopy;
totalFramesRead += framesToCopy;
/* If we've consumed the buffer entirely we need to add it back to the device. */
if (pDevice->winmm.headerFramesConsumedCapture == (pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwBufferLength/bpf)) {
pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwUser = 1; /* 1 = locked. */
pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwFlags &= ~WHDR_DONE; /* <-- Need to make sure the WHDR_DONE flag is unset. */
/* Make sure the event is reset to a non-signaled state to ensure we don't prematurely return from WaitForSingleObject(). */
ResetEvent((HANDLE)pDevice->winmm.hEventCapture);
/* The device will be started here. */
resultMM = ((MA_PFN_waveInAddBuffer)pDevice->pContext->winmm.waveInAddBuffer)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((LPWAVEHDR)pDevice->winmm.pWAVEHDRCapture)[pDevice->winmm.iNextHeaderCapture], sizeof(WAVEHDR));
if (resultMM != MMSYSERR_NOERROR) {
result = ma_result_from_MMRESULT(resultMM);
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] waveInAddBuffer() failed.", result);
break;
}
/* Make sure we move to the next header. */
pDevice->winmm.iNextHeaderCapture = (pDevice->winmm.iNextHeaderCapture + 1) % pDevice->capture.internalPeriods;
pDevice->winmm.headerFramesConsumedCapture = 0;
}
/* If at this point we have filled the entire input buffer we can return. */
MA_ASSERT(totalFramesRead <= frameCount);
if (totalFramesRead == frameCount) {
break;
}
/* Getting here means there's more to process. */
continue;
}
/* Getting here means there isn't enough any data left to send to the client which means we need to wait for more. */
if (WaitForSingleObject((HANDLE)pDevice->winmm.hEventCapture, INFINITE) != WAIT_OBJECT_0) {
result = MA_ERROR;
break;
}
/* Something happened. If the next buffer has been marked as done we need to reset a bit of state. */
if ((pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwFlags & WHDR_DONE) != 0) {
pWAVEHDR[pDevice->winmm.iNextHeaderCapture].dwUser = 0; /* 0 = unlocked (make it available for reading). */
pDevice->winmm.headerFramesConsumedCapture = 0;
}
/* If the device has been stopped we need to break. */
if (ma_device__get_state(pDevice) != MA_STATE_STARTED) {
break;
}
}
if (pFramesRead != NULL) {
*pFramesRead = totalFramesRead;
}
return result;
}
static ma_result ma_device_main_loop__winmm(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
MA_ASSERT(pDevice != NULL);
/* The capture device needs to be started immediately. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
MMRESULT resultMM;
WAVEHDR* pWAVEHDR;
ma_uint32 iPeriod;
pWAVEHDR = (WAVEHDR*)pDevice->winmm.pWAVEHDRCapture;
/* Make sure the event is reset to a non-signaled state to ensure we don't prematurely return from WaitForSingleObject(). */
ResetEvent((HANDLE)pDevice->winmm.hEventCapture);
/* To start the device we attach all of the buffers and then start it. As the buffers are filled with data we will get notifications. */
for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) {
resultMM = ((MA_PFN_waveInAddBuffer)pDevice->pContext->winmm.waveInAddBuffer)((HWAVEIN)pDevice->winmm.hDeviceCapture, &((LPWAVEHDR)pDevice->winmm.pWAVEHDRCapture)[iPeriod], sizeof(WAVEHDR));
if (resultMM != MMSYSERR_NOERROR) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] Failed to attach input buffers to capture device in preparation for capture.", ma_result_from_MMRESULT(resultMM));
}
/* Make sure all of the buffers start out locked. We don't want to access them until the backend tells us we can. */
pWAVEHDR[iPeriod].dwUser = 1; /* 1 = locked. */
}
/* Capture devices need to be explicitly started, unlike playback devices. */
resultMM = ((MA_PFN_waveInStart)pDevice->pContext->winmm.waveInStart)((HWAVEIN)pDevice->winmm.hDeviceCapture);
if (resultMM != MMSYSERR_NOERROR) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[WinMM] Failed to start backend device.", ma_result_from_MMRESULT(resultMM));
}
}
while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) {
switch (pDevice->type)
{
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
ma_uint32 totalCapturedDeviceFramesProcessed = 0;
ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 capturedDeviceFramesRemaining;
ma_uint32 capturedDeviceFramesProcessed;
ma_uint32 capturedDeviceFramesToProcess;
ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
result = ma_device_read__winmm(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
capturedDeviceFramesProcessed = 0;
for (;;) {
ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
/* Convert capture data from device format to client format. */
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
if (result != MA_SUCCESS) {
break;
}
/*
If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
*/
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
/* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
if (result != MA_SUCCESS) {
break;
}
result = ma_device_write__winmm(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
/* In case an error happened from ma_device_write__winmm()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
case ma_device_type_capture:
{
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToReadThisIteration = framesRemainingInPeriod;
if (framesToReadThisIteration > intermediaryBufferSizeInFrames) {
framesToReadThisIteration = intermediaryBufferSizeInFrames;
}
result = ma_device_read__winmm(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer);
framesReadThisPeriod += framesProcessed;
}
} break;
case ma_device_type_playback:
{
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod;
if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) {
framesToWriteThisIteration = intermediaryBufferSizeInFrames;
}
ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer);
result = ma_device_write__winmm(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
framesWrittenThisPeriod += framesProcessed;
}
} break;
/* To silence a warning. Will never hit this. */
case ma_device_type_loopback:
default: break;
}
}
/* Here is where the device is started. */
ma_device_stop__winmm(pDevice);
return result;
}
static ma_result ma_context_uninit__winmm(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_winmm);
ma_dlclose(pContext, pContext->winmm.hWinMM);
return MA_SUCCESS;
}
static ma_result ma_context_init__winmm(const ma_context_config* pConfig, ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
(void)pConfig;
pContext->winmm.hWinMM = ma_dlopen(pContext, "winmm.dll");
if (pContext->winmm.hWinMM == NULL) {
return MA_NO_BACKEND;
}
pContext->winmm.waveOutGetNumDevs = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutGetNumDevs");
pContext->winmm.waveOutGetDevCapsA = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutGetDevCapsA");
pContext->winmm.waveOutOpen = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutOpen");
pContext->winmm.waveOutClose = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutClose");
pContext->winmm.waveOutPrepareHeader = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutPrepareHeader");
pContext->winmm.waveOutUnprepareHeader = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutUnprepareHeader");
pContext->winmm.waveOutWrite = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutWrite");
pContext->winmm.waveOutReset = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveOutReset");
pContext->winmm.waveInGetNumDevs = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInGetNumDevs");
pContext->winmm.waveInGetDevCapsA = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInGetDevCapsA");
pContext->winmm.waveInOpen = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInOpen");
pContext->winmm.waveInClose = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInClose");
pContext->winmm.waveInPrepareHeader = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInPrepareHeader");
pContext->winmm.waveInUnprepareHeader = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInUnprepareHeader");
pContext->winmm.waveInAddBuffer = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInAddBuffer");
pContext->winmm.waveInStart = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInStart");
pContext->winmm.waveInReset = ma_dlsym(pContext, pContext->winmm.hWinMM, "waveInReset");
pContext->onUninit = ma_context_uninit__winmm;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__winmm;
pContext->onEnumDevices = ma_context_enumerate_devices__winmm;
pContext->onGetDeviceInfo = ma_context_get_device_info__winmm;
pContext->onDeviceInit = ma_device_init__winmm;
pContext->onDeviceUninit = ma_device_uninit__winmm;
pContext->onDeviceStart = NULL; /* Not used with synchronous backends. */
pContext->onDeviceStop = NULL; /* Not used with synchronous backends. */
pContext->onDeviceMainLoop = ma_device_main_loop__winmm;
return MA_SUCCESS;
}
#endif
/******************************************************************************
ALSA Backend
******************************************************************************/
#ifdef MA_HAS_ALSA
#ifdef MA_NO_RUNTIME_LINKING
/* asoundlib.h marks some functions with "inline" which isn't always supported. Need to emulate it. */
#if !defined(__cplusplus)
#if defined(__STRICT_ANSI__)
#if !defined(inline)
#define inline __inline__ __attribute__((always_inline))
#define MA_INLINE_DEFINED
#endif
#endif
#endif
#include <alsa/asoundlib.h>
#if defined(MA_INLINE_DEFINED)
#undef inline
#undef MA_INLINE_DEFINED
#endif
typedef snd_pcm_uframes_t ma_snd_pcm_uframes_t;
typedef snd_pcm_sframes_t ma_snd_pcm_sframes_t;
typedef snd_pcm_stream_t ma_snd_pcm_stream_t;
typedef snd_pcm_format_t ma_snd_pcm_format_t;
typedef snd_pcm_access_t ma_snd_pcm_access_t;
typedef snd_pcm_t ma_snd_pcm_t;
typedef snd_pcm_hw_params_t ma_snd_pcm_hw_params_t;
typedef snd_pcm_sw_params_t ma_snd_pcm_sw_params_t;
typedef snd_pcm_format_mask_t ma_snd_pcm_format_mask_t;
typedef snd_pcm_info_t ma_snd_pcm_info_t;
typedef snd_pcm_channel_area_t ma_snd_pcm_channel_area_t;
typedef snd_pcm_chmap_t ma_snd_pcm_chmap_t;
typedef snd_pcm_state_t ma_snd_pcm_state_t;
/* snd_pcm_stream_t */
#define MA_SND_PCM_STREAM_PLAYBACK SND_PCM_STREAM_PLAYBACK
#define MA_SND_PCM_STREAM_CAPTURE SND_PCM_STREAM_CAPTURE
/* snd_pcm_format_t */
#define MA_SND_PCM_FORMAT_UNKNOWN SND_PCM_FORMAT_UNKNOWN
#define MA_SND_PCM_FORMAT_U8 SND_PCM_FORMAT_U8
#define MA_SND_PCM_FORMAT_S16_LE SND_PCM_FORMAT_S16_LE
#define MA_SND_PCM_FORMAT_S16_BE SND_PCM_FORMAT_S16_BE
#define MA_SND_PCM_FORMAT_S24_LE SND_PCM_FORMAT_S24_LE
#define MA_SND_PCM_FORMAT_S24_BE SND_PCM_FORMAT_S24_BE
#define MA_SND_PCM_FORMAT_S32_LE SND_PCM_FORMAT_S32_LE
#define MA_SND_PCM_FORMAT_S32_BE SND_PCM_FORMAT_S32_BE
#define MA_SND_PCM_FORMAT_FLOAT_LE SND_PCM_FORMAT_FLOAT_LE
#define MA_SND_PCM_FORMAT_FLOAT_BE SND_PCM_FORMAT_FLOAT_BE
#define MA_SND_PCM_FORMAT_FLOAT64_LE SND_PCM_FORMAT_FLOAT64_LE
#define MA_SND_PCM_FORMAT_FLOAT64_BE SND_PCM_FORMAT_FLOAT64_BE
#define MA_SND_PCM_FORMAT_MU_LAW SND_PCM_FORMAT_MU_LAW
#define MA_SND_PCM_FORMAT_A_LAW SND_PCM_FORMAT_A_LAW
#define MA_SND_PCM_FORMAT_S24_3LE SND_PCM_FORMAT_S24_3LE
#define MA_SND_PCM_FORMAT_S24_3BE SND_PCM_FORMAT_S24_3BE
/* ma_snd_pcm_access_t */
#define MA_SND_PCM_ACCESS_MMAP_INTERLEAVED SND_PCM_ACCESS_MMAP_INTERLEAVED
#define MA_SND_PCM_ACCESS_MMAP_NONINTERLEAVED SND_PCM_ACCESS_MMAP_NONINTERLEAVED
#define MA_SND_PCM_ACCESS_MMAP_COMPLEX SND_PCM_ACCESS_MMAP_COMPLEX
#define MA_SND_PCM_ACCESS_RW_INTERLEAVED SND_PCM_ACCESS_RW_INTERLEAVED
#define MA_SND_PCM_ACCESS_RW_NONINTERLEAVED SND_PCM_ACCESS_RW_NONINTERLEAVED
/* Channel positions. */
#define MA_SND_CHMAP_UNKNOWN SND_CHMAP_UNKNOWN
#define MA_SND_CHMAP_NA SND_CHMAP_NA
#define MA_SND_CHMAP_MONO SND_CHMAP_MONO
#define MA_SND_CHMAP_FL SND_CHMAP_FL
#define MA_SND_CHMAP_FR SND_CHMAP_FR
#define MA_SND_CHMAP_RL SND_CHMAP_RL
#define MA_SND_CHMAP_RR SND_CHMAP_RR
#define MA_SND_CHMAP_FC SND_CHMAP_FC
#define MA_SND_CHMAP_LFE SND_CHMAP_LFE
#define MA_SND_CHMAP_SL SND_CHMAP_SL
#define MA_SND_CHMAP_SR SND_CHMAP_SR
#define MA_SND_CHMAP_RC SND_CHMAP_RC
#define MA_SND_CHMAP_FLC SND_CHMAP_FLC
#define MA_SND_CHMAP_FRC SND_CHMAP_FRC
#define MA_SND_CHMAP_RLC SND_CHMAP_RLC
#define MA_SND_CHMAP_RRC SND_CHMAP_RRC
#define MA_SND_CHMAP_FLW SND_CHMAP_FLW
#define MA_SND_CHMAP_FRW SND_CHMAP_FRW
#define MA_SND_CHMAP_FLH SND_CHMAP_FLH
#define MA_SND_CHMAP_FCH SND_CHMAP_FCH
#define MA_SND_CHMAP_FRH SND_CHMAP_FRH
#define MA_SND_CHMAP_TC SND_CHMAP_TC
#define MA_SND_CHMAP_TFL SND_CHMAP_TFL
#define MA_SND_CHMAP_TFR SND_CHMAP_TFR
#define MA_SND_CHMAP_TFC SND_CHMAP_TFC
#define MA_SND_CHMAP_TRL SND_CHMAP_TRL
#define MA_SND_CHMAP_TRR SND_CHMAP_TRR
#define MA_SND_CHMAP_TRC SND_CHMAP_TRC
#define MA_SND_CHMAP_TFLC SND_CHMAP_TFLC
#define MA_SND_CHMAP_TFRC SND_CHMAP_TFRC
#define MA_SND_CHMAP_TSL SND_CHMAP_TSL
#define MA_SND_CHMAP_TSR SND_CHMAP_TSR
#define MA_SND_CHMAP_LLFE SND_CHMAP_LLFE
#define MA_SND_CHMAP_RLFE SND_CHMAP_RLFE
#define MA_SND_CHMAP_BC SND_CHMAP_BC
#define MA_SND_CHMAP_BLC SND_CHMAP_BLC
#define MA_SND_CHMAP_BRC SND_CHMAP_BRC
/* Open mode flags. */
#define MA_SND_PCM_NO_AUTO_RESAMPLE SND_PCM_NO_AUTO_RESAMPLE
#define MA_SND_PCM_NO_AUTO_CHANNELS SND_PCM_NO_AUTO_CHANNELS
#define MA_SND_PCM_NO_AUTO_FORMAT SND_PCM_NO_AUTO_FORMAT
#else
#include <errno.h> /* For EPIPE, etc. */
typedef unsigned long ma_snd_pcm_uframes_t;
typedef long ma_snd_pcm_sframes_t;
typedef int ma_snd_pcm_stream_t;
typedef int ma_snd_pcm_format_t;
typedef int ma_snd_pcm_access_t;
typedef int ma_snd_pcm_state_t;
typedef struct ma_snd_pcm_t ma_snd_pcm_t;
typedef struct ma_snd_pcm_hw_params_t ma_snd_pcm_hw_params_t;
typedef struct ma_snd_pcm_sw_params_t ma_snd_pcm_sw_params_t;
typedef struct ma_snd_pcm_format_mask_t ma_snd_pcm_format_mask_t;
typedef struct ma_snd_pcm_info_t ma_snd_pcm_info_t;
typedef struct
{
void* addr;
unsigned int first;
unsigned int step;
} ma_snd_pcm_channel_area_t;
typedef struct
{
unsigned int channels;
unsigned int pos[1];
} ma_snd_pcm_chmap_t;
/* snd_pcm_state_t */
#define MA_SND_PCM_STATE_OPEN 0
#define MA_SND_PCM_STATE_SETUP 1
#define MA_SND_PCM_STATE_PREPARED 2
#define MA_SND_PCM_STATE_RUNNING 3
#define MA_SND_PCM_STATE_XRUN 4
#define MA_SND_PCM_STATE_DRAINING 5
#define MA_SND_PCM_STATE_PAUSED 6
#define MA_SND_PCM_STATE_SUSPENDED 7
#define MA_SND_PCM_STATE_DISCONNECTED 8
/* snd_pcm_stream_t */
#define MA_SND_PCM_STREAM_PLAYBACK 0
#define MA_SND_PCM_STREAM_CAPTURE 1
/* snd_pcm_format_t */
#define MA_SND_PCM_FORMAT_UNKNOWN -1
#define MA_SND_PCM_FORMAT_U8 1
#define MA_SND_PCM_FORMAT_S16_LE 2
#define MA_SND_PCM_FORMAT_S16_BE 3
#define MA_SND_PCM_FORMAT_S24_LE 6
#define MA_SND_PCM_FORMAT_S24_BE 7
#define MA_SND_PCM_FORMAT_S32_LE 10
#define MA_SND_PCM_FORMAT_S32_BE 11
#define MA_SND_PCM_FORMAT_FLOAT_LE 14
#define MA_SND_PCM_FORMAT_FLOAT_BE 15
#define MA_SND_PCM_FORMAT_FLOAT64_LE 16
#define MA_SND_PCM_FORMAT_FLOAT64_BE 17
#define MA_SND_PCM_FORMAT_MU_LAW 20
#define MA_SND_PCM_FORMAT_A_LAW 21
#define MA_SND_PCM_FORMAT_S24_3LE 32
#define MA_SND_PCM_FORMAT_S24_3BE 33
/* snd_pcm_access_t */
#define MA_SND_PCM_ACCESS_MMAP_INTERLEAVED 0
#define MA_SND_PCM_ACCESS_MMAP_NONINTERLEAVED 1
#define MA_SND_PCM_ACCESS_MMAP_COMPLEX 2
#define MA_SND_PCM_ACCESS_RW_INTERLEAVED 3
#define MA_SND_PCM_ACCESS_RW_NONINTERLEAVED 4
/* Channel positions. */
#define MA_SND_CHMAP_UNKNOWN 0
#define MA_SND_CHMAP_NA 1
#define MA_SND_CHMAP_MONO 2
#define MA_SND_CHMAP_FL 3
#define MA_SND_CHMAP_FR 4
#define MA_SND_CHMAP_RL 5
#define MA_SND_CHMAP_RR 6
#define MA_SND_CHMAP_FC 7
#define MA_SND_CHMAP_LFE 8
#define MA_SND_CHMAP_SL 9
#define MA_SND_CHMAP_SR 10
#define MA_SND_CHMAP_RC 11
#define MA_SND_CHMAP_FLC 12
#define MA_SND_CHMAP_FRC 13
#define MA_SND_CHMAP_RLC 14
#define MA_SND_CHMAP_RRC 15
#define MA_SND_CHMAP_FLW 16
#define MA_SND_CHMAP_FRW 17
#define MA_SND_CHMAP_FLH 18
#define MA_SND_CHMAP_FCH 19
#define MA_SND_CHMAP_FRH 20
#define MA_SND_CHMAP_TC 21
#define MA_SND_CHMAP_TFL 22
#define MA_SND_CHMAP_TFR 23
#define MA_SND_CHMAP_TFC 24
#define MA_SND_CHMAP_TRL 25
#define MA_SND_CHMAP_TRR 26
#define MA_SND_CHMAP_TRC 27
#define MA_SND_CHMAP_TFLC 28
#define MA_SND_CHMAP_TFRC 29
#define MA_SND_CHMAP_TSL 30
#define MA_SND_CHMAP_TSR 31
#define MA_SND_CHMAP_LLFE 32
#define MA_SND_CHMAP_RLFE 33
#define MA_SND_CHMAP_BC 34
#define MA_SND_CHMAP_BLC 35
#define MA_SND_CHMAP_BRC 36
/* Open mode flags. */
#define MA_SND_PCM_NO_AUTO_RESAMPLE 0x00010000
#define MA_SND_PCM_NO_AUTO_CHANNELS 0x00020000
#define MA_SND_PCM_NO_AUTO_FORMAT 0x00040000
#endif
typedef int (* ma_snd_pcm_open_proc) (ma_snd_pcm_t **pcm, const char *name, ma_snd_pcm_stream_t stream, int mode);
typedef int (* ma_snd_pcm_close_proc) (ma_snd_pcm_t *pcm);
typedef size_t (* ma_snd_pcm_hw_params_sizeof_proc) (void);
typedef int (* ma_snd_pcm_hw_params_any_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params);
typedef int (* ma_snd_pcm_hw_params_set_format_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, ma_snd_pcm_format_t val);
typedef int (* ma_snd_pcm_hw_params_set_format_first_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, ma_snd_pcm_format_t *format);
typedef void (* ma_snd_pcm_hw_params_get_format_mask_proc) (ma_snd_pcm_hw_params_t *params, ma_snd_pcm_format_mask_t *mask);
typedef int (* ma_snd_pcm_hw_params_set_channels_near_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int *val);
typedef int (* ma_snd_pcm_hw_params_set_rate_resample_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int val);
typedef int (* ma_snd_pcm_hw_params_set_rate_near_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int *val, int *dir);
typedef int (* ma_snd_pcm_hw_params_set_buffer_size_near_proc)(ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, ma_snd_pcm_uframes_t *val);
typedef int (* ma_snd_pcm_hw_params_set_periods_near_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, unsigned int *val, int *dir);
typedef int (* ma_snd_pcm_hw_params_set_access_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params, ma_snd_pcm_access_t _access);
typedef int (* ma_snd_pcm_hw_params_get_format_proc) (const ma_snd_pcm_hw_params_t *params, ma_snd_pcm_format_t *format);
typedef int (* ma_snd_pcm_hw_params_get_channels_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *val);
typedef int (* ma_snd_pcm_hw_params_get_channels_min_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *val);
typedef int (* ma_snd_pcm_hw_params_get_channels_max_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *val);
typedef int (* ma_snd_pcm_hw_params_get_rate_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *rate, int *dir);
typedef int (* ma_snd_pcm_hw_params_get_rate_min_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *rate, int *dir);
typedef int (* ma_snd_pcm_hw_params_get_rate_max_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *rate, int *dir);
typedef int (* ma_snd_pcm_hw_params_get_buffer_size_proc) (const ma_snd_pcm_hw_params_t *params, ma_snd_pcm_uframes_t *val);
typedef int (* ma_snd_pcm_hw_params_get_periods_proc) (const ma_snd_pcm_hw_params_t *params, unsigned int *val, int *dir);
typedef int (* ma_snd_pcm_hw_params_get_access_proc) (const ma_snd_pcm_hw_params_t *params, ma_snd_pcm_access_t *_access);
typedef int (* ma_snd_pcm_hw_params_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_hw_params_t *params);
typedef size_t (* ma_snd_pcm_sw_params_sizeof_proc) (void);
typedef int (* ma_snd_pcm_sw_params_current_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params);
typedef int (* ma_snd_pcm_sw_params_get_boundary_proc) (const ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t* val);
typedef int (* ma_snd_pcm_sw_params_set_avail_min_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val);
typedef int (* ma_snd_pcm_sw_params_set_start_threshold_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val);
typedef int (* ma_snd_pcm_sw_params_set_stop_threshold_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params, ma_snd_pcm_uframes_t val);
typedef int (* ma_snd_pcm_sw_params_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_sw_params_t *params);
typedef size_t (* ma_snd_pcm_format_mask_sizeof_proc) (void);
typedef int (* ma_snd_pcm_format_mask_test_proc) (const ma_snd_pcm_format_mask_t *mask, ma_snd_pcm_format_t val);
typedef ma_snd_pcm_chmap_t * (* ma_snd_pcm_get_chmap_proc) (ma_snd_pcm_t *pcm);
typedef ma_snd_pcm_state_t (* ma_snd_pcm_state_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_pcm_prepare_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_pcm_start_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_pcm_drop_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_pcm_drain_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_device_name_hint_proc) (int card, const char *iface, void ***hints);
typedef char * (* ma_snd_device_name_get_hint_proc) (const void *hint, const char *id);
typedef int (* ma_snd_card_get_index_proc) (const char *name);
typedef int (* ma_snd_device_name_free_hint_proc) (void **hints);
typedef int (* ma_snd_pcm_mmap_begin_proc) (ma_snd_pcm_t *pcm, const ma_snd_pcm_channel_area_t **areas, ma_snd_pcm_uframes_t *offset, ma_snd_pcm_uframes_t *frames);
typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_mmap_commit_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_uframes_t offset, ma_snd_pcm_uframes_t frames);
typedef int (* ma_snd_pcm_recover_proc) (ma_snd_pcm_t *pcm, int err, int silent);
typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_readi_proc) (ma_snd_pcm_t *pcm, void *buffer, ma_snd_pcm_uframes_t size);
typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_writei_proc) (ma_snd_pcm_t *pcm, const void *buffer, ma_snd_pcm_uframes_t size);
typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_avail_proc) (ma_snd_pcm_t *pcm);
typedef ma_snd_pcm_sframes_t (* ma_snd_pcm_avail_update_proc) (ma_snd_pcm_t *pcm);
typedef int (* ma_snd_pcm_wait_proc) (ma_snd_pcm_t *pcm, int timeout);
typedef int (* ma_snd_pcm_info_proc) (ma_snd_pcm_t *pcm, ma_snd_pcm_info_t* info);
typedef size_t (* ma_snd_pcm_info_sizeof_proc) (void);
typedef const char* (* ma_snd_pcm_info_get_name_proc) (const ma_snd_pcm_info_t* info);
typedef int (* ma_snd_config_update_free_global_proc) (void);
/* This array specifies each of the common devices that can be used for both playback and capture. */
static const char* g_maCommonDeviceNamesALSA[] = {
"default",
"null",
"pulse",
"jack"
};
/* This array allows us to blacklist specific playback devices. */
static const char* g_maBlacklistedPlaybackDeviceNamesALSA[] = {
""
};
/* This array allows us to blacklist specific capture devices. */
static const char* g_maBlacklistedCaptureDeviceNamesALSA[] = {
""
};
/*
This array allows miniaudio to control device-specific default buffer sizes. This uses a scaling factor. Order is important. If
any part of the string is present in the device's name, the associated scale will be used.
*/
static struct
{
const char* name;
float scale;
} g_maDefaultBufferSizeScalesALSA[] = {
{"bcm2835 IEC958/HDMI", 2.0f},
{"bcm2835 ALSA", 2.0f}
};
static float ma_find_default_buffer_size_scale__alsa(const char* deviceName)
{
size_t i;
if (deviceName == NULL) {
return 1;
}
for (i = 0; i < ma_countof(g_maDefaultBufferSizeScalesALSA); ++i) {
if (strstr(g_maDefaultBufferSizeScalesALSA[i].name, deviceName) != NULL) {
return g_maDefaultBufferSizeScalesALSA[i].scale;
}
}
return 1;
}
static ma_snd_pcm_format_t ma_convert_ma_format_to_alsa_format(ma_format format)
{
ma_snd_pcm_format_t ALSAFormats[] = {
MA_SND_PCM_FORMAT_UNKNOWN, /* ma_format_unknown */
MA_SND_PCM_FORMAT_U8, /* ma_format_u8 */
MA_SND_PCM_FORMAT_S16_LE, /* ma_format_s16 */
MA_SND_PCM_FORMAT_S24_3LE, /* ma_format_s24 */
MA_SND_PCM_FORMAT_S32_LE, /* ma_format_s32 */
MA_SND_PCM_FORMAT_FLOAT_LE /* ma_format_f32 */
};
if (ma_is_big_endian()) {
ALSAFormats[0] = MA_SND_PCM_FORMAT_UNKNOWN;
ALSAFormats[1] = MA_SND_PCM_FORMAT_U8;
ALSAFormats[2] = MA_SND_PCM_FORMAT_S16_BE;
ALSAFormats[3] = MA_SND_PCM_FORMAT_S24_3BE;
ALSAFormats[4] = MA_SND_PCM_FORMAT_S32_BE;
ALSAFormats[5] = MA_SND_PCM_FORMAT_FLOAT_BE;
}
return ALSAFormats[format];
}
static ma_format ma_format_from_alsa(ma_snd_pcm_format_t formatALSA)
{
if (ma_is_little_endian()) {
switch (formatALSA) {
case MA_SND_PCM_FORMAT_S16_LE: return ma_format_s16;
case MA_SND_PCM_FORMAT_S24_3LE: return ma_format_s24;
case MA_SND_PCM_FORMAT_S32_LE: return ma_format_s32;
case MA_SND_PCM_FORMAT_FLOAT_LE: return ma_format_f32;
default: break;
}
} else {
switch (formatALSA) {
case MA_SND_PCM_FORMAT_S16_BE: return ma_format_s16;
case MA_SND_PCM_FORMAT_S24_3BE: return ma_format_s24;
case MA_SND_PCM_FORMAT_S32_BE: return ma_format_s32;
case MA_SND_PCM_FORMAT_FLOAT_BE: return ma_format_f32;
default: break;
}
}
/* Endian agnostic. */
switch (formatALSA) {
case MA_SND_PCM_FORMAT_U8: return ma_format_u8;
default: return ma_format_unknown;
}
}
static ma_channel ma_convert_alsa_channel_position_to_ma_channel(unsigned int alsaChannelPos)
{
switch (alsaChannelPos)
{
case MA_SND_CHMAP_MONO: return MA_CHANNEL_MONO;
case MA_SND_CHMAP_FL: return MA_CHANNEL_FRONT_LEFT;
case MA_SND_CHMAP_FR: return MA_CHANNEL_FRONT_RIGHT;
case MA_SND_CHMAP_RL: return MA_CHANNEL_BACK_LEFT;
case MA_SND_CHMAP_RR: return MA_CHANNEL_BACK_RIGHT;
case MA_SND_CHMAP_FC: return MA_CHANNEL_FRONT_CENTER;
case MA_SND_CHMAP_LFE: return MA_CHANNEL_LFE;
case MA_SND_CHMAP_SL: return MA_CHANNEL_SIDE_LEFT;
case MA_SND_CHMAP_SR: return MA_CHANNEL_SIDE_RIGHT;
case MA_SND_CHMAP_RC: return MA_CHANNEL_BACK_CENTER;
case MA_SND_CHMAP_FLC: return MA_CHANNEL_FRONT_LEFT_CENTER;
case MA_SND_CHMAP_FRC: return MA_CHANNEL_FRONT_RIGHT_CENTER;
case MA_SND_CHMAP_RLC: return 0;
case MA_SND_CHMAP_RRC: return 0;
case MA_SND_CHMAP_FLW: return 0;
case MA_SND_CHMAP_FRW: return 0;
case MA_SND_CHMAP_FLH: return 0;
case MA_SND_CHMAP_FCH: return 0;
case MA_SND_CHMAP_FRH: return 0;
case MA_SND_CHMAP_TC: return MA_CHANNEL_TOP_CENTER;
case MA_SND_CHMAP_TFL: return MA_CHANNEL_TOP_FRONT_LEFT;
case MA_SND_CHMAP_TFR: return MA_CHANNEL_TOP_FRONT_RIGHT;
case MA_SND_CHMAP_TFC: return MA_CHANNEL_TOP_FRONT_CENTER;
case MA_SND_CHMAP_TRL: return MA_CHANNEL_TOP_BACK_LEFT;
case MA_SND_CHMAP_TRR: return MA_CHANNEL_TOP_BACK_RIGHT;
case MA_SND_CHMAP_TRC: return MA_CHANNEL_TOP_BACK_CENTER;
default: break;
}
return 0;
}
static ma_bool32 ma_is_common_device_name__alsa(const char* name)
{
size_t iName;
for (iName = 0; iName < ma_countof(g_maCommonDeviceNamesALSA); ++iName) {
if (ma_strcmp(name, g_maCommonDeviceNamesALSA[iName]) == 0) {
return MA_TRUE;
}
}
return MA_FALSE;
}
static ma_bool32 ma_is_playback_device_blacklisted__alsa(const char* name)
{
size_t iName;
for (iName = 0; iName < ma_countof(g_maBlacklistedPlaybackDeviceNamesALSA); ++iName) {
if (ma_strcmp(name, g_maBlacklistedPlaybackDeviceNamesALSA[iName]) == 0) {
return MA_TRUE;
}
}
return MA_FALSE;
}
static ma_bool32 ma_is_capture_device_blacklisted__alsa(const char* name)
{
size_t iName;
for (iName = 0; iName < ma_countof(g_maBlacklistedCaptureDeviceNamesALSA); ++iName) {
if (ma_strcmp(name, g_maBlacklistedCaptureDeviceNamesALSA[iName]) == 0) {
return MA_TRUE;
}
}
return MA_FALSE;
}
static ma_bool32 ma_is_device_blacklisted__alsa(ma_device_type deviceType, const char* name)
{
if (deviceType == ma_device_type_playback) {
return ma_is_playback_device_blacklisted__alsa(name);
} else {
return ma_is_capture_device_blacklisted__alsa(name);
}
}
static const char* ma_find_char(const char* str, char c, int* index)
{
int i = 0;
for (;;) {
if (str[i] == '\0') {
if (index) *index = -1;
return NULL;
}
if (str[i] == c) {
if (index) *index = i;
return str + i;
}
i += 1;
}
/* Should never get here, but treat it as though the character was not found to make me feel better inside. */
if (index) *index = -1;
return NULL;
}
static ma_bool32 ma_is_device_name_in_hw_format__alsa(const char* hwid)
{
/* This function is just checking whether or not hwid is in "hw:%d,%d" format. */
int commaPos;
const char* dev;
int i;
if (hwid == NULL) {
return MA_FALSE;
}
if (hwid[0] != 'h' || hwid[1] != 'w' || hwid[2] != ':') {
return MA_FALSE;
}
hwid += 3;
dev = ma_find_char(hwid, ',', &commaPos);
if (dev == NULL) {
return MA_FALSE;
} else {
dev += 1; /* Skip past the ",". */
}
/* Check if the part between the ":" and the "," contains only numbers. If not, return false. */
for (i = 0; i < commaPos; ++i) {
if (hwid[i] < '0' || hwid[i] > '9') {
return MA_FALSE;
}
}
/* Check if everything after the "," is numeric. If not, return false. */
i = 0;
while (dev[i] != '\0') {
if (dev[i] < '0' || dev[i] > '9') {
return MA_FALSE;
}
i += 1;
}
return MA_TRUE;
}
static int ma_convert_device_name_to_hw_format__alsa(ma_context* pContext, char* dst, size_t dstSize, const char* src) /* Returns 0 on success, non-0 on error. */
{
/* src should look something like this: "hw:CARD=I82801AAICH,DEV=0" */
int colonPos;
int commaPos;
char card[256];
const char* dev;
int cardIndex;
if (dst == NULL) {
return -1;
}
if (dstSize < 7) {
return -1; /* Absolute minimum size of the output buffer is 7 bytes. */
}
*dst = '\0'; /* Safety. */
if (src == NULL) {
return -1;
}
/* If the input name is already in "hw:%d,%d" format, just return that verbatim. */
if (ma_is_device_name_in_hw_format__alsa(src)) {
return ma_strcpy_s(dst, dstSize, src);
}
src = ma_find_char(src, ':', &colonPos);
if (src == NULL) {
return -1; /* Couldn't find a colon */
}
dev = ma_find_char(src, ',', &commaPos);
if (dev == NULL) {
dev = "0";
ma_strncpy_s(card, sizeof(card), src+6, (size_t)-1); /* +6 = ":CARD=" */
} else {
dev = dev + 5; /* +5 = ",DEV=" */
ma_strncpy_s(card, sizeof(card), src+6, commaPos-6); /* +6 = ":CARD=" */
}
cardIndex = ((ma_snd_card_get_index_proc)pContext->alsa.snd_card_get_index)(card);
if (cardIndex < 0) {
return -2; /* Failed to retrieve the card index. */
}
/*printf("TESTING: CARD=%s,DEV=%s\n", card, dev); */
/* Construction. */
dst[0] = 'h'; dst[1] = 'w'; dst[2] = ':';
if (ma_itoa_s(cardIndex, dst+3, dstSize-3, 10) != 0) {
return -3;
}
if (ma_strcat_s(dst, dstSize, ",") != 0) {
return -3;
}
if (ma_strcat_s(dst, dstSize, dev) != 0) {
return -3;
}
return 0;
}
static ma_bool32 ma_does_id_exist_in_list__alsa(ma_device_id* pUniqueIDs, ma_uint32 count, const char* pHWID)
{
ma_uint32 i;
MA_ASSERT(pHWID != NULL);
for (i = 0; i < count; ++i) {
if (ma_strcmp(pUniqueIDs[i].alsa, pHWID) == 0) {
return MA_TRUE;
}
}
return MA_FALSE;
}
static ma_result ma_context_open_pcm__alsa(ma_context* pContext, ma_share_mode shareMode, ma_device_type deviceType, const ma_device_id* pDeviceID, int openMode, ma_snd_pcm_t** ppPCM)
{
ma_snd_pcm_t* pPCM;
ma_snd_pcm_stream_t stream;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppPCM != NULL);
*ppPCM = NULL;
pPCM = NULL;
stream = (deviceType == ma_device_type_playback) ? MA_SND_PCM_STREAM_PLAYBACK : MA_SND_PCM_STREAM_CAPTURE;
if (pDeviceID == NULL) {
ma_bool32 isDeviceOpen;
size_t i;
/*
We're opening the default device. I don't know if trying anything other than "default" is necessary, but it makes
me feel better to try as hard as we can get to get _something_ working.
*/
const char* defaultDeviceNames[] = {
"default",
NULL,
NULL,
NULL,
NULL,
NULL,
NULL
};
if (shareMode == ma_share_mode_exclusive) {
defaultDeviceNames[1] = "hw";
defaultDeviceNames[2] = "hw:0";
defaultDeviceNames[3] = "hw:0,0";
} else {
if (deviceType == ma_device_type_playback) {
defaultDeviceNames[1] = "dmix";
defaultDeviceNames[2] = "dmix:0";
defaultDeviceNames[3] = "dmix:0,0";
} else {
defaultDeviceNames[1] = "dsnoop";
defaultDeviceNames[2] = "dsnoop:0";
defaultDeviceNames[3] = "dsnoop:0,0";
}
defaultDeviceNames[4] = "hw";
defaultDeviceNames[5] = "hw:0";
defaultDeviceNames[6] = "hw:0,0";
}
isDeviceOpen = MA_FALSE;
for (i = 0; i < ma_countof(defaultDeviceNames); ++i) {
if (defaultDeviceNames[i] != NULL && defaultDeviceNames[i][0] != '\0') {
if (((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, defaultDeviceNames[i], stream, openMode) == 0) {
isDeviceOpen = MA_TRUE;
break;
}
}
}
if (!isDeviceOpen) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_open() failed when trying to open an appropriate default device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
} else {
/*
We're trying to open a specific device. There's a few things to consider here:
miniaudio recongnizes a special format of device id that excludes the "hw", "dmix", etc. prefix. It looks like this: ":0,0", ":0,1", etc. When
an ID of this format is specified, it indicates to miniaudio that it can try different combinations of plugins ("hw", "dmix", etc.) until it
finds an appropriate one that works. This comes in very handy when trying to open a device in shared mode ("dmix"), vs exclusive mode ("hw").
*/
/* May end up needing to make small adjustments to the ID, so make a copy. */
ma_device_id deviceID = *pDeviceID;
int resultALSA = -ENODEV;
if (deviceID.alsa[0] != ':') {
/* The ID is not in ":0,0" format. Use the ID exactly as-is. */
resultALSA = ((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, deviceID.alsa, stream, openMode);
} else {
char hwid[256];
/* The ID is in ":0,0" format. Try different plugins depending on the shared mode. */
if (deviceID.alsa[1] == '\0') {
deviceID.alsa[0] = '\0'; /* An ID of ":" should be converted to "". */
}
if (shareMode == ma_share_mode_shared) {
if (deviceType == ma_device_type_playback) {
ma_strcpy_s(hwid, sizeof(hwid), "dmix");
} else {
ma_strcpy_s(hwid, sizeof(hwid), "dsnoop");
}
if (ma_strcat_s(hwid, sizeof(hwid), deviceID.alsa) == 0) {
resultALSA = ((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, hwid, stream, openMode);
}
}
/* If at this point we still don't have an open device it means we're either preferencing exclusive mode or opening with "dmix"/"dsnoop" failed. */
if (resultALSA != 0) {
ma_strcpy_s(hwid, sizeof(hwid), "hw");
if (ma_strcat_s(hwid, sizeof(hwid), deviceID.alsa) == 0) {
resultALSA = ((ma_snd_pcm_open_proc)pContext->alsa.snd_pcm_open)(&pPCM, hwid, stream, openMode);
}
}
}
if (resultALSA < 0) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_open() failed.", ma_result_from_errno(-resultALSA));
}
}
*ppPCM = pPCM;
return MA_SUCCESS;
}
static ma_bool32 ma_context_is_device_id_equal__alsa(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->alsa, pID1->alsa) == 0;
}
static ma_result ma_context_enumerate_devices__alsa(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
int resultALSA;
ma_bool32 cbResult = MA_TRUE;
char** ppDeviceHints;
ma_device_id* pUniqueIDs = NULL;
ma_uint32 uniqueIDCount = 0;
char** ppNextDeviceHint;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
ma_mutex_lock(&pContext->alsa.internalDeviceEnumLock);
resultALSA = ((ma_snd_device_name_hint_proc)pContext->alsa.snd_device_name_hint)(-1, "pcm", (void***)&ppDeviceHints);
if (resultALSA < 0) {
ma_mutex_unlock(&pContext->alsa.internalDeviceEnumLock);
return ma_result_from_errno(-resultALSA);
}
ppNextDeviceHint = ppDeviceHints;
while (*ppNextDeviceHint != NULL) {
char* NAME = ((ma_snd_device_name_get_hint_proc)pContext->alsa.snd_device_name_get_hint)(*ppNextDeviceHint, "NAME");
char* DESC = ((ma_snd_device_name_get_hint_proc)pContext->alsa.snd_device_name_get_hint)(*ppNextDeviceHint, "DESC");
char* IOID = ((ma_snd_device_name_get_hint_proc)pContext->alsa.snd_device_name_get_hint)(*ppNextDeviceHint, "IOID");
ma_device_type deviceType = ma_device_type_playback;
ma_bool32 stopEnumeration = MA_FALSE;
char hwid[sizeof(pUniqueIDs->alsa)];
ma_device_info deviceInfo;
if ((IOID == NULL || ma_strcmp(IOID, "Output") == 0)) {
deviceType = ma_device_type_playback;
}
if ((IOID != NULL && ma_strcmp(IOID, "Input" ) == 0)) {
deviceType = ma_device_type_capture;
}
if (NAME != NULL) {
if (pContext->alsa.useVerboseDeviceEnumeration) {
/* Verbose mode. Use the name exactly as-is. */
ma_strncpy_s(hwid, sizeof(hwid), NAME, (size_t)-1);
} else {
/* Simplified mode. Use ":%d,%d" format. */
if (ma_convert_device_name_to_hw_format__alsa(pContext, hwid, sizeof(hwid), NAME) == 0) {
/*
At this point, hwid looks like "hw:0,0". In simplified enumeration mode, we actually want to strip off the
plugin name so it looks like ":0,0". The reason for this is that this special format is detected at device
initialization time and is used as an indicator to try and use the most appropriate plugin depending on the
device type and sharing mode.
*/
char* dst = hwid;
char* src = hwid+2;
while ((*dst++ = *src++));
} else {
/* Conversion to "hw:%d,%d" failed. Just use the name as-is. */
ma_strncpy_s(hwid, sizeof(hwid), NAME, (size_t)-1);
}
if (ma_does_id_exist_in_list__alsa(pUniqueIDs, uniqueIDCount, hwid)) {
goto next_device; /* The device has already been enumerated. Move on to the next one. */
} else {
/* The device has not yet been enumerated. Make sure it's added to our list so that it's not enumerated again. */
size_t oldCapacity = sizeof(*pUniqueIDs) * uniqueIDCount;
size_t newCapacity = sizeof(*pUniqueIDs) * (uniqueIDCount + 1);
ma_device_id* pNewUniqueIDs = (ma_device_id*)ma__realloc_from_callbacks(pUniqueIDs, newCapacity, oldCapacity, &pContext->allocationCallbacks);
if (pNewUniqueIDs == NULL) {
goto next_device; /* Failed to allocate memory. */
}
pUniqueIDs = pNewUniqueIDs;
MA_COPY_MEMORY(pUniqueIDs[uniqueIDCount].alsa, hwid, sizeof(hwid));
uniqueIDCount += 1;
}
}
} else {
MA_ZERO_MEMORY(hwid, sizeof(hwid));
}
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.id.alsa, sizeof(deviceInfo.id.alsa), hwid, (size_t)-1);
/*
DESC is the friendly name. We treat this slightly differently depending on whether or not we are using verbose
device enumeration. In verbose mode we want to take the entire description so that the end-user can distinguish
between the subdevices of each card/dev pair. In simplified mode, however, we only want the first part of the
description.
The value in DESC seems to be split into two lines, with the first line being the name of the device and the
second line being a description of the device. I don't like having the description be across two lines because
it makes formatting ugly and annoying. I'm therefore deciding to put it all on a single line with the second line
being put into parentheses. In simplified mode I'm just stripping the second line entirely.
*/
if (DESC != NULL) {
int lfPos;
const char* line2 = ma_find_char(DESC, '\n', &lfPos);
if (line2 != NULL) {
line2 += 1; /* Skip past the new-line character. */
if (pContext->alsa.useVerboseDeviceEnumeration) {
/* Verbose mode. Put the second line in brackets. */
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), DESC, lfPos);
ma_strcat_s (deviceInfo.name, sizeof(deviceInfo.name), " (");
ma_strcat_s (deviceInfo.name, sizeof(deviceInfo.name), line2);
ma_strcat_s (deviceInfo.name, sizeof(deviceInfo.name), ")");
} else {
/* Simplified mode. Strip the second line entirely. */
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), DESC, lfPos);
}
} else {
/* There's no second line. Just copy the whole description. */
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), DESC, (size_t)-1);
}
}
if (!ma_is_device_blacklisted__alsa(deviceType, NAME)) {
cbResult = callback(pContext, deviceType, &deviceInfo, pUserData);
}
/*
Some devices are both playback and capture, but they are only enumerated by ALSA once. We need to fire the callback
again for the other device type in this case. We do this for known devices.
*/
if (cbResult) {
if (ma_is_common_device_name__alsa(NAME)) {
if (deviceType == ma_device_type_playback) {
if (!ma_is_capture_device_blacklisted__alsa(NAME)) {
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
} else {
if (!ma_is_playback_device_blacklisted__alsa(NAME)) {
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
}
}
}
if (cbResult == MA_FALSE) {
stopEnumeration = MA_TRUE;
}
next_device:
free(NAME);
free(DESC);
free(IOID);
ppNextDeviceHint += 1;
/* We need to stop enumeration if the callback returned false. */
if (stopEnumeration) {
break;
}
}
ma__free_from_callbacks(pUniqueIDs, &pContext->allocationCallbacks);
((ma_snd_device_name_free_hint_proc)pContext->alsa.snd_device_name_free_hint)((void**)ppDeviceHints);
ma_mutex_unlock(&pContext->alsa.internalDeviceEnumLock);
return MA_SUCCESS;
}
typedef struct
{
ma_device_type deviceType;
const ma_device_id* pDeviceID;
ma_share_mode shareMode;
ma_device_info* pDeviceInfo;
ma_bool32 foundDevice;
} ma_context_get_device_info_enum_callback_data__alsa;
static ma_bool32 ma_context_get_device_info_enum_callback__alsa(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pDeviceInfo, void* pUserData)
{
ma_context_get_device_info_enum_callback_data__alsa* pData = (ma_context_get_device_info_enum_callback_data__alsa*)pUserData;
MA_ASSERT(pData != NULL);
if (pData->pDeviceID == NULL && ma_strcmp(pDeviceInfo->id.alsa, "default") == 0) {
ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pDeviceInfo->name, (size_t)-1);
pData->foundDevice = MA_TRUE;
} else {
if (pData->deviceType == deviceType && ma_context_is_device_id_equal__alsa(pContext, pData->pDeviceID, &pDeviceInfo->id)) {
ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pDeviceInfo->name, (size_t)-1);
pData->foundDevice = MA_TRUE;
}
}
/* Keep enumerating until we have found the device. */
return !pData->foundDevice;
}
static ma_result ma_context_get_device_info__alsa(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_context_get_device_info_enum_callback_data__alsa data;
ma_result result;
int resultALSA;
ma_snd_pcm_t* pPCM;
ma_snd_pcm_hw_params_t* pHWParams;
ma_snd_pcm_format_mask_t* pFormatMask;
int sampleRateDir = 0;
MA_ASSERT(pContext != NULL);
/* We just enumerate to find basic information about the device. */
data.deviceType = deviceType;
data.pDeviceID = pDeviceID;
data.shareMode = shareMode;
data.pDeviceInfo = pDeviceInfo;
data.foundDevice = MA_FALSE;
result = ma_context_enumerate_devices__alsa(pContext, ma_context_get_device_info_enum_callback__alsa, &data);
if (result != MA_SUCCESS) {
return result;
}
if (!data.foundDevice) {
return MA_NO_DEVICE;
}
/* For detailed info we need to open the device. */
result = ma_context_open_pcm__alsa(pContext, shareMode, deviceType, pDeviceID, 0, &pPCM);
if (result != MA_SUCCESS) {
return result;
}
/* We need to initialize a HW parameters object in order to know what formats are supported. */
pHWParams = (ma_snd_pcm_hw_params_t*)ma__calloc_from_callbacks(((ma_snd_pcm_hw_params_sizeof_proc)pContext->alsa.snd_pcm_hw_params_sizeof)(), &pContext->allocationCallbacks);
if (pHWParams == NULL) {
return MA_OUT_OF_MEMORY;
}
resultALSA = ((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams);
if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed.", ma_result_from_errno(-resultALSA));
}
((ma_snd_pcm_hw_params_get_channels_min_proc)pContext->alsa.snd_pcm_hw_params_get_channels_min)(pHWParams, &pDeviceInfo->minChannels);
((ma_snd_pcm_hw_params_get_channels_max_proc)pContext->alsa.snd_pcm_hw_params_get_channels_max)(pHWParams, &pDeviceInfo->maxChannels);
((ma_snd_pcm_hw_params_get_rate_min_proc)pContext->alsa.snd_pcm_hw_params_get_rate_min)(pHWParams, &pDeviceInfo->minSampleRate, &sampleRateDir);
((ma_snd_pcm_hw_params_get_rate_max_proc)pContext->alsa.snd_pcm_hw_params_get_rate_max)(pHWParams, &pDeviceInfo->maxSampleRate, &sampleRateDir);
/* Formats. */
pFormatMask = (ma_snd_pcm_format_mask_t*)ma__calloc_from_callbacks(((ma_snd_pcm_format_mask_sizeof_proc)pContext->alsa.snd_pcm_format_mask_sizeof)(), &pContext->allocationCallbacks);
if (pFormatMask == NULL) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
return MA_OUT_OF_MEMORY;
}
((ma_snd_pcm_hw_params_get_format_mask_proc)pContext->alsa.snd_pcm_hw_params_get_format_mask)(pHWParams, pFormatMask);
pDeviceInfo->formatCount = 0;
if (((ma_snd_pcm_format_mask_test_proc)pContext->alsa.snd_pcm_format_mask_test)(pFormatMask, MA_SND_PCM_FORMAT_U8)) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = ma_format_u8;
}
if (((ma_snd_pcm_format_mask_test_proc)pContext->alsa.snd_pcm_format_mask_test)(pFormatMask, MA_SND_PCM_FORMAT_S16_LE)) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = ma_format_s16;
}
if (((ma_snd_pcm_format_mask_test_proc)pContext->alsa.snd_pcm_format_mask_test)(pFormatMask, MA_SND_PCM_FORMAT_S24_3LE)) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = ma_format_s24;
}
if (((ma_snd_pcm_format_mask_test_proc)pContext->alsa.snd_pcm_format_mask_test)(pFormatMask, MA_SND_PCM_FORMAT_S32_LE)) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = ma_format_s32;
}
if (((ma_snd_pcm_format_mask_test_proc)pContext->alsa.snd_pcm_format_mask_test)(pFormatMask, MA_SND_PCM_FORMAT_FLOAT_LE)) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = ma_format_f32;
}
ma__free_from_callbacks(pFormatMask, &pContext->allocationCallbacks);
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pContext->alsa.snd_pcm_close)(pPCM);
return MA_SUCCESS;
}
#if 0
/*
Waits for a number of frames to become available for either capture or playback. The return
value is the number of frames available.
This will return early if the main loop is broken with ma_device__break_main_loop().
*/
static ma_uint32 ma_device__wait_for_frames__alsa(ma_device* pDevice, ma_bool32* pRequiresRestart)
{
MA_ASSERT(pDevice != NULL);
if (pRequiresRestart) *pRequiresRestart = MA_FALSE;
/* I want it so that this function returns the period size in frames. We just wait until that number of frames are available and then return. */
ma_uint32 periodSizeInFrames = pDevice->bufferSizeInFrames / pDevice->periods;
while (!pDevice->alsa.breakFromMainLoop) {
ma_snd_pcm_sframes_t framesAvailable = ((ma_snd_pcm_avail_update_proc)pDevice->pContext->alsa.snd_pcm_avail_update)((ma_snd_pcm_t*)pDevice->alsa.pPCM);
if (framesAvailable < 0) {
if (framesAvailable == -EPIPE) {
if (((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCM, framesAvailable, MA_TRUE) < 0) {
return 0;
}
/* A device recovery means a restart for mmap mode. */
if (pRequiresRestart) {
*pRequiresRestart = MA_TRUE;
}
/* Try again, but if it fails this time just return an error. */
framesAvailable = ((ma_snd_pcm_avail_update_proc)pDevice->pContext->alsa.snd_pcm_avail_update)((ma_snd_pcm_t*)pDevice->alsa.pPCM);
if (framesAvailable < 0) {
return 0;
}
}
}
if (framesAvailable >= periodSizeInFrames) {
return periodSizeInFrames;
}
if (framesAvailable < periodSizeInFrames) {
/* Less than a whole period is available so keep waiting. */
int waitResult = ((ma_snd_pcm_wait_proc)pDevice->pContext->alsa.snd_pcm_wait)((ma_snd_pcm_t*)pDevice->alsa.pPCM, -1);
if (waitResult < 0) {
if (waitResult == -EPIPE) {
if (((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCM, waitResult, MA_TRUE) < 0) {
return 0;
}
/* A device recovery means a restart for mmap mode. */
if (pRequiresRestart) {
*pRequiresRestart = MA_TRUE;
}
}
}
}
}
/* We'll get here if the loop was terminated. Just return whatever's available. */
ma_snd_pcm_sframes_t framesAvailable = ((ma_snd_pcm_avail_update_proc)pDevice->pContext->alsa.snd_pcm_avail_update)((ma_snd_pcm_t*)pDevice->alsa.pPCM);
if (framesAvailable < 0) {
return 0;
}
return framesAvailable;
}
static ma_bool32 ma_device_read_from_client_and_write__alsa(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (!ma_device_is_started(pDevice) && ma_device__get_state(pDevice) != MA_STATE_STARTING) {
return MA_FALSE;
}
if (pDevice->alsa.breakFromMainLoop) {
return MA_FALSE;
}
if (pDevice->alsa.isUsingMMap) {
/* mmap. */
ma_bool32 requiresRestart;
ma_uint32 framesAvailable = ma_device__wait_for_frames__alsa(pDevice, &requiresRestart);
if (framesAvailable == 0) {
return MA_FALSE;
}
/* Don't bother asking the client for more audio data if we're just stopping the device anyway. */
if (pDevice->alsa.breakFromMainLoop) {
return MA_FALSE;
}
const ma_snd_pcm_channel_area_t* pAreas;
ma_snd_pcm_uframes_t mappedOffset;
ma_snd_pcm_uframes_t mappedFrames = framesAvailable;
while (framesAvailable > 0) {
int result = ((ma_snd_pcm_mmap_begin_proc)pDevice->pContext->alsa.snd_pcm_mmap_begin)((ma_snd_pcm_t*)pDevice->alsa.pPCM, &pAreas, &mappedOffset, &mappedFrames);
if (result < 0) {
return MA_FALSE;
}
if (mappedFrames > 0) {
void* pBuffer = (ma_uint8*)pAreas[0].addr + ((pAreas[0].first + (mappedOffset * pAreas[0].step)) / 8);
ma_device__read_frames_from_client(pDevice, mappedFrames, pBuffer);
}
result = ((ma_snd_pcm_mmap_commit_proc)pDevice->pContext->alsa.snd_pcm_mmap_commit)((ma_snd_pcm_t*)pDevice->alsa.pPCM, mappedOffset, mappedFrames);
if (result < 0 || (ma_snd_pcm_uframes_t)result != mappedFrames) {
((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCM, result, MA_TRUE);
return MA_FALSE;
}
if (requiresRestart) {
if (((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCM) < 0) {
return MA_FALSE;
}
}
if (framesAvailable >= mappedFrames) {
framesAvailable -= mappedFrames;
} else {
framesAvailable = 0;
}
}
} else {
/* readi/writei. */
while (!pDevice->alsa.breakFromMainLoop) {
ma_uint32 framesAvailable = ma_device__wait_for_frames__alsa(pDevice, NULL);
if (framesAvailable == 0) {
continue;
}
/* Don't bother asking the client for more audio data if we're just stopping the device anyway. */
if (pDevice->alsa.breakFromMainLoop) {
return MA_FALSE;
}
ma_device__read_frames_from_client(pDevice, framesAvailable, pDevice->alsa.pIntermediaryBuffer);
ma_snd_pcm_sframes_t framesWritten = ((ma_snd_pcm_writei_proc)pDevice->pContext->alsa.snd_pcm_writei)((ma_snd_pcm_t*)pDevice->alsa.pPCM, pDevice->alsa.pIntermediaryBuffer, framesAvailable);
if (framesWritten < 0) {
if (framesWritten == -EAGAIN) {
continue; /* Just keep trying... */
} else if (framesWritten == -EPIPE) {
/* Underrun. Just recover and try writing again. */
if (((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCM, framesWritten, MA_TRUE) < 0) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after underrun.", MA_FAILED_TO_START_BACKEND_DEVICE);
return MA_FALSE;
}
framesWritten = ((ma_snd_pcm_writei_proc)pDevice->pContext->alsa.snd_pcm_writei)((ma_snd_pcm_t*)pDevice->alsa.pPCM, pDevice->alsa.pIntermediaryBuffer, framesAvailable);
if (framesWritten < 0) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to write data to the internal device.", ma_result_from_errno((int)-framesWritten));
return MA_FALSE;
}
break; /* Success. */
} else {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_writei() failed when writing initial data.", ma_result_from_errno((int)-framesWritten));
return MA_FALSE;
}
} else {
break; /* Success. */
}
}
}
return MA_TRUE;
}
static ma_bool32 ma_device_read_and_send_to_client__alsa(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (!ma_device_is_started(pDevice)) {
return MA_FALSE;
}
if (pDevice->alsa.breakFromMainLoop) {
return MA_FALSE;
}
ma_uint32 framesToSend = 0;
void* pBuffer = NULL;
if (pDevice->alsa.pIntermediaryBuffer == NULL) {
/* mmap. */
ma_bool32 requiresRestart;
ma_uint32 framesAvailable = ma_device__wait_for_frames__alsa(pDevice, &requiresRestart);
if (framesAvailable == 0) {
return MA_FALSE;
}
const ma_snd_pcm_channel_area_t* pAreas;
ma_snd_pcm_uframes_t mappedOffset;
ma_snd_pcm_uframes_t mappedFrames = framesAvailable;
while (framesAvailable > 0) {
int result = ((ma_snd_pcm_mmap_begin_proc)pDevice->pContext->alsa.snd_pcm_mmap_begin)((ma_snd_pcm_t*)pDevice->alsa.pPCM, &pAreas, &mappedOffset, &mappedFrames);
if (result < 0) {
return MA_FALSE;
}
if (mappedFrames > 0) {
void* pBuffer = (ma_uint8*)pAreas[0].addr + ((pAreas[0].first + (mappedOffset * pAreas[0].step)) / 8);
ma_device__send_frames_to_client(pDevice, mappedFrames, pBuffer);
}
result = ((ma_snd_pcm_mmap_commit_proc)pDevice->pContext->alsa.snd_pcm_mmap_commit)((ma_snd_pcm_t*)pDevice->alsa.pPCM, mappedOffset, mappedFrames);
if (result < 0 || (ma_snd_pcm_uframes_t)result != mappedFrames) {
((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCM, result, MA_TRUE);
return MA_FALSE;
}
if (requiresRestart) {
if (((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCM) < 0) {
return MA_FALSE;
}
}
if (framesAvailable >= mappedFrames) {
framesAvailable -= mappedFrames;
} else {
framesAvailable = 0;
}
}
} else {
/* readi/writei. */
ma_snd_pcm_sframes_t framesRead = 0;
while (!pDevice->alsa.breakFromMainLoop) {
ma_uint32 framesAvailable = ma_device__wait_for_frames__alsa(pDevice, NULL);
if (framesAvailable == 0) {
continue;
}
framesRead = ((ma_snd_pcm_readi_proc)pDevice->pContext->alsa.snd_pcm_readi)((ma_snd_pcm_t*)pDevice->alsa.pPCM, pDevice->alsa.pIntermediaryBuffer, framesAvailable);
if (framesRead < 0) {
if (framesRead == -EAGAIN) {
continue; /* Just keep trying... */
} else if (framesRead == -EPIPE) {
/* Overrun. Just recover and try reading again. */
if (((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCM, framesRead, MA_TRUE) < 0) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after overrun.", MA_FAILED_TO_START_BACKEND_DEVICE);
return MA_FALSE;
}
framesRead = ((ma_snd_pcm_readi_proc)pDevice->pContext->alsa.snd_pcm_readi)((ma_snd_pcm_t*)pDevice->alsa.pPCM, pDevice->alsa.pIntermediaryBuffer, framesAvailable);
if (framesRead < 0) {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to read data from the internal device.", ma_result_from_errno((int)-framesRead));
return MA_FALSE;
}
break; /* Success. */
} else {
return MA_FALSE;
}
} else {
break; /* Success. */
}
}
framesToSend = framesRead;
pBuffer = pDevice->alsa.pIntermediaryBuffer;
}
if (framesToSend > 0) {
ma_device__send_frames_to_client(pDevice, framesToSend, pBuffer);
}
return MA_TRUE;
}
#endif /* 0 */
static void ma_device_uninit__alsa(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if ((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture) {
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture);
}
if ((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback) {
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback);
}
}
static ma_result ma_device_init_by_type__alsa(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
ma_result result;
int resultALSA;
ma_snd_pcm_t* pPCM;
ma_bool32 isUsingMMap;
ma_snd_pcm_format_t formatALSA;
ma_share_mode shareMode;
const ma_device_id* pDeviceID;
ma_format internalFormat;
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_channel internalChannelMap[MA_MAX_CHANNELS];
ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
int openMode;
ma_snd_pcm_hw_params_t* pHWParams;
ma_snd_pcm_sw_params_t* pSWParams;
ma_snd_pcm_uframes_t bufferBoundary;
float bufferSizeScaleFactor;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pConfig != NULL);
MA_ASSERT(deviceType != ma_device_type_duplex); /* This function should only be called for playback _or_ capture, never duplex. */
MA_ASSERT(pDevice != NULL);
formatALSA = ma_convert_ma_format_to_alsa_format((deviceType == ma_device_type_capture) ? pConfig->capture.format : pConfig->playback.format);
shareMode = (deviceType == ma_device_type_capture) ? pConfig->capture.shareMode : pConfig->playback.shareMode;
pDeviceID = (deviceType == ma_device_type_capture) ? pConfig->capture.pDeviceID : pConfig->playback.pDeviceID;
openMode = 0;
if (pConfig->alsa.noAutoResample) {
openMode |= MA_SND_PCM_NO_AUTO_RESAMPLE;
}
if (pConfig->alsa.noAutoChannels) {
openMode |= MA_SND_PCM_NO_AUTO_CHANNELS;
}
if (pConfig->alsa.noAutoFormat) {
openMode |= MA_SND_PCM_NO_AUTO_FORMAT;
}
result = ma_context_open_pcm__alsa(pContext, shareMode, deviceType, pDeviceID, openMode, &pPCM);
if (result != MA_SUCCESS) {
return result;
}
/* If using the default buffer size we may want to apply some device-specific scaling for known devices that have peculiar latency characteristics */
bufferSizeScaleFactor = 1;
if (pDevice->usingDefaultBufferSize) {
ma_snd_pcm_info_t* pInfo = (ma_snd_pcm_info_t*)ma__calloc_from_callbacks(((ma_snd_pcm_info_sizeof_proc)pContext->alsa.snd_pcm_info_sizeof)(), &pContext->allocationCallbacks);
if (pInfo == NULL) {
return MA_OUT_OF_MEMORY;
}
/* We may need to scale the size of the buffer depending on the device. */
if (((ma_snd_pcm_info_proc)pContext->alsa.snd_pcm_info)(pPCM, pInfo) == 0) {
const char* deviceName = ((ma_snd_pcm_info_get_name_proc)pContext->alsa.snd_pcm_info_get_name)(pInfo);
if (deviceName != NULL) {
if (ma_strcmp(deviceName, "default") == 0) {
char** ppDeviceHints;
char** ppNextDeviceHint;
/* It's the default device. We need to use DESC from snd_device_name_hint(). */
if (((ma_snd_device_name_hint_proc)pContext->alsa.snd_device_name_hint)(-1, "pcm", (void***)&ppDeviceHints) < 0) {
ma__free_from_callbacks(pInfo, &pContext->allocationCallbacks);
return MA_NO_BACKEND;
}
ppNextDeviceHint = ppDeviceHints;
while (*ppNextDeviceHint != NULL) {
char* NAME = ((ma_snd_device_name_get_hint_proc)pContext->alsa.snd_device_name_get_hint)(*ppNextDeviceHint, "NAME");
char* DESC = ((ma_snd_device_name_get_hint_proc)pContext->alsa.snd_device_name_get_hint)(*ppNextDeviceHint, "DESC");
char* IOID = ((ma_snd_device_name_get_hint_proc)pContext->alsa.snd_device_name_get_hint)(*ppNextDeviceHint, "IOID");
ma_bool32 foundDevice = MA_FALSE;
if ((deviceType == ma_device_type_playback && (IOID == NULL || ma_strcmp(IOID, "Output") == 0)) ||
(deviceType == ma_device_type_capture && (IOID != NULL && ma_strcmp(IOID, "Input" ) == 0))) {
if (ma_strcmp(NAME, deviceName) == 0) {
bufferSizeScaleFactor = ma_find_default_buffer_size_scale__alsa(DESC);
foundDevice = MA_TRUE;
}
}
free(NAME);
free(DESC);
free(IOID);
ppNextDeviceHint += 1;
if (foundDevice) {
break;
}
}
((ma_snd_device_name_free_hint_proc)pContext->alsa.snd_device_name_free_hint)((void**)ppDeviceHints);
} else {
bufferSizeScaleFactor = ma_find_default_buffer_size_scale__alsa(deviceName);
}
}
}
ma__free_from_callbacks(pInfo, &pContext->allocationCallbacks);
}
/* Hardware parameters. */
pHWParams = (ma_snd_pcm_hw_params_t*)ma__calloc_from_callbacks(((ma_snd_pcm_hw_params_sizeof_proc)pContext->alsa.snd_pcm_hw_params_sizeof)(), &pContext->allocationCallbacks);
if (pHWParams == NULL) {
return MA_OUT_OF_MEMORY;
}
resultALSA = ((ma_snd_pcm_hw_params_any_proc)pContext->alsa.snd_pcm_hw_params_any)(pPCM, pHWParams);
if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize hardware parameters. snd_pcm_hw_params_any() failed.", ma_result_from_errno(-resultALSA));
}
/* MMAP Mode. Try using interleaved MMAP access. If this fails, fall back to standard readi/writei. */
isUsingMMap = MA_FALSE;
#if 0 /* NOTE: MMAP mode temporarily disabled. */
if (deviceType != ma_device_type_capture) { /* <-- Disabling MMAP mode for capture devices because I apparently do not have a device that supports it which means I can't test it... Contributions welcome. */
if (!pConfig->alsa.noMMap && ma_device__is_async(pDevice)) {
if (((ma_snd_pcm_hw_params_set_access_proc)pContext->alsa.snd_pcm_hw_params_set_access)(pPCM, pHWParams, MA_SND_PCM_ACCESS_MMAP_INTERLEAVED) == 0) {
pDevice->alsa.isUsingMMap = MA_TRUE;
}
}
}
#endif
if (!isUsingMMap) {
resultALSA = ((ma_snd_pcm_hw_params_set_access_proc)pContext->alsa.snd_pcm_hw_params_set_access)(pPCM, pHWParams, MA_SND_PCM_ACCESS_RW_INTERLEAVED);
if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set access mode to neither SND_PCM_ACCESS_MMAP_INTERLEAVED nor SND_PCM_ACCESS_RW_INTERLEAVED. snd_pcm_hw_params_set_access() failed.", ma_result_from_errno(-resultALSA));
}
}
/*
Most important properties first. The documentation for OSS (yes, I know this is ALSA!) recommends format, channels, then sample rate. I can't
find any documentation for ALSA specifically, so I'm going to copy the recommendation for OSS.
*/
/* Format. */
{
ma_snd_pcm_format_mask_t* pFormatMask;
/* Try getting every supported format first. */
pFormatMask = (ma_snd_pcm_format_mask_t*)ma__calloc_from_callbacks(((ma_snd_pcm_format_mask_sizeof_proc)pContext->alsa.snd_pcm_format_mask_sizeof)(), &pContext->allocationCallbacks);
if (pFormatMask == NULL) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return MA_OUT_OF_MEMORY;
}
((ma_snd_pcm_hw_params_get_format_mask_proc)pContext->alsa.snd_pcm_hw_params_get_format_mask)(pHWParams, pFormatMask);
/*
At this point we should have a list of supported formats, so now we need to find the best one. We first check if the requested format is
supported, and if so, use that one. If it's not supported, we just run though a list of formats and try to find the best one.
*/
if (!((ma_snd_pcm_format_mask_test_proc)pContext->alsa.snd_pcm_format_mask_test)(pFormatMask, formatALSA)) {
size_t i;
/* The requested format is not supported so now try running through the list of formats and return the best one. */
ma_snd_pcm_format_t preferredFormatsALSA[] = {
MA_SND_PCM_FORMAT_S16_LE, /* ma_format_s16 */
MA_SND_PCM_FORMAT_FLOAT_LE, /* ma_format_f32 */
MA_SND_PCM_FORMAT_S32_LE, /* ma_format_s32 */
MA_SND_PCM_FORMAT_S24_3LE, /* ma_format_s24 */
MA_SND_PCM_FORMAT_U8 /* ma_format_u8 */
};
if (ma_is_big_endian()) {
preferredFormatsALSA[0] = MA_SND_PCM_FORMAT_S16_BE;
preferredFormatsALSA[1] = MA_SND_PCM_FORMAT_FLOAT_BE;
preferredFormatsALSA[2] = MA_SND_PCM_FORMAT_S32_BE;
preferredFormatsALSA[3] = MA_SND_PCM_FORMAT_S24_3BE;
preferredFormatsALSA[4] = MA_SND_PCM_FORMAT_U8;
}
formatALSA = MA_SND_PCM_FORMAT_UNKNOWN;
for (i = 0; i < (sizeof(preferredFormatsALSA) / sizeof(preferredFormatsALSA[0])); ++i) {
if (((ma_snd_pcm_format_mask_test_proc)pContext->alsa.snd_pcm_format_mask_test)(pFormatMask, preferredFormatsALSA[i])) {
formatALSA = preferredFormatsALSA[i];
break;
}
}
if (formatALSA == MA_SND_PCM_FORMAT_UNKNOWN) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Format not supported. The device does not support any miniaudio formats.", MA_FORMAT_NOT_SUPPORTED);
}
}
ma__free_from_callbacks(pFormatMask, &pContext->allocationCallbacks);
pFormatMask = NULL;
resultALSA = ((ma_snd_pcm_hw_params_set_format_proc)pContext->alsa.snd_pcm_hw_params_set_format)(pPCM, pHWParams, formatALSA);
if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Format not supported. snd_pcm_hw_params_set_format() failed.", ma_result_from_errno(-resultALSA));
}
internalFormat = ma_format_from_alsa(formatALSA);
if (internalFormat == ma_format_unknown) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] The chosen format is not supported by miniaudio.", MA_FORMAT_NOT_SUPPORTED);
}
}
/* Channels. */
{
unsigned int channels = (deviceType == ma_device_type_capture) ? pConfig->capture.channels : pConfig->playback.channels;
resultALSA = ((ma_snd_pcm_hw_params_set_channels_near_proc)pContext->alsa.snd_pcm_hw_params_set_channels_near)(pPCM, pHWParams, &channels);
if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set channel count. snd_pcm_hw_params_set_channels_near() failed.", ma_result_from_errno(-resultALSA));
}
internalChannels = (ma_uint32)channels;
}
/* Sample Rate */
{
unsigned int sampleRate;
/*
It appears there's either a bug in ALSA, a bug in some drivers, or I'm doing something silly; but having resampling enabled causes
problems with some device configurations when used in conjunction with MMAP access mode. To fix this problem we need to disable
resampling.
To reproduce this problem, open the "plug:dmix" device, and set the sample rate to 44100. Internally, it looks like dmix uses a
sample rate of 48000. The hardware parameters will get set correctly with no errors, but it looks like the 44100 -> 48000 resampling
doesn't work properly - but only with MMAP access mode. You will notice skipping/crackling in the audio, and it'll run at a slightly
faster rate.
miniaudio has built-in support for sample rate conversion (albeit low quality at the moment), so disabling resampling should be fine
for us. The only problem is that it won't be taking advantage of any kind of hardware-accelerated resampling and it won't be very
good quality until I get a chance to improve the quality of miniaudio's software sample rate conversion.
I don't currently know if the dmix plugin is the only one with this error. Indeed, this is the only one I've been able to reproduce
this error with. In the future, we may want to restrict the disabling of resampling to only known bad plugins.
*/
((ma_snd_pcm_hw_params_set_rate_resample_proc)pContext->alsa.snd_pcm_hw_params_set_rate_resample)(pPCM, pHWParams, 0);
sampleRate = pConfig->sampleRate;
resultALSA = ((ma_snd_pcm_hw_params_set_rate_near_proc)pContext->alsa.snd_pcm_hw_params_set_rate_near)(pPCM, pHWParams, &sampleRate, 0);
if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Sample rate not supported. snd_pcm_hw_params_set_rate_near() failed.", ma_result_from_errno(-resultALSA));
}
internalSampleRate = (ma_uint32)sampleRate;
}
/* Periods. */
{
ma_uint32 periods = pConfig->periods;
resultALSA = ((ma_snd_pcm_hw_params_set_periods_near_proc)pContext->alsa.snd_pcm_hw_params_set_periods_near)(pPCM, pHWParams, &periods, NULL);
if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set period count. snd_pcm_hw_params_set_periods_near() failed.", ma_result_from_errno(-resultALSA));
}
internalPeriods = periods;
}
/* Buffer Size */
{
ma_snd_pcm_uframes_t actualBufferSizeInFrames = pConfig->periodSizeInFrames * internalPeriods;
if (actualBufferSizeInFrames == 0) {
actualBufferSizeInFrames = ma_scale_buffer_size(ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, internalSampleRate), bufferSizeScaleFactor) * internalPeriods;
}
resultALSA = ((ma_snd_pcm_hw_params_set_buffer_size_near_proc)pContext->alsa.snd_pcm_hw_params_set_buffer_size_near)(pPCM, pHWParams, &actualBufferSizeInFrames);
if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set buffer size for device. snd_pcm_hw_params_set_buffer_size() failed.", ma_result_from_errno(-resultALSA));
}
internalPeriodSizeInFrames = actualBufferSizeInFrames / internalPeriods;
}
/* Apply hardware parameters. */
resultALSA = ((ma_snd_pcm_hw_params_proc)pContext->alsa.snd_pcm_hw_params)(pPCM, pHWParams);
if (resultALSA < 0) {
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set hardware parameters. snd_pcm_hw_params() failed.", ma_result_from_errno(-resultALSA));
}
ma__free_from_callbacks(pHWParams, &pContext->allocationCallbacks);
pHWParams = NULL;
/* Software parameters. */
pSWParams = (ma_snd_pcm_sw_params_t*)ma__calloc_from_callbacks(((ma_snd_pcm_sw_params_sizeof_proc)pContext->alsa.snd_pcm_sw_params_sizeof)(), &pContext->allocationCallbacks);
if (pSWParams == NULL) {
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return MA_OUT_OF_MEMORY;
}
resultALSA = ((ma_snd_pcm_sw_params_current_proc)pContext->alsa.snd_pcm_sw_params_current)(pPCM, pSWParams);
if (resultALSA < 0) {
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to initialize software parameters. snd_pcm_sw_params_current() failed.", ma_result_from_errno(-resultALSA));
}
resultALSA = ((ma_snd_pcm_sw_params_set_avail_min_proc)pContext->alsa.snd_pcm_sw_params_set_avail_min)(pPCM, pSWParams, ma_prev_power_of_2(internalPeriodSizeInFrames));
if (resultALSA < 0) {
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] snd_pcm_sw_params_set_avail_min() failed.", ma_result_from_errno(-resultALSA));
}
resultALSA = ((ma_snd_pcm_sw_params_get_boundary_proc)pContext->alsa.snd_pcm_sw_params_get_boundary)(pSWParams, &bufferBoundary);
if (resultALSA < 0) {
bufferBoundary = internalPeriodSizeInFrames * internalPeriods;
}
/*printf("TRACE: bufferBoundary=%ld\n", bufferBoundary);*/
if (deviceType == ma_device_type_playback && !isUsingMMap) { /* Only playback devices in writei/readi mode need a start threshold. */
/*
Subtle detail here with the start threshold. When in playback-only mode (no full-duplex) we can set the start threshold to
the size of a period. But for full-duplex we need to set it such that it is at least two periods.
*/
resultALSA = ((ma_snd_pcm_sw_params_set_start_threshold_proc)pContext->alsa.snd_pcm_sw_params_set_start_threshold)(pPCM, pSWParams, internalPeriodSizeInFrames*2);
if (resultALSA < 0) {
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set start threshold for playback device. snd_pcm_sw_params_set_start_threshold() failed.", ma_result_from_errno(-resultALSA));
}
resultALSA = ((ma_snd_pcm_sw_params_set_stop_threshold_proc)pContext->alsa.snd_pcm_sw_params_set_stop_threshold)(pPCM, pSWParams, bufferBoundary);
if (resultALSA < 0) { /* Set to boundary to loop instead of stop in the event of an xrun. */
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set stop threshold for playback device. snd_pcm_sw_params_set_stop_threshold() failed.", ma_result_from_errno(-resultALSA));
}
}
resultALSA = ((ma_snd_pcm_sw_params_proc)pContext->alsa.snd_pcm_sw_params)(pPCM, pSWParams);
if (resultALSA < 0) {
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to set software parameters. snd_pcm_sw_params() failed.", ma_result_from_errno(-resultALSA));
}
ma__free_from_callbacks(pSWParams, &pContext->allocationCallbacks);
pSWParams = NULL;
/* Grab the internal channel map. For now we're not going to bother trying to change the channel map and instead just do it ourselves. */
{
ma_snd_pcm_chmap_t* pChmap = ((ma_snd_pcm_get_chmap_proc)pContext->alsa.snd_pcm_get_chmap)(pPCM);
if (pChmap != NULL) {
ma_uint32 iChannel;
/* There are cases where the returned channel map can have a different channel count than was returned by snd_pcm_hw_params_set_channels_near(). */
if (pChmap->channels >= internalChannels) {
/* Drop excess channels. */
for (iChannel = 0; iChannel < internalChannels; ++iChannel) {
internalChannelMap[iChannel] = ma_convert_alsa_channel_position_to_ma_channel(pChmap->pos[iChannel]);
}
} else {
ma_uint32 i;
/*
Excess channels use defaults. Do an initial fill with defaults, overwrite the first pChmap->channels, validate to ensure there are no duplicate
channels. If validation fails, fall back to defaults.
*/
ma_bool32 isValid = MA_TRUE;
/* Fill with defaults. */
ma_get_standard_channel_map(ma_standard_channel_map_alsa, internalChannels, internalChannelMap);
/* Overwrite first pChmap->channels channels. */
for (iChannel = 0; iChannel < pChmap->channels; ++iChannel) {
internalChannelMap[iChannel] = ma_convert_alsa_channel_position_to_ma_channel(pChmap->pos[iChannel]);
}
/* Validate. */
for (i = 0; i < internalChannels && isValid; ++i) {
ma_uint32 j;
for (j = i+1; j < internalChannels; ++j) {
if (internalChannelMap[i] == internalChannelMap[j]) {
isValid = MA_FALSE;
break;
}
}
}
/* If our channel map is invalid, fall back to defaults. */
if (!isValid) {
ma_get_standard_channel_map(ma_standard_channel_map_alsa, internalChannels, internalChannelMap);
}
}
free(pChmap);
pChmap = NULL;
} else {
/* Could not retrieve the channel map. Fall back to a hard-coded assumption. */
ma_get_standard_channel_map(ma_standard_channel_map_alsa, internalChannels, internalChannelMap);
}
}
/* We're done. Prepare the device. */
resultALSA = ((ma_snd_pcm_prepare_proc)pDevice->pContext->alsa.snd_pcm_prepare)(pPCM);
if (resultALSA < 0) {
((ma_snd_pcm_close_proc)pDevice->pContext->alsa.snd_pcm_close)(pPCM);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to prepare device.", ma_result_from_errno(-resultALSA));
}
if (deviceType == ma_device_type_capture) {
pDevice->alsa.pPCMCapture = (ma_ptr)pPCM;
pDevice->alsa.isUsingMMapCapture = isUsingMMap;
pDevice->capture.internalFormat = internalFormat;
pDevice->capture.internalChannels = internalChannels;
pDevice->capture.internalSampleRate = internalSampleRate;
ma_channel_map_copy(pDevice->capture.internalChannelMap, internalChannelMap, internalChannels);
pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->capture.internalPeriods = internalPeriods;
} else {
pDevice->alsa.pPCMPlayback = (ma_ptr)pPCM;
pDevice->alsa.isUsingMMapPlayback = isUsingMMap;
pDevice->playback.internalFormat = internalFormat;
pDevice->playback.internalChannels = internalChannels;
pDevice->playback.internalSampleRate = internalSampleRate;
ma_channel_map_copy(pDevice->playback.internalChannelMap, internalChannelMap, internalChannels);
pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->playback.internalPeriods = internalPeriods;
}
return MA_SUCCESS;
}
static ma_result ma_device_init__alsa(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->alsa);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_by_type__alsa(pContext, pConfig, ma_device_type_capture, pDevice);
if (result != MA_SUCCESS) {
return result;
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_by_type__alsa(pContext, pConfig, ma_device_type_playback, pDevice);
if (result != MA_SUCCESS) {
return result;
}
}
return MA_SUCCESS;
}
static ma_result ma_device_read__alsa(ma_device* pDevice, void* pFramesOut, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
ma_snd_pcm_sframes_t resultALSA;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(pFramesOut != NULL);
if (pFramesRead != NULL) {
*pFramesRead = 0;
}
for (;;) {
resultALSA = ((ma_snd_pcm_readi_proc)pDevice->pContext->alsa.snd_pcm_readi)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, pFramesOut, frameCount);
if (resultALSA >= 0) {
break; /* Success. */
} else {
if (resultALSA == -EAGAIN) {
/*printf("TRACE: EGAIN (read)\n");*/
continue; /* Try again. */
} else if (resultALSA == -EPIPE) {
#if defined(MA_DEBUG_OUTPUT)
printf("TRACE: EPIPE (read)\n");
#endif
/* Overrun. Recover and try again. If this fails we need to return an error. */
resultALSA = ((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, resultALSA, MA_TRUE);
if (resultALSA < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after overrun.", ma_result_from_errno((int)-resultALSA));
}
resultALSA = ((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture);
if (resultALSA < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device after underrun.", ma_result_from_errno((int)-resultALSA));
}
resultALSA = ((ma_snd_pcm_readi_proc)pDevice->pContext->alsa.snd_pcm_readi)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture, pFramesOut, frameCount);
if (resultALSA < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to read data from the internal device.", ma_result_from_errno((int)-resultALSA));
}
}
}
}
if (pFramesRead != NULL) {
*pFramesRead = resultALSA;
}
return MA_SUCCESS;
}
static ma_result ma_device_write__alsa(ma_device* pDevice, const void* pFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
ma_snd_pcm_sframes_t resultALSA;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(pFrames != NULL);
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
}
for (;;) {
resultALSA = ((ma_snd_pcm_writei_proc)pDevice->pContext->alsa.snd_pcm_writei)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, pFrames, frameCount);
if (resultALSA >= 0) {
break; /* Success. */
} else {
if (resultALSA == -EAGAIN) {
/*printf("TRACE: EGAIN (write)\n");*/
continue; /* Try again. */
} else if (resultALSA == -EPIPE) {
#if defined(MA_DEBUG_OUTPUT)
printf("TRACE: EPIPE (write)\n");
#endif
/* Underrun. Recover and try again. If this fails we need to return an error. */
resultALSA = ((ma_snd_pcm_recover_proc)pDevice->pContext->alsa.snd_pcm_recover)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, resultALSA, MA_TRUE);
if (resultALSA < 0) { /* MA_TRUE=silent (don't print anything on error). */
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to recover device after underrun.", ma_result_from_errno((int)-resultALSA));
}
/*
In my testing I have had a situation where writei() does not automatically restart the device even though I've set it
up as such in the software parameters. What will happen is writei() will block indefinitely even though the number of
frames is well beyond the auto-start threshold. To work around this I've needed to add an explicit start here. Not sure
if this is me just being stupid and not recovering the device properly, but this definitely feels like something isn't
quite right here.
*/
resultALSA = ((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback);
if (resultALSA < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device after underrun.", ma_result_from_errno((int)-resultALSA));
}
resultALSA = ((ma_snd_pcm_writei_proc)pDevice->pContext->alsa.snd_pcm_writei)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback, pFrames, frameCount);
if (resultALSA < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to write data to device after underrun.", ma_result_from_errno((int)-resultALSA));
}
}
}
}
if (pFramesWritten != NULL) {
*pFramesWritten = resultALSA;
}
return MA_SUCCESS;
}
static ma_result ma_device_main_loop__alsa(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
int resultALSA;
ma_bool32 exitLoop = MA_FALSE;
MA_ASSERT(pDevice != NULL);
/* Capture devices need to be started immediately. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
resultALSA = ((ma_snd_pcm_start_proc)pDevice->pContext->alsa.snd_pcm_start)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture);
if (resultALSA < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[ALSA] Failed to start device in preparation for reading.", ma_result_from_errno(-resultALSA));
}
}
while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) {
switch (pDevice->type)
{
case ma_device_type_duplex:
{
if (pDevice->alsa.isUsingMMapCapture || pDevice->alsa.isUsingMMapPlayback) {
/* MMAP */
return MA_INVALID_OPERATION; /* Not yet implemented. */
} else {
/* readi() and writei() */
/* The process is: device_read -> convert -> callback -> convert -> device_write */
ma_uint32 totalCapturedDeviceFramesProcessed = 0;
ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 capturedDeviceFramesRemaining;
ma_uint32 capturedDeviceFramesProcessed;
ma_uint32 capturedDeviceFramesToProcess;
ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
result = ma_device_read__alsa(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
capturedDeviceFramesProcessed = 0;
for (;;) {
ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
/* Convert capture data from device format to client format. */
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
if (result != MA_SUCCESS) {
break;
}
/*
If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
*/
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
/* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
if (result != MA_SUCCESS) {
break;
}
result = ma_device_write__alsa(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
/* In case an error happened from ma_device_write__alsa()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
}
} break;
case ma_device_type_capture:
{
if (pDevice->alsa.isUsingMMapCapture) {
/* MMAP */
return MA_INVALID_OPERATION; /* Not yet implemented. */
} else {
/* readi() */
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToReadThisIteration = framesRemainingInPeriod;
if (framesToReadThisIteration > intermediaryBufferSizeInFrames) {
framesToReadThisIteration = intermediaryBufferSizeInFrames;
}
result = ma_device_read__alsa(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer);
framesReadThisPeriod += framesProcessed;
}
}
} break;
case ma_device_type_playback:
{
if (pDevice->alsa.isUsingMMapPlayback) {
/* MMAP */
return MA_INVALID_OPERATION; /* Not yet implemented. */
} else {
/* writei() */
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod;
if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) {
framesToWriteThisIteration = intermediaryBufferSizeInFrames;
}
ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer);
result = ma_device_write__alsa(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
framesWrittenThisPeriod += framesProcessed;
}
}
} break;
/* To silence a warning. Will never hit this. */
case ma_device_type_loopback:
default: break;
}
}
/* Here is where the device needs to be stopped. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((ma_snd_pcm_drain_proc)pDevice->pContext->alsa.snd_pcm_drain)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture);
/* We need to prepare the device again, otherwise we won't be able to restart the device. */
if (((ma_snd_pcm_prepare_proc)pDevice->pContext->alsa.snd_pcm_prepare)((ma_snd_pcm_t*)pDevice->alsa.pPCMCapture) < 0) {
#ifdef MA_DEBUG_OUTPUT
printf("[ALSA] Failed to prepare capture device after stopping.\n");
#endif
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
((ma_snd_pcm_drain_proc)pDevice->pContext->alsa.snd_pcm_drain)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback);
/* We need to prepare the device again, otherwise we won't be able to restart the device. */
if (((ma_snd_pcm_prepare_proc)pDevice->pContext->alsa.snd_pcm_prepare)((ma_snd_pcm_t*)pDevice->alsa.pPCMPlayback) < 0) {
#ifdef MA_DEBUG_OUTPUT
printf("[ALSA] Failed to prepare playback device after stopping.\n");
#endif
}
}
return result;
}
static ma_result ma_context_uninit__alsa(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_alsa);
/* Clean up memory for memory leak checkers. */
((ma_snd_config_update_free_global_proc)pContext->alsa.snd_config_update_free_global)();
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->alsa.asoundSO);
#endif
ma_mutex_uninit(&pContext->alsa.internalDeviceEnumLock);
return MA_SUCCESS;
}
static ma_result ma_context_init__alsa(const ma_context_config* pConfig, ma_context* pContext)
{
#ifndef MA_NO_RUNTIME_LINKING
const char* libasoundNames[] = {
"libasound.so.2",
"libasound.so"
};
size_t i;
for (i = 0; i < ma_countof(libasoundNames); ++i) {
pContext->alsa.asoundSO = ma_dlopen(pContext, libasoundNames[i]);
if (pContext->alsa.asoundSO != NULL) {
break;
}
}
if (pContext->alsa.asoundSO == NULL) {
#ifdef MA_DEBUG_OUTPUT
printf("[ALSA] Failed to open shared object.\n");
#endif
return MA_NO_BACKEND;
}
pContext->alsa.snd_pcm_open = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_open");
pContext->alsa.snd_pcm_close = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_close");
pContext->alsa.snd_pcm_hw_params_sizeof = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_sizeof");
pContext->alsa.snd_pcm_hw_params_any = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_any");
pContext->alsa.snd_pcm_hw_params_set_format = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_format");
pContext->alsa.snd_pcm_hw_params_set_format_first = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_format_first");
pContext->alsa.snd_pcm_hw_params_get_format_mask = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_format_mask");
pContext->alsa.snd_pcm_hw_params_set_channels_near = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_channels_near");
pContext->alsa.snd_pcm_hw_params_set_rate_resample = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_rate_resample");
pContext->alsa.snd_pcm_hw_params_set_rate_near = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_rate_near");
pContext->alsa.snd_pcm_hw_params_set_buffer_size_near = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_buffer_size_near");
pContext->alsa.snd_pcm_hw_params_set_periods_near = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_periods_near");
pContext->alsa.snd_pcm_hw_params_set_access = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_set_access");
pContext->alsa.snd_pcm_hw_params_get_format = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_format");
pContext->alsa.snd_pcm_hw_params_get_channels = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_channels");
pContext->alsa.snd_pcm_hw_params_get_channels_min = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_channels_min");
pContext->alsa.snd_pcm_hw_params_get_channels_max = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_channels_max");
pContext->alsa.snd_pcm_hw_params_get_rate = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_rate");
pContext->alsa.snd_pcm_hw_params_get_rate_min = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_rate_min");
pContext->alsa.snd_pcm_hw_params_get_rate_max = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_rate_max");
pContext->alsa.snd_pcm_hw_params_get_buffer_size = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_buffer_size");
pContext->alsa.snd_pcm_hw_params_get_periods = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_periods");
pContext->alsa.snd_pcm_hw_params_get_access = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params_get_access");
pContext->alsa.snd_pcm_hw_params = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_hw_params");
pContext->alsa.snd_pcm_sw_params_sizeof = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_sizeof");
pContext->alsa.snd_pcm_sw_params_current = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_current");
pContext->alsa.snd_pcm_sw_params_get_boundary = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_get_boundary");
pContext->alsa.snd_pcm_sw_params_set_avail_min = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_set_avail_min");
pContext->alsa.snd_pcm_sw_params_set_start_threshold = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_set_start_threshold");
pContext->alsa.snd_pcm_sw_params_set_stop_threshold = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params_set_stop_threshold");
pContext->alsa.snd_pcm_sw_params = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_sw_params");
pContext->alsa.snd_pcm_format_mask_sizeof = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_format_mask_sizeof");
pContext->alsa.snd_pcm_format_mask_test = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_format_mask_test");
pContext->alsa.snd_pcm_get_chmap = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_get_chmap");
pContext->alsa.snd_pcm_state = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_state");
pContext->alsa.snd_pcm_prepare = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_prepare");
pContext->alsa.snd_pcm_start = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_start");
pContext->alsa.snd_pcm_drop = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_drop");
pContext->alsa.snd_pcm_drain = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_drain");
pContext->alsa.snd_device_name_hint = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_device_name_hint");
pContext->alsa.snd_device_name_get_hint = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_device_name_get_hint");
pContext->alsa.snd_card_get_index = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_card_get_index");
pContext->alsa.snd_device_name_free_hint = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_device_name_free_hint");
pContext->alsa.snd_pcm_mmap_begin = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_mmap_begin");
pContext->alsa.snd_pcm_mmap_commit = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_mmap_commit");
pContext->alsa.snd_pcm_recover = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_recover");
pContext->alsa.snd_pcm_readi = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_readi");
pContext->alsa.snd_pcm_writei = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_writei");
pContext->alsa.snd_pcm_avail = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_avail");
pContext->alsa.snd_pcm_avail_update = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_avail_update");
pContext->alsa.snd_pcm_wait = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_wait");
pContext->alsa.snd_pcm_info = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_info");
pContext->alsa.snd_pcm_info_sizeof = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_info_sizeof");
pContext->alsa.snd_pcm_info_get_name = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_pcm_info_get_name");
pContext->alsa.snd_config_update_free_global = (ma_proc)ma_dlsym(pContext, pContext->alsa.asoundSO, "snd_config_update_free_global");
#else
/* The system below is just for type safety. */
ma_snd_pcm_open_proc _snd_pcm_open = snd_pcm_open;
ma_snd_pcm_close_proc _snd_pcm_close = snd_pcm_close;
ma_snd_pcm_hw_params_sizeof_proc _snd_pcm_hw_params_sizeof = snd_pcm_hw_params_sizeof;
ma_snd_pcm_hw_params_any_proc _snd_pcm_hw_params_any = snd_pcm_hw_params_any;
ma_snd_pcm_hw_params_set_format_proc _snd_pcm_hw_params_set_format = snd_pcm_hw_params_set_format;
ma_snd_pcm_hw_params_set_format_first_proc _snd_pcm_hw_params_set_format_first = snd_pcm_hw_params_set_format_first;
ma_snd_pcm_hw_params_get_format_mask_proc _snd_pcm_hw_params_get_format_mask = snd_pcm_hw_params_get_format_mask;
ma_snd_pcm_hw_params_set_channels_near_proc _snd_pcm_hw_params_set_channels_near = snd_pcm_hw_params_set_channels_near;
ma_snd_pcm_hw_params_set_rate_resample_proc _snd_pcm_hw_params_set_rate_resample = snd_pcm_hw_params_set_rate_resample;
ma_snd_pcm_hw_params_set_rate_near_proc _snd_pcm_hw_params_set_rate_near = snd_pcm_hw_params_set_rate_near;
ma_snd_pcm_hw_params_set_buffer_size_near_proc _snd_pcm_hw_params_set_buffer_size_near = snd_pcm_hw_params_set_buffer_size_near;
ma_snd_pcm_hw_params_set_periods_near_proc _snd_pcm_hw_params_set_periods_near = snd_pcm_hw_params_set_periods_near;
ma_snd_pcm_hw_params_set_access_proc _snd_pcm_hw_params_set_access = snd_pcm_hw_params_set_access;
ma_snd_pcm_hw_params_get_format_proc _snd_pcm_hw_params_get_format = snd_pcm_hw_params_get_format;
ma_snd_pcm_hw_params_get_channels_proc _snd_pcm_hw_params_get_channels = snd_pcm_hw_params_get_channels;
ma_snd_pcm_hw_params_get_channels_min_proc _snd_pcm_hw_params_get_channels_min = snd_pcm_hw_params_get_channels_min;
ma_snd_pcm_hw_params_get_channels_max_proc _snd_pcm_hw_params_get_channels_max = snd_pcm_hw_params_get_channels_max;
ma_snd_pcm_hw_params_get_rate_proc _snd_pcm_hw_params_get_rate = snd_pcm_hw_params_get_rate;
ma_snd_pcm_hw_params_get_rate_min_proc _snd_pcm_hw_params_get_rate_min = snd_pcm_hw_params_get_rate_min;
ma_snd_pcm_hw_params_get_rate_max_proc _snd_pcm_hw_params_get_rate_max = snd_pcm_hw_params_get_rate_max;
ma_snd_pcm_hw_params_get_buffer_size_proc _snd_pcm_hw_params_get_buffer_size = snd_pcm_hw_params_get_buffer_size;
ma_snd_pcm_hw_params_get_periods_proc _snd_pcm_hw_params_get_periods = snd_pcm_hw_params_get_periods;
ma_snd_pcm_hw_params_get_access_proc _snd_pcm_hw_params_get_access = snd_pcm_hw_params_get_access;
ma_snd_pcm_hw_params_proc _snd_pcm_hw_params = snd_pcm_hw_params;
ma_snd_pcm_sw_params_sizeof_proc _snd_pcm_sw_params_sizeof = snd_pcm_sw_params_sizeof;
ma_snd_pcm_sw_params_current_proc _snd_pcm_sw_params_current = snd_pcm_sw_params_current;
ma_snd_pcm_sw_params_get_boundary_proc _snd_pcm_sw_params_get_boundary = snd_pcm_sw_params_get_boundary;
ma_snd_pcm_sw_params_set_avail_min_proc _snd_pcm_sw_params_set_avail_min = snd_pcm_sw_params_set_avail_min;
ma_snd_pcm_sw_params_set_start_threshold_proc _snd_pcm_sw_params_set_start_threshold = snd_pcm_sw_params_set_start_threshold;
ma_snd_pcm_sw_params_set_stop_threshold_proc _snd_pcm_sw_params_set_stop_threshold = snd_pcm_sw_params_set_stop_threshold;
ma_snd_pcm_sw_params_proc _snd_pcm_sw_params = snd_pcm_sw_params;
ma_snd_pcm_format_mask_sizeof_proc _snd_pcm_format_mask_sizeof = snd_pcm_format_mask_sizeof;
ma_snd_pcm_format_mask_test_proc _snd_pcm_format_mask_test = snd_pcm_format_mask_test;
ma_snd_pcm_get_chmap_proc _snd_pcm_get_chmap = snd_pcm_get_chmap;
ma_snd_pcm_state_proc _snd_pcm_state = snd_pcm_state;
ma_snd_pcm_prepare_proc _snd_pcm_prepare = snd_pcm_prepare;
ma_snd_pcm_start_proc _snd_pcm_start = snd_pcm_start;
ma_snd_pcm_drop_proc _snd_pcm_drop = snd_pcm_drop;
ma_snd_pcm_drain_proc _snd_pcm_drain = snd_pcm_drain;
ma_snd_device_name_hint_proc _snd_device_name_hint = snd_device_name_hint;
ma_snd_device_name_get_hint_proc _snd_device_name_get_hint = snd_device_name_get_hint;
ma_snd_card_get_index_proc _snd_card_get_index = snd_card_get_index;
ma_snd_device_name_free_hint_proc _snd_device_name_free_hint = snd_device_name_free_hint;
ma_snd_pcm_mmap_begin_proc _snd_pcm_mmap_begin = snd_pcm_mmap_begin;
ma_snd_pcm_mmap_commit_proc _snd_pcm_mmap_commit = snd_pcm_mmap_commit;
ma_snd_pcm_recover_proc _snd_pcm_recover = snd_pcm_recover;
ma_snd_pcm_readi_proc _snd_pcm_readi = snd_pcm_readi;
ma_snd_pcm_writei_proc _snd_pcm_writei = snd_pcm_writei;
ma_snd_pcm_avail_proc _snd_pcm_avail = snd_pcm_avail;
ma_snd_pcm_avail_update_proc _snd_pcm_avail_update = snd_pcm_avail_update;
ma_snd_pcm_wait_proc _snd_pcm_wait = snd_pcm_wait;
ma_snd_pcm_info_proc _snd_pcm_info = snd_pcm_info;
ma_snd_pcm_info_sizeof_proc _snd_pcm_info_sizeof = snd_pcm_info_sizeof;
ma_snd_pcm_info_get_name_proc _snd_pcm_info_get_name = snd_pcm_info_get_name;
ma_snd_config_update_free_global_proc _snd_config_update_free_global = snd_config_update_free_global;
pContext->alsa.snd_pcm_open = (ma_proc)_snd_pcm_open;
pContext->alsa.snd_pcm_close = (ma_proc)_snd_pcm_close;
pContext->alsa.snd_pcm_hw_params_sizeof = (ma_proc)_snd_pcm_hw_params_sizeof;
pContext->alsa.snd_pcm_hw_params_any = (ma_proc)_snd_pcm_hw_params_any;
pContext->alsa.snd_pcm_hw_params_set_format = (ma_proc)_snd_pcm_hw_params_set_format;
pContext->alsa.snd_pcm_hw_params_set_format_first = (ma_proc)_snd_pcm_hw_params_set_format_first;
pContext->alsa.snd_pcm_hw_params_get_format_mask = (ma_proc)_snd_pcm_hw_params_get_format_mask;
pContext->alsa.snd_pcm_hw_params_set_channels_near = (ma_proc)_snd_pcm_hw_params_set_channels_near;
pContext->alsa.snd_pcm_hw_params_set_rate_resample = (ma_proc)_snd_pcm_hw_params_set_rate_resample;
pContext->alsa.snd_pcm_hw_params_set_rate_near = (ma_proc)_snd_pcm_hw_params_set_rate_near;
pContext->alsa.snd_pcm_hw_params_set_buffer_size_near = (ma_proc)_snd_pcm_hw_params_set_buffer_size_near;
pContext->alsa.snd_pcm_hw_params_set_periods_near = (ma_proc)_snd_pcm_hw_params_set_periods_near;
pContext->alsa.snd_pcm_hw_params_set_access = (ma_proc)_snd_pcm_hw_params_set_access;
pContext->alsa.snd_pcm_hw_params_get_format = (ma_proc)_snd_pcm_hw_params_get_format;
pContext->alsa.snd_pcm_hw_params_get_channels = (ma_proc)_snd_pcm_hw_params_get_channels;
pContext->alsa.snd_pcm_hw_params_get_channels_min = (ma_proc)_snd_pcm_hw_params_get_channels_min;
pContext->alsa.snd_pcm_hw_params_get_channels_max = (ma_proc)_snd_pcm_hw_params_get_channels_max;
pContext->alsa.snd_pcm_hw_params_get_rate = (ma_proc)_snd_pcm_hw_params_get_rate;
pContext->alsa.snd_pcm_hw_params_get_rate_min = (ma_proc)_snd_pcm_hw_params_get_rate_min;
pContext->alsa.snd_pcm_hw_params_get_rate_max = (ma_proc)_snd_pcm_hw_params_get_rate_max;
pContext->alsa.snd_pcm_hw_params_get_buffer_size = (ma_proc)_snd_pcm_hw_params_get_buffer_size;
pContext->alsa.snd_pcm_hw_params_get_periods = (ma_proc)_snd_pcm_hw_params_get_periods;
pContext->alsa.snd_pcm_hw_params_get_access = (ma_proc)_snd_pcm_hw_params_get_access;
pContext->alsa.snd_pcm_hw_params = (ma_proc)_snd_pcm_hw_params;
pContext->alsa.snd_pcm_sw_params_sizeof = (ma_proc)_snd_pcm_sw_params_sizeof;
pContext->alsa.snd_pcm_sw_params_current = (ma_proc)_snd_pcm_sw_params_current;
pContext->alsa.snd_pcm_sw_params_get_boundary = (ma_proc)_snd_pcm_sw_params_get_boundary;
pContext->alsa.snd_pcm_sw_params_set_avail_min = (ma_proc)_snd_pcm_sw_params_set_avail_min;
pContext->alsa.snd_pcm_sw_params_set_start_threshold = (ma_proc)_snd_pcm_sw_params_set_start_threshold;
pContext->alsa.snd_pcm_sw_params_set_stop_threshold = (ma_proc)_snd_pcm_sw_params_set_stop_threshold;
pContext->alsa.snd_pcm_sw_params = (ma_proc)_snd_pcm_sw_params;
pContext->alsa.snd_pcm_format_mask_sizeof = (ma_proc)_snd_pcm_format_mask_sizeof;
pContext->alsa.snd_pcm_format_mask_test = (ma_proc)_snd_pcm_format_mask_test;
pContext->alsa.snd_pcm_get_chmap = (ma_proc)_snd_pcm_get_chmap;
pContext->alsa.snd_pcm_state = (ma_proc)_snd_pcm_state;
pContext->alsa.snd_pcm_prepare = (ma_proc)_snd_pcm_prepare;
pContext->alsa.snd_pcm_start = (ma_proc)_snd_pcm_start;
pContext->alsa.snd_pcm_drop = (ma_proc)_snd_pcm_drop;
pContext->alsa.snd_pcm_drain = (ma_proc)_snd_pcm_drain;
pContext->alsa.snd_device_name_hint = (ma_proc)_snd_device_name_hint;
pContext->alsa.snd_device_name_get_hint = (ma_proc)_snd_device_name_get_hint;
pContext->alsa.snd_card_get_index = (ma_proc)_snd_card_get_index;
pContext->alsa.snd_device_name_free_hint = (ma_proc)_snd_device_name_free_hint;
pContext->alsa.snd_pcm_mmap_begin = (ma_proc)_snd_pcm_mmap_begin;
pContext->alsa.snd_pcm_mmap_commit = (ma_proc)_snd_pcm_mmap_commit;
pContext->alsa.snd_pcm_recover = (ma_proc)_snd_pcm_recover;
pContext->alsa.snd_pcm_readi = (ma_proc)_snd_pcm_readi;
pContext->alsa.snd_pcm_writei = (ma_proc)_snd_pcm_writei;
pContext->alsa.snd_pcm_avail = (ma_proc)_snd_pcm_avail;
pContext->alsa.snd_pcm_avail_update = (ma_proc)_snd_pcm_avail_update;
pContext->alsa.snd_pcm_wait = (ma_proc)_snd_pcm_wait;
pContext->alsa.snd_pcm_info = (ma_proc)_snd_pcm_info;
pContext->alsa.snd_pcm_info_sizeof = (ma_proc)_snd_pcm_info_sizeof;
pContext->alsa.snd_pcm_info_get_name = (ma_proc)_snd_pcm_info_get_name;
pContext->alsa.snd_config_update_free_global = (ma_proc)_snd_config_update_free_global;
#endif
pContext->alsa.useVerboseDeviceEnumeration = pConfig->alsa.useVerboseDeviceEnumeration;
if (ma_mutex_init(&pContext->alsa.internalDeviceEnumLock) != MA_SUCCESS) {
ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[ALSA] WARNING: Failed to initialize mutex for internal device enumeration.", MA_ERROR);
}
pContext->onUninit = ma_context_uninit__alsa;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__alsa;
pContext->onEnumDevices = ma_context_enumerate_devices__alsa;
pContext->onGetDeviceInfo = ma_context_get_device_info__alsa;
pContext->onDeviceInit = ma_device_init__alsa;
pContext->onDeviceUninit = ma_device_uninit__alsa;
pContext->onDeviceStart = NULL; /* Not used. Started in the main loop. */
pContext->onDeviceStop = NULL; /* Not used. Started in the main loop. */
pContext->onDeviceMainLoop = ma_device_main_loop__alsa;
return MA_SUCCESS;
}
#endif /* ALSA */
/******************************************************************************
PulseAudio Backend
******************************************************************************/
#ifdef MA_HAS_PULSEAUDIO
/*
It is assumed pulseaudio.h is available when compile-time linking is being used. We use this for type safety when using
compile time linking (we don't have this luxury when using runtime linking without headers).
When using compile time linking, each of our ma_* equivalents should use the sames types as defined by the header. The
reason for this is that it allow us to take advantage of proper type safety.
*/
#ifdef MA_NO_RUNTIME_LINKING
/* pulseaudio.h marks some functions with "inline" which isn't always supported. Need to emulate it. */
#if !defined(__cplusplus)
#if defined(__STRICT_ANSI__)
#if !defined(inline)
#define inline __inline__ __attribute__((always_inline))
#define MA_INLINE_DEFINED
#endif
#endif
#endif
#include <pulse/pulseaudio.h>
#if defined(MA_INLINE_DEFINED)
#undef inline
#undef MA_INLINE_DEFINED
#endif
#define MA_PA_OK PA_OK
#define MA_PA_ERR_ACCESS PA_ERR_ACCESS
#define MA_PA_ERR_INVALID PA_ERR_INVALID
#define MA_PA_ERR_NOENTITY PA_ERR_NOENTITY
#define MA_PA_CHANNELS_MAX PA_CHANNELS_MAX
#define MA_PA_RATE_MAX PA_RATE_MAX
typedef pa_context_flags_t ma_pa_context_flags_t;
#define MA_PA_CONTEXT_NOFLAGS PA_CONTEXT_NOFLAGS
#define MA_PA_CONTEXT_NOAUTOSPAWN PA_CONTEXT_NOAUTOSPAWN
#define MA_PA_CONTEXT_NOFAIL PA_CONTEXT_NOFAIL
typedef pa_stream_flags_t ma_pa_stream_flags_t;
#define MA_PA_STREAM_NOFLAGS PA_STREAM_NOFLAGS
#define MA_PA_STREAM_START_CORKED PA_STREAM_START_CORKED
#define MA_PA_STREAM_INTERPOLATE_TIMING PA_STREAM_INTERPOLATE_TIMING
#define MA_PA_STREAM_NOT_MONOTONIC PA_STREAM_NOT_MONOTONIC
#define MA_PA_STREAM_AUTO_TIMING_UPDATE PA_STREAM_AUTO_TIMING_UPDATE
#define MA_PA_STREAM_NO_REMAP_CHANNELS PA_STREAM_NO_REMAP_CHANNELS
#define MA_PA_STREAM_NO_REMIX_CHANNELS PA_STREAM_NO_REMIX_CHANNELS
#define MA_PA_STREAM_FIX_FORMAT PA_STREAM_FIX_FORMAT
#define MA_PA_STREAM_FIX_RATE PA_STREAM_FIX_RATE
#define MA_PA_STREAM_FIX_CHANNELS PA_STREAM_FIX_CHANNELS
#define MA_PA_STREAM_DONT_MOVE PA_STREAM_DONT_MOVE
#define MA_PA_STREAM_VARIABLE_RATE PA_STREAM_VARIABLE_RATE
#define MA_PA_STREAM_PEAK_DETECT PA_STREAM_PEAK_DETECT
#define MA_PA_STREAM_START_MUTED PA_STREAM_START_MUTED
#define MA_PA_STREAM_ADJUST_LATENCY PA_STREAM_ADJUST_LATENCY
#define MA_PA_STREAM_EARLY_REQUESTS PA_STREAM_EARLY_REQUESTS
#define MA_PA_STREAM_DONT_INHIBIT_AUTO_SUSPEND PA_STREAM_DONT_INHIBIT_AUTO_SUSPEND
#define MA_PA_STREAM_START_UNMUTED PA_STREAM_START_UNMUTED
#define MA_PA_STREAM_FAIL_ON_SUSPEND PA_STREAM_FAIL_ON_SUSPEND
#define MA_PA_STREAM_RELATIVE_VOLUME PA_STREAM_RELATIVE_VOLUME
#define MA_PA_STREAM_PASSTHROUGH PA_STREAM_PASSTHROUGH
typedef pa_sink_flags_t ma_pa_sink_flags_t;
#define MA_PA_SINK_NOFLAGS PA_SINK_NOFLAGS
#define MA_PA_SINK_HW_VOLUME_CTRL PA_SINK_HW_VOLUME_CTRL
#define MA_PA_SINK_LATENCY PA_SINK_LATENCY
#define MA_PA_SINK_HARDWARE PA_SINK_HARDWARE
#define MA_PA_SINK_NETWORK PA_SINK_NETWORK
#define MA_PA_SINK_HW_MUTE_CTRL PA_SINK_HW_MUTE_CTRL
#define MA_PA_SINK_DECIBEL_VOLUME PA_SINK_DECIBEL_VOLUME
#define MA_PA_SINK_FLAT_VOLUME PA_SINK_FLAT_VOLUME
#define MA_PA_SINK_DYNAMIC_LATENCY PA_SINK_DYNAMIC_LATENCY
#define MA_PA_SINK_SET_FORMATS PA_SINK_SET_FORMATS
typedef pa_source_flags_t ma_pa_source_flags_t;
#define MA_PA_SOURCE_NOFLAGS PA_SOURCE_NOFLAGS
#define MA_PA_SOURCE_HW_VOLUME_CTRL PA_SOURCE_HW_VOLUME_CTRL
#define MA_PA_SOURCE_LATENCY PA_SOURCE_LATENCY
#define MA_PA_SOURCE_HARDWARE PA_SOURCE_HARDWARE
#define MA_PA_SOURCE_NETWORK PA_SOURCE_NETWORK
#define MA_PA_SOURCE_HW_MUTE_CTRL PA_SOURCE_HW_MUTE_CTRL
#define MA_PA_SOURCE_DECIBEL_VOLUME PA_SOURCE_DECIBEL_VOLUME
#define MA_PA_SOURCE_DYNAMIC_LATENCY PA_SOURCE_DYNAMIC_LATENCY
#define MA_PA_SOURCE_FLAT_VOLUME PA_SOURCE_FLAT_VOLUME
typedef pa_context_state_t ma_pa_context_state_t;
#define MA_PA_CONTEXT_UNCONNECTED PA_CONTEXT_UNCONNECTED
#define MA_PA_CONTEXT_CONNECTING PA_CONTEXT_CONNECTING
#define MA_PA_CONTEXT_AUTHORIZING PA_CONTEXT_AUTHORIZING
#define MA_PA_CONTEXT_SETTING_NAME PA_CONTEXT_SETTING_NAME
#define MA_PA_CONTEXT_READY PA_CONTEXT_READY
#define MA_PA_CONTEXT_FAILED PA_CONTEXT_FAILED
#define MA_PA_CONTEXT_TERMINATED PA_CONTEXT_TERMINATED
typedef pa_stream_state_t ma_pa_stream_state_t;
#define MA_PA_STREAM_UNCONNECTED PA_STREAM_UNCONNECTED
#define MA_PA_STREAM_CREATING PA_STREAM_CREATING
#define MA_PA_STREAM_READY PA_STREAM_READY
#define MA_PA_STREAM_FAILED PA_STREAM_FAILED
#define MA_PA_STREAM_TERMINATED PA_STREAM_TERMINATED
typedef pa_operation_state_t ma_pa_operation_state_t;
#define MA_PA_OPERATION_RUNNING PA_OPERATION_RUNNING
#define MA_PA_OPERATION_DONE PA_OPERATION_DONE
#define MA_PA_OPERATION_CANCELLED PA_OPERATION_CANCELLED
typedef pa_sink_state_t ma_pa_sink_state_t;
#define MA_PA_SINK_INVALID_STATE PA_SINK_INVALID_STATE
#define MA_PA_SINK_RUNNING PA_SINK_RUNNING
#define MA_PA_SINK_IDLE PA_SINK_IDLE
#define MA_PA_SINK_SUSPENDED PA_SINK_SUSPENDED
typedef pa_source_state_t ma_pa_source_state_t;
#define MA_PA_SOURCE_INVALID_STATE PA_SOURCE_INVALID_STATE
#define MA_PA_SOURCE_RUNNING PA_SOURCE_RUNNING
#define MA_PA_SOURCE_IDLE PA_SOURCE_IDLE
#define MA_PA_SOURCE_SUSPENDED PA_SOURCE_SUSPENDED
typedef pa_seek_mode_t ma_pa_seek_mode_t;
#define MA_PA_SEEK_RELATIVE PA_SEEK_RELATIVE
#define MA_PA_SEEK_ABSOLUTE PA_SEEK_ABSOLUTE
#define MA_PA_SEEK_RELATIVE_ON_READ PA_SEEK_RELATIVE_ON_READ
#define MA_PA_SEEK_RELATIVE_END PA_SEEK_RELATIVE_END
typedef pa_channel_position_t ma_pa_channel_position_t;
#define MA_PA_CHANNEL_POSITION_INVALID PA_CHANNEL_POSITION_INVALID
#define MA_PA_CHANNEL_POSITION_MONO PA_CHANNEL_POSITION_MONO
#define MA_PA_CHANNEL_POSITION_FRONT_LEFT PA_CHANNEL_POSITION_FRONT_LEFT
#define MA_PA_CHANNEL_POSITION_FRONT_RIGHT PA_CHANNEL_POSITION_FRONT_RIGHT
#define MA_PA_CHANNEL_POSITION_FRONT_CENTER PA_CHANNEL_POSITION_FRONT_CENTER
#define MA_PA_CHANNEL_POSITION_REAR_CENTER PA_CHANNEL_POSITION_REAR_CENTER
#define MA_PA_CHANNEL_POSITION_REAR_LEFT PA_CHANNEL_POSITION_REAR_LEFT
#define MA_PA_CHANNEL_POSITION_REAR_RIGHT PA_CHANNEL_POSITION_REAR_RIGHT
#define MA_PA_CHANNEL_POSITION_LFE PA_CHANNEL_POSITION_LFE
#define MA_PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER
#define MA_PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER
#define MA_PA_CHANNEL_POSITION_SIDE_LEFT PA_CHANNEL_POSITION_SIDE_LEFT
#define MA_PA_CHANNEL_POSITION_SIDE_RIGHT PA_CHANNEL_POSITION_SIDE_RIGHT
#define MA_PA_CHANNEL_POSITION_AUX0 PA_CHANNEL_POSITION_AUX0
#define MA_PA_CHANNEL_POSITION_AUX1 PA_CHANNEL_POSITION_AUX1
#define MA_PA_CHANNEL_POSITION_AUX2 PA_CHANNEL_POSITION_AUX2
#define MA_PA_CHANNEL_POSITION_AUX3 PA_CHANNEL_POSITION_AUX3
#define MA_PA_CHANNEL_POSITION_AUX4 PA_CHANNEL_POSITION_AUX4
#define MA_PA_CHANNEL_POSITION_AUX5 PA_CHANNEL_POSITION_AUX5
#define MA_PA_CHANNEL_POSITION_AUX6 PA_CHANNEL_POSITION_AUX6
#define MA_PA_CHANNEL_POSITION_AUX7 PA_CHANNEL_POSITION_AUX7
#define MA_PA_CHANNEL_POSITION_AUX8 PA_CHANNEL_POSITION_AUX8
#define MA_PA_CHANNEL_POSITION_AUX9 PA_CHANNEL_POSITION_AUX9
#define MA_PA_CHANNEL_POSITION_AUX10 PA_CHANNEL_POSITION_AUX10
#define MA_PA_CHANNEL_POSITION_AUX11 PA_CHANNEL_POSITION_AUX11
#define MA_PA_CHANNEL_POSITION_AUX12 PA_CHANNEL_POSITION_AUX12
#define MA_PA_CHANNEL_POSITION_AUX13 PA_CHANNEL_POSITION_AUX13
#define MA_PA_CHANNEL_POSITION_AUX14 PA_CHANNEL_POSITION_AUX14
#define MA_PA_CHANNEL_POSITION_AUX15 PA_CHANNEL_POSITION_AUX15
#define MA_PA_CHANNEL_POSITION_AUX16 PA_CHANNEL_POSITION_AUX16
#define MA_PA_CHANNEL_POSITION_AUX17 PA_CHANNEL_POSITION_AUX17
#define MA_PA_CHANNEL_POSITION_AUX18 PA_CHANNEL_POSITION_AUX18
#define MA_PA_CHANNEL_POSITION_AUX19 PA_CHANNEL_POSITION_AUX19
#define MA_PA_CHANNEL_POSITION_AUX20 PA_CHANNEL_POSITION_AUX20
#define MA_PA_CHANNEL_POSITION_AUX21 PA_CHANNEL_POSITION_AUX21
#define MA_PA_CHANNEL_POSITION_AUX22 PA_CHANNEL_POSITION_AUX22
#define MA_PA_CHANNEL_POSITION_AUX23 PA_CHANNEL_POSITION_AUX23
#define MA_PA_CHANNEL_POSITION_AUX24 PA_CHANNEL_POSITION_AUX24
#define MA_PA_CHANNEL_POSITION_AUX25 PA_CHANNEL_POSITION_AUX25
#define MA_PA_CHANNEL_POSITION_AUX26 PA_CHANNEL_POSITION_AUX26
#define MA_PA_CHANNEL_POSITION_AUX27 PA_CHANNEL_POSITION_AUX27
#define MA_PA_CHANNEL_POSITION_AUX28 PA_CHANNEL_POSITION_AUX28
#define MA_PA_CHANNEL_POSITION_AUX29 PA_CHANNEL_POSITION_AUX29
#define MA_PA_CHANNEL_POSITION_AUX30 PA_CHANNEL_POSITION_AUX30
#define MA_PA_CHANNEL_POSITION_AUX31 PA_CHANNEL_POSITION_AUX31
#define MA_PA_CHANNEL_POSITION_TOP_CENTER PA_CHANNEL_POSITION_TOP_CENTER
#define MA_PA_CHANNEL_POSITION_TOP_FRONT_LEFT PA_CHANNEL_POSITION_TOP_FRONT_LEFT
#define MA_PA_CHANNEL_POSITION_TOP_FRONT_RIGHT PA_CHANNEL_POSITION_TOP_FRONT_RIGHT
#define MA_PA_CHANNEL_POSITION_TOP_FRONT_CENTER PA_CHANNEL_POSITION_TOP_FRONT_CENTER
#define MA_PA_CHANNEL_POSITION_TOP_REAR_LEFT PA_CHANNEL_POSITION_TOP_REAR_LEFT
#define MA_PA_CHANNEL_POSITION_TOP_REAR_RIGHT PA_CHANNEL_POSITION_TOP_REAR_RIGHT
#define MA_PA_CHANNEL_POSITION_TOP_REAR_CENTER PA_CHANNEL_POSITION_TOP_REAR_CENTER
#define MA_PA_CHANNEL_POSITION_LEFT PA_CHANNEL_POSITION_LEFT
#define MA_PA_CHANNEL_POSITION_RIGHT PA_CHANNEL_POSITION_RIGHT
#define MA_PA_CHANNEL_POSITION_CENTER PA_CHANNEL_POSITION_CENTER
#define MA_PA_CHANNEL_POSITION_SUBWOOFER PA_CHANNEL_POSITION_SUBWOOFER
typedef pa_channel_map_def_t ma_pa_channel_map_def_t;
#define MA_PA_CHANNEL_MAP_AIFF PA_CHANNEL_MAP_AIFF
#define MA_PA_CHANNEL_MAP_ALSA PA_CHANNEL_MAP_ALSA
#define MA_PA_CHANNEL_MAP_AUX PA_CHANNEL_MAP_AUX
#define MA_PA_CHANNEL_MAP_WAVEEX PA_CHANNEL_MAP_WAVEEX
#define MA_PA_CHANNEL_MAP_OSS PA_CHANNEL_MAP_OSS
#define MA_PA_CHANNEL_MAP_DEFAULT PA_CHANNEL_MAP_DEFAULT
typedef pa_sample_format_t ma_pa_sample_format_t;
#define MA_PA_SAMPLE_INVALID PA_SAMPLE_INVALID
#define MA_PA_SAMPLE_U8 PA_SAMPLE_U8
#define MA_PA_SAMPLE_ALAW PA_SAMPLE_ALAW
#define MA_PA_SAMPLE_ULAW PA_SAMPLE_ULAW
#define MA_PA_SAMPLE_S16LE PA_SAMPLE_S16LE
#define MA_PA_SAMPLE_S16BE PA_SAMPLE_S16BE
#define MA_PA_SAMPLE_FLOAT32LE PA_SAMPLE_FLOAT32LE
#define MA_PA_SAMPLE_FLOAT32BE PA_SAMPLE_FLOAT32BE
#define MA_PA_SAMPLE_S32LE PA_SAMPLE_S32LE
#define MA_PA_SAMPLE_S32BE PA_SAMPLE_S32BE
#define MA_PA_SAMPLE_S24LE PA_SAMPLE_S24LE
#define MA_PA_SAMPLE_S24BE PA_SAMPLE_S24BE
#define MA_PA_SAMPLE_S24_32LE PA_SAMPLE_S24_32LE
#define MA_PA_SAMPLE_S24_32BE PA_SAMPLE_S24_32BE
typedef pa_mainloop ma_pa_mainloop;
typedef pa_mainloop_api ma_pa_mainloop_api;
typedef pa_context ma_pa_context;
typedef pa_operation ma_pa_operation;
typedef pa_stream ma_pa_stream;
typedef pa_spawn_api ma_pa_spawn_api;
typedef pa_buffer_attr ma_pa_buffer_attr;
typedef pa_channel_map ma_pa_channel_map;
typedef pa_cvolume ma_pa_cvolume;
typedef pa_sample_spec ma_pa_sample_spec;
typedef pa_sink_info ma_pa_sink_info;
typedef pa_source_info ma_pa_source_info;
typedef pa_context_notify_cb_t ma_pa_context_notify_cb_t;
typedef pa_sink_info_cb_t ma_pa_sink_info_cb_t;
typedef pa_source_info_cb_t ma_pa_source_info_cb_t;
typedef pa_stream_success_cb_t ma_pa_stream_success_cb_t;
typedef pa_stream_request_cb_t ma_pa_stream_request_cb_t;
typedef pa_free_cb_t ma_pa_free_cb_t;
#else
#define MA_PA_OK 0
#define MA_PA_ERR_ACCESS 1
#define MA_PA_ERR_INVALID 2
#define MA_PA_ERR_NOENTITY 5
#define MA_PA_CHANNELS_MAX 32
#define MA_PA_RATE_MAX 384000
typedef int ma_pa_context_flags_t;
#define MA_PA_CONTEXT_NOFLAGS 0x00000000
#define MA_PA_CONTEXT_NOAUTOSPAWN 0x00000001
#define MA_PA_CONTEXT_NOFAIL 0x00000002
typedef int ma_pa_stream_flags_t;
#define MA_PA_STREAM_NOFLAGS 0x00000000
#define MA_PA_STREAM_START_CORKED 0x00000001
#define MA_PA_STREAM_INTERPOLATE_TIMING 0x00000002
#define MA_PA_STREAM_NOT_MONOTONIC 0x00000004
#define MA_PA_STREAM_AUTO_TIMING_UPDATE 0x00000008
#define MA_PA_STREAM_NO_REMAP_CHANNELS 0x00000010
#define MA_PA_STREAM_NO_REMIX_CHANNELS 0x00000020
#define MA_PA_STREAM_FIX_FORMAT 0x00000040
#define MA_PA_STREAM_FIX_RATE 0x00000080
#define MA_PA_STREAM_FIX_CHANNELS 0x00000100
#define MA_PA_STREAM_DONT_MOVE 0x00000200
#define MA_PA_STREAM_VARIABLE_RATE 0x00000400
#define MA_PA_STREAM_PEAK_DETECT 0x00000800
#define MA_PA_STREAM_START_MUTED 0x00001000
#define MA_PA_STREAM_ADJUST_LATENCY 0x00002000
#define MA_PA_STREAM_EARLY_REQUESTS 0x00004000
#define MA_PA_STREAM_DONT_INHIBIT_AUTO_SUSPEND 0x00008000
#define MA_PA_STREAM_START_UNMUTED 0x00010000
#define MA_PA_STREAM_FAIL_ON_SUSPEND 0x00020000
#define MA_PA_STREAM_RELATIVE_VOLUME 0x00040000
#define MA_PA_STREAM_PASSTHROUGH 0x00080000
typedef int ma_pa_sink_flags_t;
#define MA_PA_SINK_NOFLAGS 0x00000000
#define MA_PA_SINK_HW_VOLUME_CTRL 0x00000001
#define MA_PA_SINK_LATENCY 0x00000002
#define MA_PA_SINK_HARDWARE 0x00000004
#define MA_PA_SINK_NETWORK 0x00000008
#define MA_PA_SINK_HW_MUTE_CTRL 0x00000010
#define MA_PA_SINK_DECIBEL_VOLUME 0x00000020
#define MA_PA_SINK_FLAT_VOLUME 0x00000040
#define MA_PA_SINK_DYNAMIC_LATENCY 0x00000080
#define MA_PA_SINK_SET_FORMATS 0x00000100
typedef int ma_pa_source_flags_t;
#define MA_PA_SOURCE_NOFLAGS 0x00000000
#define MA_PA_SOURCE_HW_VOLUME_CTRL 0x00000001
#define MA_PA_SOURCE_LATENCY 0x00000002
#define MA_PA_SOURCE_HARDWARE 0x00000004
#define MA_PA_SOURCE_NETWORK 0x00000008
#define MA_PA_SOURCE_HW_MUTE_CTRL 0x00000010
#define MA_PA_SOURCE_DECIBEL_VOLUME 0x00000020
#define MA_PA_SOURCE_DYNAMIC_LATENCY 0x00000040
#define MA_PA_SOURCE_FLAT_VOLUME 0x00000080
typedef int ma_pa_context_state_t;
#define MA_PA_CONTEXT_UNCONNECTED 0
#define MA_PA_CONTEXT_CONNECTING 1
#define MA_PA_CONTEXT_AUTHORIZING 2
#define MA_PA_CONTEXT_SETTING_NAME 3
#define MA_PA_CONTEXT_READY 4
#define MA_PA_CONTEXT_FAILED 5
#define MA_PA_CONTEXT_TERMINATED 6
typedef int ma_pa_stream_state_t;
#define MA_PA_STREAM_UNCONNECTED 0
#define MA_PA_STREAM_CREATING 1
#define MA_PA_STREAM_READY 2
#define MA_PA_STREAM_FAILED 3
#define MA_PA_STREAM_TERMINATED 4
typedef int ma_pa_operation_state_t;
#define MA_PA_OPERATION_RUNNING 0
#define MA_PA_OPERATION_DONE 1
#define MA_PA_OPERATION_CANCELLED 2
typedef int ma_pa_sink_state_t;
#define MA_PA_SINK_INVALID_STATE -1
#define MA_PA_SINK_RUNNING 0
#define MA_PA_SINK_IDLE 1
#define MA_PA_SINK_SUSPENDED 2
typedef int ma_pa_source_state_t;
#define MA_PA_SOURCE_INVALID_STATE -1
#define MA_PA_SOURCE_RUNNING 0
#define MA_PA_SOURCE_IDLE 1
#define MA_PA_SOURCE_SUSPENDED 2
typedef int ma_pa_seek_mode_t;
#define MA_PA_SEEK_RELATIVE 0
#define MA_PA_SEEK_ABSOLUTE 1
#define MA_PA_SEEK_RELATIVE_ON_READ 2
#define MA_PA_SEEK_RELATIVE_END 3
typedef int ma_pa_channel_position_t;
#define MA_PA_CHANNEL_POSITION_INVALID -1
#define MA_PA_CHANNEL_POSITION_MONO 0
#define MA_PA_CHANNEL_POSITION_FRONT_LEFT 1
#define MA_PA_CHANNEL_POSITION_FRONT_RIGHT 2
#define MA_PA_CHANNEL_POSITION_FRONT_CENTER 3
#define MA_PA_CHANNEL_POSITION_REAR_CENTER 4
#define MA_PA_CHANNEL_POSITION_REAR_LEFT 5
#define MA_PA_CHANNEL_POSITION_REAR_RIGHT 6
#define MA_PA_CHANNEL_POSITION_LFE 7
#define MA_PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER 8
#define MA_PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER 9
#define MA_PA_CHANNEL_POSITION_SIDE_LEFT 10
#define MA_PA_CHANNEL_POSITION_SIDE_RIGHT 11
#define MA_PA_CHANNEL_POSITION_AUX0 12
#define MA_PA_CHANNEL_POSITION_AUX1 13
#define MA_PA_CHANNEL_POSITION_AUX2 14
#define MA_PA_CHANNEL_POSITION_AUX3 15
#define MA_PA_CHANNEL_POSITION_AUX4 16
#define MA_PA_CHANNEL_POSITION_AUX5 17
#define MA_PA_CHANNEL_POSITION_AUX6 18
#define MA_PA_CHANNEL_POSITION_AUX7 19
#define MA_PA_CHANNEL_POSITION_AUX8 20
#define MA_PA_CHANNEL_POSITION_AUX9 21
#define MA_PA_CHANNEL_POSITION_AUX10 22
#define MA_PA_CHANNEL_POSITION_AUX11 23
#define MA_PA_CHANNEL_POSITION_AUX12 24
#define MA_PA_CHANNEL_POSITION_AUX13 25
#define MA_PA_CHANNEL_POSITION_AUX14 26
#define MA_PA_CHANNEL_POSITION_AUX15 27
#define MA_PA_CHANNEL_POSITION_AUX16 28
#define MA_PA_CHANNEL_POSITION_AUX17 29
#define MA_PA_CHANNEL_POSITION_AUX18 30
#define MA_PA_CHANNEL_POSITION_AUX19 31
#define MA_PA_CHANNEL_POSITION_AUX20 32
#define MA_PA_CHANNEL_POSITION_AUX21 33
#define MA_PA_CHANNEL_POSITION_AUX22 34
#define MA_PA_CHANNEL_POSITION_AUX23 35
#define MA_PA_CHANNEL_POSITION_AUX24 36
#define MA_PA_CHANNEL_POSITION_AUX25 37
#define MA_PA_CHANNEL_POSITION_AUX26 38
#define MA_PA_CHANNEL_POSITION_AUX27 39
#define MA_PA_CHANNEL_POSITION_AUX28 40
#define MA_PA_CHANNEL_POSITION_AUX29 41
#define MA_PA_CHANNEL_POSITION_AUX30 42
#define MA_PA_CHANNEL_POSITION_AUX31 43
#define MA_PA_CHANNEL_POSITION_TOP_CENTER 44
#define MA_PA_CHANNEL_POSITION_TOP_FRONT_LEFT 45
#define MA_PA_CHANNEL_POSITION_TOP_FRONT_RIGHT 46
#define MA_PA_CHANNEL_POSITION_TOP_FRONT_CENTER 47
#define MA_PA_CHANNEL_POSITION_TOP_REAR_LEFT 48
#define MA_PA_CHANNEL_POSITION_TOP_REAR_RIGHT 49
#define MA_PA_CHANNEL_POSITION_TOP_REAR_CENTER 50
#define MA_PA_CHANNEL_POSITION_LEFT MA_PA_CHANNEL_POSITION_FRONT_LEFT
#define MA_PA_CHANNEL_POSITION_RIGHT MA_PA_CHANNEL_POSITION_FRONT_RIGHT
#define MA_PA_CHANNEL_POSITION_CENTER MA_PA_CHANNEL_POSITION_FRONT_CENTER
#define MA_PA_CHANNEL_POSITION_SUBWOOFER MA_PA_CHANNEL_POSITION_LFE
typedef int ma_pa_channel_map_def_t;
#define MA_PA_CHANNEL_MAP_AIFF 0
#define MA_PA_CHANNEL_MAP_ALSA 1
#define MA_PA_CHANNEL_MAP_AUX 2
#define MA_PA_CHANNEL_MAP_WAVEEX 3
#define MA_PA_CHANNEL_MAP_OSS 4
#define MA_PA_CHANNEL_MAP_DEFAULT MA_PA_CHANNEL_MAP_AIFF
typedef int ma_pa_sample_format_t;
#define MA_PA_SAMPLE_INVALID -1
#define MA_PA_SAMPLE_U8 0
#define MA_PA_SAMPLE_ALAW 1
#define MA_PA_SAMPLE_ULAW 2
#define MA_PA_SAMPLE_S16LE 3
#define MA_PA_SAMPLE_S16BE 4
#define MA_PA_SAMPLE_FLOAT32LE 5
#define MA_PA_SAMPLE_FLOAT32BE 6
#define MA_PA_SAMPLE_S32LE 7
#define MA_PA_SAMPLE_S32BE 8
#define MA_PA_SAMPLE_S24LE 9
#define MA_PA_SAMPLE_S24BE 10
#define MA_PA_SAMPLE_S24_32LE 11
#define MA_PA_SAMPLE_S24_32BE 12
typedef struct ma_pa_mainloop ma_pa_mainloop;
typedef struct ma_pa_mainloop_api ma_pa_mainloop_api;
typedef struct ma_pa_context ma_pa_context;
typedef struct ma_pa_operation ma_pa_operation;
typedef struct ma_pa_stream ma_pa_stream;
typedef struct ma_pa_spawn_api ma_pa_spawn_api;
typedef struct
{
ma_uint32 maxlength;
ma_uint32 tlength;
ma_uint32 prebuf;
ma_uint32 minreq;
ma_uint32 fragsize;
} ma_pa_buffer_attr;
typedef struct
{
ma_uint8 channels;
ma_pa_channel_position_t map[MA_PA_CHANNELS_MAX];
} ma_pa_channel_map;
typedef struct
{
ma_uint8 channels;
ma_uint32 values[MA_PA_CHANNELS_MAX];
} ma_pa_cvolume;
typedef struct
{
ma_pa_sample_format_t format;
ma_uint32 rate;
ma_uint8 channels;
} ma_pa_sample_spec;
typedef struct
{
const char* name;
ma_uint32 index;
const char* description;
ma_pa_sample_spec sample_spec;
ma_pa_channel_map channel_map;
ma_uint32 owner_module;
ma_pa_cvolume volume;
int mute;
ma_uint32 monitor_source;
const char* monitor_source_name;
ma_uint64 latency;
const char* driver;
ma_pa_sink_flags_t flags;
void* proplist;
ma_uint64 configured_latency;
ma_uint32 base_volume;
ma_pa_sink_state_t state;
ma_uint32 n_volume_steps;
ma_uint32 card;
ma_uint32 n_ports;
void** ports;
void* active_port;
ma_uint8 n_formats;
void** formats;
} ma_pa_sink_info;
typedef struct
{
const char *name;
ma_uint32 index;
const char *description;
ma_pa_sample_spec sample_spec;
ma_pa_channel_map channel_map;
ma_uint32 owner_module;
ma_pa_cvolume volume;
int mute;
ma_uint32 monitor_of_sink;
const char *monitor_of_sink_name;
ma_uint64 latency;
const char *driver;
ma_pa_source_flags_t flags;
void* proplist;
ma_uint64 configured_latency;
ma_uint32 base_volume;
ma_pa_source_state_t state;
ma_uint32 n_volume_steps;
ma_uint32 card;
ma_uint32 n_ports;
void** ports;
void* active_port;
ma_uint8 n_formats;
void** formats;
} ma_pa_source_info;
typedef void (* ma_pa_context_notify_cb_t)(ma_pa_context* c, void* userdata);
typedef void (* ma_pa_sink_info_cb_t) (ma_pa_context* c, const ma_pa_sink_info* i, int eol, void* userdata);
typedef void (* ma_pa_source_info_cb_t) (ma_pa_context* c, const ma_pa_source_info* i, int eol, void* userdata);
typedef void (* ma_pa_stream_success_cb_t)(ma_pa_stream* s, int success, void* userdata);
typedef void (* ma_pa_stream_request_cb_t)(ma_pa_stream* s, size_t nbytes, void* userdata);
typedef void (* ma_pa_free_cb_t) (void* p);
#endif
typedef ma_pa_mainloop* (* ma_pa_mainloop_new_proc) (void);
typedef void (* ma_pa_mainloop_free_proc) (ma_pa_mainloop* m);
typedef ma_pa_mainloop_api* (* ma_pa_mainloop_get_api_proc) (ma_pa_mainloop* m);
typedef int (* ma_pa_mainloop_iterate_proc) (ma_pa_mainloop* m, int block, int* retval);
typedef void (* ma_pa_mainloop_wakeup_proc) (ma_pa_mainloop* m);
typedef ma_pa_context* (* ma_pa_context_new_proc) (ma_pa_mainloop_api* mainloop, const char* name);
typedef void (* ma_pa_context_unref_proc) (ma_pa_context* c);
typedef int (* ma_pa_context_connect_proc) (ma_pa_context* c, const char* server, ma_pa_context_flags_t flags, const ma_pa_spawn_api* api);
typedef void (* ma_pa_context_disconnect_proc) (ma_pa_context* c);
typedef void (* ma_pa_context_set_state_callback_proc) (ma_pa_context* c, ma_pa_context_notify_cb_t cb, void* userdata);
typedef ma_pa_context_state_t (* ma_pa_context_get_state_proc) (ma_pa_context* c);
typedef ma_pa_operation* (* ma_pa_context_get_sink_info_list_proc) (ma_pa_context* c, ma_pa_sink_info_cb_t cb, void* userdata);
typedef ma_pa_operation* (* ma_pa_context_get_source_info_list_proc) (ma_pa_context* c, ma_pa_source_info_cb_t cb, void* userdata);
typedef ma_pa_operation* (* ma_pa_context_get_sink_info_by_name_proc) (ma_pa_context* c, const char* name, ma_pa_sink_info_cb_t cb, void* userdata);
typedef ma_pa_operation* (* ma_pa_context_get_source_info_by_name_proc)(ma_pa_context* c, const char* name, ma_pa_source_info_cb_t cb, void* userdata);
typedef void (* ma_pa_operation_unref_proc) (ma_pa_operation* o);
typedef ma_pa_operation_state_t (* ma_pa_operation_get_state_proc) (ma_pa_operation* o);
typedef ma_pa_channel_map* (* ma_pa_channel_map_init_extend_proc) (ma_pa_channel_map* m, unsigned channels, ma_pa_channel_map_def_t def);
typedef int (* ma_pa_channel_map_valid_proc) (const ma_pa_channel_map* m);
typedef int (* ma_pa_channel_map_compatible_proc) (const ma_pa_channel_map* m, const ma_pa_sample_spec* ss);
typedef ma_pa_stream* (* ma_pa_stream_new_proc) (ma_pa_context* c, const char* name, const ma_pa_sample_spec* ss, const ma_pa_channel_map* map);
typedef void (* ma_pa_stream_unref_proc) (ma_pa_stream* s);
typedef int (* ma_pa_stream_connect_playback_proc) (ma_pa_stream* s, const char* dev, const ma_pa_buffer_attr* attr, ma_pa_stream_flags_t flags, const ma_pa_cvolume* volume, ma_pa_stream* sync_stream);
typedef int (* ma_pa_stream_connect_record_proc) (ma_pa_stream* s, const char* dev, const ma_pa_buffer_attr* attr, ma_pa_stream_flags_t flags);
typedef int (* ma_pa_stream_disconnect_proc) (ma_pa_stream* s);
typedef ma_pa_stream_state_t (* ma_pa_stream_get_state_proc) (ma_pa_stream* s);
typedef const ma_pa_sample_spec* (* ma_pa_stream_get_sample_spec_proc) (ma_pa_stream* s);
typedef const ma_pa_channel_map* (* ma_pa_stream_get_channel_map_proc) (ma_pa_stream* s);
typedef const ma_pa_buffer_attr* (* ma_pa_stream_get_buffer_attr_proc) (ma_pa_stream* s);
typedef ma_pa_operation* (* ma_pa_stream_set_buffer_attr_proc) (ma_pa_stream* s, const ma_pa_buffer_attr* attr, ma_pa_stream_success_cb_t cb, void* userdata);
typedef const char* (* ma_pa_stream_get_device_name_proc) (ma_pa_stream* s);
typedef void (* ma_pa_stream_set_write_callback_proc) (ma_pa_stream* s, ma_pa_stream_request_cb_t cb, void* userdata);
typedef void (* ma_pa_stream_set_read_callback_proc) (ma_pa_stream* s, ma_pa_stream_request_cb_t cb, void* userdata);
typedef ma_pa_operation* (* ma_pa_stream_flush_proc) (ma_pa_stream* s, ma_pa_stream_success_cb_t cb, void* userdata);
typedef ma_pa_operation* (* ma_pa_stream_drain_proc) (ma_pa_stream* s, ma_pa_stream_success_cb_t cb, void* userdata);
typedef int (* ma_pa_stream_is_corked_proc) (ma_pa_stream* s);
typedef ma_pa_operation* (* ma_pa_stream_cork_proc) (ma_pa_stream* s, int b, ma_pa_stream_success_cb_t cb, void* userdata);
typedef ma_pa_operation* (* ma_pa_stream_trigger_proc) (ma_pa_stream* s, ma_pa_stream_success_cb_t cb, void* userdata);
typedef int (* ma_pa_stream_begin_write_proc) (ma_pa_stream* s, void** data, size_t* nbytes);
typedef int (* ma_pa_stream_write_proc) (ma_pa_stream* s, const void* data, size_t nbytes, ma_pa_free_cb_t free_cb, int64_t offset, ma_pa_seek_mode_t seek);
typedef int (* ma_pa_stream_peek_proc) (ma_pa_stream* s, const void** data, size_t* nbytes);
typedef int (* ma_pa_stream_drop_proc) (ma_pa_stream* s);
typedef size_t (* ma_pa_stream_writable_size_proc) (ma_pa_stream* s);
typedef size_t (* ma_pa_stream_readable_size_proc) (ma_pa_stream* s);
typedef struct
{
ma_uint32 count;
ma_uint32 capacity;
ma_device_info* pInfo;
} ma_pulse_device_enum_data;
static ma_result ma_result_from_pulse(int result)
{
switch (result) {
case MA_PA_OK: return MA_SUCCESS;
case MA_PA_ERR_ACCESS: return MA_ACCESS_DENIED;
case MA_PA_ERR_INVALID: return MA_INVALID_ARGS;
case MA_PA_ERR_NOENTITY: return MA_NO_DEVICE;
default: return MA_ERROR;
}
}
#if 0
static ma_pa_sample_format_t ma_format_to_pulse(ma_format format)
{
if (ma_is_little_endian()) {
switch (format) {
case ma_format_s16: return MA_PA_SAMPLE_S16LE;
case ma_format_s24: return MA_PA_SAMPLE_S24LE;
case ma_format_s32: return MA_PA_SAMPLE_S32LE;
case ma_format_f32: return MA_PA_SAMPLE_FLOAT32LE;
default: break;
}
} else {
switch (format) {
case ma_format_s16: return MA_PA_SAMPLE_S16BE;
case ma_format_s24: return MA_PA_SAMPLE_S24BE;
case ma_format_s32: return MA_PA_SAMPLE_S32BE;
case ma_format_f32: return MA_PA_SAMPLE_FLOAT32BE;
default: break;
}
}
/* Endian agnostic. */
switch (format) {
case ma_format_u8: return MA_PA_SAMPLE_U8;
default: return MA_PA_SAMPLE_INVALID;
}
}
#endif
static ma_format ma_format_from_pulse(ma_pa_sample_format_t format)
{
if (ma_is_little_endian()) {
switch (format) {
case MA_PA_SAMPLE_S16LE: return ma_format_s16;
case MA_PA_SAMPLE_S24LE: return ma_format_s24;
case MA_PA_SAMPLE_S32LE: return ma_format_s32;
case MA_PA_SAMPLE_FLOAT32LE: return ma_format_f32;
default: break;
}
} else {
switch (format) {
case MA_PA_SAMPLE_S16BE: return ma_format_s16;
case MA_PA_SAMPLE_S24BE: return ma_format_s24;
case MA_PA_SAMPLE_S32BE: return ma_format_s32;
case MA_PA_SAMPLE_FLOAT32BE: return ma_format_f32;
default: break;
}
}
/* Endian agnostic. */
switch (format) {
case MA_PA_SAMPLE_U8: return ma_format_u8;
default: return ma_format_unknown;
}
}
static ma_channel ma_channel_position_from_pulse(ma_pa_channel_position_t position)
{
switch (position)
{
case MA_PA_CHANNEL_POSITION_INVALID: return MA_CHANNEL_NONE;
case MA_PA_CHANNEL_POSITION_MONO: return MA_CHANNEL_MONO;
case MA_PA_CHANNEL_POSITION_FRONT_LEFT: return MA_CHANNEL_FRONT_LEFT;
case MA_PA_CHANNEL_POSITION_FRONT_RIGHT: return MA_CHANNEL_FRONT_RIGHT;
case MA_PA_CHANNEL_POSITION_FRONT_CENTER: return MA_CHANNEL_FRONT_CENTER;
case MA_PA_CHANNEL_POSITION_REAR_CENTER: return MA_CHANNEL_BACK_CENTER;
case MA_PA_CHANNEL_POSITION_REAR_LEFT: return MA_CHANNEL_BACK_LEFT;
case MA_PA_CHANNEL_POSITION_REAR_RIGHT: return MA_CHANNEL_BACK_RIGHT;
case MA_PA_CHANNEL_POSITION_LFE: return MA_CHANNEL_LFE;
case MA_PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER: return MA_CHANNEL_FRONT_LEFT_CENTER;
case MA_PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER: return MA_CHANNEL_FRONT_RIGHT_CENTER;
case MA_PA_CHANNEL_POSITION_SIDE_LEFT: return MA_CHANNEL_SIDE_LEFT;
case MA_PA_CHANNEL_POSITION_SIDE_RIGHT: return MA_CHANNEL_SIDE_RIGHT;
case MA_PA_CHANNEL_POSITION_AUX0: return MA_CHANNEL_AUX_0;
case MA_PA_CHANNEL_POSITION_AUX1: return MA_CHANNEL_AUX_1;
case MA_PA_CHANNEL_POSITION_AUX2: return MA_CHANNEL_AUX_2;
case MA_PA_CHANNEL_POSITION_AUX3: return MA_CHANNEL_AUX_3;
case MA_PA_CHANNEL_POSITION_AUX4: return MA_CHANNEL_AUX_4;
case MA_PA_CHANNEL_POSITION_AUX5: return MA_CHANNEL_AUX_5;
case MA_PA_CHANNEL_POSITION_AUX6: return MA_CHANNEL_AUX_6;
case MA_PA_CHANNEL_POSITION_AUX7: return MA_CHANNEL_AUX_7;
case MA_PA_CHANNEL_POSITION_AUX8: return MA_CHANNEL_AUX_8;
case MA_PA_CHANNEL_POSITION_AUX9: return MA_CHANNEL_AUX_9;
case MA_PA_CHANNEL_POSITION_AUX10: return MA_CHANNEL_AUX_10;
case MA_PA_CHANNEL_POSITION_AUX11: return MA_CHANNEL_AUX_11;
case MA_PA_CHANNEL_POSITION_AUX12: return MA_CHANNEL_AUX_12;
case MA_PA_CHANNEL_POSITION_AUX13: return MA_CHANNEL_AUX_13;
case MA_PA_CHANNEL_POSITION_AUX14: return MA_CHANNEL_AUX_14;
case MA_PA_CHANNEL_POSITION_AUX15: return MA_CHANNEL_AUX_15;
case MA_PA_CHANNEL_POSITION_AUX16: return MA_CHANNEL_AUX_16;
case MA_PA_CHANNEL_POSITION_AUX17: return MA_CHANNEL_AUX_17;
case MA_PA_CHANNEL_POSITION_AUX18: return MA_CHANNEL_AUX_18;
case MA_PA_CHANNEL_POSITION_AUX19: return MA_CHANNEL_AUX_19;
case MA_PA_CHANNEL_POSITION_AUX20: return MA_CHANNEL_AUX_20;
case MA_PA_CHANNEL_POSITION_AUX21: return MA_CHANNEL_AUX_21;
case MA_PA_CHANNEL_POSITION_AUX22: return MA_CHANNEL_AUX_22;
case MA_PA_CHANNEL_POSITION_AUX23: return MA_CHANNEL_AUX_23;
case MA_PA_CHANNEL_POSITION_AUX24: return MA_CHANNEL_AUX_24;
case MA_PA_CHANNEL_POSITION_AUX25: return MA_CHANNEL_AUX_25;
case MA_PA_CHANNEL_POSITION_AUX26: return MA_CHANNEL_AUX_26;
case MA_PA_CHANNEL_POSITION_AUX27: return MA_CHANNEL_AUX_27;
case MA_PA_CHANNEL_POSITION_AUX28: return MA_CHANNEL_AUX_28;
case MA_PA_CHANNEL_POSITION_AUX29: return MA_CHANNEL_AUX_29;
case MA_PA_CHANNEL_POSITION_AUX30: return MA_CHANNEL_AUX_30;
case MA_PA_CHANNEL_POSITION_AUX31: return MA_CHANNEL_AUX_31;
case MA_PA_CHANNEL_POSITION_TOP_CENTER: return MA_CHANNEL_TOP_CENTER;
case MA_PA_CHANNEL_POSITION_TOP_FRONT_LEFT: return MA_CHANNEL_TOP_FRONT_LEFT;
case MA_PA_CHANNEL_POSITION_TOP_FRONT_RIGHT: return MA_CHANNEL_TOP_FRONT_RIGHT;
case MA_PA_CHANNEL_POSITION_TOP_FRONT_CENTER: return MA_CHANNEL_TOP_FRONT_CENTER;
case MA_PA_CHANNEL_POSITION_TOP_REAR_LEFT: return MA_CHANNEL_TOP_BACK_LEFT;
case MA_PA_CHANNEL_POSITION_TOP_REAR_RIGHT: return MA_CHANNEL_TOP_BACK_RIGHT;
case MA_PA_CHANNEL_POSITION_TOP_REAR_CENTER: return MA_CHANNEL_TOP_BACK_CENTER;
default: return MA_CHANNEL_NONE;
}
}
#if 0
static ma_pa_channel_position_t ma_channel_position_to_pulse(ma_channel position)
{
switch (position)
{
case MA_CHANNEL_NONE: return MA_PA_CHANNEL_POSITION_INVALID;
case MA_CHANNEL_FRONT_LEFT: return MA_PA_CHANNEL_POSITION_FRONT_LEFT;
case MA_CHANNEL_FRONT_RIGHT: return MA_PA_CHANNEL_POSITION_FRONT_RIGHT;
case MA_CHANNEL_FRONT_CENTER: return MA_PA_CHANNEL_POSITION_FRONT_CENTER;
case MA_CHANNEL_LFE: return MA_PA_CHANNEL_POSITION_LFE;
case MA_CHANNEL_BACK_LEFT: return MA_PA_CHANNEL_POSITION_REAR_LEFT;
case MA_CHANNEL_BACK_RIGHT: return MA_PA_CHANNEL_POSITION_REAR_RIGHT;
case MA_CHANNEL_FRONT_LEFT_CENTER: return MA_PA_CHANNEL_POSITION_FRONT_LEFT_OF_CENTER;
case MA_CHANNEL_FRONT_RIGHT_CENTER: return MA_PA_CHANNEL_POSITION_FRONT_RIGHT_OF_CENTER;
case MA_CHANNEL_BACK_CENTER: return MA_PA_CHANNEL_POSITION_REAR_CENTER;
case MA_CHANNEL_SIDE_LEFT: return MA_PA_CHANNEL_POSITION_SIDE_LEFT;
case MA_CHANNEL_SIDE_RIGHT: return MA_PA_CHANNEL_POSITION_SIDE_RIGHT;
case MA_CHANNEL_TOP_CENTER: return MA_PA_CHANNEL_POSITION_TOP_CENTER;
case MA_CHANNEL_TOP_FRONT_LEFT: return MA_PA_CHANNEL_POSITION_TOP_FRONT_LEFT;
case MA_CHANNEL_TOP_FRONT_CENTER: return MA_PA_CHANNEL_POSITION_TOP_FRONT_CENTER;
case MA_CHANNEL_TOP_FRONT_RIGHT: return MA_PA_CHANNEL_POSITION_TOP_FRONT_RIGHT;
case MA_CHANNEL_TOP_BACK_LEFT: return MA_PA_CHANNEL_POSITION_TOP_REAR_LEFT;
case MA_CHANNEL_TOP_BACK_CENTER: return MA_PA_CHANNEL_POSITION_TOP_REAR_CENTER;
case MA_CHANNEL_TOP_BACK_RIGHT: return MA_PA_CHANNEL_POSITION_TOP_REAR_RIGHT;
case MA_CHANNEL_19: return MA_PA_CHANNEL_POSITION_AUX18;
case MA_CHANNEL_20: return MA_PA_CHANNEL_POSITION_AUX19;
case MA_CHANNEL_21: return MA_PA_CHANNEL_POSITION_AUX20;
case MA_CHANNEL_22: return MA_PA_CHANNEL_POSITION_AUX21;
case MA_CHANNEL_23: return MA_PA_CHANNEL_POSITION_AUX22;
case MA_CHANNEL_24: return MA_PA_CHANNEL_POSITION_AUX23;
case MA_CHANNEL_25: return MA_PA_CHANNEL_POSITION_AUX24;
case MA_CHANNEL_26: return MA_PA_CHANNEL_POSITION_AUX25;
case MA_CHANNEL_27: return MA_PA_CHANNEL_POSITION_AUX26;
case MA_CHANNEL_28: return MA_PA_CHANNEL_POSITION_AUX27;
case MA_CHANNEL_29: return MA_PA_CHANNEL_POSITION_AUX28;
case MA_CHANNEL_30: return MA_PA_CHANNEL_POSITION_AUX29;
case MA_CHANNEL_31: return MA_PA_CHANNEL_POSITION_AUX30;
case MA_CHANNEL_32: return MA_PA_CHANNEL_POSITION_AUX31;
default: return (ma_pa_channel_position_t)position;
}
}
#endif
static ma_result ma_wait_for_operation__pulse(ma_context* pContext, ma_pa_mainloop* pMainLoop, ma_pa_operation* pOP)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pMainLoop != NULL);
MA_ASSERT(pOP != NULL);
while (((ma_pa_operation_get_state_proc)pContext->pulse.pa_operation_get_state)(pOP) == MA_PA_OPERATION_RUNNING) {
int error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)(pMainLoop, 1, NULL);
if (error < 0) {
return ma_result_from_pulse(error);
}
}
return MA_SUCCESS;
}
static ma_result ma_device__wait_for_operation__pulse(ma_device* pDevice, ma_pa_operation* pOP)
{
MA_ASSERT(pDevice != NULL);
MA_ASSERT(pOP != NULL);
return ma_wait_for_operation__pulse(pDevice->pContext, (ma_pa_mainloop*)pDevice->pulse.pMainLoop, pOP);
}
static ma_bool32 ma_context_is_device_id_equal__pulse(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->pulse, pID1->pulse) == 0;
}
typedef struct
{
ma_context* pContext;
ma_enum_devices_callback_proc callback;
void* pUserData;
ma_bool32 isTerminated;
} ma_context_enumerate_devices_callback_data__pulse;
static void ma_context_enumerate_devices_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pSinkInfo, int endOfList, void* pUserData)
{
ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData;
ma_device_info deviceInfo;
MA_ASSERT(pData != NULL);
if (endOfList || pData->isTerminated) {
return;
}
MA_ZERO_OBJECT(&deviceInfo);
/* The name from PulseAudio is the ID for miniaudio. */
if (pSinkInfo->name != NULL) {
ma_strncpy_s(deviceInfo.id.pulse, sizeof(deviceInfo.id.pulse), pSinkInfo->name, (size_t)-1);
}
/* The description from PulseAudio is the name for miniaudio. */
if (pSinkInfo->description != NULL) {
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), pSinkInfo->description, (size_t)-1);
}
pData->isTerminated = !pData->callback(pData->pContext, ma_device_type_playback, &deviceInfo, pData->pUserData);
(void)pPulseContext; /* Unused. */
}
static void ma_context_enumerate_devices_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pSinkInfo, int endOfList, void* pUserData)
{
ma_context_enumerate_devices_callback_data__pulse* pData = (ma_context_enumerate_devices_callback_data__pulse*)pUserData;
ma_device_info deviceInfo;
MA_ASSERT(pData != NULL);
if (endOfList || pData->isTerminated) {
return;
}
MA_ZERO_OBJECT(&deviceInfo);
/* The name from PulseAudio is the ID for miniaudio. */
if (pSinkInfo->name != NULL) {
ma_strncpy_s(deviceInfo.id.pulse, sizeof(deviceInfo.id.pulse), pSinkInfo->name, (size_t)-1);
}
/* The description from PulseAudio is the name for miniaudio. */
if (pSinkInfo->description != NULL) {
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), pSinkInfo->description, (size_t)-1);
}
pData->isTerminated = !pData->callback(pData->pContext, ma_device_type_capture, &deviceInfo, pData->pUserData);
(void)pPulseContext; /* Unused. */
}
static ma_result ma_context_enumerate_devices__pulse(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_result result = MA_SUCCESS;
ma_context_enumerate_devices_callback_data__pulse callbackData;
ma_pa_operation* pOP = NULL;
ma_pa_mainloop* pMainLoop;
ma_pa_mainloop_api* pAPI;
ma_pa_context* pPulseContext;
int error;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
callbackData.pContext = pContext;
callbackData.callback = callback;
callbackData.pUserData = pUserData;
callbackData.isTerminated = MA_FALSE;
pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)();
if (pMainLoop == NULL) {
return MA_FAILED_TO_INIT_BACKEND;
}
pAPI = ((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)(pMainLoop);
if (pAPI == NULL) {
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
return MA_FAILED_TO_INIT_BACKEND;
}
pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)(pAPI, pContext->pulse.pApplicationName);
if (pPulseContext == NULL) {
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
return MA_FAILED_TO_INIT_BACKEND;
}
error = ((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)(pPulseContext, pContext->pulse.pServerName, (pContext->pulse.tryAutoSpawn) ? 0 : MA_PA_CONTEXT_NOAUTOSPAWN, NULL);
if (error != MA_PA_OK) {
((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
return ma_result_from_pulse(error);
}
for (;;) {
ma_pa_context_state_t state = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)(pPulseContext);
if (state == MA_PA_CONTEXT_READY) {
break; /* Success. */
}
if (state == MA_PA_CONTEXT_CONNECTING || state == MA_PA_CONTEXT_AUTHORIZING || state == MA_PA_CONTEXT_SETTING_NAME) {
error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)(pMainLoop, 1, NULL);
if (error < 0) {
result = ma_result_from_pulse(error);
goto done;
}
#ifdef MA_DEBUG_OUTPUT
printf("[PulseAudio] pa_context_get_state() returned %d. Waiting.\n", state);
#endif
continue; /* Keep trying. */
}
if (state == MA_PA_CONTEXT_UNCONNECTED || state == MA_PA_CONTEXT_FAILED || state == MA_PA_CONTEXT_TERMINATED) {
#ifdef MA_DEBUG_OUTPUT
printf("[PulseAudio] pa_context_get_state() returned %d. Failed.\n", state);
#endif
goto done; /* Failed. */
}
}
/* Playback. */
if (!callbackData.isTerminated) {
pOP = ((ma_pa_context_get_sink_info_list_proc)pContext->pulse.pa_context_get_sink_info_list)(pPulseContext, ma_context_enumerate_devices_sink_callback__pulse, &callbackData);
if (pOP == NULL) {
result = MA_ERROR;
goto done;
}
result = ma_wait_for_operation__pulse(pContext, pMainLoop, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
if (result != MA_SUCCESS) {
goto done;
}
}
/* Capture. */
if (!callbackData.isTerminated) {
pOP = ((ma_pa_context_get_source_info_list_proc)pContext->pulse.pa_context_get_source_info_list)(pPulseContext, ma_context_enumerate_devices_source_callback__pulse, &callbackData);
if (pOP == NULL) {
result = MA_ERROR;
goto done;
}
result = ma_wait_for_operation__pulse(pContext, pMainLoop, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
if (result != MA_SUCCESS) {
goto done;
}
}
done:
((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)(pPulseContext);
((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
return result;
}
typedef struct
{
ma_device_info* pDeviceInfo;
ma_bool32 foundDevice;
} ma_context_get_device_info_callback_data__pulse;
static void ma_context_get_device_info_sink_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData)
{
ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData;
if (endOfList > 0) {
return;
}
MA_ASSERT(pData != NULL);
pData->foundDevice = MA_TRUE;
if (pInfo->name != NULL) {
ma_strncpy_s(pData->pDeviceInfo->id.pulse, sizeof(pData->pDeviceInfo->id.pulse), pInfo->name, (size_t)-1);
}
if (pInfo->description != NULL) {
ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pInfo->description, (size_t)-1);
}
pData->pDeviceInfo->minChannels = pInfo->sample_spec.channels;
pData->pDeviceInfo->maxChannels = pInfo->sample_spec.channels;
pData->pDeviceInfo->minSampleRate = pInfo->sample_spec.rate;
pData->pDeviceInfo->maxSampleRate = pInfo->sample_spec.rate;
pData->pDeviceInfo->formatCount = 1;
pData->pDeviceInfo->formats[0] = ma_format_from_pulse(pInfo->sample_spec.format);
(void)pPulseContext; /* Unused. */
}
static void ma_context_get_device_info_source_callback__pulse(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData)
{
ma_context_get_device_info_callback_data__pulse* pData = (ma_context_get_device_info_callback_data__pulse*)pUserData;
if (endOfList > 0) {
return;
}
MA_ASSERT(pData != NULL);
pData->foundDevice = MA_TRUE;
if (pInfo->name != NULL) {
ma_strncpy_s(pData->pDeviceInfo->id.pulse, sizeof(pData->pDeviceInfo->id.pulse), pInfo->name, (size_t)-1);
}
if (pInfo->description != NULL) {
ma_strncpy_s(pData->pDeviceInfo->name, sizeof(pData->pDeviceInfo->name), pInfo->description, (size_t)-1);
}
pData->pDeviceInfo->minChannels = pInfo->sample_spec.channels;
pData->pDeviceInfo->maxChannels = pInfo->sample_spec.channels;
pData->pDeviceInfo->minSampleRate = pInfo->sample_spec.rate;
pData->pDeviceInfo->maxSampleRate = pInfo->sample_spec.rate;
pData->pDeviceInfo->formatCount = 1;
pData->pDeviceInfo->formats[0] = ma_format_from_pulse(pInfo->sample_spec.format);
(void)pPulseContext; /* Unused. */
}
static ma_result ma_context_get_device_info__pulse(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_result result = MA_SUCCESS;
ma_context_get_device_info_callback_data__pulse callbackData;
ma_pa_operation* pOP = NULL;
ma_pa_mainloop* pMainLoop;
ma_pa_mainloop_api* pAPI;
ma_pa_context* pPulseContext;
int error;
MA_ASSERT(pContext != NULL);
/* No exclusive mode with the PulseAudio backend. */
if (shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
callbackData.pDeviceInfo = pDeviceInfo;
callbackData.foundDevice = MA_FALSE;
pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)();
if (pMainLoop == NULL) {
return MA_FAILED_TO_INIT_BACKEND;
}
pAPI = ((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)(pMainLoop);
if (pAPI == NULL) {
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
return MA_FAILED_TO_INIT_BACKEND;
}
pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)(pAPI, pContext->pulse.pApplicationName);
if (pPulseContext == NULL) {
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
return MA_FAILED_TO_INIT_BACKEND;
}
error = ((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)(pPulseContext, pContext->pulse.pServerName, 0, NULL);
if (error != MA_PA_OK) {
((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
return ma_result_from_pulse(error);
}
for (;;) {
ma_pa_context_state_t state = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)(pPulseContext);
if (state == MA_PA_CONTEXT_READY) {
break; /* Success. */
}
if (state == MA_PA_CONTEXT_CONNECTING || state == MA_PA_CONTEXT_AUTHORIZING || state == MA_PA_CONTEXT_SETTING_NAME) {
error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)(pMainLoop, 1, NULL);
if (error < 0) {
result = ma_result_from_pulse(error);
goto done;
}
#ifdef MA_DEBUG_OUTPUT
printf("[PulseAudio] pa_context_get_state() returned %d. Waiting.\n", state);
#endif
continue; /* Keep trying. */
}
if (state == MA_PA_CONTEXT_UNCONNECTED || state == MA_PA_CONTEXT_FAILED || state == MA_PA_CONTEXT_TERMINATED) {
#ifdef MA_DEBUG_OUTPUT
printf("[PulseAudio] pa_context_get_state() returned %d. Failed.\n", state);
#endif
goto done; /* Failed. */
}
}
if (deviceType == ma_device_type_playback) {
pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)(pPulseContext, pDeviceID->pulse, ma_context_get_device_info_sink_callback__pulse, &callbackData);
} else {
pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)(pPulseContext, pDeviceID->pulse, ma_context_get_device_info_source_callback__pulse, &callbackData);
}
if (pOP != NULL) {
ma_wait_for_operation__pulse(pContext, pMainLoop, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
} else {
result = MA_ERROR;
goto done;
}
if (!callbackData.foundDevice) {
result = MA_NO_DEVICE;
goto done;
}
done:
((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)(pPulseContext);
((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
return result;
}
static void ma_pulse_device_state_callback(ma_pa_context* pPulseContext, void* pUserData)
{
ma_device* pDevice;
ma_context* pContext;
pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
pContext = pDevice->pContext;
MA_ASSERT(pContext != NULL);
pDevice->pulse.pulseContextState = ((ma_pa_context_get_state_proc)pContext->pulse.pa_context_get_state)(pPulseContext);
}
void ma_device_sink_info_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData)
{
ma_pa_sink_info* pInfoOut;
if (endOfList > 0) {
return;
}
pInfoOut = (ma_pa_sink_info*)pUserData;
MA_ASSERT(pInfoOut != NULL);
*pInfoOut = *pInfo;
(void)pPulseContext; /* Unused. */
}
static void ma_device_source_info_callback(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData)
{
ma_pa_source_info* pInfoOut;
if (endOfList > 0) {
return;
}
pInfoOut = (ma_pa_source_info*)pUserData;
MA_ASSERT(pInfoOut != NULL);
*pInfoOut = *pInfo;
(void)pPulseContext; /* Unused. */
}
static void ma_device_sink_name_callback(ma_pa_context* pPulseContext, const ma_pa_sink_info* pInfo, int endOfList, void* pUserData)
{
ma_device* pDevice;
if (endOfList > 0) {
return;
}
pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), pInfo->description, (size_t)-1);
(void)pPulseContext; /* Unused. */
}
static void ma_device_source_name_callback(ma_pa_context* pPulseContext, const ma_pa_source_info* pInfo, int endOfList, void* pUserData)
{
ma_device* pDevice;
if (endOfList > 0) {
return;
}
pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), pInfo->description, (size_t)-1);
(void)pPulseContext; /* Unused. */
}
static void ma_device_uninit__pulse(ma_device* pDevice)
{
ma_context* pContext;
MA_ASSERT(pDevice != NULL);
pContext = pDevice->pContext;
MA_ASSERT(pContext != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
}
((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)((ma_pa_context*)pDevice->pulse.pPulseContext);
((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)((ma_pa_context*)pDevice->pulse.pPulseContext);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)pDevice->pulse.pMainLoop);
}
static ma_pa_buffer_attr ma_device__pa_buffer_attr_new(ma_uint32 periodSizeInFrames, ma_uint32 periods, const ma_pa_sample_spec* ss)
{
ma_pa_buffer_attr attr;
attr.maxlength = periodSizeInFrames * periods * ma_get_bytes_per_frame(ma_format_from_pulse(ss->format), ss->channels);
attr.tlength = attr.maxlength / periods;
attr.prebuf = (ma_uint32)-1;
attr.minreq = (ma_uint32)-1;
attr.fragsize = attr.maxlength / periods;
return attr;
}
static ma_pa_stream* ma_device__pa_stream_new__pulse(ma_device* pDevice, const char* pStreamName, const ma_pa_sample_spec* ss, const ma_pa_channel_map* cmap)
{
static int g_StreamCounter = 0;
char actualStreamName[256];
if (pStreamName != NULL) {
ma_strncpy_s(actualStreamName, sizeof(actualStreamName), pStreamName, (size_t)-1);
} else {
ma_strcpy_s(actualStreamName, sizeof(actualStreamName), "miniaudio:");
ma_itoa_s(g_StreamCounter, actualStreamName + 8, sizeof(actualStreamName)-8, 10); /* 8 = strlen("miniaudio:") */
}
g_StreamCounter += 1;
return ((ma_pa_stream_new_proc)pDevice->pContext->pulse.pa_stream_new)((ma_pa_context*)pDevice->pulse.pPulseContext, actualStreamName, ss, cmap);
}
static ma_result ma_device_init__pulse(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
int error = 0;
const char* devPlayback = NULL;
const char* devCapture = NULL;
ma_uint32 periodSizeInMilliseconds;
ma_pa_sink_info sinkInfo;
ma_pa_source_info sourceInfo;
ma_pa_operation* pOP = NULL;
ma_pa_sample_spec ss;
ma_pa_channel_map cmap;
ma_pa_buffer_attr attr;
const ma_pa_sample_spec* pActualSS = NULL;
const ma_pa_channel_map* pActualCMap = NULL;
const ma_pa_buffer_attr* pActualAttr = NULL;
ma_uint32 iChannel;
ma_pa_stream_flags_t streamFlags;
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->pulse);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
/* No exclusive mode with the PulseAudio backend. */
if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) ||
((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
if ((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.pDeviceID != NULL) {
devPlayback = pConfig->playback.pDeviceID->pulse;
}
if ((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.pDeviceID != NULL) {
devCapture = pConfig->capture.pDeviceID->pulse;
}
periodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
if (periodSizeInMilliseconds == 0) {
periodSizeInMilliseconds = ma_calculate_buffer_size_in_milliseconds_from_frames(pConfig->periodSizeInFrames, pConfig->sampleRate);
}
pDevice->pulse.pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)();
if (pDevice->pulse.pMainLoop == NULL) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create main loop for device.", MA_FAILED_TO_INIT_BACKEND);
goto on_error0;
}
pDevice->pulse.pAPI = ((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)((ma_pa_mainloop*)pDevice->pulse.pMainLoop);
if (pDevice->pulse.pAPI == NULL) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve PulseAudio main loop.", MA_FAILED_TO_INIT_BACKEND);
goto on_error1;
}
pDevice->pulse.pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)((ma_pa_mainloop_api*)pDevice->pulse.pAPI, pContext->pulse.pApplicationName);
if (pDevice->pulse.pPulseContext == NULL) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio context for device.", MA_FAILED_TO_INIT_BACKEND);
goto on_error1;
}
error = ((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)((ma_pa_context*)pDevice->pulse.pPulseContext, pContext->pulse.pServerName, (pContext->pulse.tryAutoSpawn) ? 0 : MA_PA_CONTEXT_NOAUTOSPAWN, NULL);
if (error != MA_PA_OK) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio context.", ma_result_from_pulse(error));
goto on_error2;
}
pDevice->pulse.pulseContextState = MA_PA_CONTEXT_UNCONNECTED;
((ma_pa_context_set_state_callback_proc)pContext->pulse.pa_context_set_state_callback)((ma_pa_context*)pDevice->pulse.pPulseContext, ma_pulse_device_state_callback, pDevice);
/* Wait for PulseAudio to get itself ready before returning. */
for (;;) {
if (pDevice->pulse.pulseContextState == MA_PA_CONTEXT_READY) {
break;
}
/* An error may have occurred. */
if (pDevice->pulse.pulseContextState == MA_PA_CONTEXT_FAILED || pDevice->pulse.pulseContextState == MA_PA_CONTEXT_TERMINATED) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] An error occurred while connecting the PulseAudio context.", MA_ERROR);
goto on_error3;
}
error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 1, NULL);
if (error < 0) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] The PulseAudio main loop returned an error while connecting the PulseAudio context.", ma_result_from_pulse(error));
goto on_error3;
}
}
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)((ma_pa_context*)pDevice->pulse.pPulseContext, devCapture, ma_device_source_info_callback, &sourceInfo);
if (pOP != NULL) {
ma_device__wait_for_operation__pulse(pDevice, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
} else {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve source info for capture device.", ma_result_from_pulse(error));
goto on_error3;
}
ss = sourceInfo.sample_spec;
cmap = sourceInfo.channel_map;
pDevice->capture.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, ss.rate);
pDevice->capture.internalPeriods = pConfig->periods;
attr = ma_device__pa_buffer_attr_new(pDevice->capture.internalPeriodSizeInFrames, pConfig->periods, &ss);
#ifdef MA_DEBUG_OUTPUT
printf("[PulseAudio] Capture attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->capture.internalPeriodSizeInFrames);
#endif
pDevice->pulse.pStreamCapture = ma_device__pa_stream_new__pulse(pDevice, pConfig->pulse.pStreamNameCapture, &ss, &cmap);
if (pDevice->pulse.pStreamCapture == NULL) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio capture stream.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
goto on_error3;
}
streamFlags = MA_PA_STREAM_START_CORKED | MA_PA_STREAM_FIX_FORMAT | MA_PA_STREAM_FIX_RATE | MA_PA_STREAM_FIX_CHANNELS;
if (devCapture != NULL) {
streamFlags |= MA_PA_STREAM_DONT_MOVE;
}
error = ((ma_pa_stream_connect_record_proc)pContext->pulse.pa_stream_connect_record)((ma_pa_stream*)pDevice->pulse.pStreamCapture, devCapture, &attr, streamFlags);
if (error != MA_PA_OK) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio capture stream.", ma_result_from_pulse(error));
goto on_error4;
}
while (((ma_pa_stream_get_state_proc)pContext->pulse.pa_stream_get_state)((ma_pa_stream*)pDevice->pulse.pStreamCapture) != MA_PA_STREAM_READY) {
error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 1, NULL);
if (error < 0) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] The PulseAudio main loop returned an error while connecting the PulseAudio capture stream.", ma_result_from_pulse(error));
goto on_error5;
}
}
/* Internal format. */
pActualSS = ((ma_pa_stream_get_sample_spec_proc)pContext->pulse.pa_stream_get_sample_spec)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
if (pActualSS != NULL) {
/* If anything has changed between the requested and the actual sample spec, we need to update the buffer. */
if (ss.format != pActualSS->format || ss.channels != pActualSS->channels || ss.rate != pActualSS->rate) {
attr = ma_device__pa_buffer_attr_new(pDevice->capture.internalPeriodSizeInFrames, pConfig->periods, pActualSS);
pOP = ((ma_pa_stream_set_buffer_attr_proc)pContext->pulse.pa_stream_set_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamCapture, &attr, NULL, NULL);
if (pOP != NULL) {
ma_device__wait_for_operation__pulse(pDevice, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
}
}
ss = *pActualSS;
}
pDevice->capture.internalFormat = ma_format_from_pulse(ss.format);
pDevice->capture.internalChannels = ss.channels;
pDevice->capture.internalSampleRate = ss.rate;
/* Internal channel map. */
pActualCMap = ((ma_pa_stream_get_channel_map_proc)pContext->pulse.pa_stream_get_channel_map)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
if (pActualCMap != NULL) {
cmap = *pActualCMap;
}
for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) {
pDevice->capture.internalChannelMap[iChannel] = ma_channel_position_from_pulse(cmap.map[iChannel]);
}
/* Buffer. */
pActualAttr = ((ma_pa_stream_get_buffer_attr_proc)pContext->pulse.pa_stream_get_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
if (pActualAttr != NULL) {
attr = *pActualAttr;
}
pDevice->capture.internalPeriods = attr.maxlength / attr.fragsize;
pDevice->capture.internalPeriodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels) / pDevice->capture.internalPeriods;
#ifdef MA_DEBUG_OUTPUT
printf("[PulseAudio] Capture actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->capture.internalPeriodSizeInFrames);
#endif
/* Name. */
devCapture = ((ma_pa_stream_get_device_name_proc)pContext->pulse.pa_stream_get_device_name)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
if (devCapture != NULL) {
ma_pa_operation* pOP = ((ma_pa_context_get_source_info_by_name_proc)pContext->pulse.pa_context_get_source_info_by_name)((ma_pa_context*)pDevice->pulse.pPulseContext, devCapture, ma_device_source_name_callback, pDevice);
if (pOP != NULL) {
ma_device__wait_for_operation__pulse(pDevice, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
}
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)((ma_pa_context*)pDevice->pulse.pPulseContext, devPlayback, ma_device_sink_info_callback, &sinkInfo);
if (pOP != NULL) {
ma_device__wait_for_operation__pulse(pDevice, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
} else {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to retrieve sink info for playback device.", ma_result_from_pulse(error));
goto on_error3;
}
ss = sinkInfo.sample_spec;
cmap = sinkInfo.channel_map;
pDevice->playback.internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(periodSizeInMilliseconds, ss.rate);
pDevice->playback.internalPeriods = pConfig->periods;
attr = ma_device__pa_buffer_attr_new(pDevice->playback.internalPeriodSizeInFrames, pConfig->periods, &ss);
#ifdef MA_DEBUG_OUTPUT
printf("[PulseAudio] Playback attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->playback.internalPeriodSizeInFrames);
#endif
pDevice->pulse.pStreamPlayback = ma_device__pa_stream_new__pulse(pDevice, pConfig->pulse.pStreamNamePlayback, &ss, &cmap);
if (pDevice->pulse.pStreamPlayback == NULL) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to create PulseAudio playback stream.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
goto on_error3;
}
streamFlags = MA_PA_STREAM_START_CORKED | MA_PA_STREAM_FIX_FORMAT | MA_PA_STREAM_FIX_RATE | MA_PA_STREAM_FIX_CHANNELS;
if (devPlayback != NULL) {
streamFlags |= MA_PA_STREAM_DONT_MOVE;
}
error = ((ma_pa_stream_connect_playback_proc)pContext->pulse.pa_stream_connect_playback)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, devPlayback, &attr, streamFlags, NULL, NULL);
if (error != MA_PA_OK) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to connect PulseAudio playback stream.", ma_result_from_pulse(error));
goto on_error6;
}
while (((ma_pa_stream_get_state_proc)pContext->pulse.pa_stream_get_state)((ma_pa_stream*)pDevice->pulse.pStreamPlayback) != MA_PA_STREAM_READY) {
error = ((ma_pa_mainloop_iterate_proc)pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 1, NULL);
if (error < 0) {
result = ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] The PulseAudio main loop returned an error while connecting the PulseAudio playback stream.", ma_result_from_pulse(error));
goto on_error7;
}
}
/* Internal format. */
pActualSS = ((ma_pa_stream_get_sample_spec_proc)pContext->pulse.pa_stream_get_sample_spec)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
if (pActualSS != NULL) {
/* If anything has changed between the requested and the actual sample spec, we need to update the buffer. */
if (ss.format != pActualSS->format || ss.channels != pActualSS->channels || ss.rate != pActualSS->rate) {
attr = ma_device__pa_buffer_attr_new(pDevice->playback.internalPeriodSizeInFrames, pConfig->periods, pActualSS);
pOP = ((ma_pa_stream_set_buffer_attr_proc)pContext->pulse.pa_stream_set_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, &attr, NULL, NULL);
if (pOP != NULL) {
ma_device__wait_for_operation__pulse(pDevice, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
}
}
ss = *pActualSS;
}
pDevice->playback.internalFormat = ma_format_from_pulse(ss.format);
pDevice->playback.internalChannels = ss.channels;
pDevice->playback.internalSampleRate = ss.rate;
/* Internal channel map. */
pActualCMap = ((ma_pa_stream_get_channel_map_proc)pContext->pulse.pa_stream_get_channel_map)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
if (pActualCMap != NULL) {
cmap = *pActualCMap;
}
for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) {
pDevice->playback.internalChannelMap[iChannel] = ma_channel_position_from_pulse(cmap.map[iChannel]);
}
/* Buffer. */
pActualAttr = ((ma_pa_stream_get_buffer_attr_proc)pContext->pulse.pa_stream_get_buffer_attr)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
if (pActualAttr != NULL) {
attr = *pActualAttr;
}
pDevice->playback.internalPeriods = attr.maxlength / attr.tlength;
pDevice->playback.internalPeriodSizeInFrames = attr.maxlength / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels) / pDevice->playback.internalPeriods;
#ifdef MA_DEBUG_OUTPUT
printf("[PulseAudio] Playback actual attr: maxlength=%d, tlength=%d, prebuf=%d, minreq=%d, fragsize=%d; internalPeriodSizeInFrames=%d\n", attr.maxlength, attr.tlength, attr.prebuf, attr.minreq, attr.fragsize, pDevice->playback.internalPeriodSizeInFrames);
#endif
/* Name. */
devPlayback = ((ma_pa_stream_get_device_name_proc)pContext->pulse.pa_stream_get_device_name)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
if (devPlayback != NULL) {
ma_pa_operation* pOP = ((ma_pa_context_get_sink_info_by_name_proc)pContext->pulse.pa_context_get_sink_info_by_name)((ma_pa_context*)pDevice->pulse.pPulseContext, devPlayback, ma_device_sink_name_callback, pDevice);
if (pOP != NULL) {
ma_device__wait_for_operation__pulse(pDevice, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
}
}
}
return MA_SUCCESS;
on_error7:
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
}
on_error6:
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
}
on_error5:
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
((ma_pa_stream_disconnect_proc)pContext->pulse.pa_stream_disconnect)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
}
on_error4:
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
((ma_pa_stream_unref_proc)pContext->pulse.pa_stream_unref)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
}
on_error3: ((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)((ma_pa_context*)pDevice->pulse.pPulseContext);
on_error2: ((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)((ma_pa_context*)pDevice->pulse.pPulseContext);
on_error1: ((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)((ma_pa_mainloop*)pDevice->pulse.pMainLoop);
on_error0:
return result;
}
static void ma_pulse_operation_complete_callback(ma_pa_stream* pStream, int success, void* pUserData)
{
ma_bool32* pIsSuccessful = (ma_bool32*)pUserData;
MA_ASSERT(pIsSuccessful != NULL);
*pIsSuccessful = (ma_bool32)success;
(void)pStream; /* Unused. */
}
static ma_result ma_device__cork_stream__pulse(ma_device* pDevice, ma_device_type deviceType, int cork)
{
ma_context* pContext = pDevice->pContext;
ma_bool32 wasSuccessful;
ma_pa_stream* pStream;
ma_pa_operation* pOP;
ma_result result;
/* This should not be called with a duplex device type. */
if (deviceType == ma_device_type_duplex) {
return MA_INVALID_ARGS;
}
wasSuccessful = MA_FALSE;
pStream = (ma_pa_stream*)((deviceType == ma_device_type_capture) ? pDevice->pulse.pStreamCapture : pDevice->pulse.pStreamPlayback);
MA_ASSERT(pStream != NULL);
pOP = ((ma_pa_stream_cork_proc)pContext->pulse.pa_stream_cork)(pStream, cork, ma_pulse_operation_complete_callback, &wasSuccessful);
if (pOP == NULL) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to cork PulseAudio stream.", (cork == 0) ? MA_FAILED_TO_START_BACKEND_DEVICE : MA_FAILED_TO_STOP_BACKEND_DEVICE);
}
result = ma_device__wait_for_operation__pulse(pDevice, pOP);
((ma_pa_operation_unref_proc)pContext->pulse.pa_operation_unref)(pOP);
if (result != MA_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] An error occurred while waiting for the PulseAudio stream to cork.", result);
}
if (!wasSuccessful) {
if (cork) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to stop PulseAudio stream.", MA_FAILED_TO_STOP_BACKEND_DEVICE);
} else {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to start PulseAudio stream.", MA_FAILED_TO_START_BACKEND_DEVICE);
}
}
return MA_SUCCESS;
}
static ma_result ma_device_stop__pulse(ma_device* pDevice)
{
ma_result result;
ma_bool32 wasSuccessful;
ma_pa_operation* pOP;
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
result = ma_device__cork_stream__pulse(pDevice, ma_device_type_capture, 1);
if (result != MA_SUCCESS) {
return result;
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
/* The stream needs to be drained if it's a playback device. */
pOP = ((ma_pa_stream_drain_proc)pDevice->pContext->pulse.pa_stream_drain)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, ma_pulse_operation_complete_callback, &wasSuccessful);
if (pOP != NULL) {
ma_device__wait_for_operation__pulse(pDevice, pOP);
((ma_pa_operation_unref_proc)pDevice->pContext->pulse.pa_operation_unref)(pOP);
}
result = ma_device__cork_stream__pulse(pDevice, ma_device_type_playback, 1);
if (result != MA_SUCCESS) {
return result;
}
}
return MA_SUCCESS;
}
static ma_result ma_device_write__pulse(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
ma_uint32 totalFramesWritten;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(pPCMFrames != NULL);
MA_ASSERT(frameCount > 0);
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
}
totalFramesWritten = 0;
while (totalFramesWritten < frameCount) {
if (ma_device__get_state(pDevice) != MA_STATE_STARTED) {
return MA_DEVICE_NOT_STARTED;
}
/* Place the data into the mapped buffer if we have one. */
if (pDevice->pulse.pMappedBufferPlayback != NULL && pDevice->pulse.mappedBufferFramesRemainingPlayback > 0) {
ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 mappedBufferFramesConsumed = pDevice->pulse.mappedBufferFramesCapacityPlayback - pDevice->pulse.mappedBufferFramesRemainingPlayback;
void* pDst = (ma_uint8*)pDevice->pulse.pMappedBufferPlayback + (mappedBufferFramesConsumed * bpf);
const void* pSrc = (const ma_uint8*)pPCMFrames + (totalFramesWritten * bpf);
ma_uint32 framesToCopy = ma_min(pDevice->pulse.mappedBufferFramesRemainingPlayback, (frameCount - totalFramesWritten));
MA_COPY_MEMORY(pDst, pSrc, framesToCopy * bpf);
pDevice->pulse.mappedBufferFramesRemainingPlayback -= framesToCopy;
totalFramesWritten += framesToCopy;
}
/*
Getting here means we've run out of data in the currently mapped chunk. We need to write this to the device and then try
mapping another chunk. If this fails we need to wait for space to become available.
*/
if (pDevice->pulse.mappedBufferFramesCapacityPlayback > 0 && pDevice->pulse.mappedBufferFramesRemainingPlayback == 0) {
size_t nbytes = pDevice->pulse.mappedBufferFramesCapacityPlayback * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
int error = ((ma_pa_stream_write_proc)pDevice->pContext->pulse.pa_stream_write)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, pDevice->pulse.pMappedBufferPlayback, nbytes, NULL, 0, MA_PA_SEEK_RELATIVE);
if (error < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to write data to the PulseAudio stream.", ma_result_from_pulse(error));
}
pDevice->pulse.pMappedBufferPlayback = NULL;
pDevice->pulse.mappedBufferFramesRemainingPlayback = 0;
pDevice->pulse.mappedBufferFramesCapacityPlayback = 0;
}
MA_ASSERT(totalFramesWritten <= frameCount);
if (totalFramesWritten == frameCount) {
break;
}
/* Getting here means we need to map a new buffer. If we don't have enough space we need to wait for more. */
for (;;) {
size_t writableSizeInBytes;
/* If the device has been corked, don't try to continue. */
if (((ma_pa_stream_is_corked_proc)pDevice->pContext->pulse.pa_stream_is_corked)((ma_pa_stream*)pDevice->pulse.pStreamPlayback)) {
break;
}
writableSizeInBytes = ((ma_pa_stream_writable_size_proc)pDevice->pContext->pulse.pa_stream_writable_size)((ma_pa_stream*)pDevice->pulse.pStreamPlayback);
if (writableSizeInBytes != (size_t)-1) {
if (writableSizeInBytes > 0) {
/* Data is avaialable. */
size_t bytesToMap = writableSizeInBytes;
int error = ((ma_pa_stream_begin_write_proc)pDevice->pContext->pulse.pa_stream_begin_write)((ma_pa_stream*)pDevice->pulse.pStreamPlayback, &pDevice->pulse.pMappedBufferPlayback, &bytesToMap);
if (error < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to map write buffer.", ma_result_from_pulse(error));
}
pDevice->pulse.mappedBufferFramesCapacityPlayback = bytesToMap / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
pDevice->pulse.mappedBufferFramesRemainingPlayback = pDevice->pulse.mappedBufferFramesCapacityPlayback;
break;
} else {
/* No data available. Need to wait for more. */
int error = ((ma_pa_mainloop_iterate_proc)pDevice->pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 1, NULL);
if (error < 0) {
return ma_result_from_pulse(error);
}
continue;
}
} else {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to query the stream's writable size.", MA_ERROR);
}
}
}
if (pFramesWritten != NULL) {
*pFramesWritten = totalFramesWritten;
}
return MA_SUCCESS;
}
static ma_result ma_device_read__pulse(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
ma_uint32 totalFramesRead;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(pPCMFrames != NULL);
MA_ASSERT(frameCount > 0);
if (pFramesRead != NULL) {
*pFramesRead = 0;
}
totalFramesRead = 0;
while (totalFramesRead < frameCount) {
if (ma_device__get_state(pDevice) != MA_STATE_STARTED) {
return MA_DEVICE_NOT_STARTED;
}
/*
If a buffer is mapped we need to read from that first. Once it's consumed we need to drop it. Note that pDevice->pulse.pMappedBufferCapture can be null in which
case it could be a hole. In this case we just write zeros into the output buffer.
*/
if (pDevice->pulse.mappedBufferFramesRemainingCapture > 0) {
ma_uint32 bpf = ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 mappedBufferFramesConsumed = pDevice->pulse.mappedBufferFramesCapacityCapture - pDevice->pulse.mappedBufferFramesRemainingCapture;
ma_uint32 framesToCopy = ma_min(pDevice->pulse.mappedBufferFramesRemainingCapture, (frameCount - totalFramesRead));
void* pDst = (ma_uint8*)pPCMFrames + (totalFramesRead * bpf);
/*
This little bit of logic here is specifically for PulseAudio and it's hole management. The buffer pointer will be set to NULL
when the current fragment is a hole. For a hole we just output silence.
*/
if (pDevice->pulse.pMappedBufferCapture != NULL) {
const void* pSrc = (const ma_uint8*)pDevice->pulse.pMappedBufferCapture + (mappedBufferFramesConsumed * bpf);
MA_COPY_MEMORY(pDst, pSrc, framesToCopy * bpf);
} else {
MA_ZERO_MEMORY(pDst, framesToCopy * bpf);
#if defined(MA_DEBUG_OUTPUT)
printf("[PulseAudio] ma_device_read__pulse: Filling hole with silence.\n");
#endif
}
pDevice->pulse.mappedBufferFramesRemainingCapture -= framesToCopy;
totalFramesRead += framesToCopy;
}
/*
Getting here means we've run out of data in the currently mapped chunk. We need to drop this from the device and then try
mapping another chunk. If this fails we need to wait for data to become available.
*/
if (pDevice->pulse.mappedBufferFramesCapacityCapture > 0 && pDevice->pulse.mappedBufferFramesRemainingCapture == 0) {
int error;
#if defined(MA_DEBUG_OUTPUT)
printf("[PulseAudio] ma_device_read__pulse: Call pa_stream_drop()\n");
#endif
error = ((ma_pa_stream_drop_proc)pDevice->pContext->pulse.pa_stream_drop)((ma_pa_stream*)pDevice->pulse.pStreamCapture);
if (error != 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to drop fragment.", ma_result_from_pulse(error));
}
pDevice->pulse.pMappedBufferCapture = NULL;
pDevice->pulse.mappedBufferFramesRemainingCapture = 0;
pDevice->pulse.mappedBufferFramesCapacityCapture = 0;
}
MA_ASSERT(totalFramesRead <= frameCount);
if (totalFramesRead == frameCount) {
break;
}
/* Getting here means we need to map a new buffer. If we don't have enough data we wait for more. */
for (;;) {
int error;
size_t bytesMapped;
if (ma_device__get_state(pDevice) != MA_STATE_STARTED) {
break;
}
/* If the device has been corked, don't try to continue. */
if (((ma_pa_stream_is_corked_proc)pDevice->pContext->pulse.pa_stream_is_corked)((ma_pa_stream*)pDevice->pulse.pStreamCapture)) {
#if defined(MA_DEBUG_OUTPUT)
printf("[PulseAudio] ma_device_read__pulse: Corked.\n");
#endif
break;
}
MA_ASSERT(pDevice->pulse.pMappedBufferCapture == NULL); /* <-- We're about to map a buffer which means we shouldn't have an existing mapping. */
error = ((ma_pa_stream_peek_proc)pDevice->pContext->pulse.pa_stream_peek)((ma_pa_stream*)pDevice->pulse.pStreamCapture, &pDevice->pulse.pMappedBufferCapture, &bytesMapped);
if (error < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[PulseAudio] Failed to peek capture buffer.", ma_result_from_pulse(error));
}
if (bytesMapped > 0) {
pDevice->pulse.mappedBufferFramesCapacityCapture = bytesMapped / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
pDevice->pulse.mappedBufferFramesRemainingCapture = pDevice->pulse.mappedBufferFramesCapacityCapture;
#if defined(MA_DEBUG_OUTPUT)
printf("[PulseAudio] ma_device_read__pulse: Mapped. mappedBufferFramesCapacityCapture=%d, mappedBufferFramesRemainingCapture=%d\n", pDevice->pulse.mappedBufferFramesCapacityCapture, pDevice->pulse.mappedBufferFramesRemainingCapture);
#endif
if (pDevice->pulse.pMappedBufferCapture == NULL) {
/* It's a hole. */
#if defined(MA_DEBUG_OUTPUT)
printf("[PulseAudio] ma_device_read__pulse: Call pa_stream_peek(). Hole.\n");
#endif
}
break;
} else {
if (pDevice->pulse.pMappedBufferCapture == NULL) {
/* Nothing available yet. Need to wait for more. */
/*
I have had reports of a deadlock in this part of the code. I have reproduced this when using the "Built-in Audio Analogue Stereo" device without
an actual microphone connected. I'm experimenting here by not blocking in pa_mainloop_iterate() and instead sleep for a bit when there are no
dispatches.
*/
error = ((ma_pa_mainloop_iterate_proc)pDevice->pContext->pulse.pa_mainloop_iterate)((ma_pa_mainloop*)pDevice->pulse.pMainLoop, 0, NULL);
if (error < 0) {
return ma_result_from_pulse(error);
}
/* Sleep for a bit if nothing was dispatched. */
if (error == 0) {
ma_sleep(1);
}
#if defined(MA_DEBUG_OUTPUT)
printf("[PulseAudio] ma_device_read__pulse: No data available. Waiting. mappedBufferFramesCapacityCapture=%d, mappedBufferFramesRemainingCapture=%d\n", pDevice->pulse.mappedBufferFramesCapacityCapture, pDevice->pulse.mappedBufferFramesRemainingCapture);
#endif
} else {
/* Getting here means we mapped 0 bytes, but have a non-NULL buffer. I don't think this should ever happen. */
MA_ASSERT(MA_FALSE);
}
}
}
}
if (pFramesRead != NULL) {
*pFramesRead = totalFramesRead;
}
return MA_SUCCESS;
}
static ma_result ma_device_main_loop__pulse(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
MA_ASSERT(pDevice != NULL);
/* The stream needs to be uncorked first. We do this at the top for both capture and playback for PulseAudio. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
result = ma_device__cork_stream__pulse(pDevice, ma_device_type_capture, 0);
if (result != MA_SUCCESS) {
return result;
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
result = ma_device__cork_stream__pulse(pDevice, ma_device_type_playback, 0);
if (result != MA_SUCCESS) {
return result;
}
}
while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) {
switch (pDevice->type)
{
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
ma_uint32 totalCapturedDeviceFramesProcessed = 0;
ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 capturedDeviceFramesRemaining;
ma_uint32 capturedDeviceFramesProcessed;
ma_uint32 capturedDeviceFramesToProcess;
ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
result = ma_device_read__pulse(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
capturedDeviceFramesProcessed = 0;
for (;;) {
ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
/* Convert capture data from device format to client format. */
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
if (result != MA_SUCCESS) {
break;
}
/*
If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
*/
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
/* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
if (result != MA_SUCCESS) {
break;
}
result = ma_device_write__pulse(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
/* In case an error happened from ma_device_write__pulse()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
case ma_device_type_capture:
{
ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToReadThisIteration = framesRemainingInPeriod;
if (framesToReadThisIteration > intermediaryBufferSizeInFrames) {
framesToReadThisIteration = intermediaryBufferSizeInFrames;
}
result = ma_device_read__pulse(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer);
framesReadThisPeriod += framesProcessed;
}
} break;
case ma_device_type_playback:
{
ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod;
if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) {
framesToWriteThisIteration = intermediaryBufferSizeInFrames;
}
ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer);
result = ma_device_write__pulse(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
framesWrittenThisPeriod += framesProcessed;
}
} break;
/* To silence a warning. Will never hit this. */
case ma_device_type_loopback:
default: break;
}
}
/* Here is where the device needs to be stopped. */
ma_device_stop__pulse(pDevice);
return result;
}
static ma_result ma_context_uninit__pulse(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_pulseaudio);
ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
pContext->pulse.pServerName = NULL;
ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
pContext->pulse.pApplicationName = NULL;
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->pulse.pulseSO);
#endif
return MA_SUCCESS;
}
static ma_result ma_context_init__pulse(const ma_context_config* pConfig, ma_context* pContext)
{
#ifndef MA_NO_RUNTIME_LINKING
const char* libpulseNames[] = {
"libpulse.so",
"libpulse.so.0"
};
size_t i;
for (i = 0; i < ma_countof(libpulseNames); ++i) {
pContext->pulse.pulseSO = ma_dlopen(pContext, libpulseNames[i]);
if (pContext->pulse.pulseSO != NULL) {
break;
}
}
if (pContext->pulse.pulseSO == NULL) {
return MA_NO_BACKEND;
}
pContext->pulse.pa_mainloop_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_new");
pContext->pulse.pa_mainloop_free = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_free");
pContext->pulse.pa_mainloop_get_api = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_get_api");
pContext->pulse.pa_mainloop_iterate = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_iterate");
pContext->pulse.pa_mainloop_wakeup = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_mainloop_wakeup");
pContext->pulse.pa_context_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_new");
pContext->pulse.pa_context_unref = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_unref");
pContext->pulse.pa_context_connect = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_connect");
pContext->pulse.pa_context_disconnect = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_disconnect");
pContext->pulse.pa_context_set_state_callback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_set_state_callback");
pContext->pulse.pa_context_get_state = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_state");
pContext->pulse.pa_context_get_sink_info_list = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_sink_info_list");
pContext->pulse.pa_context_get_source_info_list = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_source_info_list");
pContext->pulse.pa_context_get_sink_info_by_name = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_sink_info_by_name");
pContext->pulse.pa_context_get_source_info_by_name = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_context_get_source_info_by_name");
pContext->pulse.pa_operation_unref = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_operation_unref");
pContext->pulse.pa_operation_get_state = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_operation_get_state");
pContext->pulse.pa_channel_map_init_extend = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_channel_map_init_extend");
pContext->pulse.pa_channel_map_valid = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_channel_map_valid");
pContext->pulse.pa_channel_map_compatible = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_channel_map_compatible");
pContext->pulse.pa_stream_new = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_new");
pContext->pulse.pa_stream_unref = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_unref");
pContext->pulse.pa_stream_connect_playback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_connect_playback");
pContext->pulse.pa_stream_connect_record = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_connect_record");
pContext->pulse.pa_stream_disconnect = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_disconnect");
pContext->pulse.pa_stream_get_state = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_state");
pContext->pulse.pa_stream_get_sample_spec = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_sample_spec");
pContext->pulse.pa_stream_get_channel_map = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_channel_map");
pContext->pulse.pa_stream_get_buffer_attr = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_buffer_attr");
pContext->pulse.pa_stream_set_buffer_attr = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_set_buffer_attr");
pContext->pulse.pa_stream_get_device_name = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_get_device_name");
pContext->pulse.pa_stream_set_write_callback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_set_write_callback");
pContext->pulse.pa_stream_set_read_callback = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_set_read_callback");
pContext->pulse.pa_stream_flush = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_flush");
pContext->pulse.pa_stream_drain = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_drain");
pContext->pulse.pa_stream_is_corked = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_is_corked");
pContext->pulse.pa_stream_cork = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_cork");
pContext->pulse.pa_stream_trigger = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_trigger");
pContext->pulse.pa_stream_begin_write = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_begin_write");
pContext->pulse.pa_stream_write = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_write");
pContext->pulse.pa_stream_peek = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_peek");
pContext->pulse.pa_stream_drop = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_drop");
pContext->pulse.pa_stream_writable_size = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_writable_size");
pContext->pulse.pa_stream_readable_size = (ma_proc)ma_dlsym(pContext, pContext->pulse.pulseSO, "pa_stream_readable_size");
#else
/* This strange assignment system is just for type safety. */
ma_pa_mainloop_new_proc _pa_mainloop_new = pa_mainloop_new;
ma_pa_mainloop_free_proc _pa_mainloop_free = pa_mainloop_free;
ma_pa_mainloop_get_api_proc _pa_mainloop_get_api = pa_mainloop_get_api;
ma_pa_mainloop_iterate_proc _pa_mainloop_iterate = pa_mainloop_iterate;
ma_pa_mainloop_wakeup_proc _pa_mainloop_wakeup = pa_mainloop_wakeup;
ma_pa_context_new_proc _pa_context_new = pa_context_new;
ma_pa_context_unref_proc _pa_context_unref = pa_context_unref;
ma_pa_context_connect_proc _pa_context_connect = pa_context_connect;
ma_pa_context_disconnect_proc _pa_context_disconnect = pa_context_disconnect;
ma_pa_context_set_state_callback_proc _pa_context_set_state_callback = pa_context_set_state_callback;
ma_pa_context_get_state_proc _pa_context_get_state = pa_context_get_state;
ma_pa_context_get_sink_info_list_proc _pa_context_get_sink_info_list = pa_context_get_sink_info_list;
ma_pa_context_get_source_info_list_proc _pa_context_get_source_info_list = pa_context_get_source_info_list;
ma_pa_context_get_sink_info_by_name_proc _pa_context_get_sink_info_by_name = pa_context_get_sink_info_by_name;
ma_pa_context_get_source_info_by_name_proc _pa_context_get_source_info_by_name= pa_context_get_source_info_by_name;
ma_pa_operation_unref_proc _pa_operation_unref = pa_operation_unref;
ma_pa_operation_get_state_proc _pa_operation_get_state = pa_operation_get_state;
ma_pa_channel_map_init_extend_proc _pa_channel_map_init_extend = pa_channel_map_init_extend;
ma_pa_channel_map_valid_proc _pa_channel_map_valid = pa_channel_map_valid;
ma_pa_channel_map_compatible_proc _pa_channel_map_compatible = pa_channel_map_compatible;
ma_pa_stream_new_proc _pa_stream_new = pa_stream_new;
ma_pa_stream_unref_proc _pa_stream_unref = pa_stream_unref;
ma_pa_stream_connect_playback_proc _pa_stream_connect_playback = pa_stream_connect_playback;
ma_pa_stream_connect_record_proc _pa_stream_connect_record = pa_stream_connect_record;
ma_pa_stream_disconnect_proc _pa_stream_disconnect = pa_stream_disconnect;
ma_pa_stream_get_state_proc _pa_stream_get_state = pa_stream_get_state;
ma_pa_stream_get_sample_spec_proc _pa_stream_get_sample_spec = pa_stream_get_sample_spec;
ma_pa_stream_get_channel_map_proc _pa_stream_get_channel_map = pa_stream_get_channel_map;
ma_pa_stream_get_buffer_attr_proc _pa_stream_get_buffer_attr = pa_stream_get_buffer_attr;
ma_pa_stream_set_buffer_attr_proc _pa_stream_set_buffer_attr = pa_stream_set_buffer_attr;
ma_pa_stream_get_device_name_proc _pa_stream_get_device_name = pa_stream_get_device_name;
ma_pa_stream_set_write_callback_proc _pa_stream_set_write_callback = pa_stream_set_write_callback;
ma_pa_stream_set_read_callback_proc _pa_stream_set_read_callback = pa_stream_set_read_callback;
ma_pa_stream_flush_proc _pa_stream_flush = pa_stream_flush;
ma_pa_stream_drain_proc _pa_stream_drain = pa_stream_drain;
ma_pa_stream_is_corked_proc _pa_stream_is_corked = pa_stream_is_corked;
ma_pa_stream_cork_proc _pa_stream_cork = pa_stream_cork;
ma_pa_stream_trigger_proc _pa_stream_trigger = pa_stream_trigger;
ma_pa_stream_begin_write_proc _pa_stream_begin_write = pa_stream_begin_write;
ma_pa_stream_write_proc _pa_stream_write = pa_stream_write;
ma_pa_stream_peek_proc _pa_stream_peek = pa_stream_peek;
ma_pa_stream_drop_proc _pa_stream_drop = pa_stream_drop;
ma_pa_stream_writable_size_proc _pa_stream_writable_size = pa_stream_writable_size;
ma_pa_stream_readable_size_proc _pa_stream_readable_size = pa_stream_readable_size;
pContext->pulse.pa_mainloop_new = (ma_proc)_pa_mainloop_new;
pContext->pulse.pa_mainloop_free = (ma_proc)_pa_mainloop_free;
pContext->pulse.pa_mainloop_get_api = (ma_proc)_pa_mainloop_get_api;
pContext->pulse.pa_mainloop_iterate = (ma_proc)_pa_mainloop_iterate;
pContext->pulse.pa_mainloop_wakeup = (ma_proc)_pa_mainloop_wakeup;
pContext->pulse.pa_context_new = (ma_proc)_pa_context_new;
pContext->pulse.pa_context_unref = (ma_proc)_pa_context_unref;
pContext->pulse.pa_context_connect = (ma_proc)_pa_context_connect;
pContext->pulse.pa_context_disconnect = (ma_proc)_pa_context_disconnect;
pContext->pulse.pa_context_set_state_callback = (ma_proc)_pa_context_set_state_callback;
pContext->pulse.pa_context_get_state = (ma_proc)_pa_context_get_state;
pContext->pulse.pa_context_get_sink_info_list = (ma_proc)_pa_context_get_sink_info_list;
pContext->pulse.pa_context_get_source_info_list = (ma_proc)_pa_context_get_source_info_list;
pContext->pulse.pa_context_get_sink_info_by_name = (ma_proc)_pa_context_get_sink_info_by_name;
pContext->pulse.pa_context_get_source_info_by_name = (ma_proc)_pa_context_get_source_info_by_name;
pContext->pulse.pa_operation_unref = (ma_proc)_pa_operation_unref;
pContext->pulse.pa_operation_get_state = (ma_proc)_pa_operation_get_state;
pContext->pulse.pa_channel_map_init_extend = (ma_proc)_pa_channel_map_init_extend;
pContext->pulse.pa_channel_map_valid = (ma_proc)_pa_channel_map_valid;
pContext->pulse.pa_channel_map_compatible = (ma_proc)_pa_channel_map_compatible;
pContext->pulse.pa_stream_new = (ma_proc)_pa_stream_new;
pContext->pulse.pa_stream_unref = (ma_proc)_pa_stream_unref;
pContext->pulse.pa_stream_connect_playback = (ma_proc)_pa_stream_connect_playback;
pContext->pulse.pa_stream_connect_record = (ma_proc)_pa_stream_connect_record;
pContext->pulse.pa_stream_disconnect = (ma_proc)_pa_stream_disconnect;
pContext->pulse.pa_stream_get_state = (ma_proc)_pa_stream_get_state;
pContext->pulse.pa_stream_get_sample_spec = (ma_proc)_pa_stream_get_sample_spec;
pContext->pulse.pa_stream_get_channel_map = (ma_proc)_pa_stream_get_channel_map;
pContext->pulse.pa_stream_get_buffer_attr = (ma_proc)_pa_stream_get_buffer_attr;
pContext->pulse.pa_stream_set_buffer_attr = (ma_proc)_pa_stream_set_buffer_attr;
pContext->pulse.pa_stream_get_device_name = (ma_proc)_pa_stream_get_device_name;
pContext->pulse.pa_stream_set_write_callback = (ma_proc)_pa_stream_set_write_callback;
pContext->pulse.pa_stream_set_read_callback = (ma_proc)_pa_stream_set_read_callback;
pContext->pulse.pa_stream_flush = (ma_proc)_pa_stream_flush;
pContext->pulse.pa_stream_drain = (ma_proc)_pa_stream_drain;
pContext->pulse.pa_stream_is_corked = (ma_proc)_pa_stream_is_corked;
pContext->pulse.pa_stream_cork = (ma_proc)_pa_stream_cork;
pContext->pulse.pa_stream_trigger = (ma_proc)_pa_stream_trigger;
pContext->pulse.pa_stream_begin_write = (ma_proc)_pa_stream_begin_write;
pContext->pulse.pa_stream_write = (ma_proc)_pa_stream_write;
pContext->pulse.pa_stream_peek = (ma_proc)_pa_stream_peek;
pContext->pulse.pa_stream_drop = (ma_proc)_pa_stream_drop;
pContext->pulse.pa_stream_writable_size = (ma_proc)_pa_stream_writable_size;
pContext->pulse.pa_stream_readable_size = (ma_proc)_pa_stream_readable_size;
#endif
pContext->onUninit = ma_context_uninit__pulse;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__pulse;
pContext->onEnumDevices = ma_context_enumerate_devices__pulse;
pContext->onGetDeviceInfo = ma_context_get_device_info__pulse;
pContext->onDeviceInit = ma_device_init__pulse;
pContext->onDeviceUninit = ma_device_uninit__pulse;
pContext->onDeviceStart = NULL;
pContext->onDeviceStop = NULL;
pContext->onDeviceMainLoop = ma_device_main_loop__pulse;
if (pConfig->pulse.pApplicationName) {
pContext->pulse.pApplicationName = ma_copy_string(pConfig->pulse.pApplicationName, &pContext->allocationCallbacks);
}
if (pConfig->pulse.pServerName) {
pContext->pulse.pServerName = ma_copy_string(pConfig->pulse.pServerName, &pContext->allocationCallbacks);
}
pContext->pulse.tryAutoSpawn = pConfig->pulse.tryAutoSpawn;
/*
Although we have found the libpulse library, it doesn't necessarily mean PulseAudio is useable. We need to initialize
and connect a dummy PulseAudio context to test PulseAudio's usability.
*/
{
ma_pa_mainloop* pMainLoop;
ma_pa_mainloop_api* pAPI;
ma_pa_context* pPulseContext;
int error;
pMainLoop = ((ma_pa_mainloop_new_proc)pContext->pulse.pa_mainloop_new)();
if (pMainLoop == NULL) {
ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->pulse.pulseSO);
#endif
return MA_NO_BACKEND;
}
pAPI = ((ma_pa_mainloop_get_api_proc)pContext->pulse.pa_mainloop_get_api)(pMainLoop);
if (pAPI == NULL) {
ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->pulse.pulseSO);
#endif
return MA_NO_BACKEND;
}
pPulseContext = ((ma_pa_context_new_proc)pContext->pulse.pa_context_new)(pAPI, pContext->pulse.pApplicationName);
if (pPulseContext == NULL) {
ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->pulse.pulseSO);
#endif
return MA_NO_BACKEND;
}
error = ((ma_pa_context_connect_proc)pContext->pulse.pa_context_connect)(pPulseContext, pContext->pulse.pServerName, 0, NULL);
if (error != MA_PA_OK) {
ma_free(pContext->pulse.pServerName, &pContext->allocationCallbacks);
ma_free(pContext->pulse.pApplicationName, &pContext->allocationCallbacks);
((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->pulse.pulseSO);
#endif
return MA_NO_BACKEND;
}
((ma_pa_context_disconnect_proc)pContext->pulse.pa_context_disconnect)(pPulseContext);
((ma_pa_context_unref_proc)pContext->pulse.pa_context_unref)(pPulseContext);
((ma_pa_mainloop_free_proc)pContext->pulse.pa_mainloop_free)(pMainLoop);
}
return MA_SUCCESS;
}
#endif
/******************************************************************************
JACK Backend
******************************************************************************/
#ifdef MA_HAS_JACK
/* It is assumed jack.h is available when compile-time linking is being used. */
#ifdef MA_NO_RUNTIME_LINKING
#include <jack/jack.h>
typedef jack_nframes_t ma_jack_nframes_t;
typedef jack_options_t ma_jack_options_t;
typedef jack_status_t ma_jack_status_t;
typedef jack_client_t ma_jack_client_t;
typedef jack_port_t ma_jack_port_t;
typedef JackProcessCallback ma_JackProcessCallback;
typedef JackBufferSizeCallback ma_JackBufferSizeCallback;
typedef JackShutdownCallback ma_JackShutdownCallback;
#define MA_JACK_DEFAULT_AUDIO_TYPE JACK_DEFAULT_AUDIO_TYPE
#define ma_JackNoStartServer JackNoStartServer
#define ma_JackPortIsInput JackPortIsInput
#define ma_JackPortIsOutput JackPortIsOutput
#define ma_JackPortIsPhysical JackPortIsPhysical
#else
typedef ma_uint32 ma_jack_nframes_t;
typedef int ma_jack_options_t;
typedef int ma_jack_status_t;
typedef struct ma_jack_client_t ma_jack_client_t;
typedef struct ma_jack_port_t ma_jack_port_t;
typedef int (* ma_JackProcessCallback) (ma_jack_nframes_t nframes, void* arg);
typedef int (* ma_JackBufferSizeCallback)(ma_jack_nframes_t nframes, void* arg);
typedef void (* ma_JackShutdownCallback) (void* arg);
#define MA_JACK_DEFAULT_AUDIO_TYPE "32 bit float mono audio"
#define ma_JackNoStartServer 1
#define ma_JackPortIsInput 1
#define ma_JackPortIsOutput 2
#define ma_JackPortIsPhysical 4
#endif
typedef ma_jack_client_t* (* ma_jack_client_open_proc) (const char* client_name, ma_jack_options_t options, ma_jack_status_t* status, ...);
typedef int (* ma_jack_client_close_proc) (ma_jack_client_t* client);
typedef int (* ma_jack_client_name_size_proc) (void);
typedef int (* ma_jack_set_process_callback_proc) (ma_jack_client_t* client, ma_JackProcessCallback process_callback, void* arg);
typedef int (* ma_jack_set_buffer_size_callback_proc)(ma_jack_client_t* client, ma_JackBufferSizeCallback bufsize_callback, void* arg);
typedef void (* ma_jack_on_shutdown_proc) (ma_jack_client_t* client, ma_JackShutdownCallback function, void* arg);
typedef ma_jack_nframes_t (* ma_jack_get_sample_rate_proc) (ma_jack_client_t* client);
typedef ma_jack_nframes_t (* ma_jack_get_buffer_size_proc) (ma_jack_client_t* client);
typedef const char** (* ma_jack_get_ports_proc) (ma_jack_client_t* client, const char* port_name_pattern, const char* type_name_pattern, unsigned long flags);
typedef int (* ma_jack_activate_proc) (ma_jack_client_t* client);
typedef int (* ma_jack_deactivate_proc) (ma_jack_client_t* client);
typedef int (* ma_jack_connect_proc) (ma_jack_client_t* client, const char* source_port, const char* destination_port);
typedef ma_jack_port_t* (* ma_jack_port_register_proc) (ma_jack_client_t* client, const char* port_name, const char* port_type, unsigned long flags, unsigned long buffer_size);
typedef const char* (* ma_jack_port_name_proc) (const ma_jack_port_t* port);
typedef void* (* ma_jack_port_get_buffer_proc) (ma_jack_port_t* port, ma_jack_nframes_t nframes);
typedef void (* ma_jack_free_proc) (void* ptr);
static ma_result ma_context_open_client__jack(ma_context* pContext, ma_jack_client_t** ppClient)
{
size_t maxClientNameSize;
char clientName[256];
ma_jack_status_t status;
ma_jack_client_t* pClient;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppClient != NULL);
if (ppClient) {
*ppClient = NULL;
}
maxClientNameSize = ((ma_jack_client_name_size_proc)pContext->jack.jack_client_name_size)(); /* Includes null terminator. */
ma_strncpy_s(clientName, ma_min(sizeof(clientName), maxClientNameSize), (pContext->jack.pClientName != NULL) ? pContext->jack.pClientName : "miniaudio", (size_t)-1);
pClient = ((ma_jack_client_open_proc)pContext->jack.jack_client_open)(clientName, (pContext->jack.tryStartServer) ? 0 : ma_JackNoStartServer, &status, NULL);
if (pClient == NULL) {
return MA_FAILED_TO_OPEN_BACKEND_DEVICE;
}
if (ppClient) {
*ppClient = pClient;
}
return MA_SUCCESS;
}
static ma_bool32 ma_context_is_device_id_equal__jack(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->jack == pID1->jack;
}
static ma_result ma_context_enumerate_devices__jack(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult = MA_TRUE;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__jack(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_jack_client_t* pClient;
ma_result result;
const char** ppPorts;
MA_ASSERT(pContext != NULL);
/* No exclusive mode with the JACK backend. */
if (shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
if (pDeviceID != NULL && pDeviceID->jack != 0) {
return MA_NO_DEVICE; /* Don't know the device. */
}
/* Name / Description */
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
}
/* Jack only supports f32 and has a specific channel count and sample rate. */
pDeviceInfo->formatCount = 1;
pDeviceInfo->formats[0] = ma_format_f32;
/* The channel count and sample rate can only be determined by opening the device. */
result = ma_context_open_client__jack(pContext, &pClient);
if (result != MA_SUCCESS) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client.", result);
}
pDeviceInfo->minSampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pClient);
pDeviceInfo->maxSampleRate = pDeviceInfo->minSampleRate;
pDeviceInfo->minChannels = 0;
pDeviceInfo->maxChannels = 0;
ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ((deviceType == ma_device_type_playback) ? ma_JackPortIsInput : ma_JackPortIsOutput));
if (ppPorts == NULL) {
((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pClient);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
while (ppPorts[pDeviceInfo->minChannels] != NULL) {
pDeviceInfo->minChannels += 1;
pDeviceInfo->maxChannels += 1;
}
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts);
((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pClient);
(void)pContext;
return MA_SUCCESS;
}
static void ma_device_uninit__jack(ma_device* pDevice)
{
ma_context* pContext;
MA_ASSERT(pDevice != NULL);
pContext = pDevice->pContext;
MA_ASSERT(pContext != NULL);
if (pDevice->jack.pClient != NULL) {
((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pDevice->jack.pClient);
}
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma__free_from_callbacks(pDevice->jack.pIntermediaryBufferCapture, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma__free_from_callbacks(pDevice->jack.pIntermediaryBufferPlayback, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_duplex) {
ma_pcm_rb_uninit(&pDevice->jack.duplexRB);
}
}
static void ma_device__jack_shutdown_callback(void* pUserData)
{
/* JACK died. Stop the device. */
ma_device* pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
ma_device_stop(pDevice);
}
static int ma_device__jack_buffer_size_callback(ma_jack_nframes_t frameCount, void* pUserData)
{
ma_device* pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
size_t newBufferSize = frameCount * (pDevice->capture.internalChannels * ma_get_bytes_per_sample(pDevice->capture.internalFormat));
float* pNewBuffer = (float*)ma__calloc_from_callbacks(newBufferSize, &pDevice->pContext->allocationCallbacks);
if (pNewBuffer == NULL) {
return MA_OUT_OF_MEMORY;
}
ma__free_from_callbacks(pDevice->jack.pIntermediaryBufferCapture, &pDevice->pContext->allocationCallbacks);
pDevice->jack.pIntermediaryBufferCapture = pNewBuffer;
pDevice->playback.internalPeriodSizeInFrames = frameCount;
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
size_t newBufferSize = frameCount * (pDevice->playback.internalChannels * ma_get_bytes_per_sample(pDevice->playback.internalFormat));
float* pNewBuffer = (float*)ma__calloc_from_callbacks(newBufferSize, &pDevice->pContext->allocationCallbacks);
if (pNewBuffer == NULL) {
return MA_OUT_OF_MEMORY;
}
ma__free_from_callbacks(pDevice->jack.pIntermediaryBufferPlayback, &pDevice->pContext->allocationCallbacks);
pDevice->jack.pIntermediaryBufferPlayback = pNewBuffer;
pDevice->playback.internalPeriodSizeInFrames = frameCount;
}
return 0;
}
static int ma_device__jack_process_callback(ma_jack_nframes_t frameCount, void* pUserData)
{
ma_device* pDevice;
ma_context* pContext;
ma_uint32 iChannel;
pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
pContext = pDevice->pContext;
MA_ASSERT(pContext != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
/* Channels need to be interleaved. */
for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) {
const float* pSrc = (const float*)((ma_jack_port_get_buffer_proc)pContext->jack.jack_port_get_buffer)((ma_jack_port_t*)pDevice->jack.pPortsCapture[iChannel], frameCount);
if (pSrc != NULL) {
float* pDst = pDevice->jack.pIntermediaryBufferCapture + iChannel;
ma_jack_nframes_t iFrame;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
*pDst = *pSrc;
pDst += pDevice->capture.internalChannels;
pSrc += 1;
}
}
}
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_capture(pDevice, frameCount, pDevice->jack.pIntermediaryBufferCapture, &pDevice->jack.duplexRB);
} else {
ma_device__send_frames_to_client(pDevice, frameCount, pDevice->jack.pIntermediaryBufferCapture);
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_playback(pDevice, frameCount, pDevice->jack.pIntermediaryBufferPlayback, &pDevice->jack.duplexRB);
} else {
ma_device__read_frames_from_client(pDevice, frameCount, pDevice->jack.pIntermediaryBufferPlayback);
}
/* Channels need to be deinterleaved. */
for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) {
float* pDst = (float*)((ma_jack_port_get_buffer_proc)pContext->jack.jack_port_get_buffer)((ma_jack_port_t*)pDevice->jack.pPortsPlayback[iChannel], frameCount);
if (pDst != NULL) {
const float* pSrc = pDevice->jack.pIntermediaryBufferPlayback + iChannel;
ma_jack_nframes_t iFrame;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
*pDst = *pSrc;
pDst += 1;
pSrc += pDevice->playback.internalChannels;
}
}
}
}
return 0;
}
static ma_result ma_device_init__jack(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
ma_uint32 periods;
ma_uint32 periodSizeInFrames;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pDevice != NULL);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
/* Only supporting default devices with JACK. */
if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.pDeviceID != NULL && pConfig->playback.pDeviceID->jack != 0) ||
((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.pDeviceID != NULL && pConfig->capture.pDeviceID->jack != 0)) {
return MA_NO_DEVICE;
}
/* No exclusive mode with the JACK backend. */
if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) ||
((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
/* Open the client. */
result = ma_context_open_client__jack(pContext, (ma_jack_client_t**)&pDevice->jack.pClient);
if (result != MA_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to open client.", result);
}
/* Callbacks. */
if (((ma_jack_set_process_callback_proc)pContext->jack.jack_set_process_callback)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_process_callback, pDevice) != 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to set process callback.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
if (((ma_jack_set_buffer_size_callback_proc)pContext->jack.jack_set_buffer_size_callback)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_buffer_size_callback, pDevice) != 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to set buffer size callback.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
((ma_jack_on_shutdown_proc)pContext->jack.jack_on_shutdown)((ma_jack_client_t*)pDevice->jack.pClient, ma_device__jack_shutdown_callback, pDevice);
/* The buffer size in frames can change. */
periods = pConfig->periods;
periodSizeInFrames = ((ma_jack_get_buffer_size_proc)pContext->jack.jack_get_buffer_size)((ma_jack_client_t*)pDevice->jack.pClient);
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
const char** ppPorts;
pDevice->capture.internalFormat = ma_format_f32;
pDevice->capture.internalChannels = 0;
pDevice->capture.internalSampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient);
ma_get_standard_channel_map(ma_standard_channel_map_alsa, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsOutput);
if (ppPorts == NULL) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
while (ppPorts[pDevice->capture.internalChannels] != NULL) {
char name[64];
ma_strcpy_s(name, sizeof(name), "capture");
ma_itoa_s((int)pDevice->capture.internalChannels, name+7, sizeof(name)-7, 10); /* 7 = length of "capture" */
pDevice->jack.pPortsCapture[pDevice->capture.internalChannels] = ((ma_jack_port_register_proc)pContext->jack.jack_port_register)((ma_jack_client_t*)pDevice->jack.pClient, name, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsInput, 0);
if (pDevice->jack.pPortsCapture[pDevice->capture.internalChannels] == NULL) {
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts);
ma_device_uninit__jack(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to register ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
pDevice->capture.internalChannels += 1;
}
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts);
pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->capture.internalPeriods = periods;
pDevice->jack.pIntermediaryBufferCapture = (float*)ma__calloc_from_callbacks(pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels), &pContext->allocationCallbacks);
if (pDevice->jack.pIntermediaryBufferCapture == NULL) {
ma_device_uninit__jack(pDevice);
return MA_OUT_OF_MEMORY;
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
const char** ppPorts;
pDevice->playback.internalFormat = ma_format_f32;
pDevice->playback.internalChannels = 0;
pDevice->playback.internalSampleRate = ((ma_jack_get_sample_rate_proc)pContext->jack.jack_get_sample_rate)((ma_jack_client_t*)pDevice->jack.pClient);
ma_get_standard_channel_map(ma_standard_channel_map_alsa, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
ppPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsInput);
if (ppPorts == NULL) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to query physical ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
while (ppPorts[pDevice->playback.internalChannels] != NULL) {
char name[64];
ma_strcpy_s(name, sizeof(name), "playback");
ma_itoa_s((int)pDevice->playback.internalChannels, name+8, sizeof(name)-8, 10); /* 8 = length of "playback" */
pDevice->jack.pPortsPlayback[pDevice->playback.internalChannels] = ((ma_jack_port_register_proc)pContext->jack.jack_port_register)((ma_jack_client_t*)pDevice->jack.pClient, name, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsOutput, 0);
if (pDevice->jack.pPortsPlayback[pDevice->playback.internalChannels] == NULL) {
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts);
ma_device_uninit__jack(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to register ports.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
pDevice->playback.internalChannels += 1;
}
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppPorts);
pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->playback.internalPeriods = periods;
pDevice->jack.pIntermediaryBufferPlayback = (float*)ma__calloc_from_callbacks(pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels), &pContext->allocationCallbacks);
if (pDevice->jack.pIntermediaryBufferPlayback == NULL) {
ma_device_uninit__jack(pDevice);
return MA_OUT_OF_MEMORY;
}
}
if (pDevice->type == ma_device_type_duplex) {
ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods);
result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->jack.duplexRB);
if (result != MA_SUCCESS) {
ma_device_uninit__jack(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to initialize ring buffer.", result);
}
/* We need a period to act as a buffer for cases where the playback and capture device's end up desyncing. */
{
ma_uint32 marginSizeInFrames = rbSizeInFrames / pDevice->capture.internalPeriods;
void* pMarginData;
ma_pcm_rb_acquire_write(&pDevice->jack.duplexRB, &marginSizeInFrames, &pMarginData);
{
MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->jack.duplexRB, marginSizeInFrames, pMarginData);
}
}
return MA_SUCCESS;
}
static ma_result ma_device_start__jack(ma_device* pDevice)
{
ma_context* pContext = pDevice->pContext;
int resultJACK;
size_t i;
resultJACK = ((ma_jack_activate_proc)pContext->jack.jack_activate)((ma_jack_client_t*)pDevice->jack.pClient);
if (resultJACK != 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to activate the JACK client.", MA_FAILED_TO_START_BACKEND_DEVICE);
}
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
const char** ppServerPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsOutput);
if (ppServerPorts == NULL) {
((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to retrieve physical ports.", MA_ERROR);
}
for (i = 0; ppServerPorts[i] != NULL; ++i) {
const char* pServerPort = ppServerPorts[i];
const char* pClientPort = ((ma_jack_port_name_proc)pContext->jack.jack_port_name)((ma_jack_port_t*)pDevice->jack.pPortsCapture[i]);
resultJACK = ((ma_jack_connect_proc)pContext->jack.jack_connect)((ma_jack_client_t*)pDevice->jack.pClient, pServerPort, pClientPort);
if (resultJACK != 0) {
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppServerPorts);
((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to connect ports.", MA_ERROR);
}
}
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppServerPorts);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
const char** ppServerPorts = ((ma_jack_get_ports_proc)pContext->jack.jack_get_ports)((ma_jack_client_t*)pDevice->jack.pClient, NULL, MA_JACK_DEFAULT_AUDIO_TYPE, ma_JackPortIsPhysical | ma_JackPortIsInput);
if (ppServerPorts == NULL) {
((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to retrieve physical ports.", MA_ERROR);
}
for (i = 0; ppServerPorts[i] != NULL; ++i) {
const char* pServerPort = ppServerPorts[i];
const char* pClientPort = ((ma_jack_port_name_proc)pContext->jack.jack_port_name)((ma_jack_port_t*)pDevice->jack.pPortsPlayback[i]);
resultJACK = ((ma_jack_connect_proc)pContext->jack.jack_connect)((ma_jack_client_t*)pDevice->jack.pClient, pClientPort, pServerPort);
if (resultJACK != 0) {
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppServerPorts);
((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] Failed to connect ports.", MA_ERROR);
}
}
((ma_jack_free_proc)pContext->jack.jack_free)((void*)ppServerPorts);
}
return MA_SUCCESS;
}
static ma_result ma_device_stop__jack(ma_device* pDevice)
{
ma_context* pContext = pDevice->pContext;
ma_stop_proc onStop;
if (((ma_jack_deactivate_proc)pContext->jack.jack_deactivate)((ma_jack_client_t*)pDevice->jack.pClient) != 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[JACK] An error occurred when deactivating the JACK client.", MA_ERROR);
}
onStop = pDevice->onStop;
if (onStop) {
onStop(pDevice);
}
return MA_SUCCESS;
}
static ma_result ma_context_uninit__jack(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_jack);
ma_free(pContext->jack.pClientName, &pContext->allocationCallbacks);
pContext->jack.pClientName = NULL;
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->jack.jackSO);
#endif
return MA_SUCCESS;
}
static ma_result ma_context_init__jack(const ma_context_config* pConfig, ma_context* pContext)
{
#ifndef MA_NO_RUNTIME_LINKING
const char* libjackNames[] = {
#ifdef MA_WIN32
"libjack.dll"
#else
"libjack.so",
"libjack.so.0"
#endif
};
size_t i;
for (i = 0; i < ma_countof(libjackNames); ++i) {
pContext->jack.jackSO = ma_dlopen(pContext, libjackNames[i]);
if (pContext->jack.jackSO != NULL) {
break;
}
}
if (pContext->jack.jackSO == NULL) {
return MA_NO_BACKEND;
}
pContext->jack.jack_client_open = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_client_open");
pContext->jack.jack_client_close = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_client_close");
pContext->jack.jack_client_name_size = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_client_name_size");
pContext->jack.jack_set_process_callback = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_set_process_callback");
pContext->jack.jack_set_buffer_size_callback = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_set_buffer_size_callback");
pContext->jack.jack_on_shutdown = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_on_shutdown");
pContext->jack.jack_get_sample_rate = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_get_sample_rate");
pContext->jack.jack_get_buffer_size = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_get_buffer_size");
pContext->jack.jack_get_ports = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_get_ports");
pContext->jack.jack_activate = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_activate");
pContext->jack.jack_deactivate = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_deactivate");
pContext->jack.jack_connect = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_connect");
pContext->jack.jack_port_register = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_port_register");
pContext->jack.jack_port_name = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_port_name");
pContext->jack.jack_port_get_buffer = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_port_get_buffer");
pContext->jack.jack_free = (ma_proc)ma_dlsym(pContext, pContext->jack.jackSO, "jack_free");
#else
/*
This strange assignment system is here just to ensure type safety of miniaudio's function pointer
types. If anything differs slightly the compiler should throw a warning.
*/
ma_jack_client_open_proc _jack_client_open = jack_client_open;
ma_jack_client_close_proc _jack_client_close = jack_client_close;
ma_jack_client_name_size_proc _jack_client_name_size = jack_client_name_size;
ma_jack_set_process_callback_proc _jack_set_process_callback = jack_set_process_callback;
ma_jack_set_buffer_size_callback_proc _jack_set_buffer_size_callback = jack_set_buffer_size_callback;
ma_jack_on_shutdown_proc _jack_on_shutdown = jack_on_shutdown;
ma_jack_get_sample_rate_proc _jack_get_sample_rate = jack_get_sample_rate;
ma_jack_get_buffer_size_proc _jack_get_buffer_size = jack_get_buffer_size;
ma_jack_get_ports_proc _jack_get_ports = jack_get_ports;
ma_jack_activate_proc _jack_activate = jack_activate;
ma_jack_deactivate_proc _jack_deactivate = jack_deactivate;
ma_jack_connect_proc _jack_connect = jack_connect;
ma_jack_port_register_proc _jack_port_register = jack_port_register;
ma_jack_port_name_proc _jack_port_name = jack_port_name;
ma_jack_port_get_buffer_proc _jack_port_get_buffer = jack_port_get_buffer;
ma_jack_free_proc _jack_free = jack_free;
pContext->jack.jack_client_open = (ma_proc)_jack_client_open;
pContext->jack.jack_client_close = (ma_proc)_jack_client_close;
pContext->jack.jack_client_name_size = (ma_proc)_jack_client_name_size;
pContext->jack.jack_set_process_callback = (ma_proc)_jack_set_process_callback;
pContext->jack.jack_set_buffer_size_callback = (ma_proc)_jack_set_buffer_size_callback;
pContext->jack.jack_on_shutdown = (ma_proc)_jack_on_shutdown;
pContext->jack.jack_get_sample_rate = (ma_proc)_jack_get_sample_rate;
pContext->jack.jack_get_buffer_size = (ma_proc)_jack_get_buffer_size;
pContext->jack.jack_get_ports = (ma_proc)_jack_get_ports;
pContext->jack.jack_activate = (ma_proc)_jack_activate;
pContext->jack.jack_deactivate = (ma_proc)_jack_deactivate;
pContext->jack.jack_connect = (ma_proc)_jack_connect;
pContext->jack.jack_port_register = (ma_proc)_jack_port_register;
pContext->jack.jack_port_name = (ma_proc)_jack_port_name;
pContext->jack.jack_port_get_buffer = (ma_proc)_jack_port_get_buffer;
pContext->jack.jack_free = (ma_proc)_jack_free;
#endif
pContext->isBackendAsynchronous = MA_TRUE;
pContext->onUninit = ma_context_uninit__jack;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__jack;
pContext->onEnumDevices = ma_context_enumerate_devices__jack;
pContext->onGetDeviceInfo = ma_context_get_device_info__jack;
pContext->onDeviceInit = ma_device_init__jack;
pContext->onDeviceUninit = ma_device_uninit__jack;
pContext->onDeviceStart = ma_device_start__jack;
pContext->onDeviceStop = ma_device_stop__jack;
if (pConfig->jack.pClientName != NULL) {
pContext->jack.pClientName = ma_copy_string(pConfig->jack.pClientName, &pContext->allocationCallbacks);
}
pContext->jack.tryStartServer = pConfig->jack.tryStartServer;
/*
Getting here means the JACK library is installed, but it doesn't necessarily mean it's usable. We need to quickly test this by connecting
a temporary client.
*/
{
ma_jack_client_t* pDummyClient;
ma_result result = ma_context_open_client__jack(pContext, &pDummyClient);
if (result != MA_SUCCESS) {
ma_free(pContext->jack.pClientName, &pContext->allocationCallbacks);
#ifndef MA_NO_RUNTIME_LINKING
ma_dlclose(pContext, pContext->jack.jackSO);
#endif
return MA_NO_BACKEND;
}
((ma_jack_client_close_proc)pContext->jack.jack_client_close)((ma_jack_client_t*)pDummyClient);
}
return MA_SUCCESS;
}
#endif /* JACK */
/******************************************************************************
Core Audio Backend
******************************************************************************/
#ifdef MA_HAS_COREAUDIO
#include <TargetConditionals.h>
#if defined(TARGET_OS_IPHONE) && TARGET_OS_IPHONE == 1
#define MA_APPLE_MOBILE
#if defined(TARGET_OS_TV) && TARGET_OS_TV == 1
#define MA_APPLE_TV
#endif
#if defined(TARGET_OS_WATCH) && TARGET_OS_WATCH == 1
#define MA_APPLE_WATCH
#endif
#else
#define MA_APPLE_DESKTOP
#endif
#if defined(MA_APPLE_DESKTOP)
#include <CoreAudio/CoreAudio.h>
#else
#include <AVFoundation/AVFoundation.h>
#endif
#include <AudioToolbox/AudioToolbox.h>
/* CoreFoundation */
typedef Boolean (* ma_CFStringGetCString_proc)(CFStringRef theString, char* buffer, CFIndex bufferSize, CFStringEncoding encoding);
typedef void (* ma_CFRelease_proc)(CFTypeRef cf);
/* CoreAudio */
#if defined(MA_APPLE_DESKTOP)
typedef OSStatus (* ma_AudioObjectGetPropertyData_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, UInt32 inQualifierDataSize, const void* inQualifierData, UInt32* ioDataSize, void* outData);
typedef OSStatus (* ma_AudioObjectGetPropertyDataSize_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, UInt32 inQualifierDataSize, const void* inQualifierData, UInt32* outDataSize);
typedef OSStatus (* ma_AudioObjectSetPropertyData_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, UInt32 inQualifierDataSize, const void* inQualifierData, UInt32 inDataSize, const void* inData);
typedef OSStatus (* ma_AudioObjectAddPropertyListener_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, AudioObjectPropertyListenerProc inListener, void* inClientData);
typedef OSStatus (* ma_AudioObjectRemovePropertyListener_proc)(AudioObjectID inObjectID, const AudioObjectPropertyAddress* inAddress, AudioObjectPropertyListenerProc inListener, void* inClientData);
#endif
/* AudioToolbox */
typedef AudioComponent (* ma_AudioComponentFindNext_proc)(AudioComponent inComponent, const AudioComponentDescription* inDesc);
typedef OSStatus (* ma_AudioComponentInstanceDispose_proc)(AudioComponentInstance inInstance);
typedef OSStatus (* ma_AudioComponentInstanceNew_proc)(AudioComponent inComponent, AudioComponentInstance* outInstance);
typedef OSStatus (* ma_AudioOutputUnitStart_proc)(AudioUnit inUnit);
typedef OSStatus (* ma_AudioOutputUnitStop_proc)(AudioUnit inUnit);
typedef OSStatus (* ma_AudioUnitAddPropertyListener_proc)(AudioUnit inUnit, AudioUnitPropertyID inID, AudioUnitPropertyListenerProc inProc, void* inProcUserData);
typedef OSStatus (* ma_AudioUnitGetPropertyInfo_proc)(AudioUnit inUnit, AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, UInt32* outDataSize, Boolean* outWriteable);
typedef OSStatus (* ma_AudioUnitGetProperty_proc)(AudioUnit inUnit, AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, void* outData, UInt32* ioDataSize);
typedef OSStatus (* ma_AudioUnitSetProperty_proc)(AudioUnit inUnit, AudioUnitPropertyID inID, AudioUnitScope inScope, AudioUnitElement inElement, const void* inData, UInt32 inDataSize);
typedef OSStatus (* ma_AudioUnitInitialize_proc)(AudioUnit inUnit);
typedef OSStatus (* ma_AudioUnitRender_proc)(AudioUnit inUnit, AudioUnitRenderActionFlags* ioActionFlags, const AudioTimeStamp* inTimeStamp, UInt32 inOutputBusNumber, UInt32 inNumberFrames, AudioBufferList* ioData);
#define MA_COREAUDIO_OUTPUT_BUS 0
#define MA_COREAUDIO_INPUT_BUS 1
#if defined(MA_APPLE_DESKTOP)
static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit);
#endif
/*
Core Audio
So far, Core Audio has been the worst backend to work with due to being both unintuitive and having almost no documentation
apart from comments in the headers (which admittedly are quite good). For my own purposes, and for anybody out there whose
needing to figure out how this darn thing works, I'm going to outline a few things here.
Since miniaudio is a fairly low-level API, one of the things it needs is control over specific devices, and it needs to be
able to identify whether or not it can be used as playback and/or capture. The AudioObject API is the only one I've seen
that supports this level of detail. There was some public domain sample code I stumbled across that used the AudioComponent
and AudioUnit APIs, but I couldn't see anything that gave low-level control over device selection and capabilities (the
distinction between playback and capture in particular). Therefore, miniaudio is using the AudioObject API.
Most (all?) functions in the AudioObject API take a AudioObjectID as it's input. This is the device identifier. When
retrieving global information, such as the device list, you use kAudioObjectSystemObject. When retrieving device-specific
data, you pass in the ID for that device. In order to retrieve device-specific IDs you need to enumerate over each of the
devices. This is done using the AudioObjectGetPropertyDataSize() and AudioObjectGetPropertyData() APIs which seem to be
the central APIs for retrieving information about the system and specific devices.
To use the AudioObjectGetPropertyData() API you need to use the notion of a property address. A property address is a
structure with three variables and is used to identify which property you are getting or setting. The first is the "selector"
which is basically the specific property that you're wanting to retrieve or set. The second is the "scope", which is
typically set to kAudioObjectPropertyScopeGlobal, kAudioObjectPropertyScopeInput for input-specific properties and
kAudioObjectPropertyScopeOutput for output-specific properties. The last is the "element" which is always set to
kAudioObjectPropertyElementMaster in miniaudio's case. I don't know of any cases where this would be set to anything different.
Back to the earlier issue of device retrieval, you first use the AudioObjectGetPropertyDataSize() API to retrieve the size
of the raw data which is just a list of AudioDeviceID's. You use the kAudioObjectSystemObject AudioObjectID, and a property
address with the kAudioHardwarePropertyDevices selector and the kAudioObjectPropertyScopeGlobal scope. Once you have the
size, allocate a block of memory of that size and then call AudioObjectGetPropertyData(). The data is just a list of
AudioDeviceID's so just do "dataSize/sizeof(AudioDeviceID)" to know the device count.
*/
static ma_result ma_result_from_OSStatus(OSStatus status)
{
switch (status)
{
case noErr: return MA_SUCCESS;
#if defined(MA_APPLE_DESKTOP)
case kAudioHardwareNotRunningError: return MA_DEVICE_NOT_STARTED;
case kAudioHardwareUnspecifiedError: return MA_ERROR;
case kAudioHardwareUnknownPropertyError: return MA_INVALID_ARGS;
case kAudioHardwareBadPropertySizeError: return MA_INVALID_OPERATION;
case kAudioHardwareIllegalOperationError: return MA_INVALID_OPERATION;
case kAudioHardwareBadObjectError: return MA_INVALID_ARGS;
case kAudioHardwareBadDeviceError: return MA_INVALID_ARGS;
case kAudioHardwareBadStreamError: return MA_INVALID_ARGS;
case kAudioHardwareUnsupportedOperationError: return MA_INVALID_OPERATION;
case kAudioDeviceUnsupportedFormatError: return MA_FORMAT_NOT_SUPPORTED;
case kAudioDevicePermissionsError: return MA_ACCESS_DENIED;
#endif
default: return MA_ERROR;
}
}
#if 0
static ma_channel ma_channel_from_AudioChannelBitmap(AudioChannelBitmap bit)
{
switch (bit)
{
case kAudioChannelBit_Left: return MA_CHANNEL_LEFT;
case kAudioChannelBit_Right: return MA_CHANNEL_RIGHT;
case kAudioChannelBit_Center: return MA_CHANNEL_FRONT_CENTER;
case kAudioChannelBit_LFEScreen: return MA_CHANNEL_LFE;
case kAudioChannelBit_LeftSurround: return MA_CHANNEL_BACK_LEFT;
case kAudioChannelBit_RightSurround: return MA_CHANNEL_BACK_RIGHT;
case kAudioChannelBit_LeftCenter: return MA_CHANNEL_FRONT_LEFT_CENTER;
case kAudioChannelBit_RightCenter: return MA_CHANNEL_FRONT_RIGHT_CENTER;
case kAudioChannelBit_CenterSurround: return MA_CHANNEL_BACK_CENTER;
case kAudioChannelBit_LeftSurroundDirect: return MA_CHANNEL_SIDE_LEFT;
case kAudioChannelBit_RightSurroundDirect: return MA_CHANNEL_SIDE_RIGHT;
case kAudioChannelBit_TopCenterSurround: return MA_CHANNEL_TOP_CENTER;
case kAudioChannelBit_VerticalHeightLeft: return MA_CHANNEL_TOP_FRONT_LEFT;
case kAudioChannelBit_VerticalHeightCenter: return MA_CHANNEL_TOP_FRONT_CENTER;
case kAudioChannelBit_VerticalHeightRight: return MA_CHANNEL_TOP_FRONT_RIGHT;
case kAudioChannelBit_TopBackLeft: return MA_CHANNEL_TOP_BACK_LEFT;
case kAudioChannelBit_TopBackCenter: return MA_CHANNEL_TOP_BACK_CENTER;
case kAudioChannelBit_TopBackRight: return MA_CHANNEL_TOP_BACK_RIGHT;
default: return MA_CHANNEL_NONE;
}
}
#endif
static ma_result ma_format_from_AudioStreamBasicDescription(const AudioStreamBasicDescription* pDescription, ma_format* pFormatOut)
{
MA_ASSERT(pDescription != NULL);
MA_ASSERT(pFormatOut != NULL);
*pFormatOut = ma_format_unknown; /* Safety. */
/* There's a few things miniaudio doesn't support. */
if (pDescription->mFormatID != kAudioFormatLinearPCM) {
return MA_FORMAT_NOT_SUPPORTED;
}
/* We don't support any non-packed formats that are aligned high. */
if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsAlignedHigh) != 0) {
return MA_FORMAT_NOT_SUPPORTED;
}
/* Only supporting native-endian. */
if ((ma_is_little_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) != 0) || (ma_is_big_endian() && (pDescription->mFormatFlags & kAudioFormatFlagIsBigEndian) == 0)) {
return MA_FORMAT_NOT_SUPPORTED;
}
/* We are not currently supporting non-interleaved formats (this will be added in a future version of miniaudio). */
/*if ((pDescription->mFormatFlags & kAudioFormatFlagIsNonInterleaved) != 0) {
return MA_FORMAT_NOT_SUPPORTED;
}*/
if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsFloat) != 0) {
if (pDescription->mBitsPerChannel == 32) {
*pFormatOut = ma_format_f32;
return MA_SUCCESS;
}
} else {
if ((pDescription->mFormatFlags & kLinearPCMFormatFlagIsSignedInteger) != 0) {
if (pDescription->mBitsPerChannel == 16) {
*pFormatOut = ma_format_s16;
return MA_SUCCESS;
} else if (pDescription->mBitsPerChannel == 24) {
if (pDescription->mBytesPerFrame == (pDescription->mBitsPerChannel/8 * pDescription->mChannelsPerFrame)) {
*pFormatOut = ma_format_s24;
return MA_SUCCESS;
} else {
if (pDescription->mBytesPerFrame/pDescription->mChannelsPerFrame == sizeof(ma_int32)) {
/* TODO: Implement ma_format_s24_32. */
/**pFormatOut = ma_format_s24_32;*/
/*return MA_SUCCESS;*/
return MA_FORMAT_NOT_SUPPORTED;
}
}
} else if (pDescription->mBitsPerChannel == 32) {
*pFormatOut = ma_format_s32;
return MA_SUCCESS;
}
} else {
if (pDescription->mBitsPerChannel == 8) {
*pFormatOut = ma_format_u8;
return MA_SUCCESS;
}
}
}
/* Getting here means the format is not supported. */
return MA_FORMAT_NOT_SUPPORTED;
}
#if defined(MA_APPLE_DESKTOP)
static ma_channel ma_channel_from_AudioChannelLabel(AudioChannelLabel label)
{
switch (label)
{
case kAudioChannelLabel_Unknown: return MA_CHANNEL_NONE;
case kAudioChannelLabel_Unused: return MA_CHANNEL_NONE;
case kAudioChannelLabel_UseCoordinates: return MA_CHANNEL_NONE;
case kAudioChannelLabel_Left: return MA_CHANNEL_LEFT;
case kAudioChannelLabel_Right: return MA_CHANNEL_RIGHT;
case kAudioChannelLabel_Center: return MA_CHANNEL_FRONT_CENTER;
case kAudioChannelLabel_LFEScreen: return MA_CHANNEL_LFE;
case kAudioChannelLabel_LeftSurround: return MA_CHANNEL_BACK_LEFT;
case kAudioChannelLabel_RightSurround: return MA_CHANNEL_BACK_RIGHT;
case kAudioChannelLabel_LeftCenter: return MA_CHANNEL_FRONT_LEFT_CENTER;
case kAudioChannelLabel_RightCenter: return MA_CHANNEL_FRONT_RIGHT_CENTER;
case kAudioChannelLabel_CenterSurround: return MA_CHANNEL_BACK_CENTER;
case kAudioChannelLabel_LeftSurroundDirect: return MA_CHANNEL_SIDE_LEFT;
case kAudioChannelLabel_RightSurroundDirect: return MA_CHANNEL_SIDE_RIGHT;
case kAudioChannelLabel_TopCenterSurround: return MA_CHANNEL_TOP_CENTER;
case kAudioChannelLabel_VerticalHeightLeft: return MA_CHANNEL_TOP_FRONT_LEFT;
case kAudioChannelLabel_VerticalHeightCenter: return MA_CHANNEL_TOP_FRONT_CENTER;
case kAudioChannelLabel_VerticalHeightRight: return MA_CHANNEL_TOP_FRONT_RIGHT;
case kAudioChannelLabel_TopBackLeft: return MA_CHANNEL_TOP_BACK_LEFT;
case kAudioChannelLabel_TopBackCenter: return MA_CHANNEL_TOP_BACK_CENTER;
case kAudioChannelLabel_TopBackRight: return MA_CHANNEL_TOP_BACK_RIGHT;
case kAudioChannelLabel_RearSurroundLeft: return MA_CHANNEL_BACK_LEFT;
case kAudioChannelLabel_RearSurroundRight: return MA_CHANNEL_BACK_RIGHT;
case kAudioChannelLabel_LeftWide: return MA_CHANNEL_SIDE_LEFT;
case kAudioChannelLabel_RightWide: return MA_CHANNEL_SIDE_RIGHT;
case kAudioChannelLabel_LFE2: return MA_CHANNEL_LFE;
case kAudioChannelLabel_LeftTotal: return MA_CHANNEL_LEFT;
case kAudioChannelLabel_RightTotal: return MA_CHANNEL_RIGHT;
case kAudioChannelLabel_HearingImpaired: return MA_CHANNEL_NONE;
case kAudioChannelLabel_Narration: return MA_CHANNEL_MONO;
case kAudioChannelLabel_Mono: return MA_CHANNEL_MONO;
case kAudioChannelLabel_DialogCentricMix: return MA_CHANNEL_MONO;
case kAudioChannelLabel_CenterSurroundDirect: return MA_CHANNEL_BACK_CENTER;
case kAudioChannelLabel_Haptic: return MA_CHANNEL_NONE;
case kAudioChannelLabel_Ambisonic_W: return MA_CHANNEL_NONE;
case kAudioChannelLabel_Ambisonic_X: return MA_CHANNEL_NONE;
case kAudioChannelLabel_Ambisonic_Y: return MA_CHANNEL_NONE;
case kAudioChannelLabel_Ambisonic_Z: return MA_CHANNEL_NONE;
case kAudioChannelLabel_MS_Mid: return MA_CHANNEL_LEFT;
case kAudioChannelLabel_MS_Side: return MA_CHANNEL_RIGHT;
case kAudioChannelLabel_XY_X: return MA_CHANNEL_LEFT;
case kAudioChannelLabel_XY_Y: return MA_CHANNEL_RIGHT;
case kAudioChannelLabel_HeadphonesLeft: return MA_CHANNEL_LEFT;
case kAudioChannelLabel_HeadphonesRight: return MA_CHANNEL_RIGHT;
case kAudioChannelLabel_ClickTrack: return MA_CHANNEL_NONE;
case kAudioChannelLabel_ForeignLanguage: return MA_CHANNEL_NONE;
case kAudioChannelLabel_Discrete: return MA_CHANNEL_NONE;
case kAudioChannelLabel_Discrete_0: return MA_CHANNEL_AUX_0;
case kAudioChannelLabel_Discrete_1: return MA_CHANNEL_AUX_1;
case kAudioChannelLabel_Discrete_2: return MA_CHANNEL_AUX_2;
case kAudioChannelLabel_Discrete_3: return MA_CHANNEL_AUX_3;
case kAudioChannelLabel_Discrete_4: return MA_CHANNEL_AUX_4;
case kAudioChannelLabel_Discrete_5: return MA_CHANNEL_AUX_5;
case kAudioChannelLabel_Discrete_6: return MA_CHANNEL_AUX_6;
case kAudioChannelLabel_Discrete_7: return MA_CHANNEL_AUX_7;
case kAudioChannelLabel_Discrete_8: return MA_CHANNEL_AUX_8;
case kAudioChannelLabel_Discrete_9: return MA_CHANNEL_AUX_9;
case kAudioChannelLabel_Discrete_10: return MA_CHANNEL_AUX_10;
case kAudioChannelLabel_Discrete_11: return MA_CHANNEL_AUX_11;
case kAudioChannelLabel_Discrete_12: return MA_CHANNEL_AUX_12;
case kAudioChannelLabel_Discrete_13: return MA_CHANNEL_AUX_13;
case kAudioChannelLabel_Discrete_14: return MA_CHANNEL_AUX_14;
case kAudioChannelLabel_Discrete_15: return MA_CHANNEL_AUX_15;
case kAudioChannelLabel_Discrete_65535: return MA_CHANNEL_NONE;
#if 0 /* Introduced in a later version of macOS. */
case kAudioChannelLabel_HOA_ACN: return MA_CHANNEL_NONE;
case kAudioChannelLabel_HOA_ACN_0: return MA_CHANNEL_AUX_0;
case kAudioChannelLabel_HOA_ACN_1: return MA_CHANNEL_AUX_1;
case kAudioChannelLabel_HOA_ACN_2: return MA_CHANNEL_AUX_2;
case kAudioChannelLabel_HOA_ACN_3: return MA_CHANNEL_AUX_3;
case kAudioChannelLabel_HOA_ACN_4: return MA_CHANNEL_AUX_4;
case kAudioChannelLabel_HOA_ACN_5: return MA_CHANNEL_AUX_5;
case kAudioChannelLabel_HOA_ACN_6: return MA_CHANNEL_AUX_6;
case kAudioChannelLabel_HOA_ACN_7: return MA_CHANNEL_AUX_7;
case kAudioChannelLabel_HOA_ACN_8: return MA_CHANNEL_AUX_8;
case kAudioChannelLabel_HOA_ACN_9: return MA_CHANNEL_AUX_9;
case kAudioChannelLabel_HOA_ACN_10: return MA_CHANNEL_AUX_10;
case kAudioChannelLabel_HOA_ACN_11: return MA_CHANNEL_AUX_11;
case kAudioChannelLabel_HOA_ACN_12: return MA_CHANNEL_AUX_12;
case kAudioChannelLabel_HOA_ACN_13: return MA_CHANNEL_AUX_13;
case kAudioChannelLabel_HOA_ACN_14: return MA_CHANNEL_AUX_14;
case kAudioChannelLabel_HOA_ACN_15: return MA_CHANNEL_AUX_15;
case kAudioChannelLabel_HOA_ACN_65024: return MA_CHANNEL_NONE;
#endif
default: return MA_CHANNEL_NONE;
}
}
static ma_result ma_get_channel_map_from_AudioChannelLayout(AudioChannelLayout* pChannelLayout, ma_channel channelMap[MA_MAX_CHANNELS])
{
MA_ASSERT(pChannelLayout != NULL);
if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelDescriptions) {
UInt32 iChannel;
for (iChannel = 0; iChannel < pChannelLayout->mNumberChannelDescriptions; ++iChannel) {
channelMap[iChannel] = ma_channel_from_AudioChannelLabel(pChannelLayout->mChannelDescriptions[iChannel].mChannelLabel);
}
} else
#if 0
if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelBitmap) {
/* This is the same kind of system that's used by Windows audio APIs. */
UInt32 iChannel = 0;
UInt32 iBit;
AudioChannelBitmap bitmap = pChannelLayout->mChannelBitmap;
for (iBit = 0; iBit < 32; ++iBit) {
AudioChannelBitmap bit = bitmap & (1 << iBit);
if (bit != 0) {
channelMap[iChannel++] = ma_channel_from_AudioChannelBit(bit);
}
}
} else
#endif
{
/*
Need to use the tag to determine the channel map. For now I'm just assuming a default channel map, but later on this should
be updated to determine the mapping based on the tag.
*/
UInt32 channelCount = AudioChannelLayoutTag_GetNumberOfChannels(pChannelLayout->mChannelLayoutTag);
switch (pChannelLayout->mChannelLayoutTag)
{
case kAudioChannelLayoutTag_Mono:
case kAudioChannelLayoutTag_Stereo:
case kAudioChannelLayoutTag_StereoHeadphones:
case kAudioChannelLayoutTag_MatrixStereo:
case kAudioChannelLayoutTag_MidSide:
case kAudioChannelLayoutTag_XY:
case kAudioChannelLayoutTag_Binaural:
case kAudioChannelLayoutTag_Ambisonic_B_Format:
{
ma_get_standard_channel_map(ma_standard_channel_map_default, channelCount, channelMap);
} break;
case kAudioChannelLayoutTag_Octagonal:
{
channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
channelMap[6] = MA_CHANNEL_SIDE_LEFT;
} /* Intentional fallthrough. */
case kAudioChannelLayoutTag_Hexagonal:
{
channelMap[5] = MA_CHANNEL_BACK_CENTER;
} /* Intentional fallthrough. */
case kAudioChannelLayoutTag_Pentagonal:
{
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
} /* Intentional fallghrough. */
case kAudioChannelLayoutTag_Quadraphonic:
{
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[1] = MA_CHANNEL_RIGHT;
channelMap[0] = MA_CHANNEL_LEFT;
} break;
/* TODO: Add support for more tags here. */
default:
{
ma_get_standard_channel_map(ma_standard_channel_map_default, channelCount, channelMap);
} break;
}
}
return MA_SUCCESS;
}
static ma_result ma_get_device_object_ids__coreaudio(ma_context* pContext, UInt32* pDeviceCount, AudioObjectID** ppDeviceObjectIDs) /* NOTE: Free the returned buffer with ma_free(). */
{
AudioObjectPropertyAddress propAddressDevices;
UInt32 deviceObjectsDataSize;
OSStatus status;
AudioObjectID* pDeviceObjectIDs;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pDeviceCount != NULL);
MA_ASSERT(ppDeviceObjectIDs != NULL);
/* Safety. */
*pDeviceCount = 0;
*ppDeviceObjectIDs = NULL;
propAddressDevices.mSelector = kAudioHardwarePropertyDevices;
propAddressDevices.mScope = kAudioObjectPropertyScopeGlobal;
propAddressDevices.mElement = kAudioObjectPropertyElementMaster;
status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(kAudioObjectSystemObject, &propAddressDevices, 0, NULL, &deviceObjectsDataSize);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
pDeviceObjectIDs = (AudioObjectID*)ma_malloc(deviceObjectsDataSize, &pContext->allocationCallbacks);
if (pDeviceObjectIDs == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(kAudioObjectSystemObject, &propAddressDevices, 0, NULL, &deviceObjectsDataSize, pDeviceObjectIDs);
if (status != noErr) {
ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
*pDeviceCount = deviceObjectsDataSize / sizeof(AudioObjectID);
*ppDeviceObjectIDs = pDeviceObjectIDs;
return MA_SUCCESS;
}
static ma_result ma_get_AudioObject_uid_as_CFStringRef(ma_context* pContext, AudioObjectID objectID, CFStringRef* pUID)
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
MA_ASSERT(pContext != NULL);
propAddress.mSelector = kAudioDevicePropertyDeviceUID;
propAddress.mScope = kAudioObjectPropertyScopeGlobal;
propAddress.mElement = kAudioObjectPropertyElementMaster;
dataSize = sizeof(*pUID);
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(objectID, &propAddress, 0, NULL, &dataSize, pUID);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
return MA_SUCCESS;
}
static ma_result ma_get_AudioObject_uid(ma_context* pContext, AudioObjectID objectID, size_t bufferSize, char* bufferOut)
{
CFStringRef uid;
ma_result result;
MA_ASSERT(pContext != NULL);
result = ma_get_AudioObject_uid_as_CFStringRef(pContext, objectID, &uid);
if (result != MA_SUCCESS) {
return result;
}
if (!((ma_CFStringGetCString_proc)pContext->coreaudio.CFStringGetCString)(uid, bufferOut, bufferSize, kCFStringEncodingUTF8)) {
return MA_ERROR;
}
((ma_CFRelease_proc)pContext->coreaudio.CFRelease)(uid);
return MA_SUCCESS;
}
static ma_result ma_get_AudioObject_name(ma_context* pContext, AudioObjectID objectID, size_t bufferSize, char* bufferOut)
{
AudioObjectPropertyAddress propAddress;
CFStringRef deviceName = NULL;
UInt32 dataSize;
OSStatus status;
MA_ASSERT(pContext != NULL);
propAddress.mSelector = kAudioDevicePropertyDeviceNameCFString;
propAddress.mScope = kAudioObjectPropertyScopeGlobal;
propAddress.mElement = kAudioObjectPropertyElementMaster;
dataSize = sizeof(deviceName);
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(objectID, &propAddress, 0, NULL, &dataSize, &deviceName);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
if (!((ma_CFStringGetCString_proc)pContext->coreaudio.CFStringGetCString)(deviceName, bufferOut, bufferSize, kCFStringEncodingUTF8)) {
return MA_ERROR;
}
((ma_CFRelease_proc)pContext->coreaudio.CFRelease)(deviceName);
return MA_SUCCESS;
}
static ma_bool32 ma_does_AudioObject_support_scope(ma_context* pContext, AudioObjectID deviceObjectID, AudioObjectPropertyScope scope)
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
AudioBufferList* pBufferList;
ma_bool32 isSupported;
MA_ASSERT(pContext != NULL);
/* To know whether or not a device is an input device we need ot look at the stream configuration. If it has an output channel it's a playback device. */
propAddress.mSelector = kAudioDevicePropertyStreamConfiguration;
propAddress.mScope = scope;
propAddress.mElement = kAudioObjectPropertyElementMaster;
status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize);
if (status != noErr) {
return MA_FALSE;
}
pBufferList = (AudioBufferList*)ma__malloc_from_callbacks(dataSize, &pContext->allocationCallbacks);
if (pBufferList == NULL) {
return MA_FALSE; /* Out of memory. */
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pBufferList);
if (status != noErr) {
ma__free_from_callbacks(pBufferList, &pContext->allocationCallbacks);
return MA_FALSE;
}
isSupported = MA_FALSE;
if (pBufferList->mNumberBuffers > 0) {
isSupported = MA_TRUE;
}
ma__free_from_callbacks(pBufferList, &pContext->allocationCallbacks);
return isSupported;
}
static ma_bool32 ma_does_AudioObject_support_playback(ma_context* pContext, AudioObjectID deviceObjectID)
{
return ma_does_AudioObject_support_scope(pContext, deviceObjectID, kAudioObjectPropertyScopeOutput);
}
static ma_bool32 ma_does_AudioObject_support_capture(ma_context* pContext, AudioObjectID deviceObjectID)
{
return ma_does_AudioObject_support_scope(pContext, deviceObjectID, kAudioObjectPropertyScopeInput);
}
static ma_result ma_get_AudioObject_stream_descriptions(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, UInt32* pDescriptionCount, AudioStreamRangedDescription** ppDescriptions) /* NOTE: Free the returned pointer with ma_free(). */
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
AudioStreamRangedDescription* pDescriptions;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pDescriptionCount != NULL);
MA_ASSERT(ppDescriptions != NULL);
/*
TODO: Experiment with kAudioStreamPropertyAvailablePhysicalFormats instead of (or in addition to) kAudioStreamPropertyAvailableVirtualFormats. My
MacBook Pro uses s24/32 format, however, which miniaudio does not currently support.
*/
propAddress.mSelector = kAudioStreamPropertyAvailableVirtualFormats; /*kAudioStreamPropertyAvailablePhysicalFormats;*/
propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput;
propAddress.mElement = kAudioObjectPropertyElementMaster;
status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
pDescriptions = (AudioStreamRangedDescription*)ma_malloc(dataSize, &pContext->allocationCallbacks);
if (pDescriptions == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pDescriptions);
if (status != noErr) {
ma_free(pDescriptions, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
*pDescriptionCount = dataSize / sizeof(*pDescriptions);
*ppDescriptions = pDescriptions;
return MA_SUCCESS;
}
static ma_result ma_get_AudioObject_channel_layout(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, AudioChannelLayout** ppChannelLayout) /* NOTE: Free the returned pointer with ma_free(). */
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
AudioChannelLayout* pChannelLayout;
MA_ASSERT(pContext != NULL);
MA_ASSERT(ppChannelLayout != NULL);
*ppChannelLayout = NULL; /* Safety. */
propAddress.mSelector = kAudioDevicePropertyPreferredChannelLayout;
propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput;
propAddress.mElement = kAudioObjectPropertyElementMaster;
status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
pChannelLayout = (AudioChannelLayout*)ma_malloc(dataSize, &pContext->allocationCallbacks);
if (pChannelLayout == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pChannelLayout);
if (status != noErr) {
ma_free(pChannelLayout, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
*ppChannelLayout = pChannelLayout;
return MA_SUCCESS;
}
static ma_result ma_get_AudioObject_channel_count(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32* pChannelCount)
{
AudioChannelLayout* pChannelLayout;
ma_result result;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pChannelCount != NULL);
*pChannelCount = 0; /* Safety. */
result = ma_get_AudioObject_channel_layout(pContext, deviceObjectID, deviceType, &pChannelLayout);
if (result != MA_SUCCESS) {
return result;
}
if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelDescriptions) {
*pChannelCount = pChannelLayout->mNumberChannelDescriptions;
} else if (pChannelLayout->mChannelLayoutTag == kAudioChannelLayoutTag_UseChannelBitmap) {
*pChannelCount = ma_count_set_bits(pChannelLayout->mChannelBitmap);
} else {
*pChannelCount = AudioChannelLayoutTag_GetNumberOfChannels(pChannelLayout->mChannelLayoutTag);
}
ma_free(pChannelLayout, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
#if 0
static ma_result ma_get_AudioObject_channel_map(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_channel channelMap[MA_MAX_CHANNELS])
{
AudioChannelLayout* pChannelLayout;
ma_result result;
MA_ASSERT(pContext != NULL);
result = ma_get_AudioObject_channel_layout(pContext, deviceObjectID, deviceType, &pChannelLayout);
if (result != MA_SUCCESS) {
return result; /* Rather than always failing here, would it be more robust to simply assume a default? */
}
result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, channelMap);
if (result != MA_SUCCESS) {
ma_free(pChannelLayout, &pContext->allocationCallbacks);
return result;
}
ma_free(pChannelLayout, &pContext->allocationCallbacks);
return result;
}
#endif
static ma_result ma_get_AudioObject_sample_rates(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, UInt32* pSampleRateRangesCount, AudioValueRange** ppSampleRateRanges) /* NOTE: Free the returned pointer with ma_free(). */
{
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
AudioValueRange* pSampleRateRanges;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pSampleRateRangesCount != NULL);
MA_ASSERT(ppSampleRateRanges != NULL);
/* Safety. */
*pSampleRateRangesCount = 0;
*ppSampleRateRanges = NULL;
propAddress.mSelector = kAudioDevicePropertyAvailableNominalSampleRates;
propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput;
propAddress.mElement = kAudioObjectPropertyElementMaster;
status = ((ma_AudioObjectGetPropertyDataSize_proc)pContext->coreaudio.AudioObjectGetPropertyDataSize)(deviceObjectID, &propAddress, 0, NULL, &dataSize);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
pSampleRateRanges = (AudioValueRange*)ma_malloc(dataSize, &pContext->allocationCallbacks);
if (pSampleRateRanges == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, pSampleRateRanges);
if (status != noErr) {
ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
*pSampleRateRangesCount = dataSize / sizeof(*pSampleRateRanges);
*ppSampleRateRanges = pSampleRateRanges;
return MA_SUCCESS;
}
#if 0
static ma_result ma_get_AudioObject_get_closest_sample_rate(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32 sampleRateIn, ma_uint32* pSampleRateOut)
{
UInt32 sampleRateRangeCount;
AudioValueRange* pSampleRateRanges;
ma_result result;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pSampleRateOut != NULL);
*pSampleRateOut = 0; /* Safety. */
result = ma_get_AudioObject_sample_rates(pContext, deviceObjectID, deviceType, &sampleRateRangeCount, &pSampleRateRanges);
if (result != MA_SUCCESS) {
return result;
}
if (sampleRateRangeCount == 0) {
ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_ERROR; /* Should never hit this case should we? */
}
if (sampleRateIn == 0) {
/* Search in order of miniaudio's preferred priority. */
UInt32 iMALSampleRate;
for (iMALSampleRate = 0; iMALSampleRate < ma_countof(g_maStandardSampleRatePriorities); ++iMALSampleRate) {
ma_uint32 malSampleRate = g_maStandardSampleRatePriorities[iMALSampleRate];
UInt32 iCASampleRate;
for (iCASampleRate = 0; iCASampleRate < sampleRateRangeCount; ++iCASampleRate) {
AudioValueRange caSampleRate = pSampleRateRanges[iCASampleRate];
if (caSampleRate.mMinimum <= malSampleRate && caSampleRate.mMaximum >= malSampleRate) {
*pSampleRateOut = malSampleRate;
ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
}
}
/*
If we get here it means none of miniaudio's standard sample rates matched any of the supported sample rates from the device. In this
case we just fall back to the first one reported by Core Audio.
*/
MA_ASSERT(sampleRateRangeCount > 0);
*pSampleRateOut = pSampleRateRanges[0].mMinimum;
ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_SUCCESS;
} else {
/* Find the closest match to this sample rate. */
UInt32 currentAbsoluteDifference = INT32_MAX;
UInt32 iCurrentClosestRange = (UInt32)-1;
UInt32 iRange;
for (iRange = 0; iRange < sampleRateRangeCount; ++iRange) {
if (pSampleRateRanges[iRange].mMinimum <= sampleRateIn && pSampleRateRanges[iRange].mMaximum >= sampleRateIn) {
*pSampleRateOut = sampleRateIn;
ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_SUCCESS;
} else {
UInt32 absoluteDifference;
if (pSampleRateRanges[iRange].mMinimum > sampleRateIn) {
absoluteDifference = pSampleRateRanges[iRange].mMinimum - sampleRateIn;
} else {
absoluteDifference = sampleRateIn - pSampleRateRanges[iRange].mMaximum;
}
if (currentAbsoluteDifference > absoluteDifference) {
currentAbsoluteDifference = absoluteDifference;
iCurrentClosestRange = iRange;
}
}
}
MA_ASSERT(iCurrentClosestRange != (UInt32)-1);
*pSampleRateOut = pSampleRateRanges[iCurrentClosestRange].mMinimum;
ma_free(pSampleRateRanges, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
/* Should never get here, but it would mean we weren't able to find any suitable sample rates. */
/*ma_free(pSampleRateRanges, &pContext->allocationCallbacks);*/
/*return MA_ERROR;*/
}
#endif
static ma_result ma_get_AudioObject_closest_buffer_size_in_frames(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32 bufferSizeInFramesIn, ma_uint32* pBufferSizeInFramesOut)
{
AudioObjectPropertyAddress propAddress;
AudioValueRange bufferSizeRange;
UInt32 dataSize;
OSStatus status;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pBufferSizeInFramesOut != NULL);
*pBufferSizeInFramesOut = 0; /* Safety. */
propAddress.mSelector = kAudioDevicePropertyBufferFrameSizeRange;
propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput;
propAddress.mElement = kAudioObjectPropertyElementMaster;
dataSize = sizeof(bufferSizeRange);
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, &bufferSizeRange);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
/* This is just a clamp. */
if (bufferSizeInFramesIn < bufferSizeRange.mMinimum) {
*pBufferSizeInFramesOut = (ma_uint32)bufferSizeRange.mMinimum;
} else if (bufferSizeInFramesIn > bufferSizeRange.mMaximum) {
*pBufferSizeInFramesOut = (ma_uint32)bufferSizeRange.mMaximum;
} else {
*pBufferSizeInFramesOut = bufferSizeInFramesIn;
}
return MA_SUCCESS;
}
static ma_result ma_set_AudioObject_buffer_size_in_frames(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_uint32* pPeriodSizeInOut)
{
ma_result result;
ma_uint32 chosenBufferSizeInFrames;
AudioObjectPropertyAddress propAddress;
UInt32 dataSize;
OSStatus status;
MA_ASSERT(pContext != NULL);
result = ma_get_AudioObject_closest_buffer_size_in_frames(pContext, deviceObjectID, deviceType, *pPeriodSizeInOut, &chosenBufferSizeInFrames);
if (result != MA_SUCCESS) {
return result;
}
/* Try setting the size of the buffer... If this fails we just use whatever is currently set. */
propAddress.mSelector = kAudioDevicePropertyBufferFrameSize;
propAddress.mScope = (deviceType == ma_device_type_playback) ? kAudioObjectPropertyScopeOutput : kAudioObjectPropertyScopeInput;
propAddress.mElement = kAudioObjectPropertyElementMaster;
((ma_AudioObjectSetPropertyData_proc)pContext->coreaudio.AudioObjectSetPropertyData)(deviceObjectID, &propAddress, 0, NULL, sizeof(chosenBufferSizeInFrames), &chosenBufferSizeInFrames);
/* Get the actual size of the buffer. */
dataSize = sizeof(*pPeriodSizeInOut);
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(deviceObjectID, &propAddress, 0, NULL, &dataSize, &chosenBufferSizeInFrames);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
*pPeriodSizeInOut = chosenBufferSizeInFrames;
return MA_SUCCESS;
}
static ma_result ma_find_AudioObjectID(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, AudioObjectID* pDeviceObjectID)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pDeviceObjectID != NULL);
/* Safety. */
*pDeviceObjectID = 0;
if (pDeviceID == NULL) {
/* Default device. */
AudioObjectPropertyAddress propAddressDefaultDevice;
UInt32 defaultDeviceObjectIDSize = sizeof(AudioObjectID);
AudioObjectID defaultDeviceObjectID;
OSStatus status;
propAddressDefaultDevice.mScope = kAudioObjectPropertyScopeGlobal;
propAddressDefaultDevice.mElement = kAudioObjectPropertyElementMaster;
if (deviceType == ma_device_type_playback) {
propAddressDefaultDevice.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
} else {
propAddressDefaultDevice.mSelector = kAudioHardwarePropertyDefaultInputDevice;
}
defaultDeviceObjectIDSize = sizeof(AudioObjectID);
status = ((ma_AudioObjectGetPropertyData_proc)pContext->coreaudio.AudioObjectGetPropertyData)(kAudioObjectSystemObject, &propAddressDefaultDevice, 0, NULL, &defaultDeviceObjectIDSize, &defaultDeviceObjectID);
if (status == noErr) {
*pDeviceObjectID = defaultDeviceObjectID;
return MA_SUCCESS;
}
} else {
/* Explicit device. */
UInt32 deviceCount;
AudioObjectID* pDeviceObjectIDs;
ma_result result;
UInt32 iDevice;
result = ma_get_device_object_ids__coreaudio(pContext, &deviceCount, &pDeviceObjectIDs);
if (result != MA_SUCCESS) {
return result;
}
for (iDevice = 0; iDevice < deviceCount; ++iDevice) {
AudioObjectID deviceObjectID = pDeviceObjectIDs[iDevice];
char uid[256];
if (ma_get_AudioObject_uid(pContext, deviceObjectID, sizeof(uid), uid) != MA_SUCCESS) {
continue;
}
if (deviceType == ma_device_type_playback) {
if (ma_does_AudioObject_support_playback(pContext, deviceObjectID)) {
if (strcmp(uid, pDeviceID->coreaudio) == 0) {
*pDeviceObjectID = deviceObjectID;
ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
}
} else {
if (ma_does_AudioObject_support_capture(pContext, deviceObjectID)) {
if (strcmp(uid, pDeviceID->coreaudio) == 0) {
*pDeviceObjectID = deviceObjectID;
ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
}
}
}
ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
}
/* If we get here it means we couldn't find the device. */
return MA_NO_DEVICE;
}
static ma_result ma_find_best_format__coreaudio(ma_context* pContext, AudioObjectID deviceObjectID, ma_device_type deviceType, ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_bool32 usingDefaultFormat, ma_bool32 usingDefaultChannels, ma_bool32 usingDefaultSampleRate, AudioStreamBasicDescription* pFormat)
{
UInt32 deviceFormatDescriptionCount;
AudioStreamRangedDescription* pDeviceFormatDescriptions;
ma_result result;
ma_uint32 desiredSampleRate;
ma_uint32 desiredChannelCount;
ma_format desiredFormat;
AudioStreamBasicDescription bestDeviceFormatSoFar;
ma_bool32 hasSupportedFormat;
UInt32 iFormat;
result = ma_get_AudioObject_stream_descriptions(pContext, deviceObjectID, deviceType, &deviceFormatDescriptionCount, &pDeviceFormatDescriptions);
if (result != MA_SUCCESS) {
return result;
}
desiredSampleRate = sampleRate;
if (usingDefaultSampleRate) {
/*
When using the device's default sample rate, we get the highest priority standard rate supported by the device. Otherwise
we just use the pre-set rate.
*/
ma_uint32 iStandardRate;
for (iStandardRate = 0; iStandardRate < ma_countof(g_maStandardSampleRatePriorities); ++iStandardRate) {
ma_uint32 standardRate = g_maStandardSampleRatePriorities[iStandardRate];
ma_bool32 foundRate = MA_FALSE;
UInt32 iDeviceRate;
for (iDeviceRate = 0; iDeviceRate < deviceFormatDescriptionCount; ++iDeviceRate) {
ma_uint32 deviceRate = (ma_uint32)pDeviceFormatDescriptions[iDeviceRate].mFormat.mSampleRate;
if (deviceRate == standardRate) {
desiredSampleRate = standardRate;
foundRate = MA_TRUE;
break;
}
}
if (foundRate) {
break;
}
}
}
desiredChannelCount = channels;
if (usingDefaultChannels) {
ma_get_AudioObject_channel_count(pContext, deviceObjectID, deviceType, &desiredChannelCount); /* <-- Not critical if this fails. */
}
desiredFormat = format;
if (usingDefaultFormat) {
desiredFormat = g_maFormatPriorities[0];
}
/*
If we get here it means we don't have an exact match to what the client is asking for. We'll need to find the closest one. The next
loop will check for formats that have the same sample rate to what we're asking for. If there is, we prefer that one in all cases.
*/
MA_ZERO_OBJECT(&bestDeviceFormatSoFar);
hasSupportedFormat = MA_FALSE;
for (iFormat = 0; iFormat < deviceFormatDescriptionCount; ++iFormat) {
ma_format format;
ma_result formatResult = ma_format_from_AudioStreamBasicDescription(&pDeviceFormatDescriptions[iFormat].mFormat, &format);
if (formatResult == MA_SUCCESS && format != ma_format_unknown) {
hasSupportedFormat = MA_TRUE;
bestDeviceFormatSoFar = pDeviceFormatDescriptions[iFormat].mFormat;
break;
}
}
if (!hasSupportedFormat) {
ma_free(pDeviceFormatDescriptions, &pContext->allocationCallbacks);
return MA_FORMAT_NOT_SUPPORTED;
}
for (iFormat = 0; iFormat < deviceFormatDescriptionCount; ++iFormat) {
AudioStreamBasicDescription thisDeviceFormat = pDeviceFormatDescriptions[iFormat].mFormat;
ma_format thisSampleFormat;
ma_result formatResult;
ma_format bestSampleFormatSoFar;
/* If the format is not supported by miniaudio we need to skip this one entirely. */
formatResult = ma_format_from_AudioStreamBasicDescription(&pDeviceFormatDescriptions[iFormat].mFormat, &thisSampleFormat);
if (formatResult != MA_SUCCESS || thisSampleFormat == ma_format_unknown) {
continue; /* The format is not supported by miniaudio. Skip. */
}
ma_format_from_AudioStreamBasicDescription(&bestDeviceFormatSoFar, &bestSampleFormatSoFar);
/* Getting here means the format is supported by miniaudio which makes this format a candidate. */
if (thisDeviceFormat.mSampleRate != desiredSampleRate) {
/*
The sample rate does not match, but this format could still be usable, although it's a very low priority. If the best format
so far has an equal sample rate we can just ignore this one.
*/
if (bestDeviceFormatSoFar.mSampleRate == desiredSampleRate) {
continue; /* The best sample rate so far has the same sample rate as what we requested which means it's still the best so far. Skip this format. */
} else {
/* In this case, neither the best format so far nor this one have the same sample rate. Check the channel count next. */
if (thisDeviceFormat.mChannelsPerFrame != desiredChannelCount) {
/* This format has a different sample rate _and_ a different channel count. */
if (bestDeviceFormatSoFar.mChannelsPerFrame == desiredChannelCount) {
continue; /* No change to the best format. */
} else {
/*
Both this format and the best so far have different sample rates and different channel counts. Whichever has the
best format is the new best.
*/
if (ma_get_format_priority_index(thisSampleFormat) < ma_get_format_priority_index(bestSampleFormatSoFar)) {
bestDeviceFormatSoFar = thisDeviceFormat;
continue;
} else {
continue; /* No change to the best format. */
}
}
} else {
/* This format has a different sample rate but the desired channel count. */
if (bestDeviceFormatSoFar.mChannelsPerFrame == desiredChannelCount) {
/* Both this format and the best so far have the desired channel count. Whichever has the best format is the new best. */
if (ma_get_format_priority_index(thisSampleFormat) < ma_get_format_priority_index(bestSampleFormatSoFar)) {
bestDeviceFormatSoFar = thisDeviceFormat;
continue;
} else {
continue; /* No change to the best format for now. */
}
} else {
/* This format has the desired channel count, but the best so far does not. We have a new best. */
bestDeviceFormatSoFar = thisDeviceFormat;
continue;
}
}
}
} else {
/*
The sample rates match which makes this format a very high priority contender. If the best format so far has a different
sample rate it needs to be replaced with this one.
*/
if (bestDeviceFormatSoFar.mSampleRate != desiredSampleRate) {
bestDeviceFormatSoFar = thisDeviceFormat;
continue;
} else {
/* In this case both this format and the best format so far have the same sample rate. Check the channel count next. */
if (thisDeviceFormat.mChannelsPerFrame == desiredChannelCount) {
/*
In this case this format has the same channel count as what the client is requesting. If the best format so far has
a different count, this one becomes the new best.
*/
if (bestDeviceFormatSoFar.mChannelsPerFrame != desiredChannelCount) {
bestDeviceFormatSoFar = thisDeviceFormat;
continue;
} else {
/* In this case both this format and the best so far have the ideal sample rate and channel count. Check the format. */
if (thisSampleFormat == desiredFormat) {
bestDeviceFormatSoFar = thisDeviceFormat;
break; /* Found the exact match. */
} else {
/* The formats are different. The new best format is the one with the highest priority format according to miniaudio. */
if (ma_get_format_priority_index(thisSampleFormat) < ma_get_format_priority_index(bestSampleFormatSoFar)) {
bestDeviceFormatSoFar = thisDeviceFormat;
continue;
} else {
continue; /* No change to the best format for now. */
}
}
}
} else {
/*
In this case the channel count is different to what the client has requested. If the best so far has the same channel
count as the requested count then it remains the best.
*/
if (bestDeviceFormatSoFar.mChannelsPerFrame == desiredChannelCount) {
continue;
} else {
/*
This is the case where both have the same sample rate (good) but different channel counts. Right now both have about
the same priority, but we need to compare the format now.
*/
if (thisSampleFormat == bestSampleFormatSoFar) {
if (ma_get_format_priority_index(thisSampleFormat) < ma_get_format_priority_index(bestSampleFormatSoFar)) {
bestDeviceFormatSoFar = thisDeviceFormat;
continue;
} else {
continue; /* No change to the best format for now. */
}
}
}
}
}
}
}
*pFormat = bestDeviceFormatSoFar;
ma_free(pDeviceFormatDescriptions, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
static ma_result ma_get_AudioUnit_channel_map(ma_context* pContext, AudioUnit audioUnit, ma_device_type deviceType, ma_channel channelMap[MA_MAX_CHANNELS])
{
AudioUnitScope deviceScope;
AudioUnitElement deviceBus;
UInt32 channelLayoutSize;
OSStatus status;
AudioChannelLayout* pChannelLayout;
ma_result result;
MA_ASSERT(pContext != NULL);
if (deviceType == ma_device_type_playback) {
deviceScope = kAudioUnitScope_Output;
deviceBus = MA_COREAUDIO_OUTPUT_BUS;
} else {
deviceScope = kAudioUnitScope_Input;
deviceBus = MA_COREAUDIO_INPUT_BUS;
}
status = ((ma_AudioUnitGetPropertyInfo_proc)pContext->coreaudio.AudioUnitGetPropertyInfo)(audioUnit, kAudioUnitProperty_AudioChannelLayout, deviceScope, deviceBus, &channelLayoutSize, NULL);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
pChannelLayout = (AudioChannelLayout*)ma__malloc_from_callbacks(channelLayoutSize, &pContext->allocationCallbacks);
if (pChannelLayout == NULL) {
return MA_OUT_OF_MEMORY;
}
status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(audioUnit, kAudioUnitProperty_AudioChannelLayout, deviceScope, deviceBus, pChannelLayout, &channelLayoutSize);
if (status != noErr) {
ma__free_from_callbacks(pChannelLayout, &pContext->allocationCallbacks);
return ma_result_from_OSStatus(status);
}
result = ma_get_channel_map_from_AudioChannelLayout(pChannelLayout, channelMap);
if (result != MA_SUCCESS) {
ma__free_from_callbacks(pChannelLayout, &pContext->allocationCallbacks);
return result;
}
ma__free_from_callbacks(pChannelLayout, &pContext->allocationCallbacks);
return MA_SUCCESS;
}
#endif /* MA_APPLE_DESKTOP */
static ma_bool32 ma_context_is_device_id_equal__coreaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return strcmp(pID0->coreaudio, pID1->coreaudio) == 0;
}
static ma_result ma_context_enumerate_devices__coreaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
#if defined(MA_APPLE_DESKTOP)
UInt32 deviceCount;
AudioObjectID* pDeviceObjectIDs;
ma_result result;
UInt32 iDevice;
result = ma_get_device_object_ids__coreaudio(pContext, &deviceCount, &pDeviceObjectIDs);
if (result != MA_SUCCESS) {
return result;
}
for (iDevice = 0; iDevice < deviceCount; ++iDevice) {
AudioObjectID deviceObjectID = pDeviceObjectIDs[iDevice];
ma_device_info info;
MA_ZERO_OBJECT(&info);
if (ma_get_AudioObject_uid(pContext, deviceObjectID, sizeof(info.id.coreaudio), info.id.coreaudio) != MA_SUCCESS) {
continue;
}
if (ma_get_AudioObject_name(pContext, deviceObjectID, sizeof(info.name), info.name) != MA_SUCCESS) {
continue;
}
if (ma_does_AudioObject_support_playback(pContext, deviceObjectID)) {
if (!callback(pContext, ma_device_type_playback, &info, pUserData)) {
break;
}
}
if (ma_does_AudioObject_support_capture(pContext, deviceObjectID)) {
if (!callback(pContext, ma_device_type_capture, &info, pUserData)) {
break;
}
}
}
ma_free(pDeviceObjectIDs, &pContext->allocationCallbacks);
#else
/* Only supporting default devices on non-Desktop platforms. */
ma_device_info info;
MA_ZERO_OBJECT(&info);
ma_strncpy_s(info.name, sizeof(info.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
if (!callback(pContext, ma_device_type_playback, &info, pUserData)) {
return MA_SUCCESS;
}
MA_ZERO_OBJECT(&info);
ma_strncpy_s(info.name, sizeof(info.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
if (!callback(pContext, ma_device_type_capture, &info, pUserData)) {
return MA_SUCCESS;
}
#endif
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__coreaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_result result;
MA_ASSERT(pContext != NULL);
/* No exclusive mode with the Core Audio backend for now. */
if (shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
#if defined(MA_APPLE_DESKTOP)
/* Desktop */
{
AudioObjectID deviceObjectID;
UInt32 streamDescriptionCount;
AudioStreamRangedDescription* pStreamDescriptions;
UInt32 iStreamDescription;
UInt32 sampleRateRangeCount;
AudioValueRange* pSampleRateRanges;
result = ma_find_AudioObjectID(pContext, deviceType, pDeviceID, &deviceObjectID);
if (result != MA_SUCCESS) {
return result;
}
result = ma_get_AudioObject_uid(pContext, deviceObjectID, sizeof(pDeviceInfo->id.coreaudio), pDeviceInfo->id.coreaudio);
if (result != MA_SUCCESS) {
return result;
}
result = ma_get_AudioObject_name(pContext, deviceObjectID, sizeof(pDeviceInfo->name), pDeviceInfo->name);
if (result != MA_SUCCESS) {
return result;
}
/* Formats. */
result = ma_get_AudioObject_stream_descriptions(pContext, deviceObjectID, deviceType, &streamDescriptionCount, &pStreamDescriptions);
if (result != MA_SUCCESS) {
return result;
}
for (iStreamDescription = 0; iStreamDescription < streamDescriptionCount; ++iStreamDescription) {
ma_format format;
ma_bool32 formatExists = MA_FALSE;
ma_uint32 iOutputFormat;
result = ma_format_from_AudioStreamBasicDescription(&pStreamDescriptions[iStreamDescription].mFormat, &format);
if (result != MA_SUCCESS) {
continue;
}
MA_ASSERT(format != ma_format_unknown);
/* Make sure the format isn't already in the output list. */
for (iOutputFormat = 0; iOutputFormat < pDeviceInfo->formatCount; ++iOutputFormat) {
if (pDeviceInfo->formats[iOutputFormat] == format) {
formatExists = MA_TRUE;
break;
}
}
if (!formatExists) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = format;
}
}
ma_free(pStreamDescriptions, &pContext->allocationCallbacks);
/* Channels. */
result = ma_get_AudioObject_channel_count(pContext, deviceObjectID, deviceType, &pDeviceInfo->minChannels);
if (result != MA_SUCCESS) {
return result;
}
pDeviceInfo->maxChannels = pDeviceInfo->minChannels;
/* Sample rates. */
result = ma_get_AudioObject_sample_rates(pContext, deviceObjectID, deviceType, &sampleRateRangeCount, &pSampleRateRanges);
if (result != MA_SUCCESS) {
return result;
}
if (sampleRateRangeCount > 0) {
UInt32 iSampleRate;
pDeviceInfo->minSampleRate = UINT32_MAX;
pDeviceInfo->maxSampleRate = 0;
for (iSampleRate = 0; iSampleRate < sampleRateRangeCount; ++iSampleRate) {
if (pDeviceInfo->minSampleRate > pSampleRateRanges[iSampleRate].mMinimum) {
pDeviceInfo->minSampleRate = pSampleRateRanges[iSampleRate].mMinimum;
}
if (pDeviceInfo->maxSampleRate < pSampleRateRanges[iSampleRate].mMaximum) {
pDeviceInfo->maxSampleRate = pSampleRateRanges[iSampleRate].mMaximum;
}
}
}
}
#else
/* Mobile */
{
AudioComponentDescription desc;
AudioComponent component;
AudioUnit audioUnit;
OSStatus status;
AudioUnitScope formatScope;
AudioUnitElement formatElement;
AudioStreamBasicDescription bestFormat;
UInt32 propSize;
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
}
/*
Retrieving device information is more annoying on mobile than desktop. For simplicity I'm locking this down to whatever format is
reported on a temporary I/O unit. The problem, however, is that this doesn't return a value for the sample rate which we need to
retrieve from the AVAudioSession shared instance.
*/
desc.componentType = kAudioUnitType_Output;
desc.componentSubType = kAudioUnitSubType_RemoteIO;
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
component = ((ma_AudioComponentFindNext_proc)pContext->coreaudio.AudioComponentFindNext)(NULL, &desc);
if (component == NULL) {
return MA_FAILED_TO_INIT_BACKEND;
}
status = ((ma_AudioComponentInstanceNew_proc)pContext->coreaudio.AudioComponentInstanceNew)(component, &audioUnit);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
formatScope = (deviceType == ma_device_type_playback) ? kAudioUnitScope_Input : kAudioUnitScope_Output;
formatElement = (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS;
propSize = sizeof(bestFormat);
status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, &propSize);
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(audioUnit);
return ma_result_from_OSStatus(status);
}
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(audioUnit);
audioUnit = NULL;
pDeviceInfo->minChannels = bestFormat.mChannelsPerFrame;
pDeviceInfo->maxChannels = bestFormat.mChannelsPerFrame;
pDeviceInfo->formatCount = 1;
result = ma_format_from_AudioStreamBasicDescription(&bestFormat, &pDeviceInfo->formats[0]);
if (result != MA_SUCCESS) {
return result;
}
/*
It looks like Apple are wanting to push the whole AVAudioSession thing. Thus, we need to use that to determine device settings. To do
this we just get the shared instance and inspect.
*/
@autoreleasepool {
AVAudioSession* pAudioSession = [AVAudioSession sharedInstance];
MA_ASSERT(pAudioSession != NULL);
pDeviceInfo->minSampleRate = (ma_uint32)pAudioSession.sampleRate;
pDeviceInfo->maxSampleRate = pDeviceInfo->minSampleRate;
}
}
#endif
(void)pDeviceInfo; /* Unused. */
return MA_SUCCESS;
}
static OSStatus ma_on_output__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pActionFlags, const AudioTimeStamp* pTimeStamp, UInt32 busNumber, UInt32 frameCount, AudioBufferList* pBufferList)
{
ma_device* pDevice = (ma_device*)pUserData;
ma_stream_layout layout;
MA_ASSERT(pDevice != NULL);
#if defined(MA_DEBUG_OUTPUT)
printf("INFO: Output Callback: busNumber=%d, frameCount=%d, mNumberBuffers=%d\n", busNumber, frameCount, pBufferList->mNumberBuffers);
#endif
/* We need to check whether or not we are outputting interleaved or non-interleaved samples. The way we do this is slightly different for each type. */
layout = ma_stream_layout_interleaved;
if (pBufferList->mBuffers[0].mNumberChannels != pDevice->playback.internalChannels) {
layout = ma_stream_layout_deinterleaved;
}
if (layout == ma_stream_layout_interleaved) {
/* For now we can assume everything is interleaved. */
UInt32 iBuffer;
for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; ++iBuffer) {
if (pBufferList->mBuffers[iBuffer].mNumberChannels == pDevice->playback.internalChannels) {
ma_uint32 frameCountForThisBuffer = pBufferList->mBuffers[iBuffer].mDataByteSize / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
if (frameCountForThisBuffer > 0) {
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_playback(pDevice, frameCountForThisBuffer, pBufferList->mBuffers[iBuffer].mData, &pDevice->coreaudio.duplexRB);
} else {
ma_device__read_frames_from_client(pDevice, frameCountForThisBuffer, pBufferList->mBuffers[iBuffer].mData);
}
}
#if defined(MA_DEBUG_OUTPUT)
printf(" frameCount=%d, mNumberChannels=%d, mDataByteSize=%d\n", frameCount, pBufferList->mBuffers[iBuffer].mNumberChannels, pBufferList->mBuffers[iBuffer].mDataByteSize);
#endif
} else {
/*
This case is where the number of channels in the output buffer do not match our internal channels. It could mean that it's
not interleaved, in which case we can't handle right now since miniaudio does not yet support non-interleaved streams. We just
output silence here.
*/
MA_ZERO_MEMORY(pBufferList->mBuffers[iBuffer].mData, pBufferList->mBuffers[iBuffer].mDataByteSize);
#if defined(MA_DEBUG_OUTPUT)
printf(" WARNING: Outputting silence. frameCount=%d, mNumberChannels=%d, mDataByteSize=%d\n", frameCount, pBufferList->mBuffers[iBuffer].mNumberChannels, pBufferList->mBuffers[iBuffer].mDataByteSize);
#endif
}
}
} else {
/* This is the deinterleaved case. We need to update each buffer in groups of internalChannels. This assumes each buffer is the same size. */
/*
For safety we'll check that the internal channels is a multiple of the buffer count. If it's not it means something
very strange has happened and we're not going to support it.
*/
if ((pBufferList->mNumberBuffers % pDevice->playback.internalChannels) == 0) {
ma_uint8 tempBuffer[4096];
UInt32 iBuffer;
for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; iBuffer += pDevice->playback.internalChannels) {
ma_uint32 frameCountPerBuffer = pBufferList->mBuffers[iBuffer].mDataByteSize / ma_get_bytes_per_sample(pDevice->playback.internalFormat);
ma_uint32 framesRemaining = frameCountPerBuffer;
while (framesRemaining > 0) {
void* ppDeinterleavedBuffers[MA_MAX_CHANNELS];
ma_uint32 iChannel;
ma_uint32 framesToRead = sizeof(tempBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
if (framesToRead > framesRemaining) {
framesToRead = framesRemaining;
}
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_playback(pDevice, framesToRead, tempBuffer, &pDevice->coreaudio.duplexRB);
} else {
ma_device__read_frames_from_client(pDevice, framesToRead, tempBuffer);
}
for (iChannel = 0; iChannel < pDevice->playback.internalChannels; ++iChannel) {
ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pBufferList->mBuffers[iBuffer+iChannel].mData, (frameCountPerBuffer - framesRemaining) * ma_get_bytes_per_sample(pDevice->playback.internalFormat));
}
ma_deinterleave_pcm_frames(pDevice->playback.internalFormat, pDevice->playback.internalChannels, framesToRead, tempBuffer, ppDeinterleavedBuffers);
framesRemaining -= framesToRead;
}
}
}
}
(void)pActionFlags;
(void)pTimeStamp;
(void)busNumber;
(void)frameCount;
return noErr;
}
static OSStatus ma_on_input__coreaudio(void* pUserData, AudioUnitRenderActionFlags* pActionFlags, const AudioTimeStamp* pTimeStamp, UInt32 busNumber, UInt32 frameCount, AudioBufferList* pUnusedBufferList)
{
ma_device* pDevice = (ma_device*)pUserData;
AudioBufferList* pRenderedBufferList;
ma_stream_layout layout;
OSStatus status;
MA_ASSERT(pDevice != NULL);
pRenderedBufferList = (AudioBufferList*)pDevice->coreaudio.pAudioBufferList;
MA_ASSERT(pRenderedBufferList);
/* We need to check whether or not we are outputting interleaved or non-interleaved samples. The way we do this is slightly different for each type. */
layout = ma_stream_layout_interleaved;
if (pRenderedBufferList->mBuffers[0].mNumberChannels != pDevice->capture.internalChannels) {
layout = ma_stream_layout_deinterleaved;
}
#if defined(MA_DEBUG_OUTPUT)
printf("INFO: Input Callback: busNumber=%d, frameCount=%d, mNumberBuffers=%d\n", busNumber, frameCount, pRenderedBufferList->mNumberBuffers);
#endif
status = ((ma_AudioUnitRender_proc)pDevice->pContext->coreaudio.AudioUnitRender)((AudioUnit)pDevice->coreaudio.audioUnitCapture, pActionFlags, pTimeStamp, busNumber, frameCount, pRenderedBufferList);
if (status != noErr) {
#if defined(MA_DEBUG_OUTPUT)
printf(" ERROR: AudioUnitRender() failed with %d\n", status);
#endif
return status;
}
if (layout == ma_stream_layout_interleaved) {
UInt32 iBuffer;
for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; ++iBuffer) {
if (pRenderedBufferList->mBuffers[iBuffer].mNumberChannels == pDevice->capture.internalChannels) {
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_capture(pDevice, frameCount, pRenderedBufferList->mBuffers[iBuffer].mData, &pDevice->coreaudio.duplexRB);
} else {
ma_device__send_frames_to_client(pDevice, frameCount, pRenderedBufferList->mBuffers[iBuffer].mData);
}
#if defined(MA_DEBUG_OUTPUT)
printf(" mDataByteSize=%d\n", pRenderedBufferList->mBuffers[iBuffer].mDataByteSize);
#endif
} else {
/*
This case is where the number of channels in the output buffer do not match our internal channels. It could mean that it's
not interleaved, in which case we can't handle right now since miniaudio does not yet support non-interleaved streams.
*/
ma_uint8 silentBuffer[4096];
ma_uint32 framesRemaining;
MA_ZERO_MEMORY(silentBuffer, sizeof(silentBuffer));
framesRemaining = frameCount;
while (framesRemaining > 0) {
ma_uint32 framesToSend = sizeof(silentBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
if (framesToSend > framesRemaining) {
framesToSend = framesRemaining;
}
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_capture(pDevice, framesToSend, silentBuffer, &pDevice->coreaudio.duplexRB);
} else {
ma_device__send_frames_to_client(pDevice, framesToSend, silentBuffer);
}
framesRemaining -= framesToSend;
}
#if defined(MA_DEBUG_OUTPUT)
printf(" WARNING: Outputting silence. frameCount=%d, mNumberChannels=%d, mDataByteSize=%d\n", frameCount, pRenderedBufferList->mBuffers[iBuffer].mNumberChannels, pRenderedBufferList->mBuffers[iBuffer].mDataByteSize);
#endif
}
}
} else {
/* This is the deinterleaved case. We need to interleave the audio data before sending it to the client. This assumes each buffer is the same size. */
/*
For safety we'll check that the internal channels is a multiple of the buffer count. If it's not it means something
very strange has happened and we're not going to support it.
*/
if ((pRenderedBufferList->mNumberBuffers % pDevice->capture.internalChannels) == 0) {
ma_uint8 tempBuffer[4096];
UInt32 iBuffer;
for (iBuffer = 0; iBuffer < pRenderedBufferList->mNumberBuffers; iBuffer += pDevice->capture.internalChannels) {
ma_uint32 framesRemaining = frameCount;
while (framesRemaining > 0) {
void* ppDeinterleavedBuffers[MA_MAX_CHANNELS];
ma_uint32 iChannel;
ma_uint32 framesToSend = sizeof(tempBuffer) / ma_get_bytes_per_sample(pDevice->capture.internalFormat);
if (framesToSend > framesRemaining) {
framesToSend = framesRemaining;
}
for (iChannel = 0; iChannel < pDevice->capture.internalChannels; ++iChannel) {
ppDeinterleavedBuffers[iChannel] = (void*)ma_offset_ptr(pRenderedBufferList->mBuffers[iBuffer+iChannel].mData, (frameCount - framesRemaining) * ma_get_bytes_per_sample(pDevice->capture.internalFormat));
}
ma_interleave_pcm_frames(pDevice->capture.internalFormat, pDevice->capture.internalChannels, framesToSend, (const void**)ppDeinterleavedBuffers, tempBuffer);
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_capture(pDevice, framesToSend, tempBuffer, &pDevice->coreaudio.duplexRB);
} else {
ma_device__send_frames_to_client(pDevice, framesToSend, tempBuffer);
}
framesRemaining -= framesToSend;
}
}
}
}
(void)pActionFlags;
(void)pTimeStamp;
(void)busNumber;
(void)frameCount;
(void)pUnusedBufferList;
return noErr;
}
static void on_start_stop__coreaudio(void* pUserData, AudioUnit audioUnit, AudioUnitPropertyID propertyID, AudioUnitScope scope, AudioUnitElement element)
{
ma_device* pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
/*
There's been a report of a deadlock here when triggered by ma_device_uninit(). It looks like
AudioUnitGetProprty (called below) and AudioComponentInstanceDispose (called in ma_device_uninit)
can try waiting on the same lock. I'm going to try working around this by not calling any Core
Audio APIs in the callback when the device has been stopped or uninitialized.
*/
if (ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED || ma_device__get_state(pDevice) == MA_STATE_STOPPING || ma_device__get_state(pDevice) == MA_STATE_STOPPED) {
ma_stop_proc onStop = pDevice->onStop;
if (onStop) {
onStop(pDevice);
}
ma_event_signal(&pDevice->coreaudio.stopEvent);
} else {
UInt32 isRunning;
UInt32 isRunningSize = sizeof(isRunning);
OSStatus status = ((ma_AudioUnitGetProperty_proc)pDevice->pContext->coreaudio.AudioUnitGetProperty)(audioUnit, kAudioOutputUnitProperty_IsRunning, scope, element, &isRunning, &isRunningSize);
if (status != noErr) {
return; /* Don't really know what to do in this case... just ignore it, I suppose... */
}
if (!isRunning) {
ma_stop_proc onStop;
/*
The stop event is a bit annoying in Core Audio because it will be called when we automatically switch the default device. Some scenarios to consider:
1) When the device is unplugged, this will be called _before_ the default device change notification.
2) When the device is changed via the default device change notification, this will be called _after_ the switch.
For case #1, we just check if there's a new default device available. If so, we just ignore the stop event. For case #2 we check a flag.
*/
if (((audioUnit == pDevice->coreaudio.audioUnitPlayback) && pDevice->coreaudio.isDefaultPlaybackDevice) ||
((audioUnit == pDevice->coreaudio.audioUnitCapture) && pDevice->coreaudio.isDefaultCaptureDevice)) {
/*
It looks like the device is switching through an external event, such as the user unplugging the device or changing the default device
via the operating system's sound settings. If we're re-initializing the device, we just terminate because we want the stopping of the
device to be seamless to the client (we don't want them receiving the onStop event and thinking that the device has stopped when it
hasn't!).
*/
if (((audioUnit == pDevice->coreaudio.audioUnitPlayback) && pDevice->coreaudio.isSwitchingPlaybackDevice) ||
((audioUnit == pDevice->coreaudio.audioUnitCapture) && pDevice->coreaudio.isSwitchingCaptureDevice)) {
return;
}
/*
Getting here means the device is not reinitializing which means it may have been unplugged. From what I can see, it looks like Core Audio
will try switching to the new default device seamlessly. We need to somehow find a way to determine whether or not Core Audio will most
likely be successful in switching to the new device.
TODO: Try to predict if Core Audio will switch devices. If not, the onStop callback needs to be posted.
*/
return;
}
/* Getting here means we need to stop the device. */
onStop = pDevice->onStop;
if (onStop) {
onStop(pDevice);
}
}
}
(void)propertyID; /* Unused. */
}
#if defined(MA_APPLE_DESKTOP)
static ma_uint32 g_DeviceTrackingInitCounter_CoreAudio = 0;
static ma_mutex g_DeviceTrackingMutex_CoreAudio;
static ma_device** g_ppTrackedDevices_CoreAudio = NULL;
static ma_uint32 g_TrackedDeviceCap_CoreAudio = 0;
static ma_uint32 g_TrackedDeviceCount_CoreAudio = 0;
static OSStatus ma_default_device_changed__coreaudio(AudioObjectID objectID, UInt32 addressCount, const AudioObjectPropertyAddress* pAddresses, void* pUserData)
{
ma_device_type deviceType;
/* Not sure if I really need to check this, but it makes me feel better. */
if (addressCount == 0) {
return noErr;
}
if (pAddresses[0].mSelector == kAudioHardwarePropertyDefaultOutputDevice) {
deviceType = ma_device_type_playback;
} else if (pAddresses[0].mSelector == kAudioHardwarePropertyDefaultInputDevice) {
deviceType = ma_device_type_capture;
} else {
return noErr; /* Should never hit this. */
}
ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio);
{
ma_uint32 iDevice;
for (iDevice = 0; iDevice < g_TrackedDeviceCount_CoreAudio; iDevice += 1) {
ma_result reinitResult;
ma_device* pDevice;
pDevice = g_ppTrackedDevices_CoreAudio[iDevice];
if (pDevice->type == deviceType || pDevice->type == ma_device_type_duplex) {
if (deviceType == ma_device_type_playback) {
pDevice->coreaudio.isSwitchingPlaybackDevice = MA_TRUE;
reinitResult = ma_device_reinit_internal__coreaudio(pDevice, deviceType, MA_TRUE);
pDevice->coreaudio.isSwitchingPlaybackDevice = MA_FALSE;
} else {
pDevice->coreaudio.isSwitchingCaptureDevice = MA_TRUE;
reinitResult = ma_device_reinit_internal__coreaudio(pDevice, deviceType, MA_TRUE);
pDevice->coreaudio.isSwitchingCaptureDevice = MA_FALSE;
}
if (reinitResult == MA_SUCCESS) {
ma_device__post_init_setup(pDevice, deviceType);
/* Restart the device if required. If this fails we need to stop the device entirely. */
if (ma_device__get_state(pDevice) == MA_STATE_STARTED) {
OSStatus status;
if (deviceType == ma_device_type_playback) {
status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitPlayback);
if (status != noErr) {
if (pDevice->type == ma_device_type_duplex) {
((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
}
ma_device__set_state(pDevice, MA_STATE_STOPPED);
}
} else if (deviceType == ma_device_type_capture) {
status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
if (status != noErr) {
if (pDevice->type == ma_device_type_duplex) {
((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitPlayback);
}
ma_device__set_state(pDevice, MA_STATE_STOPPED);
}
}
}
}
}
}
}
ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio);
/* Unused parameters. */
(void)objectID;
(void)pUserData;
return noErr;
}
static ma_result ma_context__init_device_tracking__coreaudio(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
if (c89atomic_fetch_add_32(&g_DeviceTrackingInitCounter_CoreAudio, 1) == 0) {
AudioObjectPropertyAddress propAddress;
propAddress.mScope = kAudioObjectPropertyScopeGlobal;
propAddress.mElement = kAudioObjectPropertyElementMaster;
ma_mutex_init(&g_DeviceTrackingMutex_CoreAudio);
propAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice;
((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL);
propAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
((ma_AudioObjectAddPropertyListener_proc)pContext->coreaudio.AudioObjectAddPropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL);
}
return MA_SUCCESS;
}
static ma_result ma_context__uninit_device_tracking__coreaudio(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
if (c89atomic_fetch_sub_32(&g_DeviceTrackingInitCounter_CoreAudio, 1) == 1) {
AudioObjectPropertyAddress propAddress;
propAddress.mScope = kAudioObjectPropertyScopeGlobal;
propAddress.mElement = kAudioObjectPropertyElementMaster;
propAddress.mSelector = kAudioHardwarePropertyDefaultInputDevice;
((ma_AudioObjectRemovePropertyListener_proc)pContext->coreaudio.AudioObjectRemovePropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL);
propAddress.mSelector = kAudioHardwarePropertyDefaultOutputDevice;
((ma_AudioObjectRemovePropertyListener_proc)pContext->coreaudio.AudioObjectRemovePropertyListener)(kAudioObjectSystemObject, &propAddress, &ma_default_device_changed__coreaudio, NULL);
/* At this point there should be no tracked devices. If so there's an error somewhere. */
MA_ASSERT(g_ppTrackedDevices_CoreAudio == NULL);
MA_ASSERT(g_TrackedDeviceCount_CoreAudio == 0);
ma_mutex_uninit(&g_DeviceTrackingMutex_CoreAudio);
}
return MA_SUCCESS;
}
static ma_result ma_device__track__coreaudio(ma_device* pDevice)
{
ma_result result;
MA_ASSERT(pDevice != NULL);
result = ma_context__init_device_tracking__coreaudio(pDevice->pContext);
if (result != MA_SUCCESS) {
return result;
}
ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio);
{
/* Allocate memory if required. */
if (g_TrackedDeviceCap_CoreAudio <= g_TrackedDeviceCount_CoreAudio) {
ma_uint32 oldCap;
ma_uint32 newCap;
ma_device** ppNewDevices;
oldCap = g_TrackedDeviceCap_CoreAudio;
newCap = g_TrackedDeviceCap_CoreAudio * 2;
if (newCap == 0) {
newCap = 1;
}
ppNewDevices = (ma_device**)ma__realloc_from_callbacks(g_ppTrackedDevices_CoreAudio, sizeof(*g_ppTrackedDevices_CoreAudio)*newCap, sizeof(*g_ppTrackedDevices_CoreAudio)*oldCap, &pDevice->pContext->allocationCallbacks);
if (ppNewDevices == NULL) {
ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio);
return MA_OUT_OF_MEMORY;
}
g_ppTrackedDevices_CoreAudio = ppNewDevices;
g_TrackedDeviceCap_CoreAudio = newCap;
}
g_ppTrackedDevices_CoreAudio[g_TrackedDeviceCount_CoreAudio] = pDevice;
g_TrackedDeviceCount_CoreAudio += 1;
}
ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio);
return MA_SUCCESS;
}
static ma_result ma_device__untrack__coreaudio(ma_device* pDevice)
{
ma_result result;
MA_ASSERT(pDevice != NULL);
ma_mutex_lock(&g_DeviceTrackingMutex_CoreAudio);
{
ma_uint32 iDevice;
for (iDevice = 0; iDevice < g_TrackedDeviceCount_CoreAudio; iDevice += 1) {
if (g_ppTrackedDevices_CoreAudio[iDevice] == pDevice) {
/* We've found the device. We now need to remove it from the list. */
ma_uint32 jDevice;
for (jDevice = iDevice; jDevice < g_TrackedDeviceCount_CoreAudio-1; jDevice += 1) {
g_ppTrackedDevices_CoreAudio[jDevice] = g_ppTrackedDevices_CoreAudio[jDevice+1];
}
g_TrackedDeviceCount_CoreAudio -= 1;
/* If there's nothing else in the list we need to free memory. */
if (g_TrackedDeviceCount_CoreAudio == 0) {
ma__free_from_callbacks(g_ppTrackedDevices_CoreAudio, &pDevice->pContext->allocationCallbacks);
g_ppTrackedDevices_CoreAudio = NULL;
g_TrackedDeviceCap_CoreAudio = 0;
}
break;
}
}
}
ma_mutex_unlock(&g_DeviceTrackingMutex_CoreAudio);
result = ma_context__uninit_device_tracking__coreaudio(pDevice->pContext);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
#endif
#if defined(MA_APPLE_MOBILE)
@interface ma_router_change_handler:NSObject {
ma_device* m_pDevice;
}
@end
@implementation ma_router_change_handler
-(id)init:(ma_device*)pDevice
{
self = [super init];
m_pDevice = pDevice;
[[NSNotificationCenter defaultCenter] addObserver:self selector:@selector(handle_route_change:) name:AVAudioSessionRouteChangeNotification object:[AVAudioSession sharedInstance]];
return self;
}
-(void)dealloc
{
[self remove_handler];
}
-(void)remove_handler
{
[[NSNotificationCenter defaultCenter] removeObserver:self name:@"AVAudioSessionRouteChangeNotification" object:nil];
}
-(void)handle_route_change:(NSNotification*)pNotification
{
AVAudioSession* pSession = [AVAudioSession sharedInstance];
NSInteger reason = [[[pNotification userInfo] objectForKey:AVAudioSessionRouteChangeReasonKey] integerValue];
switch (reason)
{
case AVAudioSessionRouteChangeReasonOldDeviceUnavailable:
{
#if defined(MA_DEBUG_OUTPUT)
printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonOldDeviceUnavailable\n");
#endif
} break;
case AVAudioSessionRouteChangeReasonNewDeviceAvailable:
{
#if defined(MA_DEBUG_OUTPUT)
printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonNewDeviceAvailable\n");
#endif
} break;
case AVAudioSessionRouteChangeReasonNoSuitableRouteForCategory:
{
#if defined(MA_DEBUG_OUTPUT)
printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonNoSuitableRouteForCategory\n");
#endif
} break;
case AVAudioSessionRouteChangeReasonWakeFromSleep:
{
#if defined(MA_DEBUG_OUTPUT)
printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonWakeFromSleep\n");
#endif
} break;
case AVAudioSessionRouteChangeReasonOverride:
{
#if defined(MA_DEBUG_OUTPUT)
printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonOverride\n");
#endif
} break;
case AVAudioSessionRouteChangeReasonCategoryChange:
{
#if defined(MA_DEBUG_OUTPUT)
printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonCategoryChange\n");
#endif
} break;
case AVAudioSessionRouteChangeReasonUnknown:
default:
{
#if defined(MA_DEBUG_OUTPUT)
printf("[Core Audio] Route Changed: AVAudioSessionRouteChangeReasonUnknown\n");
#endif
} break;
}
m_pDevice->sampleRate = (ma_uint32)pSession.sampleRate;
if (m_pDevice->type == ma_device_type_capture || m_pDevice->type == ma_device_type_duplex) {
m_pDevice->capture.channels = (ma_uint32)pSession.inputNumberOfChannels;
ma_device__post_init_setup(m_pDevice, ma_device_type_capture);
}
if (m_pDevice->type == ma_device_type_playback || m_pDevice->type == ma_device_type_duplex) {
m_pDevice->playback.channels = (ma_uint32)pSession.outputNumberOfChannels;
ma_device__post_init_setup(m_pDevice, ma_device_type_playback);
}
}
@end
#endif
static void ma_device_uninit__coreaudio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED);
#if defined(MA_APPLE_DESKTOP)
/*
Make sure we're no longer tracking the device. It doesn't matter if we call this for a non-default device because it'll
just gracefully ignore it.
*/
ma_device__untrack__coreaudio(pDevice);
#endif
#if defined(MA_APPLE_MOBILE)
if (pDevice->coreaudio.pRouteChangeHandler != NULL) {
ma_router_change_handler* pRouteChangeHandler = (__bridge_transfer ma_router_change_handler*)pDevice->coreaudio.pRouteChangeHandler;
[pRouteChangeHandler remove_handler];
}
#endif
if (pDevice->coreaudio.audioUnitCapture != NULL) {
((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
}
if (pDevice->coreaudio.audioUnitPlayback != NULL) {
((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitPlayback);
}
if (pDevice->coreaudio.pAudioBufferList) {
ma__free_from_callbacks(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_duplex) {
ma_pcm_rb_uninit(&pDevice->coreaudio.duplexRB);
}
}
typedef struct
{
/* Input. */
ma_format formatIn;
ma_uint32 channelsIn;
ma_uint32 sampleRateIn;
ma_channel channelMapIn[MA_MAX_CHANNELS];
ma_uint32 periodSizeInFramesIn;
ma_uint32 periodSizeInMillisecondsIn;
ma_uint32 periodsIn;
ma_bool32 usingDefaultFormat;
ma_bool32 usingDefaultChannels;
ma_bool32 usingDefaultSampleRate;
ma_bool32 usingDefaultChannelMap;
ma_share_mode shareMode;
ma_bool32 registerStopEvent;
/* Output. */
#if defined(MA_APPLE_DESKTOP)
AudioObjectID deviceObjectID;
#endif
AudioComponent component;
AudioUnit audioUnit;
AudioBufferList* pAudioBufferList; /* Only used for input devices. */
ma_format formatOut;
ma_uint32 channelsOut;
ma_uint32 sampleRateOut;
ma_channel channelMapOut[MA_MAX_CHANNELS];
ma_uint32 periodSizeInFramesOut;
ma_uint32 periodsOut;
char deviceName[256];
} ma_device_init_internal_data__coreaudio;
static ma_result ma_device_init_internal__coreaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_device_init_internal_data__coreaudio* pData, void* pDevice_DoNotReference) /* <-- pDevice is typed as void* intentionally so as to avoid accidentally referencing it. */
{
ma_result result;
OSStatus status;
UInt32 enableIOFlag;
AudioStreamBasicDescription bestFormat;
ma_uint32 actualPeriodSizeInFrames;
AURenderCallbackStruct callbackInfo;
#if defined(MA_APPLE_DESKTOP)
AudioObjectID deviceObjectID;
#endif
/* This API should only be used for a single device type: playback or capture. No full-duplex mode. */
if (deviceType == ma_device_type_duplex) {
return MA_INVALID_ARGS;
}
MA_ASSERT(pContext != NULL);
MA_ASSERT(deviceType == ma_device_type_playback || deviceType == ma_device_type_capture);
#if defined(MA_APPLE_DESKTOP)
pData->deviceObjectID = 0;
#endif
pData->component = NULL;
pData->audioUnit = NULL;
pData->pAudioBufferList = NULL;
#if defined(MA_APPLE_DESKTOP)
result = ma_find_AudioObjectID(pContext, deviceType, pDeviceID, &deviceObjectID);
if (result != MA_SUCCESS) {
return result;
}
pData->deviceObjectID = deviceObjectID;
#endif
/* Core audio doesn't really use the notion of a period so we can leave this unmodified, but not too over the top. */
pData->periodsOut = pData->periodsIn;
if (pData->periodsOut == 0) {
pData->periodsOut = MA_DEFAULT_PERIODS;
}
if (pData->periodsOut > 16) {
pData->periodsOut = 16;
}
/* Audio unit. */
status = ((ma_AudioComponentInstanceNew_proc)pContext->coreaudio.AudioComponentInstanceNew)((AudioComponent)pContext->coreaudio.component, (AudioUnit*)&pData->audioUnit);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
/* The input/output buses need to be explicitly enabled and disabled. We set the flag based on the output unit first, then we just swap it for input. */
enableIOFlag = 1;
if (deviceType == ma_device_type_capture) {
enableIOFlag = 0;
}
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Output, MA_COREAUDIO_OUTPUT_BUS, &enableIOFlag, sizeof(enableIOFlag));
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}
enableIOFlag = (enableIOFlag == 0) ? 1 : 0;
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_EnableIO, kAudioUnitScope_Input, MA_COREAUDIO_INPUT_BUS, &enableIOFlag, sizeof(enableIOFlag));
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}
/* Set the device to use with this audio unit. This is only used on desktop since we are using defaults on mobile. */
#if defined(MA_APPLE_DESKTOP)
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_CurrentDevice, kAudioUnitScope_Global, (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS, &deviceObjectID, sizeof(AudioDeviceID));
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(result);
}
#endif
/*
Format. This is the hardest part of initialization because there's a few variables to take into account.
1) The format must be supported by the device.
2) The format must be supported miniaudio.
3) There's a priority that miniaudio prefers.
Ideally we would like to use a format that's as close to the hardware as possible so we can get as close to a passthrough as possible. The
most important property is the sample rate. miniaudio can do format conversion for any sample rate and channel count, but cannot do the same
for the sample data format. If the sample data format is not supported by miniaudio it must be ignored completely.
On mobile platforms this is a bit different. We just force the use of whatever the audio unit's current format is set to.
*/
{
AudioUnitScope formatScope = (deviceType == ma_device_type_playback) ? kAudioUnitScope_Input : kAudioUnitScope_Output;
AudioUnitElement formatElement = (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS;
#if defined(MA_APPLE_DESKTOP)
AudioStreamBasicDescription origFormat;
UInt32 origFormatSize;
result = ma_find_best_format__coreaudio(pContext, deviceObjectID, deviceType, pData->formatIn, pData->channelsIn, pData->sampleRateIn, pData->usingDefaultFormat, pData->usingDefaultChannels, pData->usingDefaultSampleRate, &bestFormat);
if (result != MA_SUCCESS) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return result;
}
/* From what I can see, Apple's documentation implies that we should keep the sample rate consistent. */
origFormatSize = sizeof(origFormat);
if (deviceType == ma_device_type_playback) {
status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Output, MA_COREAUDIO_OUTPUT_BUS, &origFormat, &origFormatSize);
} else {
status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, kAudioUnitScope_Input, MA_COREAUDIO_INPUT_BUS, &origFormat, &origFormatSize);
}
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return result;
}
bestFormat.mSampleRate = origFormat.mSampleRate;
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, sizeof(bestFormat));
if (status != noErr) {
/* We failed to set the format, so fall back to the current format of the audio unit. */
bestFormat = origFormat;
}
#else
UInt32 propSize = sizeof(bestFormat);
status = ((ma_AudioUnitGetProperty_proc)pContext->coreaudio.AudioUnitGetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, &propSize);
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}
/*
Sample rate is a little different here because for some reason kAudioUnitProperty_StreamFormat returns 0... Oh well. We need to instead try
setting the sample rate to what the user has requested and then just see the results of it. Need to use some Objective-C here for this since
it depends on Apple's AVAudioSession API. To do this we just get the shared AVAudioSession instance and then set it. Note that from what I
can tell, it looks like the sample rate is shared between playback and capture for everything.
*/
@autoreleasepool {
AVAudioSession* pAudioSession = [AVAudioSession sharedInstance];
MA_ASSERT(pAudioSession != NULL);
[pAudioSession setPreferredSampleRate:(double)pData->sampleRateIn error:nil];
bestFormat.mSampleRate = pAudioSession.sampleRate;
/*
I've had a report that the channel count returned by AudioUnitGetProperty above is inconsistent with
AVAudioSession outputNumberOfChannels. I'm going to try using the AVAudioSession values instead.
*/
if (deviceType == ma_device_type_playback) {
bestFormat.mChannelsPerFrame = (UInt32)pAudioSession.outputNumberOfChannels;
}
if (deviceType == ma_device_type_capture) {
bestFormat.mChannelsPerFrame = (UInt32)pAudioSession.inputNumberOfChannels;
}
}
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_StreamFormat, formatScope, formatElement, &bestFormat, sizeof(bestFormat));
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}
#endif
result = ma_format_from_AudioStreamBasicDescription(&bestFormat, &pData->formatOut);
if (result != MA_SUCCESS) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return result;
}
if (pData->formatOut == ma_format_unknown) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return MA_FORMAT_NOT_SUPPORTED;
}
pData->channelsOut = bestFormat.mChannelsPerFrame;
pData->sampleRateOut = bestFormat.mSampleRate;
}
/*
Internal channel map. This is weird in my testing. If I use the AudioObject to get the
channel map, the channel descriptions are set to "Unknown" for some reason. To work around
this it looks like retrieving it from the AudioUnit will work. However, and this is where
it gets weird, it doesn't seem to work with capture devices, nor at all on iOS... Therefore
I'm going to fall back to a default assumption in these cases.
*/
#if defined(MA_APPLE_DESKTOP)
result = ma_get_AudioUnit_channel_map(pContext, pData->audioUnit, deviceType, pData->channelMapOut);
if (result != MA_SUCCESS) {
#if 0
/* Try falling back to the channel map from the AudioObject. */
result = ma_get_AudioObject_channel_map(pContext, deviceObjectID, deviceType, pData->channelMapOut);
if (result != MA_SUCCESS) {
return result;
}
#else
/* Fall back to default assumptions. */
ma_get_standard_channel_map(ma_standard_channel_map_default, pData->channelsOut, pData->channelMapOut);
#endif
}
#else
/* TODO: Figure out how to get the channel map using AVAudioSession. */
ma_get_standard_channel_map(ma_standard_channel_map_default, pData->channelsOut, pData->channelMapOut);
#endif
/* Buffer size. Not allowing this to be configurable on iOS. */
actualPeriodSizeInFrames = pData->periodSizeInFramesIn;
#if defined(MA_APPLE_DESKTOP)
if (actualPeriodSizeInFrames == 0) {
actualPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pData->periodSizeInMillisecondsIn, pData->sampleRateOut);
}
result = ma_set_AudioObject_buffer_size_in_frames(pContext, deviceObjectID, deviceType, &actualPeriodSizeInFrames);
if (result != MA_SUCCESS) {
return result;
}
pData->periodSizeInFramesOut = actualPeriodSizeInFrames;
#else
actualPeriodSizeInFrames = 2048;
pData->periodSizeInFramesOut = actualPeriodSizeInFrames;
#endif
/*
During testing I discovered that the buffer size can be too big. You'll get an error like this:
kAudioUnitErr_TooManyFramesToProcess : inFramesToProcess=4096, mMaxFramesPerSlice=512
Note how inFramesToProcess is smaller than mMaxFramesPerSlice. To fix, we need to set kAudioUnitProperty_MaximumFramesPerSlice to that
of the size of our buffer, or do it the other way around and set our buffer size to the kAudioUnitProperty_MaximumFramesPerSlice.
*/
{
/*AudioUnitScope propScope = (deviceType == ma_device_type_playback) ? kAudioUnitScope_Input : kAudioUnitScope_Output;
AudioUnitElement propBus = (deviceType == ma_device_type_playback) ? MA_COREAUDIO_OUTPUT_BUS : MA_COREAUDIO_INPUT_BUS;
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, propScope, propBus, &actualBufferSizeInFrames, sizeof(actualBufferSizeInFrames));
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}*/
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_MaximumFramesPerSlice, kAudioUnitScope_Global, 0, &actualPeriodSizeInFrames, sizeof(actualPeriodSizeInFrames));
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}
}
/* We need a buffer list if this is an input device. We render into this in the input callback. */
if (deviceType == ma_device_type_capture) {
ma_bool32 isInterleaved = (bestFormat.mFormatFlags & kAudioFormatFlagIsNonInterleaved) == 0;
size_t allocationSize;
AudioBufferList* pBufferList;
allocationSize = sizeof(AudioBufferList) - sizeof(AudioBuffer); /* Subtract sizeof(AudioBuffer) because that part is dynamically sized. */
if (isInterleaved) {
/* Interleaved case. This is the simple case because we just have one buffer. */
allocationSize += sizeof(AudioBuffer) * 1;
allocationSize += actualPeriodSizeInFrames * ma_get_bytes_per_frame(pData->formatOut, pData->channelsOut);
} else {
/* Non-interleaved case. This is the more complex case because there's more than one buffer. */
allocationSize += sizeof(AudioBuffer) * pData->channelsOut;
allocationSize += actualPeriodSizeInFrames * ma_get_bytes_per_sample(pData->formatOut) * pData->channelsOut;
}
pBufferList = (AudioBufferList*)ma__malloc_from_callbacks(allocationSize, &pContext->allocationCallbacks);
if (pBufferList == NULL) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return MA_OUT_OF_MEMORY;
}
if (isInterleaved) {
pBufferList->mNumberBuffers = 1;
pBufferList->mBuffers[0].mNumberChannels = pData->channelsOut;
pBufferList->mBuffers[0].mDataByteSize = actualPeriodSizeInFrames * ma_get_bytes_per_frame(pData->formatOut, pData->channelsOut);
pBufferList->mBuffers[0].mData = (ma_uint8*)pBufferList + sizeof(AudioBufferList);
} else {
ma_uint32 iBuffer;
pBufferList->mNumberBuffers = pData->channelsOut;
for (iBuffer = 0; iBuffer < pBufferList->mNumberBuffers; ++iBuffer) {
pBufferList->mBuffers[iBuffer].mNumberChannels = 1;
pBufferList->mBuffers[iBuffer].mDataByteSize = actualPeriodSizeInFrames * ma_get_bytes_per_sample(pData->formatOut);
pBufferList->mBuffers[iBuffer].mData = (ma_uint8*)pBufferList + ((sizeof(AudioBufferList) - sizeof(AudioBuffer)) + (sizeof(AudioBuffer) * pData->channelsOut)) + (actualPeriodSizeInFrames * ma_get_bytes_per_sample(pData->formatOut) * iBuffer);
}
}
pData->pAudioBufferList = pBufferList;
}
/* Callbacks. */
callbackInfo.inputProcRefCon = pDevice_DoNotReference;
if (deviceType == ma_device_type_playback) {
callbackInfo.inputProc = ma_on_output__coreaudio;
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioUnitProperty_SetRenderCallback, kAudioUnitScope_Global, MA_COREAUDIO_OUTPUT_BUS, &callbackInfo, sizeof(callbackInfo));
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}
} else {
callbackInfo.inputProc = ma_on_input__coreaudio;
status = ((ma_AudioUnitSetProperty_proc)pContext->coreaudio.AudioUnitSetProperty)(pData->audioUnit, kAudioOutputUnitProperty_SetInputCallback, kAudioUnitScope_Global, MA_COREAUDIO_INPUT_BUS, &callbackInfo, sizeof(callbackInfo));
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}
}
/* We need to listen for stop events. */
if (pData->registerStopEvent) {
status = ((ma_AudioUnitAddPropertyListener_proc)pContext->coreaudio.AudioUnitAddPropertyListener)(pData->audioUnit, kAudioOutputUnitProperty_IsRunning, on_start_stop__coreaudio, pDevice_DoNotReference);
if (status != noErr) {
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}
}
/* Initialize the audio unit. */
status = ((ma_AudioUnitInitialize_proc)pContext->coreaudio.AudioUnitInitialize)(pData->audioUnit);
if (status != noErr) {
ma__free_from_callbacks(pData->pAudioBufferList, &pContext->allocationCallbacks);
pData->pAudioBufferList = NULL;
((ma_AudioComponentInstanceDispose_proc)pContext->coreaudio.AudioComponentInstanceDispose)(pData->audioUnit);
return ma_result_from_OSStatus(status);
}
/* Grab the name. */
#if defined(MA_APPLE_DESKTOP)
ma_get_AudioObject_name(pContext, deviceObjectID, sizeof(pData->deviceName), pData->deviceName);
#else
if (deviceType == ma_device_type_playback) {
ma_strcpy_s(pData->deviceName, sizeof(pData->deviceName), MA_DEFAULT_PLAYBACK_DEVICE_NAME);
} else {
ma_strcpy_s(pData->deviceName, sizeof(pData->deviceName), MA_DEFAULT_CAPTURE_DEVICE_NAME);
}
#endif
return result;
}
#if defined(MA_APPLE_DESKTOP)
static ma_result ma_device_reinit_internal__coreaudio(ma_device* pDevice, ma_device_type deviceType, ma_bool32 disposePreviousAudioUnit)
{
ma_device_init_internal_data__coreaudio data;
ma_result result;
/* This should only be called for playback or capture, not duplex. */
if (deviceType == ma_device_type_duplex) {
return MA_INVALID_ARGS;
}
if (deviceType == ma_device_type_capture) {
data.formatIn = pDevice->capture.format;
data.channelsIn = pDevice->capture.channels;
data.sampleRateIn = pDevice->sampleRate;
MA_COPY_MEMORY(data.channelMapIn, pDevice->capture.channelMap, sizeof(pDevice->capture.channelMap));
data.usingDefaultFormat = pDevice->capture.usingDefaultFormat;
data.usingDefaultChannels = pDevice->capture.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap;
data.shareMode = pDevice->capture.shareMode;
data.registerStopEvent = MA_TRUE;
if (disposePreviousAudioUnit) {
((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
}
if (pDevice->coreaudio.pAudioBufferList) {
ma__free_from_callbacks(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks);
}
} else if (deviceType == ma_device_type_playback) {
data.formatIn = pDevice->playback.format;
data.channelsIn = pDevice->playback.channels;
data.sampleRateIn = pDevice->sampleRate;
MA_COPY_MEMORY(data.channelMapIn, pDevice->playback.channelMap, sizeof(pDevice->playback.channelMap));
data.usingDefaultFormat = pDevice->playback.usingDefaultFormat;
data.usingDefaultChannels = pDevice->playback.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap;
data.shareMode = pDevice->playback.shareMode;
data.registerStopEvent = (pDevice->type != ma_device_type_duplex);
if (disposePreviousAudioUnit) {
((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitPlayback);
((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitPlayback);
}
}
data.periodSizeInFramesIn = pDevice->coreaudio.originalPeriodSizeInFrames;
data.periodSizeInMillisecondsIn = pDevice->coreaudio.originalPeriodSizeInMilliseconds;
data.periodsIn = pDevice->coreaudio.originalPeriods;
/* Need at least 3 periods for duplex. */
if (data.periodsIn < 3 && pDevice->type == ma_device_type_duplex) {
data.periodsIn = 3;
}
result = ma_device_init_internal__coreaudio(pDevice->pContext, deviceType, NULL, &data, (void*)pDevice);
if (result != MA_SUCCESS) {
return result;
}
if (deviceType == ma_device_type_capture) {
#if defined(MA_APPLE_DESKTOP)
pDevice->coreaudio.deviceObjectIDCapture = (ma_uint32)data.deviceObjectID;
#endif
pDevice->coreaudio.audioUnitCapture = (ma_ptr)data.audioUnit;
pDevice->coreaudio.pAudioBufferList = (ma_ptr)data.pAudioBufferList;
pDevice->capture.internalFormat = data.formatOut;
pDevice->capture.internalChannels = data.channelsOut;
pDevice->capture.internalSampleRate = data.sampleRateOut;
MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->capture.internalPeriods = data.periodsOut;
} else if (deviceType == ma_device_type_playback) {
#if defined(MA_APPLE_DESKTOP)
pDevice->coreaudio.deviceObjectIDPlayback = (ma_uint32)data.deviceObjectID;
#endif
pDevice->coreaudio.audioUnitPlayback = (ma_ptr)data.audioUnit;
pDevice->playback.internalFormat = data.formatOut;
pDevice->playback.internalChannels = data.channelsOut;
pDevice->playback.internalSampleRate = data.sampleRateOut;
MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->playback.internalPeriods = data.periodsOut;
}
return MA_SUCCESS;
}
#endif /* MA_APPLE_DESKTOP */
static ma_result ma_device_init__coreaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pDevice != NULL);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
/* No exclusive mode with the Core Audio backend for now. */
if (((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive) ||
((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive)) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
/* Capture needs to be initialized first. */
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_device_init_internal_data__coreaudio data;
data.formatIn = pConfig->capture.format;
data.channelsIn = pConfig->capture.channels;
data.sampleRateIn = pConfig->sampleRate;
MA_COPY_MEMORY(data.channelMapIn, pConfig->capture.channelMap, sizeof(pConfig->capture.channelMap));
data.usingDefaultFormat = pDevice->capture.usingDefaultFormat;
data.usingDefaultChannels = pDevice->capture.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.usingDefaultChannelMap = pDevice->capture.usingDefaultChannelMap;
data.shareMode = pConfig->capture.shareMode;
data.periodSizeInFramesIn = pConfig->periodSizeInFrames;
data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds;
data.periodsIn = pConfig->periods;
data.registerStopEvent = MA_TRUE;
/* Need at least 3 periods for duplex. */
if (data.periodsIn < 3 && pConfig->deviceType == ma_device_type_duplex) {
data.periodsIn = 3;
}
result = ma_device_init_internal__coreaudio(pDevice->pContext, ma_device_type_capture, pConfig->capture.pDeviceID, &data, (void*)pDevice);
if (result != MA_SUCCESS) {
return result;
}
pDevice->coreaudio.isDefaultCaptureDevice = (pConfig->capture.pDeviceID == NULL);
#if defined(MA_APPLE_DESKTOP)
pDevice->coreaudio.deviceObjectIDCapture = (ma_uint32)data.deviceObjectID;
#endif
pDevice->coreaudio.audioUnitCapture = (ma_ptr)data.audioUnit;
pDevice->coreaudio.pAudioBufferList = (ma_ptr)data.pAudioBufferList;
pDevice->capture.internalFormat = data.formatOut;
pDevice->capture.internalChannels = data.channelsOut;
pDevice->capture.internalSampleRate = data.sampleRateOut;
MA_COPY_MEMORY(pDevice->capture.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
pDevice->capture.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->capture.internalPeriods = data.periodsOut;
#if defined(MA_APPLE_DESKTOP)
/*
If we are using the default device we'll need to listen for changes to the system's default device so we can seemlessly
switch the device in the background.
*/
if (pConfig->capture.pDeviceID == NULL) {
ma_device__track__coreaudio(pDevice);
}
#endif
}
/* Playback. */
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_device_init_internal_data__coreaudio data;
data.formatIn = pConfig->playback.format;
data.channelsIn = pConfig->playback.channels;
data.sampleRateIn = pConfig->sampleRate;
MA_COPY_MEMORY(data.channelMapIn, pConfig->playback.channelMap, sizeof(pConfig->playback.channelMap));
data.usingDefaultFormat = pDevice->playback.usingDefaultFormat;
data.usingDefaultChannels = pDevice->playback.usingDefaultChannels;
data.usingDefaultSampleRate = pDevice->usingDefaultSampleRate;
data.usingDefaultChannelMap = pDevice->playback.usingDefaultChannelMap;
data.shareMode = pConfig->playback.shareMode;
/* In full-duplex mode we want the playback buffer to be the same size as the capture buffer. */
if (pConfig->deviceType == ma_device_type_duplex) {
data.periodSizeInFramesIn = pDevice->capture.internalPeriodSizeInFrames;
data.periodsIn = pDevice->capture.internalPeriods;
data.registerStopEvent = MA_FALSE;
} else {
data.periodSizeInFramesIn = pConfig->periodSizeInFrames;
data.periodSizeInMillisecondsIn = pConfig->periodSizeInMilliseconds;
data.periodsIn = pConfig->periods;
data.registerStopEvent = MA_TRUE;
}
result = ma_device_init_internal__coreaudio(pDevice->pContext, ma_device_type_playback, pConfig->playback.pDeviceID, &data, (void*)pDevice);
if (result != MA_SUCCESS) {
if (pConfig->deviceType == ma_device_type_duplex) {
((ma_AudioComponentInstanceDispose_proc)pDevice->pContext->coreaudio.AudioComponentInstanceDispose)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
if (pDevice->coreaudio.pAudioBufferList) {
ma__free_from_callbacks(pDevice->coreaudio.pAudioBufferList, &pDevice->pContext->allocationCallbacks);
}
}
return result;
}
pDevice->coreaudio.isDefaultPlaybackDevice = (pConfig->playback.pDeviceID == NULL);
#if defined(MA_APPLE_DESKTOP)
pDevice->coreaudio.deviceObjectIDPlayback = (ma_uint32)data.deviceObjectID;
#endif
pDevice->coreaudio.audioUnitPlayback = (ma_ptr)data.audioUnit;
pDevice->playback.internalFormat = data.formatOut;
pDevice->playback.internalChannels = data.channelsOut;
pDevice->playback.internalSampleRate = data.sampleRateOut;
MA_COPY_MEMORY(pDevice->playback.internalChannelMap, data.channelMapOut, sizeof(data.channelMapOut));
pDevice->playback.internalPeriodSizeInFrames = data.periodSizeInFramesOut;
pDevice->playback.internalPeriods = data.periodsOut;
#if defined(MA_APPLE_DESKTOP)
/*
If we are using the default device we'll need to listen for changes to the system's default device so we can seemlessly
switch the device in the background.
*/
if (pConfig->playback.pDeviceID == NULL && (pConfig->deviceType != ma_device_type_duplex || pConfig->capture.pDeviceID != NULL)) {
ma_device__track__coreaudio(pDevice);
}
#endif
}
pDevice->coreaudio.originalPeriodSizeInFrames = pConfig->periodSizeInFrames;
pDevice->coreaudio.originalPeriodSizeInMilliseconds = pConfig->periodSizeInMilliseconds;
pDevice->coreaudio.originalPeriods = pConfig->periods;
/*
When stopping the device, a callback is called on another thread. We need to wait for this callback
before returning from ma_device_stop(). This event is used for this.
*/
ma_event_init(&pDevice->coreaudio.stopEvent);
/* Need a ring buffer for duplex mode. */
if (pConfig->deviceType == ma_device_type_duplex) {
ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods);
ma_result result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->coreaudio.duplexRB);
if (result != MA_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[Core Audio] Failed to initialize ring buffer.", result);
}
/* We need a period to act as a buffer for cases where the playback and capture device's end up desyncing. */
{
ma_uint32 bufferSizeInFrames = rbSizeInFrames / pDevice->capture.internalPeriods;
void* pBufferData;
ma_pcm_rb_acquire_write(&pDevice->coreaudio.duplexRB, &bufferSizeInFrames, &pBufferData);
{
MA_ZERO_MEMORY(pBufferData, bufferSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->coreaudio.duplexRB, bufferSizeInFrames, pBufferData);
}
}
/*
We need to detect when a route has changed so we can update the data conversion pipeline accordingly. This is done
differently on non-Desktop Apple platforms.
*/
#if defined(MA_APPLE_MOBILE)
pDevice->coreaudio.pRouteChangeHandler = (__bridge_retained void*)[[ma_router_change_handler alloc] init:pDevice];
#endif
return MA_SUCCESS;
}
static ma_result ma_device_start__coreaudio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
OSStatus status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
OSStatus status = ((ma_AudioOutputUnitStart_proc)pDevice->pContext->coreaudio.AudioOutputUnitStart)((AudioUnit)pDevice->coreaudio.audioUnitPlayback);
if (status != noErr) {
if (pDevice->type == ma_device_type_duplex) {
((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
}
return ma_result_from_OSStatus(status);
}
}
return MA_SUCCESS;
}
static ma_result ma_device_stop__coreaudio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
/* It's not clear from the documentation whether or not AudioOutputUnitStop() actually drains the device or not. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
OSStatus status = ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitCapture);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
OSStatus status = ((ma_AudioOutputUnitStop_proc)pDevice->pContext->coreaudio.AudioOutputUnitStop)((AudioUnit)pDevice->coreaudio.audioUnitPlayback);
if (status != noErr) {
return ma_result_from_OSStatus(status);
}
}
/* We need to wait for the callback to finish before returning. */
ma_event_wait(&pDevice->coreaudio.stopEvent);
return MA_SUCCESS;
}
static ma_result ma_context_uninit__coreaudio(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_coreaudio);
#if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE)
ma_dlclose(pContext, pContext->coreaudio.hAudioUnit);
ma_dlclose(pContext, pContext->coreaudio.hCoreAudio);
ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation);
#endif
(void)pContext;
return MA_SUCCESS;
}
#if defined(MA_APPLE_MOBILE)
static AVAudioSessionCategory ma_to_AVAudioSessionCategory(ma_ios_session_category category)
{
/* The "default" and "none" categories are treated different and should not be used as an input into this function. */
MA_ASSERT(category != ma_ios_session_category_default);
MA_ASSERT(category != ma_ios_session_category_none);
switch (category) {
case ma_ios_session_category_ambient: return AVAudioSessionCategoryAmbient;
case ma_ios_session_category_solo_ambient: return AVAudioSessionCategorySoloAmbient;
case ma_ios_session_category_playback: return AVAudioSessionCategoryPlayback;
case ma_ios_session_category_record: return AVAudioSessionCategoryRecord;
case ma_ios_session_category_play_and_record: return AVAudioSessionCategoryPlayAndRecord;
case ma_ios_session_category_multi_route: return AVAudioSessionCategoryMultiRoute;
case ma_ios_session_category_none: return AVAudioSessionCategoryAmbient;
case ma_ios_session_category_default: return AVAudioSessionCategoryAmbient;
default: return AVAudioSessionCategoryAmbient;
}
}
#endif
static ma_result ma_context_init__coreaudio(const ma_context_config* pConfig, ma_context* pContext)
{
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pContext != NULL);
#if defined(MA_APPLE_MOBILE)
@autoreleasepool {
AVAudioSession* pAudioSession = [AVAudioSession sharedInstance];
AVAudioSessionCategoryOptions options = pConfig->coreaudio.sessionCategoryOptions;
MA_ASSERT(pAudioSession != NULL);
if (pConfig->coreaudio.sessionCategory == ma_ios_session_category_default) {
/*
I'm going to use trial and error to determine our default session category. First we'll try PlayAndRecord. If that fails
we'll try Playback and if that fails we'll try record. If all of these fail we'll just not set the category.
*/
#if !defined(MA_APPLE_TV) && !defined(MA_APPLE_WATCH)
options |= AVAudioSessionCategoryOptionDefaultToSpeaker;
#endif
if ([pAudioSession setCategory: AVAudioSessionCategoryPlayAndRecord withOptions:options error:nil]) {
/* Using PlayAndRecord */
} else if ([pAudioSession setCategory: AVAudioSessionCategoryPlayback withOptions:options error:nil]) {
/* Using Playback */
} else if ([pAudioSession setCategory: AVAudioSessionCategoryRecord withOptions:options error:nil]) {
/* Using Record */
} else {
/* Leave as default? */
}
} else {
if (pConfig->coreaudio.sessionCategory != ma_ios_session_category_none) {
if (![pAudioSession setCategory: ma_to_AVAudioSessionCategory(pConfig->coreaudio.sessionCategory) withOptions:options error:nil]) {
return MA_INVALID_OPERATION; /* Failed to set session category. */
}
}
}
}
#endif
#if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE)
pContext->coreaudio.hCoreFoundation = ma_dlopen(pContext, "CoreFoundation.framework/CoreFoundation");
if (pContext->coreaudio.hCoreFoundation == NULL) {
return MA_API_NOT_FOUND;
}
pContext->coreaudio.CFStringGetCString = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFStringGetCString");
pContext->coreaudio.CFRelease = ma_dlsym(pContext, pContext->coreaudio.hCoreFoundation, "CFRelease");
pContext->coreaudio.hCoreAudio = ma_dlopen(pContext, "CoreAudio.framework/CoreAudio");
if (pContext->coreaudio.hCoreAudio == NULL) {
ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation);
return MA_API_NOT_FOUND;
}
pContext->coreaudio.AudioObjectGetPropertyData = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectGetPropertyData");
pContext->coreaudio.AudioObjectGetPropertyDataSize = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectGetPropertyDataSize");
pContext->coreaudio.AudioObjectSetPropertyData = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectSetPropertyData");
pContext->coreaudio.AudioObjectAddPropertyListener = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectAddPropertyListener");
pContext->coreaudio.AudioObjectRemovePropertyListener = ma_dlsym(pContext, pContext->coreaudio.hCoreAudio, "AudioObjectRemovePropertyListener");
/*
It looks like Apple has moved some APIs from AudioUnit into AudioToolbox on more recent versions of macOS. They are still
defined in AudioUnit, but just in case they decide to remove them from there entirely I'm going to implement a fallback.
The way it'll work is that it'll first try AudioUnit, and if the required symbols are not present there we'll fall back to
AudioToolbox.
*/
pContext->coreaudio.hAudioUnit = ma_dlopen(pContext, "AudioUnit.framework/AudioUnit");
if (pContext->coreaudio.hAudioUnit == NULL) {
ma_dlclose(pContext, pContext->coreaudio.hCoreAudio);
ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation);
return MA_API_NOT_FOUND;
}
if (ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentFindNext") == NULL) {
/* Couldn't find the required symbols in AudioUnit, so fall back to AudioToolbox. */
ma_dlclose(pContext, pContext->coreaudio.hAudioUnit);
pContext->coreaudio.hAudioUnit = ma_dlopen(pContext, "AudioToolbox.framework/AudioToolbox");
if (pContext->coreaudio.hAudioUnit == NULL) {
ma_dlclose(pContext, pContext->coreaudio.hCoreAudio);
ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation);
return MA_API_NOT_FOUND;
}
}
pContext->coreaudio.AudioComponentFindNext = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentFindNext");
pContext->coreaudio.AudioComponentInstanceDispose = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentInstanceDispose");
pContext->coreaudio.AudioComponentInstanceNew = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioComponentInstanceNew");
pContext->coreaudio.AudioOutputUnitStart = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioOutputUnitStart");
pContext->coreaudio.AudioOutputUnitStop = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioOutputUnitStop");
pContext->coreaudio.AudioUnitAddPropertyListener = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitAddPropertyListener");
pContext->coreaudio.AudioUnitGetPropertyInfo = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitGetPropertyInfo");
pContext->coreaudio.AudioUnitGetProperty = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitGetProperty");
pContext->coreaudio.AudioUnitSetProperty = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitSetProperty");
pContext->coreaudio.AudioUnitInitialize = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitInitialize");
pContext->coreaudio.AudioUnitRender = ma_dlsym(pContext, pContext->coreaudio.hAudioUnit, "AudioUnitRender");
#else
pContext->coreaudio.CFStringGetCString = (ma_proc)CFStringGetCString;
pContext->coreaudio.CFRelease = (ma_proc)CFRelease;
#if defined(MA_APPLE_DESKTOP)
pContext->coreaudio.AudioObjectGetPropertyData = (ma_proc)AudioObjectGetPropertyData;
pContext->coreaudio.AudioObjectGetPropertyDataSize = (ma_proc)AudioObjectGetPropertyDataSize;
pContext->coreaudio.AudioObjectSetPropertyData = (ma_proc)AudioObjectSetPropertyData;
pContext->coreaudio.AudioObjectAddPropertyListener = (ma_proc)AudioObjectAddPropertyListener;
pContext->coreaudio.AudioObjectRemovePropertyListener = (ma_proc)AudioObjectRemovePropertyListener;
#endif
pContext->coreaudio.AudioComponentFindNext = (ma_proc)AudioComponentFindNext;
pContext->coreaudio.AudioComponentInstanceDispose = (ma_proc)AudioComponentInstanceDispose;
pContext->coreaudio.AudioComponentInstanceNew = (ma_proc)AudioComponentInstanceNew;
pContext->coreaudio.AudioOutputUnitStart = (ma_proc)AudioOutputUnitStart;
pContext->coreaudio.AudioOutputUnitStop = (ma_proc)AudioOutputUnitStop;
pContext->coreaudio.AudioUnitAddPropertyListener = (ma_proc)AudioUnitAddPropertyListener;
pContext->coreaudio.AudioUnitGetPropertyInfo = (ma_proc)AudioUnitGetPropertyInfo;
pContext->coreaudio.AudioUnitGetProperty = (ma_proc)AudioUnitGetProperty;
pContext->coreaudio.AudioUnitSetProperty = (ma_proc)AudioUnitSetProperty;
pContext->coreaudio.AudioUnitInitialize = (ma_proc)AudioUnitInitialize;
pContext->coreaudio.AudioUnitRender = (ma_proc)AudioUnitRender;
#endif
pContext->isBackendAsynchronous = MA_TRUE;
pContext->onUninit = ma_context_uninit__coreaudio;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__coreaudio;
pContext->onEnumDevices = ma_context_enumerate_devices__coreaudio;
pContext->onGetDeviceInfo = ma_context_get_device_info__coreaudio;
pContext->onDeviceInit = ma_device_init__coreaudio;
pContext->onDeviceUninit = ma_device_uninit__coreaudio;
pContext->onDeviceStart = ma_device_start__coreaudio;
pContext->onDeviceStop = ma_device_stop__coreaudio;
/* Audio component. */
{
AudioComponentDescription desc;
desc.componentType = kAudioUnitType_Output;
#if defined(MA_APPLE_DESKTOP)
desc.componentSubType = kAudioUnitSubType_HALOutput;
#else
desc.componentSubType = kAudioUnitSubType_RemoteIO;
#endif
desc.componentManufacturer = kAudioUnitManufacturer_Apple;
desc.componentFlags = 0;
desc.componentFlagsMask = 0;
pContext->coreaudio.component = ((ma_AudioComponentFindNext_proc)pContext->coreaudio.AudioComponentFindNext)(NULL, &desc);
if (pContext->coreaudio.component == NULL) {
#if !defined(MA_NO_RUNTIME_LINKING) && !defined(MA_APPLE_MOBILE)
ma_dlclose(pContext, pContext->coreaudio.hAudioUnit);
ma_dlclose(pContext, pContext->coreaudio.hCoreAudio);
ma_dlclose(pContext, pContext->coreaudio.hCoreFoundation);
#endif
return MA_FAILED_TO_INIT_BACKEND;
}
}
return MA_SUCCESS;
}
#endif /* Core Audio */
/******************************************************************************
sndio Backend
******************************************************************************/
#ifdef MA_HAS_SNDIO
#include <fcntl.h>
/*
Only supporting OpenBSD. This did not work very well at all on FreeBSD when I tried it. Not sure if this is due
to miniaudio's implementation or if it's some kind of system configuration issue, but basically the default device
just doesn't emit any sound, or at times you'll hear tiny pieces. I will consider enabling this when there's
demand for it or if I can get it tested and debugged more thoroughly.
*/
#if 0
#if defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/audioio.h>
#endif
#if defined(__FreeBSD__) || defined(__DragonFly__)
#include <sys/soundcard.h>
#endif
#endif
#define MA_SIO_DEVANY "default"
#define MA_SIO_PLAY 1
#define MA_SIO_REC 2
#define MA_SIO_NENC 8
#define MA_SIO_NCHAN 8
#define MA_SIO_NRATE 16
#define MA_SIO_NCONF 4
struct ma_sio_hdl; /* <-- Opaque */
struct ma_sio_par
{
unsigned int bits;
unsigned int bps;
unsigned int sig;
unsigned int le;
unsigned int msb;
unsigned int rchan;
unsigned int pchan;
unsigned int rate;
unsigned int bufsz;
unsigned int xrun;
unsigned int round;
unsigned int appbufsz;
int __pad[3];
unsigned int __magic;
};
struct ma_sio_enc
{
unsigned int bits;
unsigned int bps;
unsigned int sig;
unsigned int le;
unsigned int msb;
};
struct ma_sio_conf
{
unsigned int enc;
unsigned int rchan;
unsigned int pchan;
unsigned int rate;
};
struct ma_sio_cap
{
struct ma_sio_enc enc[MA_SIO_NENC];
unsigned int rchan[MA_SIO_NCHAN];
unsigned int pchan[MA_SIO_NCHAN];
unsigned int rate[MA_SIO_NRATE];
int __pad[7];
unsigned int nconf;
struct ma_sio_conf confs[MA_SIO_NCONF];
};
typedef struct ma_sio_hdl* (* ma_sio_open_proc) (const char*, unsigned int, int);
typedef void (* ma_sio_close_proc) (struct ma_sio_hdl*);
typedef int (* ma_sio_setpar_proc) (struct ma_sio_hdl*, struct ma_sio_par*);
typedef int (* ma_sio_getpar_proc) (struct ma_sio_hdl*, struct ma_sio_par*);
typedef int (* ma_sio_getcap_proc) (struct ma_sio_hdl*, struct ma_sio_cap*);
typedef size_t (* ma_sio_write_proc) (struct ma_sio_hdl*, const void*, size_t);
typedef size_t (* ma_sio_read_proc) (struct ma_sio_hdl*, void*, size_t);
typedef int (* ma_sio_start_proc) (struct ma_sio_hdl*);
typedef int (* ma_sio_stop_proc) (struct ma_sio_hdl*);
typedef int (* ma_sio_initpar_proc)(struct ma_sio_par*);
static ma_uint32 ma_get_standard_sample_rate_priority_index__sndio(ma_uint32 sampleRate) /* Lower = higher priority */
{
ma_uint32 i;
for (i = 0; i < ma_countof(g_maStandardSampleRatePriorities); ++i) {
if (g_maStandardSampleRatePriorities[i] == sampleRate) {
return i;
}
}
return (ma_uint32)-1;
}
static ma_format ma_format_from_sio_enc__sndio(unsigned int bits, unsigned int bps, unsigned int sig, unsigned int le, unsigned int msb)
{
/* We only support native-endian right now. */
if ((ma_is_little_endian() && le == 0) || (ma_is_big_endian() && le == 1)) {
return ma_format_unknown;
}
if (bits == 8 && bps == 1 && sig == 0) {
return ma_format_u8;
}
if (bits == 16 && bps == 2 && sig == 1) {
return ma_format_s16;
}
if (bits == 24 && bps == 3 && sig == 1) {
return ma_format_s24;
}
if (bits == 24 && bps == 4 && sig == 1 && msb == 0) {
/*return ma_format_s24_32;*/
}
if (bits == 32 && bps == 4 && sig == 1) {
return ma_format_s32;
}
return ma_format_unknown;
}
static ma_format ma_find_best_format_from_sio_cap__sndio(struct ma_sio_cap* caps)
{
ma_format bestFormat;
unsigned int iConfig;
MA_ASSERT(caps != NULL);
bestFormat = ma_format_unknown;
for (iConfig = 0; iConfig < caps->nconf; iConfig += 1) {
unsigned int iEncoding;
for (iEncoding = 0; iEncoding < MA_SIO_NENC; iEncoding += 1) {
unsigned int bits;
unsigned int bps;
unsigned int sig;
unsigned int le;
unsigned int msb;
ma_format format;
if ((caps->confs[iConfig].enc & (1UL << iEncoding)) == 0) {
continue;
}
bits = caps->enc[iEncoding].bits;
bps = caps->enc[iEncoding].bps;
sig = caps->enc[iEncoding].sig;
le = caps->enc[iEncoding].le;
msb = caps->enc[iEncoding].msb;
format = ma_format_from_sio_enc__sndio(bits, bps, sig, le, msb);
if (format == ma_format_unknown) {
continue; /* Format not supported. */
}
if (bestFormat == ma_format_unknown) {
bestFormat = format;
} else {
if (ma_get_format_priority_index(bestFormat) > ma_get_format_priority_index(format)) { /* <-- Lower = better. */
bestFormat = format;
}
}
}
}
return bestFormat;
}
static ma_uint32 ma_find_best_channels_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_device_type deviceType, ma_format requiredFormat)
{
ma_uint32 maxChannels;
unsigned int iConfig;
MA_ASSERT(caps != NULL);
MA_ASSERT(requiredFormat != ma_format_unknown);
/* Just pick whatever configuration has the most channels. */
maxChannels = 0;
for (iConfig = 0; iConfig < caps->nconf; iConfig += 1) {
/* The encoding should be of requiredFormat. */
unsigned int iEncoding;
for (iEncoding = 0; iEncoding < MA_SIO_NENC; iEncoding += 1) {
unsigned int iChannel;
unsigned int bits;
unsigned int bps;
unsigned int sig;
unsigned int le;
unsigned int msb;
ma_format format;
if ((caps->confs[iConfig].enc & (1UL << iEncoding)) == 0) {
continue;
}
bits = caps->enc[iEncoding].bits;
bps = caps->enc[iEncoding].bps;
sig = caps->enc[iEncoding].sig;
le = caps->enc[iEncoding].le;
msb = caps->enc[iEncoding].msb;
format = ma_format_from_sio_enc__sndio(bits, bps, sig, le, msb);
if (format != requiredFormat) {
continue;
}
/* Getting here means the format is supported. Iterate over each channel count and grab the biggest one. */
for (iChannel = 0; iChannel < MA_SIO_NCHAN; iChannel += 1) {
unsigned int chan = 0;
unsigned int channels;
if (deviceType == ma_device_type_playback) {
chan = caps->confs[iConfig].pchan;
} else {
chan = caps->confs[iConfig].rchan;
}
if ((chan & (1UL << iChannel)) == 0) {
continue;
}
if (deviceType == ma_device_type_playback) {
channels = caps->pchan[iChannel];
} else {
channels = caps->rchan[iChannel];
}
if (maxChannels < channels) {
maxChannels = channels;
}
}
}
}
return maxChannels;
}
static ma_uint32 ma_find_best_sample_rate_from_sio_cap__sndio(struct ma_sio_cap* caps, ma_device_type deviceType, ma_format requiredFormat, ma_uint32 requiredChannels)
{
ma_uint32 firstSampleRate;
ma_uint32 bestSampleRate;
unsigned int iConfig;
MA_ASSERT(caps != NULL);
MA_ASSERT(requiredFormat != ma_format_unknown);
MA_ASSERT(requiredChannels > 0);
MA_ASSERT(requiredChannels <= MA_MAX_CHANNELS);
firstSampleRate = 0; /* <-- If the device does not support a standard rate we'll fall back to the first one that's found. */
bestSampleRate = 0;
for (iConfig = 0; iConfig < caps->nconf; iConfig += 1) {
/* The encoding should be of requiredFormat. */
unsigned int iEncoding;
for (iEncoding = 0; iEncoding < MA_SIO_NENC; iEncoding += 1) {
unsigned int iChannel;
unsigned int bits;
unsigned int bps;
unsigned int sig;
unsigned int le;
unsigned int msb;
ma_format format;
if ((caps->confs[iConfig].enc & (1UL << iEncoding)) == 0) {
continue;
}
bits = caps->enc[iEncoding].bits;
bps = caps->enc[iEncoding].bps;
sig = caps->enc[iEncoding].sig;
le = caps->enc[iEncoding].le;
msb = caps->enc[iEncoding].msb;
format = ma_format_from_sio_enc__sndio(bits, bps, sig, le, msb);
if (format != requiredFormat) {
continue;
}
/* Getting here means the format is supported. Iterate over each channel count and grab the biggest one. */
for (iChannel = 0; iChannel < MA_SIO_NCHAN; iChannel += 1) {
unsigned int chan = 0;
unsigned int channels;
unsigned int iRate;
if (deviceType == ma_device_type_playback) {
chan = caps->confs[iConfig].pchan;
} else {
chan = caps->confs[iConfig].rchan;
}
if ((chan & (1UL << iChannel)) == 0) {
continue;
}
if (deviceType == ma_device_type_playback) {
channels = caps->pchan[iChannel];
} else {
channels = caps->rchan[iChannel];
}
if (channels != requiredChannels) {
continue;
}
/* Getting here means we have found a compatible encoding/channel pair. */
for (iRate = 0; iRate < MA_SIO_NRATE; iRate += 1) {
ma_uint32 rate = (ma_uint32)caps->rate[iRate];
ma_uint32 ratePriority;
if (firstSampleRate == 0) {
firstSampleRate = rate;
}
/* Disregard this rate if it's not a standard one. */
ratePriority = ma_get_standard_sample_rate_priority_index__sndio(rate);
if (ratePriority == (ma_uint32)-1) {
continue;
}
if (ma_get_standard_sample_rate_priority_index__sndio(bestSampleRate) > ratePriority) { /* Lower = better. */
bestSampleRate = rate;
}
}
}
}
}
/* If a standard sample rate was not found just fall back to the first one that was iterated. */
if (bestSampleRate == 0) {
bestSampleRate = firstSampleRate;
}
return bestSampleRate;
}
static ma_bool32 ma_context_is_device_id_equal__sndio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->sndio, pID1->sndio) == 0;
}
static ma_result ma_context_enumerate_devices__sndio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 isTerminating = MA_FALSE;
struct ma_sio_hdl* handle;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
/* sndio doesn't seem to have a good device enumeration API, so I'm therefore only enumerating over default devices for now. */
/* Playback. */
if (!isTerminating) {
handle = ((ma_sio_open_proc)pContext->sndio.sio_open)(MA_SIO_DEVANY, MA_SIO_PLAY, 0);
if (handle != NULL) {
/* Supports playback. */
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strcpy_s(deviceInfo.id.sndio, sizeof(deviceInfo.id.sndio), MA_SIO_DEVANY);
ma_strcpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME);
isTerminating = !callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
((ma_sio_close_proc)pContext->sndio.sio_close)(handle);
}
}
/* Capture. */
if (!isTerminating) {
handle = ((ma_sio_open_proc)pContext->sndio.sio_open)(MA_SIO_DEVANY, MA_SIO_REC, 0);
if (handle != NULL) {
/* Supports capture. */
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strcpy_s(deviceInfo.id.sndio, sizeof(deviceInfo.id.sndio), "default");
ma_strcpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME);
isTerminating = !callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
((ma_sio_close_proc)pContext->sndio.sio_close)(handle);
}
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__sndio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
char devid[256];
struct ma_sio_hdl* handle;
struct ma_sio_cap caps;
unsigned int iConfig;
MA_ASSERT(pContext != NULL);
(void)shareMode;
/* We need to open the device before we can get information about it. */
if (pDeviceID == NULL) {
ma_strcpy_s(devid, sizeof(devid), MA_SIO_DEVANY);
ma_strcpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), (deviceType == ma_device_type_playback) ? MA_DEFAULT_PLAYBACK_DEVICE_NAME : MA_DEFAULT_CAPTURE_DEVICE_NAME);
} else {
ma_strcpy_s(devid, sizeof(devid), pDeviceID->sndio);
ma_strcpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), devid);
}
handle = ((ma_sio_open_proc)pContext->sndio.sio_open)(devid, (deviceType == ma_device_type_playback) ? MA_SIO_PLAY : MA_SIO_REC, 0);
if (handle == NULL) {
return MA_NO_DEVICE;
}
if (((ma_sio_getcap_proc)pContext->sndio.sio_getcap)(handle, &caps) == 0) {
return MA_ERROR;
}
for (iConfig = 0; iConfig < caps.nconf; iConfig += 1) {
/*
The main thing we care about is that the encoding is supported by miniaudio. If it is, we want to give
preference to some formats over others.
*/
unsigned int iEncoding;
unsigned int iChannel;
unsigned int iRate;
for (iEncoding = 0; iEncoding < MA_SIO_NENC; iEncoding += 1) {
unsigned int bits;
unsigned int bps;
unsigned int sig;
unsigned int le;
unsigned int msb;
ma_format format;
ma_bool32 formatExists = MA_FALSE;
ma_uint32 iExistingFormat;
if ((caps.confs[iConfig].enc & (1UL << iEncoding)) == 0) {
continue;
}
bits = caps.enc[iEncoding].bits;
bps = caps.enc[iEncoding].bps;
sig = caps.enc[iEncoding].sig;
le = caps.enc[iEncoding].le;
msb = caps.enc[iEncoding].msb;
format = ma_format_from_sio_enc__sndio(bits, bps, sig, le, msb);
if (format == ma_format_unknown) {
continue; /* Format not supported. */
}
/* Add this format if it doesn't already exist. */
for (iExistingFormat = 0; iExistingFormat < pDeviceInfo->formatCount; iExistingFormat += 1) {
if (pDeviceInfo->formats[iExistingFormat] == format) {
formatExists = MA_TRUE;
break;
}
}
if (!formatExists) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = format;
}
}
/* Channels. */
for (iChannel = 0; iChannel < MA_SIO_NCHAN; iChannel += 1) {
unsigned int chan = 0;
unsigned int channels;
if (deviceType == ma_device_type_playback) {
chan = caps.confs[iConfig].pchan;
} else {
chan = caps.confs[iConfig].rchan;
}
if ((chan & (1UL << iChannel)) == 0) {
continue;
}
if (deviceType == ma_device_type_playback) {
channels = caps.pchan[iChannel];
} else {
channels = caps.rchan[iChannel];
}
if (pDeviceInfo->minChannels > channels) {
pDeviceInfo->minChannels = channels;
}
if (pDeviceInfo->maxChannels < channels) {
pDeviceInfo->maxChannels = channels;
}
}
/* Sample rates. */
for (iRate = 0; iRate < MA_SIO_NRATE; iRate += 1) {
if ((caps.confs[iConfig].rate & (1UL << iRate)) != 0) {
unsigned int rate = caps.rate[iRate];
if (pDeviceInfo->minSampleRate > rate) {
pDeviceInfo->minSampleRate = rate;
}
if (pDeviceInfo->maxSampleRate < rate) {
pDeviceInfo->maxSampleRate = rate;
}
}
}
}
((ma_sio_close_proc)pContext->sndio.sio_close)(handle);
return MA_SUCCESS;
}
static void ma_device_uninit__sndio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((ma_sio_close_proc)pDevice->pContext->sndio.sio_close)((struct ma_sio_hdl*)pDevice->sndio.handleCapture);
}
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((ma_sio_close_proc)pDevice->pContext->sndio.sio_close)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback);
}
}
static ma_result ma_device_init_handle__sndio(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
const char* pDeviceName;
ma_ptr handle;
int openFlags = 0;
struct ma_sio_cap caps;
struct ma_sio_par par;
ma_device_id* pDeviceID;
ma_format format;
ma_uint32 channels;
ma_uint32 sampleRate;
ma_format internalFormat;
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pConfig != NULL);
MA_ASSERT(deviceType != ma_device_type_duplex);
MA_ASSERT(pDevice != NULL);
if (deviceType == ma_device_type_capture) {
openFlags = MA_SIO_REC;
pDeviceID = pConfig->capture.pDeviceID;
format = pConfig->capture.format;
channels = pConfig->capture.channels;
sampleRate = pConfig->sampleRate;
} else {
openFlags = MA_SIO_PLAY;
pDeviceID = pConfig->playback.pDeviceID;
format = pConfig->playback.format;
channels = pConfig->playback.channels;
sampleRate = pConfig->sampleRate;
}
pDeviceName = MA_SIO_DEVANY;
if (pDeviceID != NULL) {
pDeviceName = pDeviceID->sndio;
}
handle = (ma_ptr)((ma_sio_open_proc)pContext->sndio.sio_open)(pDeviceName, openFlags, 0);
if (handle == NULL) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to open device.", MA_FAILED_TO_OPEN_BACKEND_DEVICE);
}
/* We need to retrieve the device caps to determine the most appropriate format to use. */
if (((ma_sio_getcap_proc)pContext->sndio.sio_getcap)((struct ma_sio_hdl*)handle, &caps) == 0) {
((ma_sio_close_proc)pContext->sndio.sio_close)((struct ma_sio_hdl*)handle);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to retrieve device caps.", MA_ERROR);
}
/*
Note: sndio reports a huge range of available channels. This is inconvenient for us because there's no real
way, as far as I can tell, to get the _actual_ channel count of the device. I'm therefore restricting this
to the requested channels, regardless of whether or not the default channel count is requested.
For hardware devices, I'm suspecting only a single channel count will be reported and we can safely use the
value returned by ma_find_best_channels_from_sio_cap__sndio().
*/
if (deviceType == ma_device_type_capture) {
if (pDevice->capture.usingDefaultFormat) {
format = ma_find_best_format_from_sio_cap__sndio(&caps);
}
if (pDevice->capture.usingDefaultChannels) {
if (strlen(pDeviceName) > strlen("rsnd/") && strncmp(pDeviceName, "rsnd/", strlen("rsnd/")) == 0) {
channels = ma_find_best_channels_from_sio_cap__sndio(&caps, deviceType, format);
}
}
} else {
if (pDevice->playback.usingDefaultFormat) {
format = ma_find_best_format_from_sio_cap__sndio(&caps);
}
if (pDevice->playback.usingDefaultChannels) {
if (strlen(pDeviceName) > strlen("rsnd/") && strncmp(pDeviceName, "rsnd/", strlen("rsnd/")) == 0) {
channels = ma_find_best_channels_from_sio_cap__sndio(&caps, deviceType, format);
}
}
}
if (pDevice->usingDefaultSampleRate) {
sampleRate = ma_find_best_sample_rate_from_sio_cap__sndio(&caps, pConfig->deviceType, format, channels);
}
((ma_sio_initpar_proc)pDevice->pContext->sndio.sio_initpar)(&par);
par.msb = 0;
par.le = ma_is_little_endian();
switch (format) {
case ma_format_u8:
{
par.bits = 8;
par.bps = 1;
par.sig = 0;
} break;
case ma_format_s24:
{
par.bits = 24;
par.bps = 3;
par.sig = 1;
} break;
case ma_format_s32:
{
par.bits = 32;
par.bps = 4;
par.sig = 1;
} break;
case ma_format_s16:
case ma_format_f32:
default:
{
par.bits = 16;
par.bps = 2;
par.sig = 1;
} break;
}
if (deviceType == ma_device_type_capture) {
par.rchan = channels;
} else {
par.pchan = channels;
}
par.rate = sampleRate;
internalPeriodSizeInFrames = pConfig->periodSizeInFrames;
if (internalPeriodSizeInFrames == 0) {
internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, par.rate);
}
par.round = internalPeriodSizeInFrames;
par.appbufsz = par.round * pConfig->periods;
if (((ma_sio_setpar_proc)pContext->sndio.sio_setpar)((struct ma_sio_hdl*)handle, &par) == 0) {
((ma_sio_close_proc)pContext->sndio.sio_close)((struct ma_sio_hdl*)handle);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to set buffer size.", MA_FORMAT_NOT_SUPPORTED);
}
if (((ma_sio_getpar_proc)pContext->sndio.sio_getpar)((struct ma_sio_hdl*)handle, &par) == 0) {
((ma_sio_close_proc)pContext->sndio.sio_close)((struct ma_sio_hdl*)handle);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to retrieve buffer size.", MA_FORMAT_NOT_SUPPORTED);
}
internalFormat = ma_format_from_sio_enc__sndio(par.bits, par.bps, par.sig, par.le, par.msb);
internalChannels = (deviceType == ma_device_type_capture) ? par.rchan : par.pchan;
internalSampleRate = par.rate;
internalPeriods = par.appbufsz / par.round;
internalPeriodSizeInFrames = par.round;
if (deviceType == ma_device_type_capture) {
pDevice->sndio.handleCapture = handle;
pDevice->capture.internalFormat = internalFormat;
pDevice->capture.internalChannels = internalChannels;
pDevice->capture.internalSampleRate = internalSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sndio, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->capture.internalPeriods = internalPeriods;
} else {
pDevice->sndio.handlePlayback = handle;
pDevice->playback.internalFormat = internalFormat;
pDevice->playback.internalChannels = internalChannels;
pDevice->playback.internalSampleRate = internalSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sndio, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->playback.internalPeriods = internalPeriods;
}
#ifdef MA_DEBUG_OUTPUT
printf("DEVICE INFO\n");
printf(" Format: %s\n", ma_get_format_name(internalFormat));
printf(" Channels: %d\n", internalChannels);
printf(" Sample Rate: %d\n", internalSampleRate);
printf(" Period Size: %d\n", internalPeriodSizeInFrames);
printf(" Periods: %d\n", internalPeriods);
printf(" appbufsz: %d\n", par.appbufsz);
printf(" round: %d\n", par.round);
#endif
return MA_SUCCESS;
}
static ma_result ma_device_init__sndio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->sndio);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_handle__sndio(pContext, pConfig, ma_device_type_capture, pDevice);
if (result != MA_SUCCESS) {
return result;
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_handle__sndio(pContext, pConfig, ma_device_type_playback, pDevice);
if (result != MA_SUCCESS) {
return result;
}
}
return MA_SUCCESS;
}
static ma_result ma_device_stop__sndio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
/*
From the documentation:
The sio_stop() function puts the audio subsystem in the same state as before sio_start() is called. It stops recording, drains the play buffer and then
stops playback. If samples to play are queued but playback hasn't started yet then playback is forced immediately; playback will actually stop once the
buffer is drained. In no case are samples in the play buffer discarded.
Therefore, sio_stop() performs all of the necessary draining for us.
*/
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((ma_sio_stop_proc)pDevice->pContext->sndio.sio_stop)((struct ma_sio_hdl*)pDevice->sndio.handleCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
((ma_sio_stop_proc)pDevice->pContext->sndio.sio_stop)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback);
}
return MA_SUCCESS;
}
static ma_result ma_device_write__sndio(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
int result;
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
}
result = ((ma_sio_write_proc)pDevice->pContext->sndio.sio_write)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
if (result == 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to send data from the client to the device.", MA_IO_ERROR);
}
if (pFramesWritten != NULL) {
*pFramesWritten = frameCount;
}
return MA_SUCCESS;
}
static ma_result ma_device_read__sndio(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
int result;
if (pFramesRead != NULL) {
*pFramesRead = 0;
}
result = ((ma_sio_read_proc)pDevice->pContext->sndio.sio_read)((struct ma_sio_hdl*)pDevice->sndio.handleCapture, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
if (result == 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[sndio] Failed to read data from the device to be sent to the device.", MA_IO_ERROR);
}
if (pFramesRead != NULL) {
*pFramesRead = frameCount;
}
return MA_SUCCESS;
}
static ma_result ma_device_main_loop__sndio(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
/* Devices need to be started here. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
((ma_sio_start_proc)pDevice->pContext->sndio.sio_start)((struct ma_sio_hdl*)pDevice->sndio.handleCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
((ma_sio_start_proc)pDevice->pContext->sndio.sio_start)((struct ma_sio_hdl*)pDevice->sndio.handlePlayback); /* <-- Doesn't actually playback until data is written. */
}
while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) {
switch (pDevice->type)
{
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
ma_uint32 totalCapturedDeviceFramesProcessed = 0;
ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 capturedDeviceFramesRemaining;
ma_uint32 capturedDeviceFramesProcessed;
ma_uint32 capturedDeviceFramesToProcess;
ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
result = ma_device_read__sndio(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
capturedDeviceFramesProcessed = 0;
for (;;) {
ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
/* Convert capture data from device format to client format. */
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
if (result != MA_SUCCESS) {
break;
}
/*
If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
*/
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
/* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
if (result != MA_SUCCESS) {
break;
}
result = ma_device_write__sndio(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
/* In case an error happened from ma_device_write__sndio()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
case ma_device_type_capture:
{
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToReadThisIteration = framesRemainingInPeriod;
if (framesToReadThisIteration > intermediaryBufferSizeInFrames) {
framesToReadThisIteration = intermediaryBufferSizeInFrames;
}
result = ma_device_read__sndio(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer);
framesReadThisPeriod += framesProcessed;
}
} break;
case ma_device_type_playback:
{
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod;
if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) {
framesToWriteThisIteration = intermediaryBufferSizeInFrames;
}
ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer);
result = ma_device_write__sndio(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
framesWrittenThisPeriod += framesProcessed;
}
} break;
/* To silence a warning. Will never hit this. */
case ma_device_type_loopback:
default: break;
}
}
/* Here is where the device is stopped. */
ma_device_stop__sndio(pDevice);
return result;
}
static ma_result ma_context_uninit__sndio(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_sndio);
(void)pContext;
return MA_SUCCESS;
}
static ma_result ma_context_init__sndio(const ma_context_config* pConfig, ma_context* pContext)
{
#ifndef MA_NO_RUNTIME_LINKING
const char* libsndioNames[] = {
"libsndio.so"
};
size_t i;
for (i = 0; i < ma_countof(libsndioNames); ++i) {
pContext->sndio.sndioSO = ma_dlopen(pContext, libsndioNames[i]);
if (pContext->sndio.sndioSO != NULL) {
break;
}
}
if (pContext->sndio.sndioSO == NULL) {
return MA_NO_BACKEND;
}
pContext->sndio.sio_open = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_open");
pContext->sndio.sio_close = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_close");
pContext->sndio.sio_setpar = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_setpar");
pContext->sndio.sio_getpar = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_getpar");
pContext->sndio.sio_getcap = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_getcap");
pContext->sndio.sio_write = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_write");
pContext->sndio.sio_read = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_read");
pContext->sndio.sio_start = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_start");
pContext->sndio.sio_stop = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_stop");
pContext->sndio.sio_initpar = (ma_proc)ma_dlsym(pContext, pContext->sndio.sndioSO, "sio_initpar");
#else
pContext->sndio.sio_open = sio_open;
pContext->sndio.sio_close = sio_close;
pContext->sndio.sio_setpar = sio_setpar;
pContext->sndio.sio_getpar = sio_getpar;
pContext->sndio.sio_getcap = sio_getcap;
pContext->sndio.sio_write = sio_write;
pContext->sndio.sio_read = sio_read;
pContext->sndio.sio_start = sio_start;
pContext->sndio.sio_stop = sio_stop;
pContext->sndio.sio_initpar = sio_initpar;
#endif
pContext->onUninit = ma_context_uninit__sndio;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__sndio;
pContext->onEnumDevices = ma_context_enumerate_devices__sndio;
pContext->onGetDeviceInfo = ma_context_get_device_info__sndio;
pContext->onDeviceInit = ma_device_init__sndio;
pContext->onDeviceUninit = ma_device_uninit__sndio;
pContext->onDeviceStart = NULL; /* Not required for synchronous backends. */
pContext->onDeviceStop = NULL; /* Not required for synchronous backends. */
pContext->onDeviceMainLoop = ma_device_main_loop__sndio;
(void)pConfig;
return MA_SUCCESS;
}
#endif /* sndio */
/******************************************************************************
audio(4) Backend
******************************************************************************/
#ifdef MA_HAS_AUDIO4
#include <fcntl.h>
#include <poll.h>
#include <errno.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/audioio.h>
#if defined(__OpenBSD__)
#include <sys/param.h>
#if defined(OpenBSD) && OpenBSD >= 201709
#define MA_AUDIO4_USE_NEW_API
#endif
#endif
static void ma_construct_device_id__audio4(char* id, size_t idSize, const char* base, int deviceIndex)
{
size_t baseLen;
MA_ASSERT(id != NULL);
MA_ASSERT(idSize > 0);
MA_ASSERT(deviceIndex >= 0);
baseLen = strlen(base);
MA_ASSERT(idSize > baseLen);
ma_strcpy_s(id, idSize, base);
ma_itoa_s(deviceIndex, id+baseLen, idSize-baseLen, 10);
}
static ma_result ma_extract_device_index_from_id__audio4(const char* id, const char* base, int* pIndexOut)
{
size_t idLen;
size_t baseLen;
const char* deviceIndexStr;
MA_ASSERT(id != NULL);
MA_ASSERT(base != NULL);
MA_ASSERT(pIndexOut != NULL);
idLen = strlen(id);
baseLen = strlen(base);
if (idLen <= baseLen) {
return MA_ERROR; /* Doesn't look like the id starts with the base. */
}
if (strncmp(id, base, baseLen) != 0) {
return MA_ERROR; /* ID does not begin with base. */
}
deviceIndexStr = id + baseLen;
if (deviceIndexStr[0] == '\0') {
return MA_ERROR; /* No index specified in the ID. */
}
if (pIndexOut) {
*pIndexOut = atoi(deviceIndexStr);
}
return MA_SUCCESS;
}
static ma_bool32 ma_context_is_device_id_equal__audio4(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->audio4, pID1->audio4) == 0;
}
#if !defined(MA_AUDIO4_USE_NEW_API) /* Old API */
static ma_format ma_format_from_encoding__audio4(unsigned int encoding, unsigned int precision)
{
if (precision == 8 && (encoding == AUDIO_ENCODING_ULINEAR || encoding == AUDIO_ENCODING_ULINEAR || encoding == AUDIO_ENCODING_ULINEAR_LE || encoding == AUDIO_ENCODING_ULINEAR_BE)) {
return ma_format_u8;
} else {
if (ma_is_little_endian() && encoding == AUDIO_ENCODING_SLINEAR_LE) {
if (precision == 16) {
return ma_format_s16;
} else if (precision == 24) {
return ma_format_s24;
} else if (precision == 32) {
return ma_format_s32;
}
} else if (ma_is_big_endian() && encoding == AUDIO_ENCODING_SLINEAR_BE) {
if (precision == 16) {
return ma_format_s16;
} else if (precision == 24) {
return ma_format_s24;
} else if (precision == 32) {
return ma_format_s32;
}
}
}
return ma_format_unknown; /* Encoding not supported. */
}
static void ma_encoding_from_format__audio4(ma_format format, unsigned int* pEncoding, unsigned int* pPrecision)
{
MA_ASSERT(format != ma_format_unknown);
MA_ASSERT(pEncoding != NULL);
MA_ASSERT(pPrecision != NULL);
switch (format)
{
case ma_format_u8:
{
*pEncoding = AUDIO_ENCODING_ULINEAR;
*pPrecision = 8;
} break;
case ma_format_s24:
{
*pEncoding = (ma_is_little_endian()) ? AUDIO_ENCODING_SLINEAR_LE : AUDIO_ENCODING_SLINEAR_BE;
*pPrecision = 24;
} break;
case ma_format_s32:
{
*pEncoding = (ma_is_little_endian()) ? AUDIO_ENCODING_SLINEAR_LE : AUDIO_ENCODING_SLINEAR_BE;
*pPrecision = 32;
} break;
case ma_format_s16:
case ma_format_f32:
default:
{
*pEncoding = (ma_is_little_endian()) ? AUDIO_ENCODING_SLINEAR_LE : AUDIO_ENCODING_SLINEAR_BE;
*pPrecision = 16;
} break;
}
}
static ma_format ma_format_from_prinfo__audio4(struct audio_prinfo* prinfo)
{
return ma_format_from_encoding__audio4(prinfo->encoding, prinfo->precision);
}
#else
static ma_format ma_format_from_swpar__audio4(struct audio_swpar* par)
{
if (par->bits == 8 && par->bps == 1 && par->sig == 0) {
return ma_format_u8;
}
if (par->bits == 16 && par->bps == 2 && par->sig == 1 && par->le == ma_is_little_endian()) {
return ma_format_s16;
}
if (par->bits == 24 && par->bps == 3 && par->sig == 1 && par->le == ma_is_little_endian()) {
return ma_format_s24;
}
if (par->bits == 32 && par->bps == 4 && par->sig == 1 && par->le == ma_is_little_endian()) {
return ma_format_f32;
}
/* Format not supported. */
return ma_format_unknown;
}
#endif
static ma_result ma_context_get_device_info_from_fd__audio4(ma_context* pContext, ma_device_type deviceType, int fd, ma_device_info* pInfoOut)
{
audio_device_t fdDevice;
#if !defined(MA_AUDIO4_USE_NEW_API)
int counter = 0;
audio_info_t fdInfo;
#else
struct audio_swpar fdPar;
ma_format format;
#endif
MA_ASSERT(pContext != NULL);
MA_ASSERT(fd >= 0);
MA_ASSERT(pInfoOut != NULL);
(void)pContext;
(void)deviceType;
if (ioctl(fd, AUDIO_GETDEV, &fdDevice) < 0) {
return MA_ERROR; /* Failed to retrieve device info. */
}
/* Name. */
ma_strcpy_s(pInfoOut->name, sizeof(pInfoOut->name), fdDevice.name);
#if !defined(MA_AUDIO4_USE_NEW_API)
/* Supported formats. We get this by looking at the encodings. */
for (;;) {
audio_encoding_t encoding;
ma_format format;
MA_ZERO_OBJECT(&encoding);
encoding.index = counter;
if (ioctl(fd, AUDIO_GETENC, &encoding) < 0) {
break;
}
format = ma_format_from_encoding__audio4(encoding.encoding, encoding.precision);
if (format != ma_format_unknown) {
pInfoOut->formats[pInfoOut->formatCount++] = format;
}
counter += 1;
}
if (ioctl(fd, AUDIO_GETINFO, &fdInfo) < 0) {
return MA_ERROR;
}
if (deviceType == ma_device_type_playback) {
pInfoOut->minChannels = fdInfo.play.channels;
pInfoOut->maxChannels = fdInfo.play.channels;
pInfoOut->minSampleRate = fdInfo.play.sample_rate;
pInfoOut->maxSampleRate = fdInfo.play.sample_rate;
} else {
pInfoOut->minChannels = fdInfo.record.channels;
pInfoOut->maxChannels = fdInfo.record.channels;
pInfoOut->minSampleRate = fdInfo.record.sample_rate;
pInfoOut->maxSampleRate = fdInfo.record.sample_rate;
}
#else
if (ioctl(fd, AUDIO_GETPAR, &fdPar) < 0) {
return MA_ERROR;
}
format = ma_format_from_swpar__audio4(&fdPar);
if (format == ma_format_unknown) {
return MA_FORMAT_NOT_SUPPORTED;
}
pInfoOut->formats[pInfoOut->formatCount++] = format;
if (deviceType == ma_device_type_playback) {
pInfoOut->minChannels = fdPar.pchan;
pInfoOut->maxChannels = fdPar.pchan;
} else {
pInfoOut->minChannels = fdPar.rchan;
pInfoOut->maxChannels = fdPar.rchan;
}
pInfoOut->minSampleRate = fdPar.rate;
pInfoOut->maxSampleRate = fdPar.rate;
#endif
return MA_SUCCESS;
}
static ma_result ma_context_enumerate_devices__audio4(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
const int maxDevices = 64;
char devpath[256];
int iDevice;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
/*
Every device will be named "/dev/audioN", with a "/dev/audioctlN" equivalent. We use the "/dev/audioctlN"
version here since we can open it even when another process has control of the "/dev/audioN" device.
*/
for (iDevice = 0; iDevice < maxDevices; ++iDevice) {
struct stat st;
int fd;
ma_bool32 isTerminating = MA_FALSE;
ma_strcpy_s(devpath, sizeof(devpath), "/dev/audioctl");
ma_itoa_s(iDevice, devpath+strlen(devpath), sizeof(devpath)-strlen(devpath), 10);
if (stat(devpath, &st) < 0) {
break;
}
/* The device exists, but we need to check if it's usable as playback and/or capture. */
/* Playback. */
if (!isTerminating) {
fd = open(devpath, O_RDONLY, 0);
if (fd >= 0) {
/* Supports playback. */
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_construct_device_id__audio4(deviceInfo.id.audio4, sizeof(deviceInfo.id.audio4), "/dev/audio", iDevice);
if (ma_context_get_device_info_from_fd__audio4(pContext, ma_device_type_playback, fd, &deviceInfo) == MA_SUCCESS) {
isTerminating = !callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
close(fd);
}
}
/* Capture. */
if (!isTerminating) {
fd = open(devpath, O_WRONLY, 0);
if (fd >= 0) {
/* Supports capture. */
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_construct_device_id__audio4(deviceInfo.id.audio4, sizeof(deviceInfo.id.audio4), "/dev/audio", iDevice);
if (ma_context_get_device_info_from_fd__audio4(pContext, ma_device_type_capture, fd, &deviceInfo) == MA_SUCCESS) {
isTerminating = !callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
close(fd);
}
}
if (isTerminating) {
break;
}
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__audio4(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
int fd = -1;
int deviceIndex = -1;
char ctlid[256];
ma_result result;
MA_ASSERT(pContext != NULL);
(void)shareMode;
/*
We need to open the "/dev/audioctlN" device to get the info. To do this we need to extract the number
from the device ID which will be in "/dev/audioN" format.
*/
if (pDeviceID == NULL) {
/* Default device. */
ma_strcpy_s(ctlid, sizeof(ctlid), "/dev/audioctl");
} else {
/* Specific device. We need to convert from "/dev/audioN" to "/dev/audioctlN". */
result = ma_extract_device_index_from_id__audio4(pDeviceID->audio4, "/dev/audio", &deviceIndex);
if (result != MA_SUCCESS) {
return result;
}
ma_construct_device_id__audio4(ctlid, sizeof(ctlid), "/dev/audioctl", deviceIndex);
}
fd = open(ctlid, (deviceType == ma_device_type_playback) ? O_WRONLY : O_RDONLY, 0);
if (fd == -1) {
return MA_NO_DEVICE;
}
if (deviceIndex == -1) {
ma_strcpy_s(pDeviceInfo->id.audio4, sizeof(pDeviceInfo->id.audio4), "/dev/audio");
} else {
ma_construct_device_id__audio4(pDeviceInfo->id.audio4, sizeof(pDeviceInfo->id.audio4), "/dev/audio", deviceIndex);
}
result = ma_context_get_device_info_from_fd__audio4(pContext, deviceType, fd, pDeviceInfo);
close(fd);
return result;
}
static void ma_device_uninit__audio4(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
close(pDevice->audio4.fdCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
close(pDevice->audio4.fdPlayback);
}
}
static ma_result ma_device_init_fd__audio4(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
const char* pDefaultDeviceNames[] = {
"/dev/audio",
"/dev/audio0"
};
int fd;
int fdFlags = 0;
#if !defined(MA_AUDIO4_USE_NEW_API) /* Old API */
audio_info_t fdInfo;
#else
struct audio_swpar fdPar;
#endif
ma_format internalFormat;
ma_uint32 internalChannels;
ma_uint32 internalSampleRate;
ma_uint32 internalPeriodSizeInFrames;
ma_uint32 internalPeriods;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pConfig != NULL);
MA_ASSERT(deviceType != ma_device_type_duplex);
MA_ASSERT(pDevice != NULL);
(void)pContext;
/* The first thing to do is open the file. */
if (deviceType == ma_device_type_capture) {
fdFlags = O_RDONLY;
} else {
fdFlags = O_WRONLY;
}
/*fdFlags |= O_NONBLOCK;*/
if ((deviceType == ma_device_type_capture && pConfig->capture.pDeviceID == NULL) || (deviceType == ma_device_type_playback && pConfig->playback.pDeviceID == NULL)) {
/* Default device. */
size_t iDevice;
for (iDevice = 0; iDevice < ma_countof(pDefaultDeviceNames); ++iDevice) {
fd = open(pDefaultDeviceNames[iDevice], fdFlags, 0);
if (fd != -1) {
break;
}
}
} else {
/* Specific device. */
fd = open((deviceType == ma_device_type_capture) ? pConfig->capture.pDeviceID->audio4 : pConfig->playback.pDeviceID->audio4, fdFlags, 0);
}
if (fd == -1) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to open device.", ma_result_from_errno(errno));
}
#if !defined(MA_AUDIO4_USE_NEW_API) /* Old API */
AUDIO_INITINFO(&fdInfo);
/* We get the driver to do as much of the data conversion as possible. */
if (deviceType == ma_device_type_capture) {
fdInfo.mode = AUMODE_RECORD;
ma_encoding_from_format__audio4(pConfig->capture.format, &fdInfo.record.encoding, &fdInfo.record.precision);
fdInfo.record.channels = pConfig->capture.channels;
fdInfo.record.sample_rate = pConfig->sampleRate;
} else {
fdInfo.mode = AUMODE_PLAY;
ma_encoding_from_format__audio4(pConfig->playback.format, &fdInfo.play.encoding, &fdInfo.play.precision);
fdInfo.play.channels = pConfig->playback.channels;
fdInfo.play.sample_rate = pConfig->sampleRate;
}
if (ioctl(fd, AUDIO_SETINFO, &fdInfo) < 0) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to set device format. AUDIO_SETINFO failed.", MA_FORMAT_NOT_SUPPORTED);
}
if (ioctl(fd, AUDIO_GETINFO, &fdInfo) < 0) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] AUDIO_GETINFO failed.", MA_FORMAT_NOT_SUPPORTED);
}
if (deviceType == ma_device_type_capture) {
internalFormat = ma_format_from_prinfo__audio4(&fdInfo.record);
internalChannels = fdInfo.record.channels;
internalSampleRate = fdInfo.record.sample_rate;
} else {
internalFormat = ma_format_from_prinfo__audio4(&fdInfo.play);
internalChannels = fdInfo.play.channels;
internalSampleRate = fdInfo.play.sample_rate;
}
if (internalFormat == ma_format_unknown) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] The device's internal device format is not supported by miniaudio. The device is unusable.", MA_FORMAT_NOT_SUPPORTED);
}
/* Buffer. */
{
ma_uint32 internalPeriodSizeInBytes;
internalPeriodSizeInFrames = pConfig->periodSizeInFrames;
if (internalPeriodSizeInFrames == 0) {
internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, internalSampleRate);
}
internalPeriodSizeInBytes = internalPeriodSizeInFrames * ma_get_bytes_per_frame(internalFormat, internalChannels);
if (internalPeriodSizeInBytes < 16) {
internalPeriodSizeInBytes = 16;
}
internalPeriods = pConfig->periods;
if (internalPeriods < 2) {
internalPeriods = 2;
}
/* What miniaudio calls a period, audio4 calls a block. */
AUDIO_INITINFO(&fdInfo);
fdInfo.hiwat = internalPeriods;
fdInfo.lowat = internalPeriods-1;
fdInfo.blocksize = internalPeriodSizeInBytes;
if (ioctl(fd, AUDIO_SETINFO, &fdInfo) < 0) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to set internal buffer size. AUDIO_SETINFO failed.", MA_FORMAT_NOT_SUPPORTED);
}
internalPeriods = fdInfo.hiwat;
internalPeriodSizeInFrames = fdInfo.blocksize / ma_get_bytes_per_frame(internalFormat, internalChannels);
}
#else
/* We need to retrieve the format of the device so we can know the channel count and sample rate. Then we can calculate the buffer size. */
if (ioctl(fd, AUDIO_GETPAR, &fdPar) < 0) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to retrieve initial device parameters.", MA_FORMAT_NOT_SUPPORTED);
}
internalFormat = ma_format_from_swpar__audio4(&fdPar);
internalChannels = (deviceType == ma_device_type_capture) ? fdPar.rchan : fdPar.pchan;
internalSampleRate = fdPar.rate;
if (internalFormat == ma_format_unknown) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] The device's internal device format is not supported by miniaudio. The device is unusable.", MA_FORMAT_NOT_SUPPORTED);
}
/* Buffer. */
{
ma_uint32 internalPeriodSizeInBytes;
internalPeriodSizeInFrames = pConfig->periodSizeInFrames;
if (internalPeriodSizeInFrames == 0) {
internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, internalSampleRate);
}
/* What miniaudio calls a period, audio4 calls a block. */
internalPeriodSizeInBytes = internalPeriodSizeInFrames * ma_get_bytes_per_frame(internalFormat, internalChannels);
if (internalPeriodSizeInBytes < 16) {
internalPeriodSizeInBytes = 16;
}
fdPar.nblks = pConfig->periods;
fdPar.round = internalPeriodSizeInBytes;
if (ioctl(fd, AUDIO_SETPAR, &fdPar) < 0) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to set device parameters.", MA_FORMAT_NOT_SUPPORTED);
}
if (ioctl(fd, AUDIO_GETPAR, &fdPar) < 0) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to retrieve actual device parameters.", MA_FORMAT_NOT_SUPPORTED);
}
}
internalFormat = ma_format_from_swpar__audio4(&fdPar);
internalChannels = (deviceType == ma_device_type_capture) ? fdPar.rchan : fdPar.pchan;
internalSampleRate = fdPar.rate;
internalPeriods = fdPar.nblks;
internalPeriodSizeInFrames = fdPar.round / ma_get_bytes_per_frame(internalFormat, internalChannels);
#endif
if (internalFormat == ma_format_unknown) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] The device's internal device format is not supported by miniaudio. The device is unusable.", MA_FORMAT_NOT_SUPPORTED);
}
if (deviceType == ma_device_type_capture) {
pDevice->audio4.fdCapture = fd;
pDevice->capture.internalFormat = internalFormat;
pDevice->capture.internalChannels = internalChannels;
pDevice->capture.internalSampleRate = internalSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sound4, internalChannels, pDevice->capture.internalChannelMap);
pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->capture.internalPeriods = internalPeriods;
} else {
pDevice->audio4.fdPlayback = fd;
pDevice->playback.internalFormat = internalFormat;
pDevice->playback.internalChannels = internalChannels;
pDevice->playback.internalSampleRate = internalSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sound4, internalChannels, pDevice->playback.internalChannelMap);
pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->playback.internalPeriods = internalPeriods;
}
return MA_SUCCESS;
}
static ma_result ma_device_init__audio4(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->audio4);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
pDevice->audio4.fdCapture = -1;
pDevice->audio4.fdPlayback = -1;
/*
The version of the operating system dictates whether or not the device is exclusive or shared. NetBSD
introduced in-kernel mixing which means it's shared. All other BSD flavours are exclusive as far as
I'm aware.
*/
#if defined(__NetBSD_Version__) && __NetBSD_Version__ >= 800000000
/* NetBSD 8.0+ */
if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) ||
((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
#else
/* All other flavors. */
#endif
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_fd__audio4(pContext, pConfig, ma_device_type_capture, pDevice);
if (result != MA_SUCCESS) {
return result;
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_fd__audio4(pContext, pConfig, ma_device_type_playback, pDevice);
if (result != MA_SUCCESS) {
if (pConfig->deviceType == ma_device_type_duplex) {
close(pDevice->audio4.fdCapture);
}
return result;
}
}
return MA_SUCCESS;
}
#if 0
static ma_result ma_device_start__audio4(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
if (pDevice->audio4.fdCapture == -1) {
return MA_INVALID_ARGS;
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
if (pDevice->audio4.fdPlayback == -1) {
return MA_INVALID_ARGS;
}
}
return MA_SUCCESS;
}
#endif
static ma_result ma_device_stop_fd__audio4(ma_device* pDevice, int fd)
{
if (fd == -1) {
return MA_INVALID_ARGS;
}
#if !defined(MA_AUDIO4_USE_NEW_API)
if (ioctl(fd, AUDIO_FLUSH, 0) < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to stop device. AUDIO_FLUSH failed.", ma_result_from_errno(errno));
}
#else
if (ioctl(fd, AUDIO_STOP, 0) < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to stop device. AUDIO_STOP failed.", ma_result_from_errno(errno));
}
#endif
return MA_SUCCESS;
}
static ma_result ma_device_stop__audio4(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_result result;
result = ma_device_stop_fd__audio4(pDevice, pDevice->audio4.fdCapture);
if (result != MA_SUCCESS) {
return result;
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_result result;
/* Drain the device first. If this fails we'll just need to flush without draining. Unfortunately draining isn't available on newer version of OpenBSD. */
#if !defined(MA_AUDIO4_USE_NEW_API)
ioctl(pDevice->audio4.fdPlayback, AUDIO_DRAIN, 0);
#endif
/* Here is where the device is stopped immediately. */
result = ma_device_stop_fd__audio4(pDevice, pDevice->audio4.fdPlayback);
if (result != MA_SUCCESS) {
return result;
}
}
return MA_SUCCESS;
}
static ma_result ma_device_write__audio4(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
int result;
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
}
result = write(pDevice->audio4.fdPlayback, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
if (result < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to write data to the device.", ma_result_from_errno(errno));
}
if (pFramesWritten != NULL) {
*pFramesWritten = (ma_uint32)result / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
}
return MA_SUCCESS;
}
static ma_result ma_device_read__audio4(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
int result;
if (pFramesRead != NULL) {
*pFramesRead = 0;
}
result = read(pDevice->audio4.fdCapture, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
if (result < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[audio4] Failed to read data from the device.", ma_result_from_errno(errno));
}
if (pFramesRead != NULL) {
*pFramesRead = (ma_uint32)result / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
}
return MA_SUCCESS;
}
static ma_result ma_device_main_loop__audio4(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
/* No need to explicitly start the device like the other backends. */
while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) {
switch (pDevice->type)
{
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
ma_uint32 totalCapturedDeviceFramesProcessed = 0;
ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 capturedDeviceFramesRemaining;
ma_uint32 capturedDeviceFramesProcessed;
ma_uint32 capturedDeviceFramesToProcess;
ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
result = ma_device_read__audio4(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
capturedDeviceFramesProcessed = 0;
for (;;) {
ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
/* Convert capture data from device format to client format. */
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
if (result != MA_SUCCESS) {
break;
}
/*
If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
*/
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
/* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
if (result != MA_SUCCESS) {
break;
}
result = ma_device_write__audio4(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
/* In case an error happened from ma_device_write__audio4()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
case ma_device_type_capture:
{
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToReadThisIteration = framesRemainingInPeriod;
if (framesToReadThisIteration > intermediaryBufferSizeInFrames) {
framesToReadThisIteration = intermediaryBufferSizeInFrames;
}
result = ma_device_read__audio4(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer);
framesReadThisPeriod += framesProcessed;
}
} break;
case ma_device_type_playback:
{
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[8192];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod;
if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) {
framesToWriteThisIteration = intermediaryBufferSizeInFrames;
}
ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer);
result = ma_device_write__audio4(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
framesWrittenThisPeriod += framesProcessed;
}
} break;
/* To silence a warning. Will never hit this. */
case ma_device_type_loopback:
default: break;
}
}
/* Here is where the device is stopped. */
ma_device_stop__audio4(pDevice);
return result;
}
static ma_result ma_context_uninit__audio4(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_audio4);
(void)pContext;
return MA_SUCCESS;
}
static ma_result ma_context_init__audio4(const ma_context_config* pConfig, ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
(void)pConfig;
pContext->onUninit = ma_context_uninit__audio4;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__audio4;
pContext->onEnumDevices = ma_context_enumerate_devices__audio4;
pContext->onGetDeviceInfo = ma_context_get_device_info__audio4;
pContext->onDeviceInit = ma_device_init__audio4;
pContext->onDeviceUninit = ma_device_uninit__audio4;
pContext->onDeviceStart = NULL; /* Not required for synchronous backends. */
pContext->onDeviceStop = NULL; /* Not required for synchronous backends. */
pContext->onDeviceMainLoop = ma_device_main_loop__audio4;
return MA_SUCCESS;
}
#endif /* audio4 */
/******************************************************************************
OSS Backend
******************************************************************************/
#ifdef MA_HAS_OSS
#include <sys/ioctl.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/soundcard.h>
#ifndef SNDCTL_DSP_HALT
#define SNDCTL_DSP_HALT SNDCTL_DSP_RESET
#endif
static int ma_open_temp_device__oss()
{
/* The OSS sample code uses "/dev/mixer" as the device for getting system properties so I'm going to do the same. */
int fd = open("/dev/mixer", O_RDONLY, 0);
if (fd >= 0) {
return fd;
}
return -1;
}
static ma_result ma_context_open_device__oss(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, int* pfd)
{
const char* deviceName;
int flags;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pfd != NULL);
(void)pContext;
*pfd = -1;
/* This function should only be called for playback or capture, not duplex. */
if (deviceType == ma_device_type_duplex) {
return MA_INVALID_ARGS;
}
deviceName = "/dev/dsp";
if (pDeviceID != NULL) {
deviceName = pDeviceID->oss;
}
flags = (deviceType == ma_device_type_playback) ? O_WRONLY : O_RDONLY;
if (shareMode == ma_share_mode_exclusive) {
flags |= O_EXCL;
}
*pfd = open(deviceName, flags, 0);
if (*pfd == -1) {
return ma_result_from_errno(errno);
}
return MA_SUCCESS;
}
static ma_bool32 ma_context_is_device_id_equal__oss(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->oss, pID1->oss) == 0;
}
static ma_result ma_context_enumerate_devices__oss(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
int fd;
oss_sysinfo si;
int result;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
fd = ma_open_temp_device__oss();
if (fd == -1) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open a temporary device for retrieving system information used for device enumeration.", MA_NO_BACKEND);
}
result = ioctl(fd, SNDCTL_SYSINFO, &si);
if (result != -1) {
int iAudioDevice;
for (iAudioDevice = 0; iAudioDevice < si.numaudios; ++iAudioDevice) {
oss_audioinfo ai;
ai.dev = iAudioDevice;
result = ioctl(fd, SNDCTL_AUDIOINFO, &ai);
if (result != -1) {
if (ai.devnode[0] != '\0') { /* <-- Can be blank, according to documentation. */
ma_device_info deviceInfo;
ma_bool32 isTerminating = MA_FALSE;
MA_ZERO_OBJECT(&deviceInfo);
/* ID */
ma_strncpy_s(deviceInfo.id.oss, sizeof(deviceInfo.id.oss), ai.devnode, (size_t)-1);
/*
The human readable device name should be in the "ai.handle" variable, but it can
sometimes be empty in which case we just fall back to "ai.name" which is less user
friendly, but usually has a value.
*/
if (ai.handle[0] != '\0') {
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), ai.handle, (size_t)-1);
} else {
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), ai.name, (size_t)-1);
}
/* The device can be both playback and capture. */
if (!isTerminating && (ai.caps & PCM_CAP_OUTPUT) != 0) {
isTerminating = !callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
if (!isTerminating && (ai.caps & PCM_CAP_INPUT) != 0) {
isTerminating = !callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
if (isTerminating) {
break;
}
}
}
}
} else {
close(fd);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[OSS] Failed to retrieve system information for device enumeration.", MA_NO_BACKEND);
}
close(fd);
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__oss(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_bool32 foundDevice;
int fdTemp;
oss_sysinfo si;
int result;
MA_ASSERT(pContext != NULL);
(void)shareMode;
/* Handle the default device a little differently. */
if (pDeviceID == NULL) {
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
}
return MA_SUCCESS;
}
/* If we get here it means we are _not_ using the default device. */
foundDevice = MA_FALSE;
fdTemp = ma_open_temp_device__oss();
if (fdTemp == -1) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open a temporary device for retrieving system information used for device enumeration.", MA_NO_BACKEND);
}
result = ioctl(fdTemp, SNDCTL_SYSINFO, &si);
if (result != -1) {
int iAudioDevice;
for (iAudioDevice = 0; iAudioDevice < si.numaudios; ++iAudioDevice) {
oss_audioinfo ai;
ai.dev = iAudioDevice;
result = ioctl(fdTemp, SNDCTL_AUDIOINFO, &ai);
if (result != -1) {
if (ma_strcmp(ai.devnode, pDeviceID->oss) == 0) {
/* It has the same name, so now just confirm the type. */
if ((deviceType == ma_device_type_playback && ((ai.caps & PCM_CAP_OUTPUT) != 0)) ||
(deviceType == ma_device_type_capture && ((ai.caps & PCM_CAP_INPUT) != 0))) {
unsigned int formatMask;
/* ID */
ma_strncpy_s(pDeviceInfo->id.oss, sizeof(pDeviceInfo->id.oss), ai.devnode, (size_t)-1);
/*
The human readable device name should be in the "ai.handle" variable, but it can
sometimes be empty in which case we just fall back to "ai.name" which is less user
friendly, but usually has a value.
*/
if (ai.handle[0] != '\0') {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), ai.handle, (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), ai.name, (size_t)-1);
}
pDeviceInfo->minChannels = ai.min_channels;
pDeviceInfo->maxChannels = ai.max_channels;
pDeviceInfo->minSampleRate = ai.min_rate;
pDeviceInfo->maxSampleRate = ai.max_rate;
pDeviceInfo->formatCount = 0;
if (deviceType == ma_device_type_playback) {
formatMask = ai.oformats;
} else {
formatMask = ai.iformats;
}
if ((formatMask & AFMT_U8) != 0) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = ma_format_u8;
}
if (((formatMask & AFMT_S16_LE) != 0 && ma_is_little_endian()) || (AFMT_S16_BE && ma_is_big_endian())) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = ma_format_s16;
}
if (((formatMask & AFMT_S32_LE) != 0 && ma_is_little_endian()) || (AFMT_S32_BE && ma_is_big_endian())) {
pDeviceInfo->formats[pDeviceInfo->formatCount++] = ma_format_s32;
}
foundDevice = MA_TRUE;
break;
}
}
}
}
} else {
close(fdTemp);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[OSS] Failed to retrieve system information for device enumeration.", MA_NO_BACKEND);
}
close(fdTemp);
if (!foundDevice) {
return MA_NO_DEVICE;
}
return MA_SUCCESS;
}
static void ma_device_uninit__oss(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
close(pDevice->oss.fdCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
close(pDevice->oss.fdPlayback);
}
}
static int ma_format_to_oss(ma_format format)
{
int ossFormat = AFMT_U8;
switch (format) {
case ma_format_s16: ossFormat = (ma_is_little_endian()) ? AFMT_S16_LE : AFMT_S16_BE; break;
case ma_format_s24: ossFormat = (ma_is_little_endian()) ? AFMT_S32_LE : AFMT_S32_BE; break;
case ma_format_s32: ossFormat = (ma_is_little_endian()) ? AFMT_S32_LE : AFMT_S32_BE; break;
case ma_format_f32: ossFormat = (ma_is_little_endian()) ? AFMT_S16_LE : AFMT_S16_BE; break;
case ma_format_u8:
default: ossFormat = AFMT_U8; break;
}
return ossFormat;
}
static ma_format ma_format_from_oss(int ossFormat)
{
if (ossFormat == AFMT_U8) {
return ma_format_u8;
} else {
if (ma_is_little_endian()) {
switch (ossFormat) {
case AFMT_S16_LE: return ma_format_s16;
case AFMT_S32_LE: return ma_format_s32;
default: return ma_format_unknown;
}
} else {
switch (ossFormat) {
case AFMT_S16_BE: return ma_format_s16;
case AFMT_S32_BE: return ma_format_s32;
default: return ma_format_unknown;
}
}
}
return ma_format_unknown;
}
static ma_result ma_device_init_fd__oss(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
ma_result result;
int ossResult;
int fd;
const ma_device_id* pDeviceID = NULL;
ma_share_mode shareMode;
int ossFormat;
int ossChannels;
int ossSampleRate;
int ossFragment;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pConfig != NULL);
MA_ASSERT(deviceType != ma_device_type_duplex);
MA_ASSERT(pDevice != NULL);
(void)pContext;
if (deviceType == ma_device_type_capture) {
pDeviceID = pConfig->capture.pDeviceID;
shareMode = pConfig->capture.shareMode;
ossFormat = ma_format_to_oss(pConfig->capture.format);
ossChannels = (int)pConfig->capture.channels;
ossSampleRate = (int)pConfig->sampleRate;
} else {
pDeviceID = pConfig->playback.pDeviceID;
shareMode = pConfig->playback.shareMode;
ossFormat = ma_format_to_oss(pConfig->playback.format);
ossChannels = (int)pConfig->playback.channels;
ossSampleRate = (int)pConfig->sampleRate;
}
result = ma_context_open_device__oss(pContext, deviceType, pDeviceID, shareMode, &fd);
if (result != MA_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device.", result);
}
/*
The OSS documantation is very clear about the order we should be initializing the device's properties:
1) Format
2) Channels
3) Sample rate.
*/
/* Format. */
ossResult = ioctl(fd, SNDCTL_DSP_SETFMT, &ossFormat);
if (ossResult == -1) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to set format.", MA_FORMAT_NOT_SUPPORTED);
}
/* Channels. */
ossResult = ioctl(fd, SNDCTL_DSP_CHANNELS, &ossChannels);
if (ossResult == -1) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to set channel count.", MA_FORMAT_NOT_SUPPORTED);
}
/* Sample Rate. */
ossResult = ioctl(fd, SNDCTL_DSP_SPEED, &ossSampleRate);
if (ossResult == -1) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to set sample rate.", MA_FORMAT_NOT_SUPPORTED);
}
/*
Buffer.
The documentation says that the fragment settings should be set as soon as possible, but I'm not sure if
it should be done before or after format/channels/rate.
OSS wants the fragment size in bytes and a power of 2. When setting, we specify the power, not the actual
value.
*/
{
ma_uint32 periodSizeInFrames;
ma_uint32 periodSizeInBytes;
ma_uint32 ossFragmentSizePower;
periodSizeInFrames = pConfig->periodSizeInFrames;
if (periodSizeInFrames == 0) {
periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, (ma_uint32)ossSampleRate);
}
periodSizeInBytes = ma_round_to_power_of_2(periodSizeInFrames * ma_get_bytes_per_frame(ma_format_from_oss(ossFormat), ossChannels));
if (periodSizeInBytes < 16) {
periodSizeInBytes = 16;
}
ossFragmentSizePower = 4;
periodSizeInBytes >>= 4;
while (periodSizeInBytes >>= 1) {
ossFragmentSizePower += 1;
}
ossFragment = (int)((pConfig->periods << 16) | ossFragmentSizePower);
ossResult = ioctl(fd, SNDCTL_DSP_SETFRAGMENT, &ossFragment);
if (ossResult == -1) {
close(fd);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to set fragment size and period count.", MA_FORMAT_NOT_SUPPORTED);
}
}
/* Internal settings. */
if (deviceType == ma_device_type_capture) {
pDevice->oss.fdCapture = fd;
pDevice->capture.internalFormat = ma_format_from_oss(ossFormat);
pDevice->capture.internalChannels = ossChannels;
pDevice->capture.internalSampleRate = ossSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sound4, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
pDevice->capture.internalPeriods = (ma_uint32)(ossFragment >> 16);
pDevice->capture.internalPeriodSizeInFrames = (ma_uint32)(1 << (ossFragment & 0xFFFF)) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
if (pDevice->capture.internalFormat == ma_format_unknown) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] The device's internal format is not supported by miniaudio.", MA_FORMAT_NOT_SUPPORTED);
}
} else {
pDevice->oss.fdPlayback = fd;
pDevice->playback.internalFormat = ma_format_from_oss(ossFormat);
pDevice->playback.internalChannels = ossChannels;
pDevice->playback.internalSampleRate = ossSampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_sound4, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
pDevice->playback.internalPeriods = (ma_uint32)(ossFragment >> 16);
pDevice->playback.internalPeriodSizeInFrames = (ma_uint32)(1 << (ossFragment & 0xFFFF)) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
if (pDevice->playback.internalFormat == ma_format_unknown) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] The device's internal format is not supported by miniaudio.", MA_FORMAT_NOT_SUPPORTED);
}
}
return MA_SUCCESS;
}
static ma_result ma_device_init__oss(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->oss);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_fd__oss(pContext, pConfig, ma_device_type_capture, pDevice);
if (result != MA_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device.", result);
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_result result = ma_device_init_fd__oss(pContext, pConfig, ma_device_type_playback, pDevice);
if (result != MA_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open device.", result);
}
}
return MA_SUCCESS;
}
static ma_result ma_device_stop__oss(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
/*
We want to use SNDCTL_DSP_HALT. From the documentation:
In multithreaded applications SNDCTL_DSP_HALT (SNDCTL_DSP_RESET) must only be called by the thread
that actually reads/writes the audio device. It must not be called by some master thread to kill the
audio thread. The audio thread will not stop or get any kind of notification that the device was
stopped by the master thread. The device gets stopped but the next read or write call will silently
restart the device.
This is actually safe in our case, because this function is only ever called from within our worker
thread anyway. Just keep this in mind, though...
*/
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
int result = ioctl(pDevice->oss.fdCapture, SNDCTL_DSP_HALT, 0);
if (result == -1) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to stop device. SNDCTL_DSP_HALT failed.", ma_result_from_errno(errno));
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
int result = ioctl(pDevice->oss.fdPlayback, SNDCTL_DSP_HALT, 0);
if (result == -1) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to stop device. SNDCTL_DSP_HALT failed.", ma_result_from_errno(errno));
}
}
return MA_SUCCESS;
}
static ma_result ma_device_write__oss(ma_device* pDevice, const void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesWritten)
{
int resultOSS;
if (pFramesWritten != NULL) {
*pFramesWritten = 0;
}
resultOSS = write(pDevice->oss.fdPlayback, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
if (resultOSS < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to send data from the client to the device.", ma_result_from_errno(errno));
}
if (pFramesWritten != NULL) {
*pFramesWritten = (ma_uint32)resultOSS / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
}
return MA_SUCCESS;
}
static ma_result ma_device_read__oss(ma_device* pDevice, void* pPCMFrames, ma_uint32 frameCount, ma_uint32* pFramesRead)
{
int resultOSS;
if (pFramesRead != NULL) {
*pFramesRead = 0;
}
resultOSS = read(pDevice->oss.fdCapture, pPCMFrames, frameCount * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
if (resultOSS < 0) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OSS] Failed to read data from the device to be sent to the client.", ma_result_from_errno(errno));
}
if (pFramesRead != NULL) {
*pFramesRead = (ma_uint32)resultOSS / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
}
return MA_SUCCESS;
}
static ma_result ma_device_main_loop__oss(ma_device* pDevice)
{
ma_result result = MA_SUCCESS;
ma_bool32 exitLoop = MA_FALSE;
/* No need to explicitly start the device like the other backends. */
while (ma_device__get_state(pDevice) == MA_STATE_STARTED && !exitLoop) {
switch (pDevice->type)
{
case ma_device_type_duplex:
{
/* The process is: device_read -> convert -> callback -> convert -> device_write */
ma_uint32 totalCapturedDeviceFramesProcessed = 0;
ma_uint32 capturedDevicePeriodSizeInFrames = ma_min(pDevice->capture.internalPeriodSizeInFrames, pDevice->playback.internalPeriodSizeInFrames);
while (totalCapturedDeviceFramesProcessed < capturedDevicePeriodSizeInFrames) {
ma_uint8 capturedDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackDeviceData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedDeviceDataCapInFrames = sizeof(capturedDeviceData) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 playbackDeviceDataCapInFrames = sizeof(playbackDeviceData) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 capturedDeviceFramesRemaining;
ma_uint32 capturedDeviceFramesProcessed;
ma_uint32 capturedDeviceFramesToProcess;
ma_uint32 capturedDeviceFramesToTryProcessing = capturedDevicePeriodSizeInFrames - totalCapturedDeviceFramesProcessed;
if (capturedDeviceFramesToTryProcessing > capturedDeviceDataCapInFrames) {
capturedDeviceFramesToTryProcessing = capturedDeviceDataCapInFrames;
}
result = ma_device_read__oss(pDevice, capturedDeviceData, capturedDeviceFramesToTryProcessing, &capturedDeviceFramesToProcess);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedDeviceFramesRemaining = capturedDeviceFramesToProcess;
capturedDeviceFramesProcessed = 0;
for (;;) {
ma_uint8 capturedClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint8 playbackClientData[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 capturedClientDataCapInFrames = sizeof(capturedClientData) / ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels);
ma_uint32 playbackClientDataCapInFrames = sizeof(playbackClientData) / ma_get_bytes_per_frame(pDevice->playback.format, pDevice->playback.channels);
ma_uint64 capturedClientFramesToProcessThisIteration = ma_min(capturedClientDataCapInFrames, playbackClientDataCapInFrames);
ma_uint64 capturedDeviceFramesToProcessThisIteration = capturedDeviceFramesRemaining;
ma_uint8* pRunningCapturedDeviceFrames = ma_offset_ptr(capturedDeviceData, capturedDeviceFramesProcessed * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels));
/* Convert capture data from device format to client format. */
result = ma_data_converter_process_pcm_frames(&pDevice->capture.converter, pRunningCapturedDeviceFrames, &capturedDeviceFramesToProcessThisIteration, capturedClientData, &capturedClientFramesToProcessThisIteration);
if (result != MA_SUCCESS) {
break;
}
/*
If we weren't able to generate any output frames it must mean we've exhaused all of our input. The only time this would not be the case is if capturedClientData was too small
which should never be the case when it's of the size MA_DATA_CONVERTER_STACK_BUFFER_SIZE.
*/
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
ma_device__on_data(pDevice, playbackClientData, capturedClientData, (ma_uint32)capturedClientFramesToProcessThisIteration); /* Safe cast .*/
capturedDeviceFramesProcessed += (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
capturedDeviceFramesRemaining -= (ma_uint32)capturedDeviceFramesToProcessThisIteration; /* Safe cast. */
/* At this point the playbackClientData buffer should be holding data that needs to be written to the device. */
for (;;) {
ma_uint64 convertedClientFrameCount = capturedClientFramesToProcessThisIteration;
ma_uint64 convertedDeviceFrameCount = playbackDeviceDataCapInFrames;
result = ma_data_converter_process_pcm_frames(&pDevice->playback.converter, playbackClientData, &convertedClientFrameCount, playbackDeviceData, &convertedDeviceFrameCount);
if (result != MA_SUCCESS) {
break;
}
result = ma_device_write__oss(pDevice, playbackDeviceData, (ma_uint32)convertedDeviceFrameCount, NULL); /* Safe cast. */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
capturedClientFramesToProcessThisIteration -= (ma_uint32)convertedClientFrameCount; /* Safe cast. */
if (capturedClientFramesToProcessThisIteration == 0) {
break;
}
}
/* In case an error happened from ma_device_write__oss()... */
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
}
totalCapturedDeviceFramesProcessed += capturedDeviceFramesProcessed;
}
} break;
case ma_device_type_capture:
{
/* We read in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->capture.internalPeriodSizeInFrames;
ma_uint32 framesReadThisPeriod = 0;
while (framesReadThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesReadThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToReadThisIteration = framesRemainingInPeriod;
if (framesToReadThisIteration > intermediaryBufferSizeInFrames) {
framesToReadThisIteration = intermediaryBufferSizeInFrames;
}
result = ma_device_read__oss(pDevice, intermediaryBuffer, framesToReadThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
ma_device__send_frames_to_client(pDevice, framesProcessed, intermediaryBuffer);
framesReadThisPeriod += framesProcessed;
}
} break;
case ma_device_type_playback:
{
/* We write in chunks of the period size, but use a stack allocated buffer for the intermediary. */
ma_uint8 intermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 intermediaryBufferSizeInFrames = sizeof(intermediaryBuffer) / ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
ma_uint32 periodSizeInFrames = pDevice->playback.internalPeriodSizeInFrames;
ma_uint32 framesWrittenThisPeriod = 0;
while (framesWrittenThisPeriod < periodSizeInFrames) {
ma_uint32 framesRemainingInPeriod = periodSizeInFrames - framesWrittenThisPeriod;
ma_uint32 framesProcessed;
ma_uint32 framesToWriteThisIteration = framesRemainingInPeriod;
if (framesToWriteThisIteration > intermediaryBufferSizeInFrames) {
framesToWriteThisIteration = intermediaryBufferSizeInFrames;
}
ma_device__read_frames_from_client(pDevice, framesToWriteThisIteration, intermediaryBuffer);
result = ma_device_write__oss(pDevice, intermediaryBuffer, framesToWriteThisIteration, &framesProcessed);
if (result != MA_SUCCESS) {
exitLoop = MA_TRUE;
break;
}
framesWrittenThisPeriod += framesProcessed;
}
} break;
/* To silence a warning. Will never hit this. */
case ma_device_type_loopback:
default: break;
}
}
/* Here is where the device is stopped. */
ma_device_stop__oss(pDevice);
return result;
}
static ma_result ma_context_uninit__oss(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_oss);
(void)pContext;
return MA_SUCCESS;
}
static ma_result ma_context_init__oss(const ma_context_config* pConfig, ma_context* pContext)
{
int fd;
int ossVersion;
int result;
MA_ASSERT(pContext != NULL);
(void)pConfig;
/* Try opening a temporary device first so we can get version information. This is closed at the end. */
fd = ma_open_temp_device__oss();
if (fd == -1) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[OSS] Failed to open temporary device for retrieving system properties.", MA_NO_BACKEND); /* Looks liks OSS isn't installed, or there are no available devices. */
}
/* Grab the OSS version. */
ossVersion = 0;
result = ioctl(fd, OSS_GETVERSION, &ossVersion);
if (result == -1) {
close(fd);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "[OSS] Failed to retrieve OSS version.", MA_NO_BACKEND);
}
pContext->oss.versionMajor = ((ossVersion & 0xFF0000) >> 16);
pContext->oss.versionMinor = ((ossVersion & 0x00FF00) >> 8);
pContext->onUninit = ma_context_uninit__oss;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__oss;
pContext->onEnumDevices = ma_context_enumerate_devices__oss;
pContext->onGetDeviceInfo = ma_context_get_device_info__oss;
pContext->onDeviceInit = ma_device_init__oss;
pContext->onDeviceUninit = ma_device_uninit__oss;
pContext->onDeviceStart = NULL; /* Not required for synchronous backends. */
pContext->onDeviceStop = NULL; /* Not required for synchronous backends. */
pContext->onDeviceMainLoop = ma_device_main_loop__oss;
close(fd);
return MA_SUCCESS;
}
#endif /* OSS */
/******************************************************************************
AAudio Backend
******************************************************************************/
#ifdef MA_HAS_AAUDIO
/*#include <AAudio/AAudio.h>*/
#define MA_AAUDIO_UNSPECIFIED 0
typedef int32_t ma_aaudio_result_t;
typedef int32_t ma_aaudio_direction_t;
typedef int32_t ma_aaudio_sharing_mode_t;
typedef int32_t ma_aaudio_format_t;
typedef int32_t ma_aaudio_stream_state_t;
typedef int32_t ma_aaudio_performance_mode_t;
typedef int32_t ma_aaudio_data_callback_result_t;
/* Result codes. miniaudio only cares about the success code. */
#define MA_AAUDIO_OK 0
/* Directions. */
#define MA_AAUDIO_DIRECTION_OUTPUT 0
#define MA_AAUDIO_DIRECTION_INPUT 1
/* Sharing modes. */
#define MA_AAUDIO_SHARING_MODE_EXCLUSIVE 0
#define MA_AAUDIO_SHARING_MODE_SHARED 1
/* Formats. */
#define MA_AAUDIO_FORMAT_PCM_I16 1
#define MA_AAUDIO_FORMAT_PCM_FLOAT 2
/* Stream states. */
#define MA_AAUDIO_STREAM_STATE_UNINITIALIZED 0
#define MA_AAUDIO_STREAM_STATE_UNKNOWN 1
#define MA_AAUDIO_STREAM_STATE_OPEN 2
#define MA_AAUDIO_STREAM_STATE_STARTING 3
#define MA_AAUDIO_STREAM_STATE_STARTED 4
#define MA_AAUDIO_STREAM_STATE_PAUSING 5
#define MA_AAUDIO_STREAM_STATE_PAUSED 6
#define MA_AAUDIO_STREAM_STATE_FLUSHING 7
#define MA_AAUDIO_STREAM_STATE_FLUSHED 8
#define MA_AAUDIO_STREAM_STATE_STOPPING 9
#define MA_AAUDIO_STREAM_STATE_STOPPED 10
#define MA_AAUDIO_STREAM_STATE_CLOSING 11
#define MA_AAUDIO_STREAM_STATE_CLOSED 12
#define MA_AAUDIO_STREAM_STATE_DISCONNECTED 13
/* Performance modes. */
#define MA_AAUDIO_PERFORMANCE_MODE_NONE 10
#define MA_AAUDIO_PERFORMANCE_MODE_POWER_SAVING 11
#define MA_AAUDIO_PERFORMANCE_MODE_LOW_LATENCY 12
/* Callback results. */
#define MA_AAUDIO_CALLBACK_RESULT_CONTINUE 0
#define MA_AAUDIO_CALLBACK_RESULT_STOP 1
/* Objects. */
typedef struct ma_AAudioStreamBuilder_t* ma_AAudioStreamBuilder;
typedef struct ma_AAudioStream_t* ma_AAudioStream;
typedef ma_aaudio_data_callback_result_t (* ma_AAudioStream_dataCallback) (ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t numFrames);
typedef void (* ma_AAudioStream_errorCallback)(ma_AAudioStream *pStream, void *pUserData, ma_aaudio_result_t error);
typedef ma_aaudio_result_t (* MA_PFN_AAudio_createStreamBuilder) (ma_AAudioStreamBuilder** ppBuilder);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStreamBuilder_delete) (ma_AAudioStreamBuilder* pBuilder);
typedef void (* MA_PFN_AAudioStreamBuilder_setDeviceId) (ma_AAudioStreamBuilder* pBuilder, int32_t deviceId);
typedef void (* MA_PFN_AAudioStreamBuilder_setDirection) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_direction_t direction);
typedef void (* MA_PFN_AAudioStreamBuilder_setSharingMode) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_sharing_mode_t sharingMode);
typedef void (* MA_PFN_AAudioStreamBuilder_setFormat) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_format_t format);
typedef void (* MA_PFN_AAudioStreamBuilder_setChannelCount) (ma_AAudioStreamBuilder* pBuilder, int32_t channelCount);
typedef void (* MA_PFN_AAudioStreamBuilder_setSampleRate) (ma_AAudioStreamBuilder* pBuilder, int32_t sampleRate);
typedef void (* MA_PFN_AAudioStreamBuilder_setBufferCapacityInFrames)(ma_AAudioStreamBuilder* pBuilder, int32_t numFrames);
typedef void (* MA_PFN_AAudioStreamBuilder_setFramesPerDataCallback) (ma_AAudioStreamBuilder* pBuilder, int32_t numFrames);
typedef void (* MA_PFN_AAudioStreamBuilder_setDataCallback) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream_dataCallback callback, void* pUserData);
typedef void (* MA_PFN_AAudioStreamBuilder_setErrorCallback) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream_errorCallback callback, void* pUserData);
typedef void (* MA_PFN_AAudioStreamBuilder_setPerformanceMode) (ma_AAudioStreamBuilder* pBuilder, ma_aaudio_performance_mode_t mode);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStreamBuilder_openStream) (ma_AAudioStreamBuilder* pBuilder, ma_AAudioStream** ppStream);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_close) (ma_AAudioStream* pStream);
typedef ma_aaudio_stream_state_t (* MA_PFN_AAudioStream_getState) (ma_AAudioStream* pStream);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_waitForStateChange) (ma_AAudioStream* pStream, ma_aaudio_stream_state_t inputState, ma_aaudio_stream_state_t* pNextState, int64_t timeoutInNanoseconds);
typedef ma_aaudio_format_t (* MA_PFN_AAudioStream_getFormat) (ma_AAudioStream* pStream);
typedef int32_t (* MA_PFN_AAudioStream_getChannelCount) (ma_AAudioStream* pStream);
typedef int32_t (* MA_PFN_AAudioStream_getSampleRate) (ma_AAudioStream* pStream);
typedef int32_t (* MA_PFN_AAudioStream_getBufferCapacityInFrames) (ma_AAudioStream* pStream);
typedef int32_t (* MA_PFN_AAudioStream_getFramesPerDataCallback) (ma_AAudioStream* pStream);
typedef int32_t (* MA_PFN_AAudioStream_getFramesPerBurst) (ma_AAudioStream* pStream);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_requestStart) (ma_AAudioStream* pStream);
typedef ma_aaudio_result_t (* MA_PFN_AAudioStream_requestStop) (ma_AAudioStream* pStream);
static ma_result ma_result_from_aaudio(ma_aaudio_result_t resultAA)
{
switch (resultAA)
{
case MA_AAUDIO_OK: return MA_SUCCESS;
default: break;
}
return MA_ERROR;
}
static void ma_stream_error_callback__aaudio(ma_AAudioStream* pStream, void* pUserData, ma_aaudio_result_t error)
{
ma_device* pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
(void)error;
#if defined(MA_DEBUG_OUTPUT)
printf("[AAudio] ERROR CALLBACK: error=%d, AAudioStream_getState()=%d\n", error, ((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream));
#endif
/*
From the documentation for AAudio, when a device is disconnected all we can do is stop it. However, we cannot stop it from the callback - we need
to do it from another thread. Therefore we are going to use an event thread for the AAudio backend to do this cleanly and safely.
*/
if (((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream) == MA_AAUDIO_STREAM_STATE_DISCONNECTED) {
#if defined(MA_DEBUG_OUTPUT)
printf("[AAudio] Device Disconnected.\n");
#endif
}
}
static ma_aaudio_data_callback_result_t ma_stream_data_callback_capture__aaudio(ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t frameCount)
{
ma_device* pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_capture(pDevice, frameCount, pAudioData, &pDevice->aaudio.duplexRB);
} else {
ma_device__send_frames_to_client(pDevice, frameCount, pAudioData); /* Send directly to the client. */
}
(void)pStream;
return MA_AAUDIO_CALLBACK_RESULT_CONTINUE;
}
static ma_aaudio_data_callback_result_t ma_stream_data_callback_playback__aaudio(ma_AAudioStream* pStream, void* pUserData, void* pAudioData, int32_t frameCount)
{
ma_device* pDevice = (ma_device*)pUserData;
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_playback(pDevice, frameCount, pAudioData, &pDevice->aaudio.duplexRB);
} else {
ma_device__read_frames_from_client(pDevice, frameCount, pAudioData); /* Read directly from the client. */
}
(void)pStream;
return MA_AAUDIO_CALLBACK_RESULT_CONTINUE;
}
static ma_result ma_open_stream__aaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, const ma_device_config* pConfig, const ma_device* pDevice, ma_AAudioStream** ppStream)
{
ma_AAudioStreamBuilder* pBuilder;
ma_aaudio_result_t resultAA;
MA_ASSERT(deviceType != ma_device_type_duplex); /* This function should not be called for a full-duplex device type. */
*ppStream = NULL;
resultAA = ((MA_PFN_AAudio_createStreamBuilder)pContext->aaudio.AAudio_createStreamBuilder)(&pBuilder);
if (resultAA != MA_AAUDIO_OK) {
return ma_result_from_aaudio(resultAA);
}
if (pDeviceID != NULL) {
((MA_PFN_AAudioStreamBuilder_setDeviceId)pContext->aaudio.AAudioStreamBuilder_setDeviceId)(pBuilder, pDeviceID->aaudio);
}
((MA_PFN_AAudioStreamBuilder_setDirection)pContext->aaudio.AAudioStreamBuilder_setDirection)(pBuilder, (deviceType == ma_device_type_playback) ? MA_AAUDIO_DIRECTION_OUTPUT : MA_AAUDIO_DIRECTION_INPUT);
((MA_PFN_AAudioStreamBuilder_setSharingMode)pContext->aaudio.AAudioStreamBuilder_setSharingMode)(pBuilder, (shareMode == ma_share_mode_shared) ? MA_AAUDIO_SHARING_MODE_SHARED : MA_AAUDIO_SHARING_MODE_EXCLUSIVE);
if (pConfig != NULL) {
ma_uint32 bufferCapacityInFrames;
if (pDevice == NULL || !pDevice->usingDefaultSampleRate) {
((MA_PFN_AAudioStreamBuilder_setSampleRate)pContext->aaudio.AAudioStreamBuilder_setSampleRate)(pBuilder, pConfig->sampleRate);
}
if (deviceType == ma_device_type_capture) {
if (pDevice == NULL || !pDevice->capture.usingDefaultChannels) {
((MA_PFN_AAudioStreamBuilder_setChannelCount)pContext->aaudio.AAudioStreamBuilder_setChannelCount)(pBuilder, pConfig->capture.channels);
}
if (pDevice == NULL || !pDevice->capture.usingDefaultFormat) {
((MA_PFN_AAudioStreamBuilder_setFormat)pContext->aaudio.AAudioStreamBuilder_setFormat)(pBuilder, (pConfig->capture.format == ma_format_s16) ? MA_AAUDIO_FORMAT_PCM_I16 : MA_AAUDIO_FORMAT_PCM_FLOAT);
}
} else {
if (pDevice == NULL || !pDevice->playback.usingDefaultChannels) {
((MA_PFN_AAudioStreamBuilder_setChannelCount)pContext->aaudio.AAudioStreamBuilder_setChannelCount)(pBuilder, pConfig->playback.channels);
}
if (pDevice == NULL || !pDevice->playback.usingDefaultFormat) {
((MA_PFN_AAudioStreamBuilder_setFormat)pContext->aaudio.AAudioStreamBuilder_setFormat)(pBuilder, (pConfig->playback.format == ma_format_s16) ? MA_AAUDIO_FORMAT_PCM_I16 : MA_AAUDIO_FORMAT_PCM_FLOAT);
}
}
bufferCapacityInFrames = pConfig->periodSizeInFrames * pConfig->periods;
if (bufferCapacityInFrames == 0) {
bufferCapacityInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pConfig->sampleRate) * pConfig->periods;
}
((MA_PFN_AAudioStreamBuilder_setBufferCapacityInFrames)pContext->aaudio.AAudioStreamBuilder_setBufferCapacityInFrames)(pBuilder, bufferCapacityInFrames);
((MA_PFN_AAudioStreamBuilder_setFramesPerDataCallback)pContext->aaudio.AAudioStreamBuilder_setFramesPerDataCallback)(pBuilder, bufferCapacityInFrames / pConfig->periods);
if (deviceType == ma_device_type_capture) {
((MA_PFN_AAudioStreamBuilder_setDataCallback)pContext->aaudio.AAudioStreamBuilder_setDataCallback)(pBuilder, ma_stream_data_callback_capture__aaudio, (void*)pDevice);
} else {
((MA_PFN_AAudioStreamBuilder_setDataCallback)pContext->aaudio.AAudioStreamBuilder_setDataCallback)(pBuilder, ma_stream_data_callback_playback__aaudio, (void*)pDevice);
}
/* Not sure how this affects things, but since there's a mapping between miniaudio's performance profiles and AAudio's performance modes, let go ahead and set it. */
((MA_PFN_AAudioStreamBuilder_setPerformanceMode)pContext->aaudio.AAudioStreamBuilder_setPerformanceMode)(pBuilder, (pConfig->performanceProfile == ma_performance_profile_low_latency) ? MA_AAUDIO_PERFORMANCE_MODE_LOW_LATENCY : MA_AAUDIO_PERFORMANCE_MODE_NONE);
}
((MA_PFN_AAudioStreamBuilder_setErrorCallback)pContext->aaudio.AAudioStreamBuilder_setErrorCallback)(pBuilder, ma_stream_error_callback__aaudio, (void*)pDevice);
resultAA = ((MA_PFN_AAudioStreamBuilder_openStream)pContext->aaudio.AAudioStreamBuilder_openStream)(pBuilder, ppStream);
if (resultAA != MA_AAUDIO_OK) {
*ppStream = NULL;
((MA_PFN_AAudioStreamBuilder_delete)pContext->aaudio.AAudioStreamBuilder_delete)(pBuilder);
return ma_result_from_aaudio(resultAA);
}
((MA_PFN_AAudioStreamBuilder_delete)pContext->aaudio.AAudioStreamBuilder_delete)(pBuilder);
return MA_SUCCESS;
}
static ma_result ma_close_stream__aaudio(ma_context* pContext, ma_AAudioStream* pStream)
{
return ma_result_from_aaudio(((MA_PFN_AAudioStream_close)pContext->aaudio.AAudioStream_close)(pStream));
}
static ma_bool32 ma_has_default_device__aaudio(ma_context* pContext, ma_device_type deviceType)
{
/* The only way to know this is to try creating a stream. */
ma_AAudioStream* pStream;
ma_result result = ma_open_stream__aaudio(pContext, deviceType, NULL, ma_share_mode_shared, NULL, NULL, &pStream);
if (result != MA_SUCCESS) {
return MA_FALSE;
}
ma_close_stream__aaudio(pContext, pStream);
return MA_TRUE;
}
static ma_result ma_wait_for_simple_state_transition__aaudio(ma_context* pContext, ma_AAudioStream* pStream, ma_aaudio_stream_state_t oldState, ma_aaudio_stream_state_t newState)
{
ma_aaudio_stream_state_t actualNewState;
ma_aaudio_result_t resultAA = ((MA_PFN_AAudioStream_waitForStateChange)pContext->aaudio.AAudioStream_waitForStateChange)(pStream, oldState, &actualNewState, 5000000000); /* 5 second timeout. */
if (resultAA != MA_AAUDIO_OK) {
return ma_result_from_aaudio(resultAA);
}
if (newState != actualNewState) {
return MA_ERROR; /* Failed to transition into the expected state. */
}
return MA_SUCCESS;
}
static ma_bool32 ma_context_is_device_id_equal__aaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->aaudio == pID1->aaudio;
}
static ma_result ma_context_enumerate_devices__aaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult = MA_TRUE;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
/* Unfortunately AAudio does not have an enumeration API. Therefore I'm only going to report default devices, but only if it can instantiate a stream. */
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.aaudio = MA_AAUDIO_UNSPECIFIED;
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
if (ma_has_default_device__aaudio(pContext, ma_device_type_playback)) {
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
}
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.aaudio = MA_AAUDIO_UNSPECIFIED;
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
if (ma_has_default_device__aaudio(pContext, ma_device_type_capture)) {
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__aaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_AAudioStream* pStream;
ma_result result;
MA_ASSERT(pContext != NULL);
/* No exclusive mode with AAudio. */
if (shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
/* ID */
if (pDeviceID != NULL) {
pDeviceInfo->id.aaudio = pDeviceID->aaudio;
} else {
pDeviceInfo->id.aaudio = MA_AAUDIO_UNSPECIFIED;
}
/* Name */
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
}
/* We'll need to open the device to get accurate sample rate and channel count information. */
result = ma_open_stream__aaudio(pContext, deviceType, pDeviceID, shareMode, NULL, NULL, &pStream);
if (result != MA_SUCCESS) {
return result;
}
pDeviceInfo->minChannels = ((MA_PFN_AAudioStream_getChannelCount)pContext->aaudio.AAudioStream_getChannelCount)(pStream);
pDeviceInfo->maxChannels = pDeviceInfo->minChannels;
pDeviceInfo->minSampleRate = ((MA_PFN_AAudioStream_getSampleRate)pContext->aaudio.AAudioStream_getSampleRate)(pStream);
pDeviceInfo->maxSampleRate = pDeviceInfo->minSampleRate;
ma_close_stream__aaudio(pContext, pStream);
pStream = NULL;
/* AAudio supports s16 and f32. */
pDeviceInfo->formatCount = 2;
pDeviceInfo->formats[0] = ma_format_s16;
pDeviceInfo->formats[1] = ma_format_f32;
return MA_SUCCESS;
}
static void ma_device_uninit__aaudio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
pDevice->aaudio.pStreamCapture = NULL;
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
pDevice->aaudio.pStreamPlayback = NULL;
}
if (pDevice->type == ma_device_type_duplex) {
ma_pcm_rb_uninit(&pDevice->aaudio.duplexRB);
}
}
static ma_result ma_device_init__aaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
MA_ASSERT(pDevice != NULL);
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
/* No exclusive mode with AAudio. */
if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) ||
((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
/* We first need to try opening the stream. */
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
int32_t bufferCapacityInFrames;
int32_t framesPerDataCallback;
result = ma_open_stream__aaudio(pContext, ma_device_type_capture, pConfig->capture.pDeviceID, pConfig->capture.shareMode, pConfig, pDevice, (ma_AAudioStream**)&pDevice->aaudio.pStreamCapture);
if (result != MA_SUCCESS) {
return result; /* Failed to open the AAudio stream. */
}
pDevice->capture.internalFormat = (((MA_PFN_AAudioStream_getFormat)pContext->aaudio.AAudioStream_getFormat)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture) == MA_AAUDIO_FORMAT_PCM_I16) ? ma_format_s16 : ma_format_f32;
pDevice->capture.internalChannels = ((MA_PFN_AAudioStream_getChannelCount)pContext->aaudio.AAudioStream_getChannelCount)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
pDevice->capture.internalSampleRate = ((MA_PFN_AAudioStream_getSampleRate)pContext->aaudio.AAudioStream_getSampleRate)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap); /* <-- Cannot find info on channel order, so assuming a default. */
bufferCapacityInFrames = ((MA_PFN_AAudioStream_getBufferCapacityInFrames)pContext->aaudio.AAudioStream_getBufferCapacityInFrames)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
framesPerDataCallback = ((MA_PFN_AAudioStream_getFramesPerDataCallback)pContext->aaudio.AAudioStream_getFramesPerDataCallback)((ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
if (framesPerDataCallback > 0) {
pDevice->capture.internalPeriodSizeInFrames = framesPerDataCallback;
pDevice->capture.internalPeriods = bufferCapacityInFrames / framesPerDataCallback;
} else {
pDevice->capture.internalPeriodSizeInFrames = bufferCapacityInFrames;
pDevice->capture.internalPeriods = 1;
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
int32_t bufferCapacityInFrames;
int32_t framesPerDataCallback;
result = ma_open_stream__aaudio(pContext, ma_device_type_playback, pConfig->playback.pDeviceID, pConfig->playback.shareMode, pConfig, pDevice, (ma_AAudioStream**)&pDevice->aaudio.pStreamPlayback);
if (result != MA_SUCCESS) {
return result; /* Failed to open the AAudio stream. */
}
pDevice->playback.internalFormat = (((MA_PFN_AAudioStream_getFormat)pContext->aaudio.AAudioStream_getFormat)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback) == MA_AAUDIO_FORMAT_PCM_I16) ? ma_format_s16 : ma_format_f32;
pDevice->playback.internalChannels = ((MA_PFN_AAudioStream_getChannelCount)pContext->aaudio.AAudioStream_getChannelCount)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
pDevice->playback.internalSampleRate = ((MA_PFN_AAudioStream_getSampleRate)pContext->aaudio.AAudioStream_getSampleRate)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap); /* <-- Cannot find info on channel order, so assuming a default. */
bufferCapacityInFrames = ((MA_PFN_AAudioStream_getBufferCapacityInFrames)pContext->aaudio.AAudioStream_getBufferCapacityInFrames)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
framesPerDataCallback = ((MA_PFN_AAudioStream_getFramesPerDataCallback)pContext->aaudio.AAudioStream_getFramesPerDataCallback)((ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
if (framesPerDataCallback > 0) {
pDevice->playback.internalPeriodSizeInFrames = framesPerDataCallback;
pDevice->playback.internalPeriods = bufferCapacityInFrames / framesPerDataCallback;
} else {
pDevice->playback.internalPeriodSizeInFrames = bufferCapacityInFrames;
pDevice->playback.internalPeriods = 1;
}
}
if (pConfig->deviceType == ma_device_type_duplex) {
ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames) * pDevice->capture.internalPeriods;
ma_result result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->aaudio.duplexRB);
if (result != MA_SUCCESS) {
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_close_stream__aaudio(pDevice->pContext, (ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
}
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[AAudio] Failed to initialize ring buffer.", result);
}
/* We need a period to act as a buffer for cases where the playback and capture device's end up desyncing. */
{
ma_uint32 marginSizeInFrames = rbSizeInFrames / pDevice->capture.internalPeriods;
void* pMarginData;
ma_pcm_rb_acquire_write(&pDevice->aaudio.duplexRB, &marginSizeInFrames, &pMarginData);
{
MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->aaudio.duplexRB, marginSizeInFrames, pMarginData);
}
}
return MA_SUCCESS;
}
static ma_result ma_device_start_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pStream)
{
ma_aaudio_result_t resultAA;
ma_aaudio_stream_state_t currentState;
MA_ASSERT(pDevice != NULL);
resultAA = ((MA_PFN_AAudioStream_requestStart)pDevice->pContext->aaudio.AAudioStream_requestStart)(pStream);
if (resultAA != MA_AAUDIO_OK) {
return ma_result_from_aaudio(resultAA);
}
/* Do we actually need to wait for the device to transition into it's started state? */
/* The device should be in either a starting or started state. If it's not set to started we need to wait for it to transition. It should go from starting to started. */
currentState = ((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream);
if (currentState != MA_AAUDIO_STREAM_STATE_STARTED) {
ma_result result;
if (currentState != MA_AAUDIO_STREAM_STATE_STARTING) {
return MA_ERROR; /* Expecting the stream to be a starting or started state. */
}
result = ma_wait_for_simple_state_transition__aaudio(pDevice->pContext, pStream, currentState, MA_AAUDIO_STREAM_STATE_STARTED);
if (result != MA_SUCCESS) {
return result;
}
}
return MA_SUCCESS;
}
static ma_result ma_device_stop_stream__aaudio(ma_device* pDevice, ma_AAudioStream* pStream)
{
ma_aaudio_result_t resultAA;
ma_aaudio_stream_state_t currentState;
MA_ASSERT(pDevice != NULL);
/*
From the AAudio documentation:
The stream will stop after all of the data currently buffered has been played.
This maps with miniaudio's requirement that device's be drained which means we don't need to implement any draining logic.
*/
resultAA = ((MA_PFN_AAudioStream_requestStop)pDevice->pContext->aaudio.AAudioStream_requestStop)(pStream);
if (resultAA != MA_AAUDIO_OK) {
return ma_result_from_aaudio(resultAA);
}
/* The device should be in either a stopping or stopped state. If it's not set to started we need to wait for it to transition. It should go from stopping to stopped. */
currentState = ((MA_PFN_AAudioStream_getState)pDevice->pContext->aaudio.AAudioStream_getState)(pStream);
if (currentState != MA_AAUDIO_STREAM_STATE_STOPPED) {
ma_result result;
if (currentState != MA_AAUDIO_STREAM_STATE_STOPPING) {
return MA_ERROR; /* Expecting the stream to be a stopping or stopped state. */
}
result = ma_wait_for_simple_state_transition__aaudio(pDevice->pContext, pStream, currentState, MA_AAUDIO_STREAM_STATE_STOPPED);
if (result != MA_SUCCESS) {
return result;
}
}
return MA_SUCCESS;
}
static ma_result ma_device_start__aaudio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_result result = ma_device_start_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
if (result != MA_SUCCESS) {
return result;
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_result result = ma_device_start_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
if (result != MA_SUCCESS) {
if (pDevice->type == ma_device_type_duplex) {
ma_device_stop_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
}
return result;
}
}
return MA_SUCCESS;
}
static ma_result ma_device_stop__aaudio(ma_device* pDevice)
{
ma_stop_proc onStop;
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_result result = ma_device_stop_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamCapture);
if (result != MA_SUCCESS) {
return result;
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_result result = ma_device_stop_stream__aaudio(pDevice, (ma_AAudioStream*)pDevice->aaudio.pStreamPlayback);
if (result != MA_SUCCESS) {
return result;
}
}
onStop = pDevice->onStop;
if (onStop) {
onStop(pDevice);
}
return MA_SUCCESS;
}
static ma_result ma_context_uninit__aaudio(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_aaudio);
ma_dlclose(pContext, pContext->aaudio.hAAudio);
pContext->aaudio.hAAudio = NULL;
return MA_SUCCESS;
}
static ma_result ma_context_init__aaudio(const ma_context_config* pConfig, ma_context* pContext)
{
const char* libNames[] = {
"libaaudio.so"
};
size_t i;
for (i = 0; i < ma_countof(libNames); ++i) {
pContext->aaudio.hAAudio = ma_dlopen(pContext, libNames[i]);
if (pContext->aaudio.hAAudio != NULL) {
break;
}
}
if (pContext->aaudio.hAAudio == NULL) {
return MA_FAILED_TO_INIT_BACKEND;
}
pContext->aaudio.AAudio_createStreamBuilder = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudio_createStreamBuilder");
pContext->aaudio.AAudioStreamBuilder_delete = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_delete");
pContext->aaudio.AAudioStreamBuilder_setDeviceId = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setDeviceId");
pContext->aaudio.AAudioStreamBuilder_setDirection = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setDirection");
pContext->aaudio.AAudioStreamBuilder_setSharingMode = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setSharingMode");
pContext->aaudio.AAudioStreamBuilder_setFormat = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setFormat");
pContext->aaudio.AAudioStreamBuilder_setChannelCount = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setChannelCount");
pContext->aaudio.AAudioStreamBuilder_setSampleRate = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setSampleRate");
pContext->aaudio.AAudioStreamBuilder_setBufferCapacityInFrames = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setBufferCapacityInFrames");
pContext->aaudio.AAudioStreamBuilder_setFramesPerDataCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setFramesPerDataCallback");
pContext->aaudio.AAudioStreamBuilder_setDataCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setDataCallback");
pContext->aaudio.AAudioStreamBuilder_setErrorCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setErrorCallback");
pContext->aaudio.AAudioStreamBuilder_setPerformanceMode = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_setPerformanceMode");
pContext->aaudio.AAudioStreamBuilder_openStream = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStreamBuilder_openStream");
pContext->aaudio.AAudioStream_close = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_close");
pContext->aaudio.AAudioStream_getState = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getState");
pContext->aaudio.AAudioStream_waitForStateChange = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_waitForStateChange");
pContext->aaudio.AAudioStream_getFormat = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getFormat");
pContext->aaudio.AAudioStream_getChannelCount = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getChannelCount");
pContext->aaudio.AAudioStream_getSampleRate = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getSampleRate");
pContext->aaudio.AAudioStream_getBufferCapacityInFrames = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getBufferCapacityInFrames");
pContext->aaudio.AAudioStream_getFramesPerDataCallback = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getFramesPerDataCallback");
pContext->aaudio.AAudioStream_getFramesPerBurst = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_getFramesPerBurst");
pContext->aaudio.AAudioStream_requestStart = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_requestStart");
pContext->aaudio.AAudioStream_requestStop = (ma_proc)ma_dlsym(pContext, pContext->aaudio.hAAudio, "AAudioStream_requestStop");
pContext->isBackendAsynchronous = MA_TRUE;
pContext->onUninit = ma_context_uninit__aaudio;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__aaudio;
pContext->onEnumDevices = ma_context_enumerate_devices__aaudio;
pContext->onGetDeviceInfo = ma_context_get_device_info__aaudio;
pContext->onDeviceInit = ma_device_init__aaudio;
pContext->onDeviceUninit = ma_device_uninit__aaudio;
pContext->onDeviceStart = ma_device_start__aaudio;
pContext->onDeviceStop = ma_device_stop__aaudio;
(void)pConfig;
return MA_SUCCESS;
}
#endif /* AAudio */
/******************************************************************************
OpenSL|ES Backend
******************************************************************************/
#ifdef MA_HAS_OPENSL
#include <SLES/OpenSLES.h>
#ifdef MA_ANDROID
#include <SLES/OpenSLES_Android.h>
#endif
/* OpenSL|ES has one-per-application objects :( */
SLObjectItf g_maEngineObjectSL = NULL;
SLEngineItf g_maEngineSL = NULL;
ma_uint32 g_maOpenSLInitCounter = 0;
#define MA_OPENSL_OBJ(p) (*((SLObjectItf)(p)))
#define MA_OPENSL_OUTPUTMIX(p) (*((SLOutputMixItf)(p)))
#define MA_OPENSL_PLAY(p) (*((SLPlayItf)(p)))
#define MA_OPENSL_RECORD(p) (*((SLRecordItf)(p)))
#ifdef MA_ANDROID
#define MA_OPENSL_BUFFERQUEUE(p) (*((SLAndroidSimpleBufferQueueItf)(p)))
#else
#define MA_OPENSL_BUFFERQUEUE(p) (*((SLBufferQueueItf)(p)))
#endif
static ma_result ma_result_from_OpenSL(SLuint32 result)
{
switch (result)
{
case SL_RESULT_SUCCESS: return MA_SUCCESS;
case SL_RESULT_PRECONDITIONS_VIOLATED: return MA_ERROR;
case SL_RESULT_PARAMETER_INVALID: return MA_INVALID_ARGS;
case SL_RESULT_MEMORY_FAILURE: return MA_OUT_OF_MEMORY;
case SL_RESULT_RESOURCE_ERROR: return MA_INVALID_DATA;
case SL_RESULT_RESOURCE_LOST: return MA_ERROR;
case SL_RESULT_IO_ERROR: return MA_IO_ERROR;
case SL_RESULT_BUFFER_INSUFFICIENT: return MA_NO_SPACE;
case SL_RESULT_CONTENT_CORRUPTED: return MA_INVALID_DATA;
case SL_RESULT_CONTENT_UNSUPPORTED: return MA_FORMAT_NOT_SUPPORTED;
case SL_RESULT_CONTENT_NOT_FOUND: return MA_ERROR;
case SL_RESULT_PERMISSION_DENIED: return MA_ACCESS_DENIED;
case SL_RESULT_FEATURE_UNSUPPORTED: return MA_NOT_IMPLEMENTED;
case SL_RESULT_INTERNAL_ERROR: return MA_ERROR;
case SL_RESULT_UNKNOWN_ERROR: return MA_ERROR;
case SL_RESULT_OPERATION_ABORTED: return MA_ERROR;
case SL_RESULT_CONTROL_LOST: return MA_ERROR;
default: return MA_ERROR;
}
}
/* Converts an individual OpenSL-style channel identifier (SL_SPEAKER_FRONT_LEFT, etc.) to miniaudio. */
static ma_uint8 ma_channel_id_to_ma__opensl(SLuint32 id)
{
switch (id)
{
case SL_SPEAKER_FRONT_LEFT: return MA_CHANNEL_FRONT_LEFT;
case SL_SPEAKER_FRONT_RIGHT: return MA_CHANNEL_FRONT_RIGHT;
case SL_SPEAKER_FRONT_CENTER: return MA_CHANNEL_FRONT_CENTER;
case SL_SPEAKER_LOW_FREQUENCY: return MA_CHANNEL_LFE;
case SL_SPEAKER_BACK_LEFT: return MA_CHANNEL_BACK_LEFT;
case SL_SPEAKER_BACK_RIGHT: return MA_CHANNEL_BACK_RIGHT;
case SL_SPEAKER_FRONT_LEFT_OF_CENTER: return MA_CHANNEL_FRONT_LEFT_CENTER;
case SL_SPEAKER_FRONT_RIGHT_OF_CENTER: return MA_CHANNEL_FRONT_RIGHT_CENTER;
case SL_SPEAKER_BACK_CENTER: return MA_CHANNEL_BACK_CENTER;
case SL_SPEAKER_SIDE_LEFT: return MA_CHANNEL_SIDE_LEFT;
case SL_SPEAKER_SIDE_RIGHT: return MA_CHANNEL_SIDE_RIGHT;
case SL_SPEAKER_TOP_CENTER: return MA_CHANNEL_TOP_CENTER;
case SL_SPEAKER_TOP_FRONT_LEFT: return MA_CHANNEL_TOP_FRONT_LEFT;
case SL_SPEAKER_TOP_FRONT_CENTER: return MA_CHANNEL_TOP_FRONT_CENTER;
case SL_SPEAKER_TOP_FRONT_RIGHT: return MA_CHANNEL_TOP_FRONT_RIGHT;
case SL_SPEAKER_TOP_BACK_LEFT: return MA_CHANNEL_TOP_BACK_LEFT;
case SL_SPEAKER_TOP_BACK_CENTER: return MA_CHANNEL_TOP_BACK_CENTER;
case SL_SPEAKER_TOP_BACK_RIGHT: return MA_CHANNEL_TOP_BACK_RIGHT;
default: return 0;
}
}
/* Converts an individual miniaudio channel identifier (MA_CHANNEL_FRONT_LEFT, etc.) to OpenSL-style. */
static SLuint32 ma_channel_id_to_opensl(ma_uint8 id)
{
switch (id)
{
case MA_CHANNEL_MONO: return SL_SPEAKER_FRONT_CENTER;
case MA_CHANNEL_FRONT_LEFT: return SL_SPEAKER_FRONT_LEFT;
case MA_CHANNEL_FRONT_RIGHT: return SL_SPEAKER_FRONT_RIGHT;
case MA_CHANNEL_FRONT_CENTER: return SL_SPEAKER_FRONT_CENTER;
case MA_CHANNEL_LFE: return SL_SPEAKER_LOW_FREQUENCY;
case MA_CHANNEL_BACK_LEFT: return SL_SPEAKER_BACK_LEFT;
case MA_CHANNEL_BACK_RIGHT: return SL_SPEAKER_BACK_RIGHT;
case MA_CHANNEL_FRONT_LEFT_CENTER: return SL_SPEAKER_FRONT_LEFT_OF_CENTER;
case MA_CHANNEL_FRONT_RIGHT_CENTER: return SL_SPEAKER_FRONT_RIGHT_OF_CENTER;
case MA_CHANNEL_BACK_CENTER: return SL_SPEAKER_BACK_CENTER;
case MA_CHANNEL_SIDE_LEFT: return SL_SPEAKER_SIDE_LEFT;
case MA_CHANNEL_SIDE_RIGHT: return SL_SPEAKER_SIDE_RIGHT;
case MA_CHANNEL_TOP_CENTER: return SL_SPEAKER_TOP_CENTER;
case MA_CHANNEL_TOP_FRONT_LEFT: return SL_SPEAKER_TOP_FRONT_LEFT;
case MA_CHANNEL_TOP_FRONT_CENTER: return SL_SPEAKER_TOP_FRONT_CENTER;
case MA_CHANNEL_TOP_FRONT_RIGHT: return SL_SPEAKER_TOP_FRONT_RIGHT;
case MA_CHANNEL_TOP_BACK_LEFT: return SL_SPEAKER_TOP_BACK_LEFT;
case MA_CHANNEL_TOP_BACK_CENTER: return SL_SPEAKER_TOP_BACK_CENTER;
case MA_CHANNEL_TOP_BACK_RIGHT: return SL_SPEAKER_TOP_BACK_RIGHT;
default: return 0;
}
}
/* Converts a channel mapping to an OpenSL-style channel mask. */
static SLuint32 ma_channel_map_to_channel_mask__opensl(const ma_channel channelMap[MA_MAX_CHANNELS], ma_uint32 channels)
{
SLuint32 channelMask = 0;
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
channelMask |= ma_channel_id_to_opensl(channelMap[iChannel]);
}
return channelMask;
}
/* Converts an OpenSL-style channel mask to a miniaudio channel map. */
static void ma_channel_mask_to_channel_map__opensl(SLuint32 channelMask, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
if (channels == 1 && channelMask == 0) {
channelMap[0] = MA_CHANNEL_MONO;
} else if (channels == 2 && channelMask == 0) {
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
} else {
if (channels == 1 && (channelMask & SL_SPEAKER_FRONT_CENTER) != 0) {
channelMap[0] = MA_CHANNEL_MONO;
} else {
/* Just iterate over each bit. */
ma_uint32 iChannel = 0;
ma_uint32 iBit;
for (iBit = 0; iBit < 32; ++iBit) {
SLuint32 bitValue = (channelMask & (1UL << iBit));
if (bitValue != 0) {
/* The bit is set. */
channelMap[iChannel] = ma_channel_id_to_ma__opensl(bitValue);
iChannel += 1;
}
}
}
}
}
static SLuint32 ma_round_to_standard_sample_rate__opensl(SLuint32 samplesPerSec)
{
if (samplesPerSec <= SL_SAMPLINGRATE_8) {
return SL_SAMPLINGRATE_8;
}
if (samplesPerSec <= SL_SAMPLINGRATE_11_025) {
return SL_SAMPLINGRATE_11_025;
}
if (samplesPerSec <= SL_SAMPLINGRATE_12) {
return SL_SAMPLINGRATE_12;
}
if (samplesPerSec <= SL_SAMPLINGRATE_16) {
return SL_SAMPLINGRATE_16;
}
if (samplesPerSec <= SL_SAMPLINGRATE_22_05) {
return SL_SAMPLINGRATE_22_05;
}
if (samplesPerSec <= SL_SAMPLINGRATE_24) {
return SL_SAMPLINGRATE_24;
}
if (samplesPerSec <= SL_SAMPLINGRATE_32) {
return SL_SAMPLINGRATE_32;
}
if (samplesPerSec <= SL_SAMPLINGRATE_44_1) {
return SL_SAMPLINGRATE_44_1;
}
if (samplesPerSec <= SL_SAMPLINGRATE_48) {
return SL_SAMPLINGRATE_48;
}
/* Android doesn't support more than 48000. */
#ifndef MA_ANDROID
if (samplesPerSec <= SL_SAMPLINGRATE_64) {
return SL_SAMPLINGRATE_64;
}
if (samplesPerSec <= SL_SAMPLINGRATE_88_2) {
return SL_SAMPLINGRATE_88_2;
}
if (samplesPerSec <= SL_SAMPLINGRATE_96) {
return SL_SAMPLINGRATE_96;
}
if (samplesPerSec <= SL_SAMPLINGRATE_192) {
return SL_SAMPLINGRATE_192;
}
#endif
return SL_SAMPLINGRATE_16;
}
static ma_bool32 ma_context_is_device_id_equal__opensl(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return pID0->opensl == pID1->opensl;
}
static ma_result ma_context_enumerate_devices__opensl(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to enumerate devices. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
/*
TODO: Test Me.
This is currently untested, so for now we are just returning default devices.
*/
#if 0 && !defined(MA_ANDROID)
ma_bool32 isTerminated = MA_FALSE;
SLuint32 pDeviceIDs[128];
SLint32 deviceCount = sizeof(pDeviceIDs) / sizeof(pDeviceIDs[0]);
SLAudioIODeviceCapabilitiesItf deviceCaps;
SLresult resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, SL_IID_AUDIOIODEVICECAPABILITIES, &deviceCaps);
if (resultSL != SL_RESULT_SUCCESS) {
/* The interface may not be supported so just report a default device. */
goto return_default_device;
}
/* Playback */
if (!isTerminated) {
resultSL = (*deviceCaps)->GetAvailableAudioOutputs(deviceCaps, &deviceCount, pDeviceIDs);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_result_from_OpenSL(resultSL);
}
for (SLint32 iDevice = 0; iDevice < deviceCount; ++iDevice) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.opensl = pDeviceIDs[iDevice];
SLAudioOutputDescriptor desc;
resultSL = (*deviceCaps)->QueryAudioOutputCapabilities(deviceCaps, deviceInfo.id.opensl, &desc);
if (resultSL == SL_RESULT_SUCCESS) {
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), (const char*)desc.pDeviceName, (size_t)-1);
ma_bool32 cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
if (cbResult == MA_FALSE) {
isTerminated = MA_TRUE;
break;
}
}
}
}
/* Capture */
if (!isTerminated) {
resultSL = (*deviceCaps)->GetAvailableAudioInputs(deviceCaps, &deviceCount, pDeviceIDs);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_result_from_OpenSL(resultSL);
}
for (SLint32 iDevice = 0; iDevice < deviceCount; ++iDevice) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
deviceInfo.id.opensl = pDeviceIDs[iDevice];
SLAudioInputDescriptor desc;
resultSL = (*deviceCaps)->QueryAudioInputCapabilities(deviceCaps, deviceInfo.id.opensl, &desc);
if (resultSL == SL_RESULT_SUCCESS) {
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), (const char*)desc.deviceName, (size_t)-1);
ma_bool32 cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
if (cbResult == MA_FALSE) {
isTerminated = MA_TRUE;
break;
}
}
}
}
return MA_SUCCESS;
#else
goto return_default_device;
#endif
return_default_device:;
cbResult = MA_TRUE;
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
/* Capture. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__opensl(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to get device info. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
/* No exclusive mode with OpenSL|ES. */
if (shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
/*
TODO: Test Me.
This is currently untested, so for now we are just returning default devices.
*/
#if 0 && !defined(MA_ANDROID)
SLAudioIODeviceCapabilitiesItf deviceCaps;
SLresult resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, SL_IID_AUDIOIODEVICECAPABILITIES, &deviceCaps);
if (resultSL != SL_RESULT_SUCCESS) {
/* The interface may not be supported so just report a default device. */
goto return_default_device;
}
if (deviceType == ma_device_type_playback) {
SLAudioOutputDescriptor desc;
resultSL = (*deviceCaps)->QueryAudioOutputCapabilities(deviceCaps, pDeviceID->opensl, &desc);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_result_from_OpenSL(resultSL);
}
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), (const char*)desc.pDeviceName, (size_t)-1);
} else {
SLAudioInputDescriptor desc;
resultSL = (*deviceCaps)->QueryAudioInputCapabilities(deviceCaps, pDeviceID->opensl, &desc);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_result_from_OpenSL(resultSL);
}
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), (const char*)desc.deviceName, (size_t)-1);
}
goto return_detailed_info;
#else
goto return_default_device;
#endif
return_default_device:
if (pDeviceID != NULL) {
if ((deviceType == ma_device_type_playback && pDeviceID->opensl != SL_DEFAULTDEVICEID_AUDIOOUTPUT) ||
(deviceType == ma_device_type_capture && pDeviceID->opensl != SL_DEFAULTDEVICEID_AUDIOINPUT)) {
return MA_NO_DEVICE; /* Don't know the device. */
}
}
/* Name / Description */
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
}
goto return_detailed_info;
return_detailed_info:
/*
For now we're just outputting a set of values that are supported by the API but not necessarily supported
by the device natively. Later on we should work on this so that it more closely reflects the device's
actual native format.
*/
pDeviceInfo->minChannels = 1;
pDeviceInfo->maxChannels = 2;
pDeviceInfo->minSampleRate = 8000;
pDeviceInfo->maxSampleRate = 48000;
pDeviceInfo->formatCount = 2;
pDeviceInfo->formats[0] = ma_format_u8;
pDeviceInfo->formats[1] = ma_format_s16;
#if defined(MA_ANDROID) && __ANDROID_API__ >= 21
pDeviceInfo->formats[pDeviceInfo->formatCount] = ma_format_f32;
pDeviceInfo->formatCount += 1;
#endif
return MA_SUCCESS;
}
#ifdef MA_ANDROID
/*void ma_buffer_queue_callback_capture__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, SLuint32 eventFlags, const void* pBuffer, SLuint32 bufferSize, SLuint32 dataUsed, void* pContext)*/
static void ma_buffer_queue_callback_capture__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, void* pUserData)
{
ma_device* pDevice = (ma_device*)pUserData;
size_t periodSizeInBytes;
ma_uint8* pBuffer;
SLresult resultSL;
MA_ASSERT(pDevice != NULL);
(void)pBufferQueue;
/*
For now, don't do anything unless the buffer was fully processed. From what I can tell, it looks like
OpenSL|ES 1.1 improves on buffer queues to the point that we could much more intelligently handle this,
but unfortunately it looks like Android is only supporting OpenSL|ES 1.0.1 for now :(
*/
/* Don't do anything if the device is not started. */
if (pDevice->state != MA_STATE_STARTED) {
return;
}
/* Don't do anything if the device is being drained. */
if (pDevice->opensl.isDrainingCapture) {
return;
}
periodSizeInBytes = pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
pBuffer = pDevice->opensl.pBufferCapture + (pDevice->opensl.currentBufferIndexCapture * periodSizeInBytes);
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_capture(pDevice, pDevice->capture.internalPeriodSizeInFrames, pBuffer, &pDevice->opensl.duplexRB);
} else {
ma_device__send_frames_to_client(pDevice, pDevice->capture.internalPeriodSizeInFrames, pBuffer);
}
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, pBuffer, periodSizeInBytes);
if (resultSL != SL_RESULT_SUCCESS) {
return;
}
pDevice->opensl.currentBufferIndexCapture = (pDevice->opensl.currentBufferIndexCapture + 1) % pDevice->capture.internalPeriods;
}
static void ma_buffer_queue_callback_playback__opensl_android(SLAndroidSimpleBufferQueueItf pBufferQueue, void* pUserData)
{
ma_device* pDevice = (ma_device*)pUserData;
size_t periodSizeInBytes;
ma_uint8* pBuffer;
SLresult resultSL;
MA_ASSERT(pDevice != NULL);
(void)pBufferQueue;
/* Don't do anything if the device is not started. */
if (pDevice->state != MA_STATE_STARTED) {
return;
}
/* Don't do anything if the device is being drained. */
if (pDevice->opensl.isDrainingPlayback) {
return;
}
periodSizeInBytes = pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
pBuffer = pDevice->opensl.pBufferPlayback + (pDevice->opensl.currentBufferIndexPlayback * periodSizeInBytes);
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_playback(pDevice, pDevice->playback.internalPeriodSizeInFrames, pBuffer, &pDevice->opensl.duplexRB);
} else {
ma_device__read_frames_from_client(pDevice, pDevice->playback.internalPeriodSizeInFrames, pBuffer);
}
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, pBuffer, periodSizeInBytes);
if (resultSL != SL_RESULT_SUCCESS) {
return;
}
pDevice->opensl.currentBufferIndexPlayback = (pDevice->opensl.currentBufferIndexPlayback + 1) % pDevice->playback.internalPeriods;
}
#endif
static void ma_device_uninit__opensl(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it before uninitializing the device. */
if (g_maOpenSLInitCounter == 0) {
return;
}
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
if (pDevice->opensl.pAudioRecorderObj) {
MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->Destroy((SLObjectItf)pDevice->opensl.pAudioRecorderObj);
}
ma__free_from_callbacks(pDevice->opensl.pBufferCapture, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
if (pDevice->opensl.pAudioPlayerObj) {
MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->Destroy((SLObjectItf)pDevice->opensl.pAudioPlayerObj);
}
if (pDevice->opensl.pOutputMixObj) {
MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->Destroy((SLObjectItf)pDevice->opensl.pOutputMixObj);
}
ma__free_from_callbacks(pDevice->opensl.pBufferPlayback, &pDevice->pContext->allocationCallbacks);
}
if (pDevice->type == ma_device_type_duplex) {
ma_pcm_rb_uninit(&pDevice->opensl.duplexRB);
}
}
#if defined(MA_ANDROID) && __ANDROID_API__ >= 21
typedef SLAndroidDataFormat_PCM_EX ma_SLDataFormat_PCM;
#else
typedef SLDataFormat_PCM ma_SLDataFormat_PCM;
#endif
static ma_result ma_SLDataFormat_PCM_init__opensl(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, const ma_channel* channelMap, ma_SLDataFormat_PCM* pDataFormat)
{
#if defined(MA_ANDROID) && __ANDROID_API__ >= 21
if (format == ma_format_f32) {
pDataFormat->formatType = SL_ANDROID_DATAFORMAT_PCM_EX;
pDataFormat->representation = SL_ANDROID_PCM_REPRESENTATION_FLOAT;
} else {
pDataFormat->formatType = SL_DATAFORMAT_PCM;
}
#else
pDataFormat->formatType = SL_DATAFORMAT_PCM;
#endif
pDataFormat->numChannels = channels;
((SLDataFormat_PCM*)pDataFormat)->samplesPerSec = ma_round_to_standard_sample_rate__opensl(sampleRate * 1000); /* In millihertz. Annoyingly, the sample rate variable is named differently between SLAndroidDataFormat_PCM_EX and SLDataFormat_PCM */
pDataFormat->bitsPerSample = ma_get_bytes_per_sample(format)*8;
pDataFormat->channelMask = ma_channel_map_to_channel_mask__opensl(channelMap, channels);
pDataFormat->endianness = (ma_is_little_endian()) ? SL_BYTEORDER_LITTLEENDIAN : SL_BYTEORDER_BIGENDIAN;
/*
Android has a few restrictions on the format as documented here: https://developer.android.com/ndk/guides/audio/opensl-for-android.html
- Only mono and stereo is supported.
- Only u8 and s16 formats are supported.
- Maximum sample rate of 48000.
*/
#ifdef MA_ANDROID
if (pDataFormat->numChannels > 2) {
pDataFormat->numChannels = 2;
}
#if __ANDROID_API__ >= 21
if (pDataFormat->formatType == SL_ANDROID_DATAFORMAT_PCM_EX) {
/* It's floating point. */
MA_ASSERT(pDataFormat->representation == SL_ANDROID_PCM_REPRESENTATION_FLOAT);
if (pDataFormat->bitsPerSample > 32) {
pDataFormat->bitsPerSample = 32;
}
} else {
if (pDataFormat->bitsPerSample > 16) {
pDataFormat->bitsPerSample = 16;
}
}
#else
if (pDataFormat->bitsPerSample > 16) {
pDataFormat->bitsPerSample = 16;
}
#endif
if (((SLDataFormat_PCM*)pDataFormat)->samplesPerSec > SL_SAMPLINGRATE_48) {
((SLDataFormat_PCM*)pDataFormat)->samplesPerSec = SL_SAMPLINGRATE_48;
}
#endif
pDataFormat->containerSize = pDataFormat->bitsPerSample; /* Always tightly packed for now. */
return MA_SUCCESS;
}
static ma_result ma_deconstruct_SLDataFormat_PCM__opensl(ma_SLDataFormat_PCM* pDataFormat, ma_format* pFormat, ma_uint32* pChannels, ma_uint32* pSampleRate, ma_channel* pChannelMap)
{
ma_bool32 isFloatingPoint = MA_FALSE;
#if defined(MA_ANDROID) && __ANDROID_API__ >= 21
if (pDataFormat->formatType == SL_ANDROID_DATAFORMAT_PCM_EX) {
MA_ASSERT(pDataFormat->representation == SL_ANDROID_PCM_REPRESENTATION_FLOAT);
isFloatingPoint = MA_TRUE;
}
#endif
if (isFloatingPoint) {
if (pDataFormat->bitsPerSample == 32) {
*pFormat = ma_format_f32;
}
} else {
if (pDataFormat->bitsPerSample == 8) {
*pFormat = ma_format_u8;
} else if (pDataFormat->bitsPerSample == 16) {
*pFormat = ma_format_s16;
} else if (pDataFormat->bitsPerSample == 24) {
*pFormat = ma_format_s24;
} else if (pDataFormat->bitsPerSample == 32) {
*pFormat = ma_format_s32;
}
}
*pChannels = pDataFormat->numChannels;
*pSampleRate = ((SLDataFormat_PCM*)pDataFormat)->samplesPerSec / 1000;
ma_channel_mask_to_channel_map__opensl(pDataFormat->channelMask, pDataFormat->numChannels, pChannelMap);
return MA_SUCCESS;
}
static ma_result ma_device_init__opensl(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
#ifdef MA_ANDROID
SLDataLocator_AndroidSimpleBufferQueue queue;
SLresult resultSL;
ma_uint32 periodSizeInFrames;
size_t bufferSizeInBytes;
const SLInterfaceID itfIDs1[] = {SL_IID_ANDROIDSIMPLEBUFFERQUEUE};
const SLboolean itfIDsRequired1[] = {SL_BOOLEAN_TRUE};
#endif
(void)pContext;
MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to initialize a new device. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
/*
For now, only supporting Android implementations of OpenSL|ES since that's the only one I've
been able to test with and I currently depend on Android-specific extensions (simple buffer
queues).
*/
#ifdef MA_ANDROID
/* No exclusive mode with OpenSL|ES. */
if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) ||
((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
/* Now we can start initializing the device properly. */
MA_ASSERT(pDevice != NULL);
MA_ZERO_OBJECT(&pDevice->opensl);
queue.locatorType = SL_DATALOCATOR_ANDROIDSIMPLEBUFFERQUEUE;
queue.numBuffers = pConfig->periods;
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
ma_SLDataFormat_PCM pcm;
SLDataLocator_IODevice locatorDevice;
SLDataSource source;
SLDataSink sink;
ma_SLDataFormat_PCM_init__opensl(pConfig->capture.format, pConfig->capture.channels, pConfig->sampleRate, pConfig->capture.channelMap, &pcm);
locatorDevice.locatorType = SL_DATALOCATOR_IODEVICE;
locatorDevice.deviceType = SL_IODEVICE_AUDIOINPUT;
locatorDevice.deviceID = (pConfig->capture.pDeviceID == NULL) ? SL_DEFAULTDEVICEID_AUDIOINPUT : pConfig->capture.pDeviceID->opensl;
locatorDevice.device = NULL;
source.pLocator = &locatorDevice;
source.pFormat = NULL;
sink.pLocator = &queue;
sink.pFormat = (SLDataFormat_PCM*)&pcm;
resultSL = (*g_maEngineSL)->CreateAudioRecorder(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pAudioRecorderObj, &source, &sink, 1, itfIDs1, itfIDsRequired1);
if (resultSL == SL_RESULT_CONTENT_UNSUPPORTED) {
/* Unsupported format. Fall back to something safer and try again. If this fails, just abort. */
pcm.formatType = SL_DATAFORMAT_PCM;
pcm.numChannels = 1;
((SLDataFormat_PCM*)&pcm)->samplesPerSec = SL_SAMPLINGRATE_16; /* The name of the sample rate variable is different between SLAndroidDataFormat_PCM_EX and SLDataFormat_PCM. */
pcm.bitsPerSample = 16;
pcm.containerSize = pcm.bitsPerSample; /* Always tightly packed for now. */
pcm.channelMask = SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;
resultSL = (*g_maEngineSL)->CreateAudioRecorder(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pAudioRecorderObj, &source, &sink, 1, itfIDs1, itfIDsRequired1);
}
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio recorder.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->Realize((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_BOOLEAN_FALSE);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio recorder.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_IID_RECORD, &pDevice->opensl.pAudioRecorder);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_RECORD interface.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioRecorderObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioRecorderObj, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueueCapture);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->RegisterCallback((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, ma_buffer_queue_callback_capture__opensl_android, pDevice);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to register buffer queue callback.", ma_result_from_OpenSL(resultSL));
}
/* The internal format is determined by the "pcm" object. */
ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDevice->capture.internalFormat, &pDevice->capture.internalChannels, &pDevice->capture.internalSampleRate, pDevice->capture.internalChannelMap);
/* Buffer. */
periodSizeInFrames = pConfig->periodSizeInFrames;
if (periodSizeInFrames == 0) {
periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pDevice->capture.internalSampleRate);
}
pDevice->capture.internalPeriods = pConfig->periods;
pDevice->capture.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->opensl.currentBufferIndexCapture = 0;
bufferSizeInBytes = pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels) * pDevice->capture.internalPeriods;
pDevice->opensl.pBufferCapture = (ma_uint8*)ma__calloc_from_callbacks(bufferSizeInBytes, &pContext->allocationCallbacks);
if (pDevice->opensl.pBufferCapture == NULL) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to allocate memory for data buffer.", MA_OUT_OF_MEMORY);
}
MA_ZERO_MEMORY(pDevice->opensl.pBufferCapture, bufferSizeInBytes);
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
ma_SLDataFormat_PCM pcm;
SLDataSource source;
SLDataLocator_OutputMix outmixLocator;
SLDataSink sink;
ma_SLDataFormat_PCM_init__opensl(pConfig->playback.format, pConfig->playback.channels, pConfig->sampleRate, pConfig->playback.channelMap, &pcm);
resultSL = (*g_maEngineSL)->CreateOutputMix(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pOutputMixObj, 0, NULL, NULL);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create output mix.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->Realize((SLObjectItf)pDevice->opensl.pOutputMixObj, SL_BOOLEAN_FALSE);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize output mix object.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_OBJ(pDevice->opensl.pOutputMixObj)->GetInterface((SLObjectItf)pDevice->opensl.pOutputMixObj, SL_IID_OUTPUTMIX, &pDevice->opensl.pOutputMix);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_OUTPUTMIX interface.", ma_result_from_OpenSL(resultSL));
}
/* Set the output device. */
if (pConfig->playback.pDeviceID != NULL) {
SLuint32 deviceID_OpenSL = pConfig->playback.pDeviceID->opensl;
MA_OPENSL_OUTPUTMIX(pDevice->opensl.pOutputMix)->ReRoute((SLOutputMixItf)pDevice->opensl.pOutputMix, 1, &deviceID_OpenSL);
}
source.pLocator = &queue;
source.pFormat = (SLDataFormat_PCM*)&pcm;
outmixLocator.locatorType = SL_DATALOCATOR_OUTPUTMIX;
outmixLocator.outputMix = (SLObjectItf)pDevice->opensl.pOutputMixObj;
sink.pLocator = &outmixLocator;
sink.pFormat = NULL;
resultSL = (*g_maEngineSL)->CreateAudioPlayer(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pAudioPlayerObj, &source, &sink, 1, itfIDs1, itfIDsRequired1);
if (resultSL == SL_RESULT_CONTENT_UNSUPPORTED) {
/* Unsupported format. Fall back to something safer and try again. If this fails, just abort. */
pcm.formatType = SL_DATAFORMAT_PCM;
pcm.numChannels = 2;
((SLDataFormat_PCM*)&pcm)->samplesPerSec = SL_SAMPLINGRATE_16;
pcm.bitsPerSample = 16;
pcm.containerSize = pcm.bitsPerSample; /* Always tightly packed for now. */
pcm.channelMask = SL_SPEAKER_FRONT_LEFT | SL_SPEAKER_FRONT_RIGHT;
resultSL = (*g_maEngineSL)->CreateAudioPlayer(g_maEngineSL, (SLObjectItf*)&pDevice->opensl.pAudioPlayerObj, &source, &sink, 1, itfIDs1, itfIDsRequired1);
}
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to create audio player.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->Realize((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_BOOLEAN_FALSE);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to realize audio player.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_IID_PLAY, &pDevice->opensl.pAudioPlayer);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_PLAY interface.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_OBJ(pDevice->opensl.pAudioPlayerObj)->GetInterface((SLObjectItf)pDevice->opensl.pAudioPlayerObj, SL_IID_ANDROIDSIMPLEBUFFERQUEUE, &pDevice->opensl.pBufferQueuePlayback);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to retrieve SL_IID_ANDROIDSIMPLEBUFFERQUEUE interface.", ma_result_from_OpenSL(resultSL));
}
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->RegisterCallback((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, ma_buffer_queue_callback_playback__opensl_android, pDevice);
if (resultSL != SL_RESULT_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to register buffer queue callback.", ma_result_from_OpenSL(resultSL));
}
/* The internal format is determined by the "pcm" object. */
ma_deconstruct_SLDataFormat_PCM__opensl(&pcm, &pDevice->playback.internalFormat, &pDevice->playback.internalChannels, &pDevice->playback.internalSampleRate, pDevice->playback.internalChannelMap);
/* Buffer. */
periodSizeInFrames = pConfig->periodSizeInFrames;
if (periodSizeInFrames == 0) {
periodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pDevice->playback.internalSampleRate);
}
pDevice->playback.internalPeriods = pConfig->periods;
pDevice->playback.internalPeriodSizeInFrames = periodSizeInFrames;
pDevice->opensl.currentBufferIndexPlayback = 0;
bufferSizeInBytes = pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels) * pDevice->playback.internalPeriods;
pDevice->opensl.pBufferPlayback = (ma_uint8*)ma__calloc_from_callbacks(bufferSizeInBytes, &pContext->allocationCallbacks);
if (pDevice->opensl.pBufferPlayback == NULL) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to allocate memory for data buffer.", MA_OUT_OF_MEMORY);
}
MA_ZERO_MEMORY(pDevice->opensl.pBufferPlayback, bufferSizeInBytes);
}
if (pConfig->deviceType == ma_device_type_duplex) {
ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames) * pDevice->capture.internalPeriods;
ma_result result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->opensl.duplexRB);
if (result != MA_SUCCESS) {
ma_device_uninit__opensl(pDevice);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to initialize ring buffer.", result);
}
/* We need a period to act as a buffer for cases where the playback and capture device's end up desyncing. */
{
ma_uint32 marginSizeInFrames = rbSizeInFrames / pDevice->capture.internalPeriods;
void* pMarginData;
ma_pcm_rb_acquire_write(&pDevice->opensl.duplexRB, &marginSizeInFrames, &pMarginData);
{
MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->opensl.duplexRB, marginSizeInFrames, pMarginData);
}
}
return MA_SUCCESS;
#else
return MA_NO_BACKEND; /* Non-Android implementations are not supported. */
#endif
}
static ma_result ma_device_start__opensl(ma_device* pDevice)
{
SLresult resultSL;
size_t periodSizeInBytes;
ma_uint32 iPeriod;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it and then attempted to start the device. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
resultSL = MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_RECORDING);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to start internal capture device.", ma_result_from_OpenSL(resultSL));
}
periodSizeInBytes = pDevice->capture.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.internalFormat, pDevice->capture.internalChannels);
for (iPeriod = 0; iPeriod < pDevice->capture.internalPeriods; ++iPeriod) {
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture, pDevice->opensl.pBufferCapture + (periodSizeInBytes * iPeriod), periodSizeInBytes);
if (resultSL != SL_RESULT_SUCCESS) {
MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_STOPPED);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to enqueue buffer for capture device.", ma_result_from_OpenSL(resultSL));
}
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
resultSL = MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_PLAYING);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to start internal playback device.", ma_result_from_OpenSL(resultSL));
}
/* In playback mode (no duplex) we need to load some initial buffers. In duplex mode we need to enqueu silent buffers. */
if (pDevice->type == ma_device_type_duplex) {
MA_ZERO_MEMORY(pDevice->opensl.pBufferPlayback, pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels));
} else {
ma_device__read_frames_from_client(pDevice, pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods, pDevice->opensl.pBufferPlayback);
}
periodSizeInBytes = pDevice->playback.internalPeriodSizeInFrames * ma_get_bytes_per_frame(pDevice->playback.internalFormat, pDevice->playback.internalChannels);
for (iPeriod = 0; iPeriod < pDevice->playback.internalPeriods; ++iPeriod) {
resultSL = MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Enqueue((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback, pDevice->opensl.pBufferPlayback + (periodSizeInBytes * iPeriod), periodSizeInBytes);
if (resultSL != SL_RESULT_SUCCESS) {
MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_STOPPED);
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to enqueue buffer for playback device.", ma_result_from_OpenSL(resultSL));
}
}
}
return MA_SUCCESS;
}
static ma_result ma_device_drain__opensl(ma_device* pDevice, ma_device_type deviceType)
{
SLAndroidSimpleBufferQueueItf pBufferQueue;
MA_ASSERT(deviceType == ma_device_type_capture || deviceType == ma_device_type_playback);
if (pDevice->type == ma_device_type_capture) {
pBufferQueue = (SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture;
pDevice->opensl.isDrainingCapture = MA_TRUE;
} else {
pBufferQueue = (SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback;
pDevice->opensl.isDrainingPlayback = MA_TRUE;
}
for (;;) {
SLAndroidSimpleBufferQueueState state;
MA_OPENSL_BUFFERQUEUE(pBufferQueue)->GetState(pBufferQueue, &state);
if (state.count == 0) {
break;
}
ma_sleep(10);
}
if (pDevice->type == ma_device_type_capture) {
pDevice->opensl.isDrainingCapture = MA_FALSE;
} else {
pDevice->opensl.isDrainingPlayback = MA_FALSE;
}
return MA_SUCCESS;
}
static ma_result ma_device_stop__opensl(ma_device* pDevice)
{
SLresult resultSL;
ma_stop_proc onStop;
MA_ASSERT(pDevice != NULL);
MA_ASSERT(g_maOpenSLInitCounter > 0); /* <-- If you trigger this it means you've either not initialized the context, or you've uninitialized it before stopping/uninitializing the device. */
if (g_maOpenSLInitCounter == 0) {
return MA_INVALID_OPERATION;
}
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_device_drain__opensl(pDevice, ma_device_type_capture);
resultSL = MA_OPENSL_RECORD(pDevice->opensl.pAudioRecorder)->SetRecordState((SLRecordItf)pDevice->opensl.pAudioRecorder, SL_RECORDSTATE_STOPPED);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal capture device.", ma_result_from_OpenSL(resultSL));
}
MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueueCapture)->Clear((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueueCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_device_drain__opensl(pDevice, ma_device_type_playback);
resultSL = MA_OPENSL_PLAY(pDevice->opensl.pAudioPlayer)->SetPlayState((SLPlayItf)pDevice->opensl.pAudioPlayer, SL_PLAYSTATE_STOPPED);
if (resultSL != SL_RESULT_SUCCESS) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "[OpenSL] Failed to stop internal playback device.", ma_result_from_OpenSL(resultSL));
}
MA_OPENSL_BUFFERQUEUE(pDevice->opensl.pBufferQueuePlayback)->Clear((SLAndroidSimpleBufferQueueItf)pDevice->opensl.pBufferQueuePlayback);
}
/* Make sure the client is aware that the device has stopped. There may be an OpenSL|ES callback for this, but I haven't found it. */
onStop = pDevice->onStop;
if (onStop) {
onStop(pDevice);
}
return MA_SUCCESS;
}
static ma_result ma_context_uninit__opensl(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_opensl);
(void)pContext;
/* Uninit global data. */
if (g_maOpenSLInitCounter > 0) {
if (c89atomic_fetch_sub_32(&g_maOpenSLInitCounter, 1) == 1) {
(*g_maEngineObjectSL)->Destroy(g_maEngineObjectSL);
}
}
return MA_SUCCESS;
}
static ma_result ma_context_init__opensl(const ma_context_config* pConfig, ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
(void)pConfig;
/* Initialize global data first if applicable. */
if (c89atomic_fetch_add_32(&g_maOpenSLInitCounter, 1) == 0) {
SLresult resultSL = slCreateEngine(&g_maEngineObjectSL, 0, NULL, 0, NULL, NULL);
if (resultSL != SL_RESULT_SUCCESS) {
c89atomic_fetch_sub_32(&g_maOpenSLInitCounter, 1);
return ma_result_from_OpenSL(resultSL);
}
(*g_maEngineObjectSL)->Realize(g_maEngineObjectSL, SL_BOOLEAN_FALSE);
resultSL = (*g_maEngineObjectSL)->GetInterface(g_maEngineObjectSL, SL_IID_ENGINE, &g_maEngineSL);
if (resultSL != SL_RESULT_SUCCESS) {
(*g_maEngineObjectSL)->Destroy(g_maEngineObjectSL);
c89atomic_fetch_sub_32(&g_maOpenSLInitCounter, 1);
return ma_result_from_OpenSL(resultSL);
}
}
pContext->isBackendAsynchronous = MA_TRUE;
pContext->onUninit = ma_context_uninit__opensl;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__opensl;
pContext->onEnumDevices = ma_context_enumerate_devices__opensl;
pContext->onGetDeviceInfo = ma_context_get_device_info__opensl;
pContext->onDeviceInit = ma_device_init__opensl;
pContext->onDeviceUninit = ma_device_uninit__opensl;
pContext->onDeviceStart = ma_device_start__opensl;
pContext->onDeviceStop = ma_device_stop__opensl;
return MA_SUCCESS;
}
#endif /* OpenSL|ES */
/******************************************************************************
Web Audio Backend
******************************************************************************/
#ifdef MA_HAS_WEBAUDIO
#include <emscripten/emscripten.h>
static ma_bool32 ma_is_capture_supported__webaudio()
{
return EM_ASM_INT({
return (navigator.mediaDevices !== undefined && navigator.mediaDevices.getUserMedia !== undefined);
}, 0) != 0; /* Must pass in a dummy argument for C99 compatibility. */
}
#ifdef __cplusplus
extern "C" {
#endif
void EMSCRIPTEN_KEEPALIVE ma_device_process_pcm_frames_capture__webaudio(ma_device* pDevice, int frameCount, float* pFrames)
{
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_capture(pDevice, (ma_uint32)frameCount, pFrames, &pDevice->webaudio.duplexRB);
} else {
ma_device__send_frames_to_client(pDevice, (ma_uint32)frameCount, pFrames); /* Send directly to the client. */
}
}
void EMSCRIPTEN_KEEPALIVE ma_device_process_pcm_frames_playback__webaudio(ma_device* pDevice, int frameCount, float* pFrames)
{
if (pDevice->type == ma_device_type_duplex) {
ma_device__handle_duplex_callback_playback(pDevice, (ma_uint32)frameCount, pFrames, &pDevice->webaudio.duplexRB);
} else {
ma_device__read_frames_from_client(pDevice, (ma_uint32)frameCount, pFrames); /* Read directly from the device. */
}
}
#ifdef __cplusplus
}
#endif
static ma_bool32 ma_context_is_device_id_equal__webaudio(ma_context* pContext, const ma_device_id* pID0, const ma_device_id* pID1)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pID0 != NULL);
MA_ASSERT(pID1 != NULL);
(void)pContext;
return ma_strcmp(pID0->webaudio, pID1->webaudio) == 0;
}
static ma_result ma_context_enumerate_devices__webaudio(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_bool32 cbResult = MA_TRUE;
MA_ASSERT(pContext != NULL);
MA_ASSERT(callback != NULL);
/* Only supporting default devices for now. */
/* Playback. */
if (cbResult) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_playback, &deviceInfo, pUserData);
}
/* Capture. */
if (cbResult) {
if (ma_is_capture_supported__webaudio()) {
ma_device_info deviceInfo;
MA_ZERO_OBJECT(&deviceInfo);
ma_strncpy_s(deviceInfo.name, sizeof(deviceInfo.name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
cbResult = callback(pContext, ma_device_type_capture, &deviceInfo, pUserData);
}
}
return MA_SUCCESS;
}
static ma_result ma_context_get_device_info__webaudio(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
MA_ASSERT(pContext != NULL);
/* No exclusive mode with Web Audio. */
if (shareMode == ma_share_mode_exclusive) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
if (deviceType == ma_device_type_capture && !ma_is_capture_supported__webaudio()) {
return MA_NO_DEVICE;
}
MA_ZERO_MEMORY(pDeviceInfo->id.webaudio, sizeof(pDeviceInfo->id.webaudio));
/* Only supporting default devices for now. */
(void)pDeviceID;
if (deviceType == ma_device_type_playback) {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_PLAYBACK_DEVICE_NAME, (size_t)-1);
} else {
ma_strncpy_s(pDeviceInfo->name, sizeof(pDeviceInfo->name), MA_DEFAULT_CAPTURE_DEVICE_NAME, (size_t)-1);
}
/* Web Audio can support any number of channels and sample rates. It only supports f32 formats, however. */
pDeviceInfo->minChannels = 1;
pDeviceInfo->maxChannels = MA_MAX_CHANNELS;
if (pDeviceInfo->maxChannels > 32) {
pDeviceInfo->maxChannels = 32; /* Maximum output channel count is 32 for createScriptProcessor() (JavaScript). */
}
/* We can query the sample rate by just using a temporary audio context. */
pDeviceInfo->minSampleRate = EM_ASM_INT({
try {
var temp = new (window.AudioContext || window.webkitAudioContext)();
var sampleRate = temp.sampleRate;
temp.close();
return sampleRate;
} catch(e) {
return 0;
}
}, 0); /* Must pass in a dummy argument for C99 compatibility. */
pDeviceInfo->maxSampleRate = pDeviceInfo->minSampleRate;
if (pDeviceInfo->minSampleRate == 0) {
return MA_NO_DEVICE;
}
/* Web Audio only supports f32. */
pDeviceInfo->formatCount = 1;
pDeviceInfo->formats[0] = ma_format_f32;
return MA_SUCCESS;
}
static void ma_device_uninit_by_index__webaudio(ma_device* pDevice, ma_device_type deviceType, int deviceIndex)
{
MA_ASSERT(pDevice != NULL);
EM_ASM({
var device = miniaudio.get_device_by_index($0);
/* Make sure all nodes are disconnected and marked for collection. */
if (device.scriptNode !== undefined) {
device.scriptNode.onaudioprocess = function(e) {}; /* We want to reset the callback to ensure it doesn't get called after AudioContext.close() has returned. Shouldn't happen since we're disconnecting, but just to be safe... */
device.scriptNode.disconnect();
device.scriptNode = undefined;
}
if (device.streamNode !== undefined) {
device.streamNode.disconnect();
device.streamNode = undefined;
}
/*
Stop the device. I think there is a chance the callback could get fired after calling this, hence why we want
to clear the callback before closing.
*/
device.webaudio.close();
device.webaudio = undefined;
/* Can't forget to free the intermediary buffer. This is the buffer that's shared between JavaScript and C. */
if (device.intermediaryBuffer !== undefined) {
Module._free(device.intermediaryBuffer);
device.intermediaryBuffer = undefined;
device.intermediaryBufferView = undefined;
device.intermediaryBufferSizeInBytes = undefined;
}
/* Make sure the device is untracked so the slot can be reused later. */
miniaudio.untrack_device_by_index($0);
}, deviceIndex, deviceType);
}
static void ma_device_uninit__webaudio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_capture, pDevice->webaudio.indexCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_playback, pDevice->webaudio.indexPlayback);
}
if (pDevice->type == ma_device_type_duplex) {
ma_pcm_rb_uninit(&pDevice->webaudio.duplexRB);
}
}
static ma_result ma_device_init_by_type__webaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device_type deviceType, ma_device* pDevice)
{
int deviceIndex;
ma_uint32 internalPeriodSizeInFrames;
MA_ASSERT(pContext != NULL);
MA_ASSERT(pConfig != NULL);
MA_ASSERT(deviceType != ma_device_type_duplex);
MA_ASSERT(pDevice != NULL);
if (deviceType == ma_device_type_capture && !ma_is_capture_supported__webaudio()) {
return MA_NO_DEVICE;
}
/* Try calculating an appropriate buffer size. */
internalPeriodSizeInFrames = pConfig->periodSizeInFrames;
if (internalPeriodSizeInFrames == 0) {
internalPeriodSizeInFrames = ma_calculate_buffer_size_in_frames_from_milliseconds(pConfig->periodSizeInMilliseconds, pConfig->sampleRate);
}
/* The size of the buffer must be a power of 2 and between 256 and 16384. */
if (internalPeriodSizeInFrames < 256) {
internalPeriodSizeInFrames = 256;
} else if (internalPeriodSizeInFrames > 16384) {
internalPeriodSizeInFrames = 16384;
} else {
internalPeriodSizeInFrames = ma_next_power_of_2(internalPeriodSizeInFrames);
}
/* We create the device on the JavaScript side and reference it using an index. We use this to make it possible to reference the device between JavaScript and C. */
deviceIndex = EM_ASM_INT({
var channels = $0;
var sampleRate = $1;
var bufferSize = $2; /* In PCM frames. */
var isCapture = $3;
var pDevice = $4;
if (typeof(miniaudio) === 'undefined') {
return -1; /* Context not initialized. */
}
var device = {};
/* The AudioContext must be created in a suspended state. */
device.webaudio = new (window.AudioContext || window.webkitAudioContext)({sampleRate:sampleRate});
device.webaudio.suspend();
/*
We need an intermediary buffer which we use for JavaScript and C interop. This buffer stores interleaved f32 PCM data. Because it's passed between
JavaScript and C it needs to be allocated and freed using Module._malloc() and Module._free().
*/
device.intermediaryBufferSizeInBytes = channels * bufferSize * 4;
device.intermediaryBuffer = Module._malloc(device.intermediaryBufferSizeInBytes);
device.intermediaryBufferView = new Float32Array(Module.HEAPF32.buffer, device.intermediaryBuffer, device.intermediaryBufferSizeInBytes);
/*
Both playback and capture devices use a ScriptProcessorNode for performing per-sample operations.
ScriptProcessorNode is actually deprecated so this is likely to be temporary. The way this works for playback is very simple. You just set a callback
that's periodically fired, just like a normal audio callback function. But apparently this design is "flawed" and is now deprecated in favour of
something called AudioWorklets which _forces_ you to load a _separate_ .js file at run time... nice... Hopefully ScriptProcessorNode will continue to
work for years to come, but this may need to change to use AudioSourceBufferNode instead, which I think is what Emscripten uses for it's built-in SDL
implementation. I'll be avoiding that insane AudioWorklet API like the plague...
For capture it is a bit unintuitive. We use the ScriptProccessorNode _only_ to get the raw PCM data. It is connected to an AudioContext just like the
playback case, however we just output silence to the AudioContext instead of passing any real data. It would make more sense to me to use the
MediaRecorder API, but unfortunately you need to specify a MIME time (Opus, Vorbis, etc.) for the binary blob that's returned to the client, but I've
been unable to figure out how to get this as raw PCM. The closest I can think is to use the MIME type for WAV files and just parse it, but I don't know
how well this would work. Although ScriptProccessorNode is deprecated, in practice it seems to have pretty good browser support so I'm leaving it like
this for now. If anyone knows how I could get raw PCM data using the MediaRecorder API please let me know!
*/
device.scriptNode = device.webaudio.createScriptProcessor(bufferSize, channels, channels);
if (isCapture) {
device.scriptNode.onaudioprocess = function(e) {
if (device.intermediaryBuffer === undefined) {
return; /* This means the device has been uninitialized. */
}
/* Make sure silence it output to the AudioContext destination. Not doing this will cause sound to come out of the speakers! */
for (var iChannel = 0; iChannel < e.outputBuffer.numberOfChannels; ++iChannel) {
e.outputBuffer.getChannelData(iChannel).fill(0.0);
}
/* There are some situations where we may want to send silence to the client. */
var sendSilence = false;
if (device.streamNode === undefined) {
sendSilence = true;
}
/* Sanity check. This will never happen, right? */
if (e.inputBuffer.numberOfChannels != channels) {
console.log("Capture: Channel count mismatch. " + e.inputBufer.numberOfChannels + " != " + channels + ". Sending silence.");
sendSilence = true;
}
/* This looped design guards against the situation where e.inputBuffer is a different size to the original buffer size. Should never happen in practice. */
var totalFramesProcessed = 0;
while (totalFramesProcessed < e.inputBuffer.length) {
var framesRemaining = e.inputBuffer.length - totalFramesProcessed;
var framesToProcess = framesRemaining;
if (framesToProcess > (device.intermediaryBufferSizeInBytes/channels/4)) {
framesToProcess = (device.intermediaryBufferSizeInBytes/channels/4);
}
/* We need to do the reverse of the playback case. We need to interleave the input data and copy it into the intermediary buffer. Then we send it to the client. */
if (sendSilence) {
device.intermediaryBufferView.fill(0.0);
} else {
for (var iFrame = 0; iFrame < framesToProcess; ++iFrame) {
for (var iChannel = 0; iChannel < e.inputBuffer.numberOfChannels; ++iChannel) {
device.intermediaryBufferView[iFrame*channels + iChannel] = e.inputBuffer.getChannelData(iChannel)[totalFramesProcessed + iFrame];
}
}
}
/* Send data to the client from our intermediary buffer. */
ccall("ma_device_process_pcm_frames_capture__webaudio", "undefined", ["number", "number", "number"], [pDevice, framesToProcess, device.intermediaryBuffer]);
totalFramesProcessed += framesToProcess;
}
};
navigator.mediaDevices.getUserMedia({audio:true, video:false})
.then(function(stream) {
device.streamNode = device.webaudio.createMediaStreamSource(stream);
device.streamNode.connect(device.scriptNode);
device.scriptNode.connect(device.webaudio.destination);
})
.catch(function(error) {
/* I think this should output silence... */
device.scriptNode.connect(device.webaudio.destination);
});
} else {
device.scriptNode.onaudioprocess = function(e) {
if (device.intermediaryBuffer === undefined) {
return; /* This means the device has been uninitialized. */
}
var outputSilence = false;
/* Sanity check. This will never happen, right? */
if (e.outputBuffer.numberOfChannels != channels) {
console.log("Playback: Channel count mismatch. " + e.outputBufer.numberOfChannels + " != " + channels + ". Outputting silence.");
outputSilence = true;
return;
}
/* This looped design guards against the situation where e.outputBuffer is a different size to the original buffer size. Should never happen in practice. */
var totalFramesProcessed = 0;
while (totalFramesProcessed < e.outputBuffer.length) {
var framesRemaining = e.outputBuffer.length - totalFramesProcessed;
var framesToProcess = framesRemaining;
if (framesToProcess > (device.intermediaryBufferSizeInBytes/channels/4)) {
framesToProcess = (device.intermediaryBufferSizeInBytes/channels/4);
}
/* Read data from the client into our intermediary buffer. */
ccall("ma_device_process_pcm_frames_playback__webaudio", "undefined", ["number", "number", "number"], [pDevice, framesToProcess, device.intermediaryBuffer]);
/* At this point we'll have data in our intermediary buffer which we now need to deinterleave and copy over to the output buffers. */
if (outputSilence) {
for (var iChannel = 0; iChannel < e.outputBuffer.numberOfChannels; ++iChannel) {
e.outputBuffer.getChannelData(iChannel).fill(0.0);
}
} else {
for (var iChannel = 0; iChannel < e.outputBuffer.numberOfChannels; ++iChannel) {
for (var iFrame = 0; iFrame < framesToProcess; ++iFrame) {
e.outputBuffer.getChannelData(iChannel)[totalFramesProcessed + iFrame] = device.intermediaryBufferView[iFrame*channels + iChannel];
}
}
}
totalFramesProcessed += framesToProcess;
}
};
device.scriptNode.connect(device.webaudio.destination);
}
return miniaudio.track_device(device);
}, (deviceType == ma_device_type_capture) ? pConfig->capture.channels : pConfig->playback.channels, pConfig->sampleRate, internalPeriodSizeInFrames, deviceType == ma_device_type_capture, pDevice);
if (deviceIndex < 0) {
return MA_FAILED_TO_OPEN_BACKEND_DEVICE;
}
if (deviceType == ma_device_type_capture) {
pDevice->webaudio.indexCapture = deviceIndex;
pDevice->capture.internalFormat = ma_format_f32;
pDevice->capture.internalChannels = pConfig->capture.channels;
ma_get_standard_channel_map(ma_standard_channel_map_webaudio, pDevice->capture.internalChannels, pDevice->capture.internalChannelMap);
pDevice->capture.internalSampleRate = EM_ASM_INT({ return miniaudio.get_device_by_index($0).webaudio.sampleRate; }, deviceIndex);
pDevice->capture.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->capture.internalPeriods = 1;
} else {
pDevice->webaudio.indexPlayback = deviceIndex;
pDevice->playback.internalFormat = ma_format_f32;
pDevice->playback.internalChannels = pConfig->playback.channels;
ma_get_standard_channel_map(ma_standard_channel_map_webaudio, pDevice->playback.internalChannels, pDevice->playback.internalChannelMap);
pDevice->playback.internalSampleRate = EM_ASM_INT({ return miniaudio.get_device_by_index($0).webaudio.sampleRate; }, deviceIndex);
pDevice->playback.internalPeriodSizeInFrames = internalPeriodSizeInFrames;
pDevice->playback.internalPeriods = 1;
}
return MA_SUCCESS;
}
static ma_result ma_device_init__webaudio(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
if (pConfig->deviceType == ma_device_type_loopback) {
return MA_DEVICE_TYPE_NOT_SUPPORTED;
}
/* No exclusive mode with Web Audio. */
if (((pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) && pConfig->playback.shareMode == ma_share_mode_exclusive) ||
((pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) && pConfig->capture.shareMode == ma_share_mode_exclusive)) {
return MA_SHARE_MODE_NOT_SUPPORTED;
}
if (pConfig->deviceType == ma_device_type_capture || pConfig->deviceType == ma_device_type_duplex) {
result = ma_device_init_by_type__webaudio(pContext, pConfig, ma_device_type_capture, pDevice);
if (result != MA_SUCCESS) {
return result;
}
}
if (pConfig->deviceType == ma_device_type_playback || pConfig->deviceType == ma_device_type_duplex) {
result = ma_device_init_by_type__webaudio(pContext, pConfig, ma_device_type_playback, pDevice);
if (result != MA_SUCCESS) {
if (pConfig->deviceType == ma_device_type_duplex) {
ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_capture, pDevice->webaudio.indexCapture);
}
return result;
}
}
/*
We need a ring buffer for moving data from the capture device to the playback device. The capture callback is the producer
and the playback callback is the consumer. The buffer needs to be large enough to hold internalPeriodSizeInFrames based on
the external sample rate.
*/
if (pConfig->deviceType == ma_device_type_duplex) {
ma_uint32 rbSizeInFrames = (ma_uint32)ma_calculate_frame_count_after_resampling(pDevice->sampleRate, pDevice->capture.internalSampleRate, pDevice->capture.internalPeriodSizeInFrames) * 2;
result = ma_pcm_rb_init(pDevice->capture.format, pDevice->capture.channels, rbSizeInFrames, NULL, &pDevice->pContext->allocationCallbacks, &pDevice->webaudio.duplexRB);
if (result != MA_SUCCESS) {
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_capture, pDevice->webaudio.indexCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_device_uninit_by_index__webaudio(pDevice, ma_device_type_playback, pDevice->webaudio.indexPlayback);
}
return result;
}
/* We need a period to act as a buffer for cases where the playback and capture device's end up desyncing. */
{
ma_uint32 marginSizeInFrames = rbSizeInFrames / 3; /* <-- Dividing by 3 because internalPeriods is always set to 1 for WebAudio. */
void* pMarginData;
ma_pcm_rb_acquire_write(&pDevice->webaudio.duplexRB, &marginSizeInFrames, &pMarginData);
{
MA_ZERO_MEMORY(pMarginData, marginSizeInFrames * ma_get_bytes_per_frame(pDevice->capture.format, pDevice->capture.channels));
}
ma_pcm_rb_commit_write(&pDevice->webaudio.duplexRB, marginSizeInFrames, pMarginData);
}
}
return MA_SUCCESS;
}
static ma_result ma_device_start__webaudio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
EM_ASM({
miniaudio.get_device_by_index($0).webaudio.resume();
}, pDevice->webaudio.indexCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
EM_ASM({
miniaudio.get_device_by_index($0).webaudio.resume();
}, pDevice->webaudio.indexPlayback);
}
return MA_SUCCESS;
}
static ma_result ma_device_stop__webaudio(ma_device* pDevice)
{
MA_ASSERT(pDevice != NULL);
/*
From the WebAudio API documentation for AudioContext.suspend():
Suspends the progression of AudioContext's currentTime, allows any current context processing blocks that are already processed to be played to the
destination, and then allows the system to release its claim on audio hardware.
I read this to mean that "any current context processing blocks" are processed by suspend() - i.e. They they are drained. We therefore shouldn't need to
do any kind of explicit draining.
*/
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
EM_ASM({
miniaudio.get_device_by_index($0).webaudio.suspend();
}, pDevice->webaudio.indexCapture);
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
EM_ASM({
miniaudio.get_device_by_index($0).webaudio.suspend();
}, pDevice->webaudio.indexPlayback);
}
ma_stop_proc onStop = pDevice->onStop;
if (onStop) {
onStop(pDevice);
}
return MA_SUCCESS;
}
static ma_result ma_context_uninit__webaudio(ma_context* pContext)
{
MA_ASSERT(pContext != NULL);
MA_ASSERT(pContext->backend == ma_backend_webaudio);
/* Nothing needs to be done here. */
(void)pContext;
return MA_SUCCESS;
}
static ma_result ma_context_init__webaudio(const ma_context_config* pConfig, ma_context* pContext)
{
int resultFromJS;
MA_ASSERT(pContext != NULL);
/* Here is where our global JavaScript object is initialized. */
resultFromJS = EM_ASM_INT({
if ((window.AudioContext || window.webkitAudioContext) === undefined) {
return 0; /* Web Audio not supported. */
}
if (typeof(miniaudio) === 'undefined') {
miniaudio = {};
miniaudio.devices = []; /* Device cache for mapping devices to indexes for JavaScript/C interop. */
miniaudio.track_device = function(device) {
/* Try inserting into a free slot first. */
for (var iDevice = 0; iDevice < miniaudio.devices.length; ++iDevice) {
if (miniaudio.devices[iDevice] == null) {
miniaudio.devices[iDevice] = device;
return iDevice;
}
}
/* Getting here means there is no empty slots in the array so we just push to the end. */
miniaudio.devices.push(device);
return miniaudio.devices.length - 1;
};
miniaudio.untrack_device_by_index = function(deviceIndex) {
/* We just set the device's slot to null. The slot will get reused in the next call to ma_track_device. */
miniaudio.devices[deviceIndex] = null;
/* Trim the array if possible. */
while (miniaudio.devices.length > 0) {
if (miniaudio.devices[miniaudio.devices.length-1] == null) {
miniaudio.devices.pop();
} else {
break;
}
}
};
miniaudio.untrack_device = function(device) {
for (var iDevice = 0; iDevice < miniaudio.devices.length; ++iDevice) {
if (miniaudio.devices[iDevice] == device) {
return miniaudio.untrack_device_by_index(iDevice);
}
}
};
miniaudio.get_device_by_index = function(deviceIndex) {
return miniaudio.devices[deviceIndex];
};
}
return 1;
}, 0); /* Must pass in a dummy argument for C99 compatibility. */
if (resultFromJS != 1) {
return MA_FAILED_TO_INIT_BACKEND;
}
pContext->isBackendAsynchronous = MA_TRUE;
pContext->onUninit = ma_context_uninit__webaudio;
pContext->onDeviceIDEqual = ma_context_is_device_id_equal__webaudio;
pContext->onEnumDevices = ma_context_enumerate_devices__webaudio;
pContext->onGetDeviceInfo = ma_context_get_device_info__webaudio;
pContext->onDeviceInit = ma_device_init__webaudio;
pContext->onDeviceUninit = ma_device_uninit__webaudio;
pContext->onDeviceStart = ma_device_start__webaudio;
pContext->onDeviceStop = ma_device_stop__webaudio;
(void)pConfig; /* Unused. */
return MA_SUCCESS;
}
#endif /* Web Audio */
static ma_bool32 ma__is_channel_map_valid(const ma_channel* channelMap, ma_uint32 channels)
{
/* A blank channel map should be allowed, in which case it should use an appropriate default which will depend on context. */
if (channelMap[0] != MA_CHANNEL_NONE) {
ma_uint32 iChannel;
if (channels == 0) {
return MA_FALSE; /* No channels. */
}
/* A channel cannot be present in the channel map more than once. */
for (iChannel = 0; iChannel < channels; ++iChannel) {
ma_uint32 jChannel;
for (jChannel = iChannel + 1; jChannel < channels; ++jChannel) {
if (channelMap[iChannel] == channelMap[jChannel]) {
return MA_FALSE;
}
}
}
}
return MA_TRUE;
}
static ma_result ma_device__post_init_setup(ma_device* pDevice, ma_device_type deviceType)
{
ma_result result;
MA_ASSERT(pDevice != NULL);
if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex) {
if (pDevice->capture.usingDefaultFormat) {
pDevice->capture.format = pDevice->capture.internalFormat;
}
if (pDevice->capture.usingDefaultChannels) {
pDevice->capture.channels = pDevice->capture.internalChannels;
}
if (pDevice->capture.usingDefaultChannelMap) {
if (pDevice->capture.internalChannels == pDevice->capture.channels) {
ma_channel_map_copy(pDevice->capture.channelMap, pDevice->capture.internalChannelMap, pDevice->capture.channels);
} else {
ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->capture.channels, pDevice->capture.channelMap);
}
}
}
if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) {
if (pDevice->playback.usingDefaultFormat) {
pDevice->playback.format = pDevice->playback.internalFormat;
}
if (pDevice->playback.usingDefaultChannels) {
pDevice->playback.channels = pDevice->playback.internalChannels;
}
if (pDevice->playback.usingDefaultChannelMap) {
if (pDevice->playback.internalChannels == pDevice->playback.channels) {
ma_channel_map_copy(pDevice->playback.channelMap, pDevice->playback.internalChannelMap, pDevice->playback.channels);
} else {
ma_get_standard_channel_map(ma_standard_channel_map_default, pDevice->playback.channels, pDevice->playback.channelMap);
}
}
}
if (pDevice->usingDefaultSampleRate) {
if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex) {
pDevice->sampleRate = pDevice->capture.internalSampleRate;
} else {
pDevice->sampleRate = pDevice->playback.internalSampleRate;
}
}
/* PCM converters. */
if (deviceType == ma_device_type_capture || deviceType == ma_device_type_duplex || deviceType == ma_device_type_loopback) {
/* Converting from internal device format to client format. */
ma_data_converter_config converterConfig = ma_data_converter_config_init_default();
converterConfig.formatIn = pDevice->capture.internalFormat;
converterConfig.channelsIn = pDevice->capture.internalChannels;
converterConfig.sampleRateIn = pDevice->capture.internalSampleRate;
ma_channel_map_copy(converterConfig.channelMapIn, pDevice->capture.internalChannelMap, pDevice->capture.internalChannels);
converterConfig.formatOut = pDevice->capture.format;
converterConfig.channelsOut = pDevice->capture.channels;
converterConfig.sampleRateOut = pDevice->sampleRate;
ma_channel_map_copy(converterConfig.channelMapOut, pDevice->capture.channelMap, pDevice->capture.channels);
converterConfig.resampling.allowDynamicSampleRate = MA_FALSE;
converterConfig.resampling.algorithm = pDevice->resampling.algorithm;
converterConfig.resampling.linear.lpfOrder = pDevice->resampling.linear.lpfOrder;
converterConfig.resampling.speex.quality = pDevice->resampling.speex.quality;
result = ma_data_converter_init(&converterConfig, &pDevice->capture.converter);
if (result != MA_SUCCESS) {
return result;
}
}
if (deviceType == ma_device_type_playback || deviceType == ma_device_type_duplex) {
/* Converting from client format to device format. */
ma_data_converter_config converterConfig = ma_data_converter_config_init_default();
converterConfig.formatIn = pDevice->playback.format;
converterConfig.channelsIn = pDevice->playback.channels;
converterConfig.sampleRateIn = pDevice->sampleRate;
ma_channel_map_copy(converterConfig.channelMapIn, pDevice->playback.channelMap, pDevice->playback.channels);
converterConfig.formatOut = pDevice->playback.internalFormat;
converterConfig.channelsOut = pDevice->playback.internalChannels;
converterConfig.sampleRateOut = pDevice->playback.internalSampleRate;
ma_channel_map_copy(converterConfig.channelMapOut, pDevice->playback.internalChannelMap, pDevice->playback.internalChannels);
converterConfig.resampling.allowDynamicSampleRate = MA_FALSE;
converterConfig.resampling.algorithm = pDevice->resampling.algorithm;
converterConfig.resampling.linear.lpfOrder = pDevice->resampling.linear.lpfOrder;
converterConfig.resampling.speex.quality = pDevice->resampling.speex.quality;
result = ma_data_converter_init(&converterConfig, &pDevice->playback.converter);
if (result != MA_SUCCESS) {
return result;
}
}
return MA_SUCCESS;
}
static ma_thread_result MA_THREADCALL ma_worker_thread(void* pData)
{
ma_device* pDevice = (ma_device*)pData;
MA_ASSERT(pDevice != NULL);
#ifdef MA_WIN32
ma_CoInitializeEx(pDevice->pContext, NULL, MA_COINIT_VALUE);
#endif
/*
When the device is being initialized it's initial state is set to MA_STATE_UNINITIALIZED. Before returning from
ma_device_init(), the state needs to be set to something valid. In miniaudio the device's default state immediately
after initialization is stopped, so therefore we need to mark the device as such. miniaudio will wait on the worker
thread to signal an event to know when the worker thread is ready for action.
*/
ma_device__set_state(pDevice, MA_STATE_STOPPED);
ma_event_signal(&pDevice->stopEvent);
for (;;) { /* <-- This loop just keeps the thread alive. The main audio loop is inside. */
ma_stop_proc onStop;
/* We wait on an event to know when something has requested that the device be started and the main loop entered. */
ma_event_wait(&pDevice->wakeupEvent);
/* Default result code. */
pDevice->workResult = MA_SUCCESS;
/* If the reason for the wake up is that we are terminating, just break from the loop. */
if (ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED) {
break;
}
/*
Getting to this point means the device is wanting to get started. The function that has requested that the device
be started will be waiting on an event (pDevice->startEvent) which means we need to make sure we signal the event
in both the success and error case. It's important that the state of the device is set _before_ signaling the event.
*/
MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STARTING);
/* Make sure the state is set appropriately. */
ma_device__set_state(pDevice, MA_STATE_STARTED);
ma_event_signal(&pDevice->startEvent);
if (pDevice->pContext->onDeviceMainLoop != NULL) {
pDevice->pContext->onDeviceMainLoop(pDevice);
} else {
ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "No main loop implementation.", MA_API_NOT_FOUND);
}
/*
Getting here means we have broken from the main loop which happens the application has requested that device be stopped. Note that this
may have actually already happened above if the device was lost and miniaudio has attempted to re-initialize the device. In this case we
don't want to be doing this a second time.
*/
if (ma_device__get_state(pDevice) != MA_STATE_UNINITIALIZED) {
if (pDevice->pContext->onDeviceStop) {
pDevice->pContext->onDeviceStop(pDevice);
}
}
/* After the device has stopped, make sure an event is posted. */
onStop = pDevice->onStop;
if (onStop) {
onStop(pDevice);
}
/*
A function somewhere is waiting for the device to have stopped for real so we need to signal an event to allow it to continue. Note that
it's possible that the device has been uninitialized which means we need to _not_ change the status to stopped. We cannot go from an
uninitialized state to stopped state.
*/
if (ma_device__get_state(pDevice) != MA_STATE_UNINITIALIZED) {
ma_device__set_state(pDevice, MA_STATE_STOPPED);
ma_event_signal(&pDevice->stopEvent);
}
}
/* Make sure we aren't continuously waiting on a stop event. */
ma_event_signal(&pDevice->stopEvent); /* <-- Is this still needed? */
#ifdef MA_WIN32
ma_CoUninitialize(pDevice->pContext);
#endif
return (ma_thread_result)0;
}
/* Helper for determining whether or not the given device is initialized. */
static ma_bool32 ma_device__is_initialized(ma_device* pDevice)
{
if (pDevice == NULL) {
return MA_FALSE;
}
return ma_device__get_state(pDevice) != MA_STATE_UNINITIALIZED;
}
#ifdef MA_WIN32
static ma_result ma_context_uninit_backend_apis__win32(ma_context* pContext)
{
ma_CoUninitialize(pContext);
ma_dlclose(pContext, pContext->win32.hUser32DLL);
ma_dlclose(pContext, pContext->win32.hOle32DLL);
ma_dlclose(pContext, pContext->win32.hAdvapi32DLL);
return MA_SUCCESS;
}
static ma_result ma_context_init_backend_apis__win32(ma_context* pContext)
{
#ifdef MA_WIN32_DESKTOP
/* Ole32.dll */
pContext->win32.hOle32DLL = ma_dlopen(pContext, "ole32.dll");
if (pContext->win32.hOle32DLL == NULL) {
return MA_FAILED_TO_INIT_BACKEND;
}
pContext->win32.CoInitializeEx = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "CoInitializeEx");
pContext->win32.CoUninitialize = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "CoUninitialize");
pContext->win32.CoCreateInstance = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "CoCreateInstance");
pContext->win32.CoTaskMemFree = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "CoTaskMemFree");
pContext->win32.PropVariantClear = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "PropVariantClear");
pContext->win32.StringFromGUID2 = (ma_proc)ma_dlsym(pContext, pContext->win32.hOle32DLL, "StringFromGUID2");
/* User32.dll */
pContext->win32.hUser32DLL = ma_dlopen(pContext, "user32.dll");
if (pContext->win32.hUser32DLL == NULL) {
return MA_FAILED_TO_INIT_BACKEND;
}
pContext->win32.GetForegroundWindow = (ma_proc)ma_dlsym(pContext, pContext->win32.hUser32DLL, "GetForegroundWindow");
pContext->win32.GetDesktopWindow = (ma_proc)ma_dlsym(pContext, pContext->win32.hUser32DLL, "GetDesktopWindow");
/* Advapi32.dll */
pContext->win32.hAdvapi32DLL = ma_dlopen(pContext, "advapi32.dll");
if (pContext->win32.hAdvapi32DLL == NULL) {
return MA_FAILED_TO_INIT_BACKEND;
}
pContext->win32.RegOpenKeyExA = (ma_proc)ma_dlsym(pContext, pContext->win32.hAdvapi32DLL, "RegOpenKeyExA");
pContext->win32.RegCloseKey = (ma_proc)ma_dlsym(pContext, pContext->win32.hAdvapi32DLL, "RegCloseKey");
pContext->win32.RegQueryValueExA = (ma_proc)ma_dlsym(pContext, pContext->win32.hAdvapi32DLL, "RegQueryValueExA");
#endif
ma_CoInitializeEx(pContext, NULL, MA_COINIT_VALUE);
return MA_SUCCESS;
}
#else
static ma_result ma_context_uninit_backend_apis__nix(ma_context* pContext)
{
#if defined(MA_USE_RUNTIME_LINKING_FOR_PTHREAD) && !defined(MA_NO_RUNTIME_LINKING)
ma_dlclose(pContext, pContext->posix.pthreadSO);
#else
(void)pContext;
#endif
return MA_SUCCESS;
}
static ma_result ma_context_init_backend_apis__nix(ma_context* pContext)
{
/* pthread */
#if defined(MA_USE_RUNTIME_LINKING_FOR_PTHREAD) && !defined(MA_NO_RUNTIME_LINKING)
const char* libpthreadFileNames[] = {
"libpthread.so",
"libpthread.so.0",
"libpthread.dylib"
};
size_t i;
for (i = 0; i < sizeof(libpthreadFileNames) / sizeof(libpthreadFileNames[0]); ++i) {
pContext->posix.pthreadSO = ma_dlopen(pContext, libpthreadFileNames[i]);
if (pContext->posix.pthreadSO != NULL) {
break;
}
}
if (pContext->posix.pthreadSO == NULL) {
return MA_FAILED_TO_INIT_BACKEND;
}
pContext->posix.pthread_create = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_create");
pContext->posix.pthread_join = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_join");
pContext->posix.pthread_mutex_init = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_mutex_init");
pContext->posix.pthread_mutex_destroy = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_mutex_destroy");
pContext->posix.pthread_mutex_lock = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_mutex_lock");
pContext->posix.pthread_mutex_unlock = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_mutex_unlock");
pContext->posix.pthread_cond_init = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_cond_init");
pContext->posix.pthread_cond_destroy = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_cond_destroy");
pContext->posix.pthread_cond_wait = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_cond_wait");
pContext->posix.pthread_cond_signal = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_cond_signal");
pContext->posix.pthread_attr_init = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_init");
pContext->posix.pthread_attr_destroy = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_destroy");
pContext->posix.pthread_attr_setschedpolicy = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_setschedpolicy");
pContext->posix.pthread_attr_getschedparam = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_getschedparam");
pContext->posix.pthread_attr_setschedparam = (ma_proc)ma_dlsym(pContext, pContext->posix.pthreadSO, "pthread_attr_setschedparam");
#else
pContext->posix.pthread_create = (ma_proc)pthread_create;
pContext->posix.pthread_join = (ma_proc)pthread_join;
pContext->posix.pthread_mutex_init = (ma_proc)pthread_mutex_init;
pContext->posix.pthread_mutex_destroy = (ma_proc)pthread_mutex_destroy;
pContext->posix.pthread_mutex_lock = (ma_proc)pthread_mutex_lock;
pContext->posix.pthread_mutex_unlock = (ma_proc)pthread_mutex_unlock;
pContext->posix.pthread_cond_init = (ma_proc)pthread_cond_init;
pContext->posix.pthread_cond_destroy = (ma_proc)pthread_cond_destroy;
pContext->posix.pthread_cond_wait = (ma_proc)pthread_cond_wait;
pContext->posix.pthread_cond_signal = (ma_proc)pthread_cond_signal;
pContext->posix.pthread_attr_init = (ma_proc)pthread_attr_init;
pContext->posix.pthread_attr_destroy = (ma_proc)pthread_attr_destroy;
#if !defined(__EMSCRIPTEN__)
pContext->posix.pthread_attr_setschedpolicy = (ma_proc)pthread_attr_setschedpolicy;
pContext->posix.pthread_attr_getschedparam = (ma_proc)pthread_attr_getschedparam;
pContext->posix.pthread_attr_setschedparam = (ma_proc)pthread_attr_setschedparam;
#endif
#endif
return MA_SUCCESS;
}
#endif
static ma_result ma_context_init_backend_apis(ma_context* pContext)
{
ma_result result;
#ifdef MA_WIN32
result = ma_context_init_backend_apis__win32(pContext);
#else
result = ma_context_init_backend_apis__nix(pContext);
#endif
return result;
}
static ma_result ma_context_uninit_backend_apis(ma_context* pContext)
{
ma_result result;
#ifdef MA_WIN32
result = ma_context_uninit_backend_apis__win32(pContext);
#else
result = ma_context_uninit_backend_apis__nix(pContext);
#endif
return result;
}
static ma_bool32 ma_context_is_backend_asynchronous(ma_context* pContext)
{
return pContext->isBackendAsynchronous;
}
MA_API ma_context_config ma_context_config_init()
{
ma_context_config config;
MA_ZERO_OBJECT(&config);
return config;
}
MA_API ma_result ma_context_init(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pConfig, ma_context* pContext)
{
ma_result result;
ma_context_config config;
ma_backend defaultBackends[ma_backend_null+1];
ma_uint32 iBackend;
ma_backend* pBackendsToIterate;
ma_uint32 backendsToIterateCount;
if (pContext == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pContext);
/* Always make sure the config is set first to ensure properties are available as soon as possible. */
if (pConfig != NULL) {
config = *pConfig;
} else {
config = ma_context_config_init();
}
pContext->logCallback = config.logCallback;
pContext->threadPriority = config.threadPriority;
pContext->threadStackSize = config.threadStackSize;
pContext->pUserData = config.pUserData;
result = ma_allocation_callbacks_init_copy(&pContext->allocationCallbacks, &config.allocationCallbacks);
if (result != MA_SUCCESS) {
return result;
}
/* Backend APIs need to be initialized first. This is where external libraries will be loaded and linked. */
result = ma_context_init_backend_apis(pContext);
if (result != MA_SUCCESS) {
return result;
}
for (iBackend = 0; iBackend <= ma_backend_null; ++iBackend) {
defaultBackends[iBackend] = (ma_backend)iBackend;
}
pBackendsToIterate = (ma_backend*)backends;
backendsToIterateCount = backendCount;
if (pBackendsToIterate == NULL) {
pBackendsToIterate = (ma_backend*)defaultBackends;
backendsToIterateCount = ma_countof(defaultBackends);
}
MA_ASSERT(pBackendsToIterate != NULL);
for (iBackend = 0; iBackend < backendsToIterateCount; ++iBackend) {
ma_backend backend = pBackendsToIterate[iBackend];
result = MA_NO_BACKEND;
switch (backend) {
#ifdef MA_HAS_WASAPI
case ma_backend_wasapi:
{
result = ma_context_init__wasapi(&config, pContext);
} break;
#endif
#ifdef MA_HAS_DSOUND
case ma_backend_dsound:
{
result = ma_context_init__dsound(&config, pContext);
} break;
#endif
#ifdef MA_HAS_WINMM
case ma_backend_winmm:
{
result = ma_context_init__winmm(&config, pContext);
} break;
#endif
#ifdef MA_HAS_ALSA
case ma_backend_alsa:
{
result = ma_context_init__alsa(&config, pContext);
} break;
#endif
#ifdef MA_HAS_PULSEAUDIO
case ma_backend_pulseaudio:
{
result = ma_context_init__pulse(&config, pContext);
} break;
#endif
#ifdef MA_HAS_JACK
case ma_backend_jack:
{
result = ma_context_init__jack(&config, pContext);
} break;
#endif
#ifdef MA_HAS_COREAUDIO
case ma_backend_coreaudio:
{
result = ma_context_init__coreaudio(&config, pContext);
} break;
#endif
#ifdef MA_HAS_SNDIO
case ma_backend_sndio:
{
result = ma_context_init__sndio(&config, pContext);
} break;
#endif
#ifdef MA_HAS_AUDIO4
case ma_backend_audio4:
{
result = ma_context_init__audio4(&config, pContext);
} break;
#endif
#ifdef MA_HAS_OSS
case ma_backend_oss:
{
result = ma_context_init__oss(&config, pContext);
} break;
#endif
#ifdef MA_HAS_AAUDIO
case ma_backend_aaudio:
{
result = ma_context_init__aaudio(&config, pContext);
} break;
#endif
#ifdef MA_HAS_OPENSL
case ma_backend_opensl:
{
result = ma_context_init__opensl(&config, pContext);
} break;
#endif
#ifdef MA_HAS_WEBAUDIO
case ma_backend_webaudio:
{
result = ma_context_init__webaudio(&config, pContext);
} break;
#endif
#ifdef MA_HAS_NULL
case ma_backend_null:
{
result = ma_context_init__null(&config, pContext);
} break;
#endif
default: break;
}
/* If this iteration was successful, return. */
if (result == MA_SUCCESS) {
result = ma_mutex_init(&pContext->deviceEnumLock);
if (result != MA_SUCCESS) {
ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device enumeration. ma_context_get_devices() is not thread safe.", result);
}
result = ma_mutex_init(&pContext->deviceInfoLock);
if (result != MA_SUCCESS) {
ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_WARNING, "Failed to initialize mutex for device info retrieval. ma_context_get_device_info() is not thread safe.", result);
}
#ifdef MA_DEBUG_OUTPUT
printf("[miniaudio] Endian: %s\n", ma_is_little_endian() ? "LE" : "BE");
printf("[miniaudio] SSE2: %s\n", ma_has_sse2() ? "YES" : "NO");
printf("[miniaudio] AVX2: %s\n", ma_has_avx2() ? "YES" : "NO");
printf("[miniaudio] AVX512F: %s\n", ma_has_avx512f() ? "YES" : "NO");
printf("[miniaudio] NEON: %s\n", ma_has_neon() ? "YES" : "NO");
#endif
pContext->backend = backend;
return result;
}
}
/* If we get here it means an error occurred. */
MA_ZERO_OBJECT(pContext); /* Safety. */
return MA_NO_BACKEND;
}
MA_API ma_result ma_context_uninit(ma_context* pContext)
{
if (pContext == NULL) {
return MA_INVALID_ARGS;
}
pContext->onUninit(pContext);
ma_mutex_uninit(&pContext->deviceEnumLock);
ma_mutex_uninit(&pContext->deviceInfoLock);
ma__free_from_callbacks(pContext->pDeviceInfos, &pContext->allocationCallbacks);
ma_context_uninit_backend_apis(pContext);
return MA_SUCCESS;
}
MA_API size_t ma_context_sizeof()
{
return sizeof(ma_context);
}
MA_API ma_result ma_context_enumerate_devices(ma_context* pContext, ma_enum_devices_callback_proc callback, void* pUserData)
{
ma_result result;
if (pContext == NULL || pContext->onEnumDevices == NULL || callback == NULL) {
return MA_INVALID_ARGS;
}
ma_mutex_lock(&pContext->deviceEnumLock);
{
result = pContext->onEnumDevices(pContext, callback, pUserData);
}
ma_mutex_unlock(&pContext->deviceEnumLock);
return result;
}
static ma_bool32 ma_context_get_devices__enum_callback(ma_context* pContext, ma_device_type deviceType, const ma_device_info* pInfo, void* pUserData)
{
/*
We need to insert the device info into our main internal buffer. Where it goes depends on the device type. If it's a capture device
it's just appended to the end. If it's a playback device it's inserted just before the first capture device.
*/
/*
First make sure we have room. Since the number of devices we add to the list is usually relatively small I've decided to use a
simple fixed size increment for buffer expansion.
*/
const ma_uint32 bufferExpansionCount = 2;
const ma_uint32 totalDeviceInfoCount = pContext->playbackDeviceInfoCount + pContext->captureDeviceInfoCount;
if (pContext->deviceInfoCapacity >= totalDeviceInfoCount) {
ma_uint32 oldCapacity = pContext->deviceInfoCapacity;
ma_uint32 newCapacity = oldCapacity + bufferExpansionCount;
ma_device_info* pNewInfos = (ma_device_info*)ma__realloc_from_callbacks(pContext->pDeviceInfos, sizeof(*pContext->pDeviceInfos)*newCapacity, sizeof(*pContext->pDeviceInfos)*oldCapacity, &pContext->allocationCallbacks);
if (pNewInfos == NULL) {
return MA_FALSE; /* Out of memory. */
}
pContext->pDeviceInfos = pNewInfos;
pContext->deviceInfoCapacity = newCapacity;
}
if (deviceType == ma_device_type_playback) {
/* Playback. Insert just before the first capture device. */
/* The first thing to do is move all of the capture devices down a slot. */
ma_uint32 iFirstCaptureDevice = pContext->playbackDeviceInfoCount;
size_t iCaptureDevice;
for (iCaptureDevice = totalDeviceInfoCount; iCaptureDevice > iFirstCaptureDevice; --iCaptureDevice) {
pContext->pDeviceInfos[iCaptureDevice] = pContext->pDeviceInfos[iCaptureDevice-1];
}
/* Now just insert where the first capture device was before moving it down a slot. */
pContext->pDeviceInfos[iFirstCaptureDevice] = *pInfo;
pContext->playbackDeviceInfoCount += 1;
} else {
/* Capture. Insert at the end. */
pContext->pDeviceInfos[totalDeviceInfoCount] = *pInfo;
pContext->captureDeviceInfoCount += 1;
}
(void)pUserData;
return MA_TRUE;
}
MA_API ma_result ma_context_get_devices(ma_context* pContext, ma_device_info** ppPlaybackDeviceInfos, ma_uint32* pPlaybackDeviceCount, ma_device_info** ppCaptureDeviceInfos, ma_uint32* pCaptureDeviceCount)
{
ma_result result;
/* Safety. */
if (ppPlaybackDeviceInfos != NULL) *ppPlaybackDeviceInfos = NULL;
if (pPlaybackDeviceCount != NULL) *pPlaybackDeviceCount = 0;
if (ppCaptureDeviceInfos != NULL) *ppCaptureDeviceInfos = NULL;
if (pCaptureDeviceCount != NULL) *pCaptureDeviceCount = 0;
if (pContext == NULL || pContext->onEnumDevices == NULL) {
return MA_INVALID_ARGS;
}
/* Note that we don't use ma_context_enumerate_devices() here because we want to do locking at a higher level. */
ma_mutex_lock(&pContext->deviceEnumLock);
{
/* Reset everything first. */
pContext->playbackDeviceInfoCount = 0;
pContext->captureDeviceInfoCount = 0;
/* Now enumerate over available devices. */
result = pContext->onEnumDevices(pContext, ma_context_get_devices__enum_callback, NULL);
if (result == MA_SUCCESS) {
/* Playback devices. */
if (ppPlaybackDeviceInfos != NULL) {
*ppPlaybackDeviceInfos = pContext->pDeviceInfos;
}
if (pPlaybackDeviceCount != NULL) {
*pPlaybackDeviceCount = pContext->playbackDeviceInfoCount;
}
/* Capture devices. */
if (ppCaptureDeviceInfos != NULL) {
*ppCaptureDeviceInfos = pContext->pDeviceInfos + pContext->playbackDeviceInfoCount; /* Capture devices come after playback devices. */
}
if (pCaptureDeviceCount != NULL) {
*pCaptureDeviceCount = pContext->captureDeviceInfoCount;
}
}
}
ma_mutex_unlock(&pContext->deviceEnumLock);
return result;
}
MA_API ma_result ma_context_get_device_info(ma_context* pContext, ma_device_type deviceType, const ma_device_id* pDeviceID, ma_share_mode shareMode, ma_device_info* pDeviceInfo)
{
ma_device_info deviceInfo;
/* NOTE: Do not clear pDeviceInfo on entry. The reason is the pDeviceID may actually point to pDeviceInfo->id which will break things. */
if (pContext == NULL || pDeviceInfo == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(&deviceInfo);
/* Help the backend out by copying over the device ID if we have one. */
if (pDeviceID != NULL) {
MA_COPY_MEMORY(&deviceInfo.id, pDeviceID, sizeof(*pDeviceID));
}
/* The backend may have an optimized device info retrieval function. If so, try that first. */
if (pContext->onGetDeviceInfo != NULL) {
ma_result result;
ma_mutex_lock(&pContext->deviceInfoLock);
{
result = pContext->onGetDeviceInfo(pContext, deviceType, pDeviceID, shareMode, &deviceInfo);
}
ma_mutex_unlock(&pContext->deviceInfoLock);
/* Clamp ranges. */
deviceInfo.minChannels = ma_max(deviceInfo.minChannels, MA_MIN_CHANNELS);
deviceInfo.maxChannels = ma_min(deviceInfo.maxChannels, MA_MAX_CHANNELS);
deviceInfo.minSampleRate = ma_max(deviceInfo.minSampleRate, MA_MIN_SAMPLE_RATE);
deviceInfo.maxSampleRate = ma_min(deviceInfo.maxSampleRate, MA_MAX_SAMPLE_RATE);
*pDeviceInfo = deviceInfo;
return result;
}
/* Getting here means onGetDeviceInfo has not been set. */
return MA_ERROR;
}
MA_API ma_bool32 ma_context_is_loopback_supported(ma_context* pContext)
{
if (pContext == NULL) {
return MA_FALSE;
}
return ma_is_loopback_supported(pContext->backend);
}
MA_API ma_device_config ma_device_config_init(ma_device_type deviceType)
{
ma_device_config config;
MA_ZERO_OBJECT(&config);
config.deviceType = deviceType;
/* Resampling defaults. We must never use the Speex backend by default because it uses licensed third party code. */
config.resampling.algorithm = ma_resample_algorithm_linear;
config.resampling.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
config.resampling.speex.quality = 3;
return config;
}
MA_API ma_result ma_device_init(ma_context* pContext, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
ma_device_config config;
if (pContext == NULL) {
return ma_device_init_ex(NULL, 0, NULL, pConfig, pDevice);
}
if (pDevice == NULL) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "ma_device_init() called with invalid arguments (pDevice == NULL).", MA_INVALID_ARGS);
}
if (pConfig == NULL) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "ma_device_init() called with invalid arguments (pConfig == NULL).", MA_INVALID_ARGS);
}
/* We need to make a copy of the config so we can set default values if they were left unset in the input config. */
config = *pConfig;
/* Basic config validation. */
if (config.deviceType != ma_device_type_playback && config.deviceType != ma_device_type_capture && config.deviceType != ma_device_type_duplex && config.deviceType != ma_device_type_loopback) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "ma_device_init() called with an invalid config. Device type is invalid. Make sure the device type has been set in the config.", MA_INVALID_DEVICE_CONFIG);
}
if (config.deviceType == ma_device_type_capture || config.deviceType == ma_device_type_duplex) {
if (config.capture.channels > MA_MAX_CHANNELS) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "ma_device_init() called with an invalid config. Capture channel count cannot exceed 32.", MA_INVALID_DEVICE_CONFIG);
}
if (!ma__is_channel_map_valid(config.capture.channelMap, config.capture.channels)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "ma_device_init() called with invalid config. Capture channel map is invalid.", MA_INVALID_DEVICE_CONFIG);
}
}
if (config.deviceType == ma_device_type_playback || config.deviceType == ma_device_type_duplex || config.deviceType == ma_device_type_loopback) {
if (config.playback.channels > MA_MAX_CHANNELS) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "ma_device_init() called with an invalid config. Playback channel count cannot exceed 32.", MA_INVALID_DEVICE_CONFIG);
}
if (!ma__is_channel_map_valid(config.playback.channelMap, config.playback.channels)) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "ma_device_init() called with invalid config. Playback channel map is invalid.", MA_INVALID_DEVICE_CONFIG);
}
}
MA_ZERO_OBJECT(pDevice);
pDevice->pContext = pContext;
/* Set the user data and log callback ASAP to ensure it is available for the entire initialization process. */
pDevice->pUserData = config.pUserData;
pDevice->onData = config.dataCallback;
pDevice->onStop = config.stopCallback;
if (((ma_uintptr)pDevice % sizeof(pDevice)) != 0) {
if (pContext->logCallback) {
pContext->logCallback(pContext, pDevice, MA_LOG_LEVEL_WARNING, "WARNING: ma_device_init() called for a device that is not properly aligned. Thread safety is not supported.");
}
}
pDevice->noPreZeroedOutputBuffer = config.noPreZeroedOutputBuffer;
pDevice->noClip = config.noClip;
pDevice->masterVolumeFactor = 1;
/*
When passing in 0 for the format/channels/rate/chmap it means the device will be using whatever is chosen by the backend. If everything is set
to defaults it means the format conversion pipeline will run on a fast path where data transfer is just passed straight through to the backend.
*/
if (config.sampleRate == 0) {
config.sampleRate = MA_DEFAULT_SAMPLE_RATE;
pDevice->usingDefaultSampleRate = MA_TRUE;
}
if (config.capture.format == ma_format_unknown) {
config.capture.format = MA_DEFAULT_FORMAT;
pDevice->capture.usingDefaultFormat = MA_TRUE;
}
if (config.capture.channels == 0) {
config.capture.channels = MA_DEFAULT_CHANNELS;
pDevice->capture.usingDefaultChannels = MA_TRUE;
}
if (config.capture.channelMap[0] == MA_CHANNEL_NONE) {
pDevice->capture.usingDefaultChannelMap = MA_TRUE;
}
if (config.playback.format == ma_format_unknown) {
config.playback.format = MA_DEFAULT_FORMAT;
pDevice->playback.usingDefaultFormat = MA_TRUE;
}
if (config.playback.channels == 0) {
config.playback.channels = MA_DEFAULT_CHANNELS;
pDevice->playback.usingDefaultChannels = MA_TRUE;
}
if (config.playback.channelMap[0] == MA_CHANNEL_NONE) {
pDevice->playback.usingDefaultChannelMap = MA_TRUE;
}
/* Default periods. */
if (config.periods == 0) {
config.periods = MA_DEFAULT_PERIODS;
pDevice->usingDefaultPeriods = MA_TRUE;
}
/*
Must have at least 3 periods for full-duplex mode. The idea is that the playback and capture positions hang out in the middle period, with the surrounding
periods acting as a buffer in case the capture and playback devices get's slightly out of sync.
*/
if (config.deviceType == ma_device_type_duplex && config.periods < 3) {
config.periods = 3;
}
/* Default buffer size. */
if (config.periodSizeInMilliseconds == 0 && config.periodSizeInFrames == 0) {
config.periodSizeInMilliseconds = (config.performanceProfile == ma_performance_profile_low_latency) ? MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_LOW_LATENCY : MA_DEFAULT_PERIOD_SIZE_IN_MILLISECONDS_CONSERVATIVE;
pDevice->usingDefaultBufferSize = MA_TRUE;
}
pDevice->type = config.deviceType;
pDevice->sampleRate = config.sampleRate;
pDevice->resampling.algorithm = config.resampling.algorithm;
pDevice->resampling.linear.lpfOrder = config.resampling.linear.lpfOrder;
pDevice->resampling.speex.quality = config.resampling.speex.quality;
pDevice->capture.shareMode = config.capture.shareMode;
pDevice->capture.format = config.capture.format;
pDevice->capture.channels = config.capture.channels;
ma_channel_map_copy(pDevice->capture.channelMap, config.capture.channelMap, config.capture.channels);
pDevice->playback.shareMode = config.playback.shareMode;
pDevice->playback.format = config.playback.format;
pDevice->playback.channels = config.playback.channels;
ma_channel_map_copy(pDevice->playback.channelMap, config.playback.channelMap, config.playback.channels);
/* The internal format, channel count and sample rate can be modified by the backend. */
pDevice->capture.internalFormat = pDevice->capture.format;
pDevice->capture.internalChannels = pDevice->capture.channels;
pDevice->capture.internalSampleRate = pDevice->sampleRate;
ma_channel_map_copy(pDevice->capture.internalChannelMap, pDevice->capture.channelMap, pDevice->capture.channels);
pDevice->playback.internalFormat = pDevice->playback.format;
pDevice->playback.internalChannels = pDevice->playback.channels;
pDevice->playback.internalSampleRate = pDevice->sampleRate;
ma_channel_map_copy(pDevice->playback.internalChannelMap, pDevice->playback.channelMap, pDevice->playback.channels);
result = ma_mutex_init(&pDevice->lock);
if (result != MA_SUCCESS) {
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create mutex.", result);
}
/*
When the device is started, the worker thread is the one that does the actual startup of the backend device. We
use a semaphore to wait for the background thread to finish the work. The same applies for stopping the device.
Each of these semaphores is released internally by the worker thread when the work is completed. The start
semaphore is also used to wake up the worker thread.
*/
result = ma_event_init(&pDevice->wakeupEvent);
if (result != MA_SUCCESS) {
ma_mutex_uninit(&pDevice->lock);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread wakeup event.", result);
}
result = ma_event_init(&pDevice->startEvent);
if (result != MA_SUCCESS) {
ma_event_uninit(&pDevice->wakeupEvent);
ma_mutex_uninit(&pDevice->lock);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread start event.", result);
}
result = ma_event_init(&pDevice->stopEvent);
if (result != MA_SUCCESS) {
ma_event_uninit(&pDevice->startEvent);
ma_event_uninit(&pDevice->wakeupEvent);
ma_mutex_uninit(&pDevice->lock);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread stop event.", result);
}
result = pContext->onDeviceInit(pContext, &config, pDevice);
if (result != MA_SUCCESS) {
return result;
}
ma_device__post_init_setup(pDevice, pConfig->deviceType);
/* If the backend did not fill out a name for the device, try a generic method. */
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
if (pDevice->capture.name[0] == '\0') {
if (ma_context__try_get_device_name_by_id(pContext, ma_device_type_capture, config.capture.pDeviceID, pDevice->capture.name, sizeof(pDevice->capture.name)) != MA_SUCCESS) {
ma_strncpy_s(pDevice->capture.name, sizeof(pDevice->capture.name), (config.capture.pDeviceID == NULL) ? MA_DEFAULT_CAPTURE_DEVICE_NAME : "Capture Device", (size_t)-1);
}
}
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex || pDevice->type == ma_device_type_loopback) {
if (pDevice->playback.name[0] == '\0') {
if (ma_context__try_get_device_name_by_id(pContext, ma_device_type_playback, config.playback.pDeviceID, pDevice->playback.name, sizeof(pDevice->playback.name)) != MA_SUCCESS) {
ma_strncpy_s(pDevice->playback.name, sizeof(pDevice->playback.name), (config.playback.pDeviceID == NULL) ? MA_DEFAULT_PLAYBACK_DEVICE_NAME : "Playback Device", (size_t)-1);
}
}
}
/* Some backends don't require the worker thread. */
if (!ma_context_is_backend_asynchronous(pContext)) {
/* The worker thread. */
result = ma_thread_create(&pDevice->thread, pContext->threadPriority, pContext->threadStackSize, ma_worker_thread, pDevice);
if (result != MA_SUCCESS) {
ma_device_uninit(pDevice);
return ma_context_post_error(pContext, NULL, MA_LOG_LEVEL_ERROR, "Failed to create worker thread.", result);
}
/* Wait for the worker thread to put the device into it's stopped state for real. */
ma_event_wait(&pDevice->stopEvent);
} else {
ma_device__set_state(pDevice, MA_STATE_STOPPED);
}
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, "[%s]", ma_get_backend_name(pDevice->pContext->backend));
if (pDevice->type == ma_device_type_capture || pDevice->type == ma_device_type_duplex) {
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " %s (%s)", pDevice->capture.name, "Capture");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Format: %s -> %s", ma_get_format_name(pDevice->capture.format), ma_get_format_name(pDevice->capture.internalFormat));
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channels: %d -> %d", pDevice->capture.channels, pDevice->capture.internalChannels);
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Sample Rate: %d -> %d", pDevice->sampleRate, pDevice->capture.internalSampleRate);
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Buffer Size: %d*%d (%d)", pDevice->capture.internalPeriodSizeInFrames, pDevice->capture.internalPeriods, (pDevice->capture.internalPeriodSizeInFrames * pDevice->capture.internalPeriods));
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Conversion:");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Pre Format Conversion: %s", pDevice->capture.converter.hasPreFormatConversion ? "YES" : "NO");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Post Format Conversion: %s", pDevice->capture.converter.hasPostFormatConversion ? "YES" : "NO");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channel Routing: %s", pDevice->capture.converter.hasChannelConverter ? "YES" : "NO");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Resampling: %s", pDevice->capture.converter.hasResampler ? "YES" : "NO");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Passthrough: %s", pDevice->capture.converter.isPassthrough ? "YES" : "NO");
}
if (pDevice->type == ma_device_type_playback || pDevice->type == ma_device_type_duplex) {
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " %s (%s)", pDevice->playback.name, "Playback");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Format: %s -> %s", ma_get_format_name(pDevice->playback.format), ma_get_format_name(pDevice->playback.internalFormat));
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channels: %d -> %d", pDevice->playback.channels, pDevice->playback.internalChannels);
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Sample Rate: %d -> %d", pDevice->sampleRate, pDevice->playback.internalSampleRate);
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Buffer Size: %d*%d (%d)", pDevice->playback.internalPeriodSizeInFrames, pDevice->playback.internalPeriods, (pDevice->playback.internalPeriodSizeInFrames * pDevice->playback.internalPeriods));
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Conversion:");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Pre Format Conversion: %s", pDevice->playback.converter.hasPreFormatConversion ? "YES" : "NO");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Post Format Conversion: %s", pDevice->playback.converter.hasPostFormatConversion ? "YES" : "NO");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Channel Routing: %s", pDevice->playback.converter.hasChannelConverter ? "YES" : "NO");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Resampling: %s", pDevice->playback.converter.hasResampler ? "YES" : "NO");
ma_post_log_messagef(pContext, pDevice, MA_LOG_LEVEL_INFO, " Passthrough: %s", pDevice->playback.converter.isPassthrough ? "YES" : "NO");
}
MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STOPPED);
return MA_SUCCESS;
}
MA_API ma_result ma_device_init_ex(const ma_backend backends[], ma_uint32 backendCount, const ma_context_config* pContextConfig, const ma_device_config* pConfig, ma_device* pDevice)
{
ma_result result;
ma_context* pContext;
ma_backend defaultBackends[ma_backend_null+1];
ma_uint32 iBackend;
ma_backend* pBackendsToIterate;
ma_uint32 backendsToIterateCount;
ma_allocation_callbacks allocationCallbacks;
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
if (pContextConfig != NULL) {
result = ma_allocation_callbacks_init_copy(&allocationCallbacks, &pContextConfig->allocationCallbacks);
if (result != MA_SUCCESS) {
return result;
}
} else {
allocationCallbacks = ma_allocation_callbacks_init_default();
}
pContext = (ma_context*)ma__malloc_from_callbacks(sizeof(*pContext), &allocationCallbacks);
if (pContext == NULL) {
return MA_OUT_OF_MEMORY;
}
for (iBackend = 0; iBackend <= ma_backend_null; ++iBackend) {
defaultBackends[iBackend] = (ma_backend)iBackend;
}
pBackendsToIterate = (ma_backend*)backends;
backendsToIterateCount = backendCount;
if (pBackendsToIterate == NULL) {
pBackendsToIterate = (ma_backend*)defaultBackends;
backendsToIterateCount = ma_countof(defaultBackends);
}
result = MA_NO_BACKEND;
for (iBackend = 0; iBackend < backendsToIterateCount; ++iBackend) {
result = ma_context_init(&pBackendsToIterate[iBackend], 1, pContextConfig, pContext);
if (result == MA_SUCCESS) {
result = ma_device_init(pContext, pConfig, pDevice);
if (result == MA_SUCCESS) {
break; /* Success. */
} else {
ma_context_uninit(pContext); /* Failure. */
}
}
}
if (result != MA_SUCCESS) {
ma__free_from_callbacks(pContext, &allocationCallbacks);
return result;
}
pDevice->isOwnerOfContext = MA_TRUE;
return result;
}
MA_API void ma_device_uninit(ma_device* pDevice)
{
if (!ma_device__is_initialized(pDevice)) {
return;
}
/* Make sure the device is stopped first. The backends will probably handle this naturally, but I like to do it explicitly for my own sanity. */
if (ma_device_is_started(pDevice)) {
ma_device_stop(pDevice);
}
/* Putting the device into an uninitialized state will make the worker thread return. */
ma_device__set_state(pDevice, MA_STATE_UNINITIALIZED);
/* Wake up the worker thread and wait for it to properly terminate. */
if (!ma_context_is_backend_asynchronous(pDevice->pContext)) {
ma_event_signal(&pDevice->wakeupEvent);
ma_thread_wait(&pDevice->thread);
}
pDevice->pContext->onDeviceUninit(pDevice);
ma_event_uninit(&pDevice->stopEvent);
ma_event_uninit(&pDevice->startEvent);
ma_event_uninit(&pDevice->wakeupEvent);
ma_mutex_uninit(&pDevice->lock);
if (pDevice->isOwnerOfContext) {
ma_allocation_callbacks allocationCallbacks = pDevice->pContext->allocationCallbacks;
ma_context_uninit(pDevice->pContext);
ma__free_from_callbacks(pDevice->pContext, &allocationCallbacks);
}
MA_ZERO_OBJECT(pDevice);
}
MA_API ma_result ma_device_start(ma_device* pDevice)
{
ma_result result;
if (pDevice == NULL) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "ma_device_start() called with invalid arguments (pDevice == NULL).", MA_INVALID_ARGS);
}
if (ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "ma_device_start() called for an uninitialized device.", MA_DEVICE_NOT_INITIALIZED);
}
if (ma_device__get_state(pDevice) == MA_STATE_STARTED) {
return ma_post_error(pDevice, MA_LOG_LEVEL_WARNING, "ma_device_start() called when the device is already started.", MA_INVALID_OPERATION); /* Already started. Returning an error to let the application know because it probably means they're doing something wrong. */
}
result = MA_ERROR;
ma_mutex_lock(&pDevice->lock);
{
/* Starting and stopping are wrapped in a mutex which means we can assert that the device is in a stopped or paused state. */
MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STOPPED);
ma_device__set_state(pDevice, MA_STATE_STARTING);
/* Asynchronous backends need to be handled differently. */
if (ma_context_is_backend_asynchronous(pDevice->pContext)) {
result = pDevice->pContext->onDeviceStart(pDevice);
if (result == MA_SUCCESS) {
ma_device__set_state(pDevice, MA_STATE_STARTED);
}
} else {
/*
Synchronous backends are started by signaling an event that's being waited on in the worker thread. We first wake up the
thread and then wait for the start event.
*/
ma_event_signal(&pDevice->wakeupEvent);
/*
Wait for the worker thread to finish starting the device. Note that the worker thread will be the one who puts the device
into the started state. Don't call ma_device__set_state() here.
*/
ma_event_wait(&pDevice->startEvent);
result = pDevice->workResult;
}
}
ma_mutex_unlock(&pDevice->lock);
return result;
}
MA_API ma_result ma_device_stop(ma_device* pDevice)
{
ma_result result;
if (pDevice == NULL) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "ma_device_stop() called with invalid arguments (pDevice == NULL).", MA_INVALID_ARGS);
}
if (ma_device__get_state(pDevice) == MA_STATE_UNINITIALIZED) {
return ma_post_error(pDevice, MA_LOG_LEVEL_ERROR, "ma_device_stop() called for an uninitialized device.", MA_DEVICE_NOT_INITIALIZED);
}
if (ma_device__get_state(pDevice) == MA_STATE_STOPPED) {
return ma_post_error(pDevice, MA_LOG_LEVEL_WARNING, "ma_device_stop() called when the device is already stopped.", MA_INVALID_OPERATION); /* Already stopped. Returning an error to let the application know because it probably means they're doing something wrong. */
}
result = MA_ERROR;
ma_mutex_lock(&pDevice->lock);
{
/* Starting and stopping are wrapped in a mutex which means we can assert that the device is in a started or paused state. */
MA_ASSERT(ma_device__get_state(pDevice) == MA_STATE_STARTED);
ma_device__set_state(pDevice, MA_STATE_STOPPING);
/* There's no need to wake up the thread like we do when starting. */
if (pDevice->pContext->onDeviceStop) {
result = pDevice->pContext->onDeviceStop(pDevice);
} else {
result = MA_SUCCESS;
}
/* Asynchronous backends need to be handled differently. */
if (ma_context_is_backend_asynchronous(pDevice->pContext)) {
ma_device__set_state(pDevice, MA_STATE_STOPPED);
} else {
/* Synchronous backends. */
/*
We need to wait for the worker thread to become available for work before returning. Note that the worker thread will be
the one who puts the device into the stopped state. Don't call ma_device__set_state() here.
*/
ma_event_wait(&pDevice->stopEvent);
result = MA_SUCCESS;
}
}
ma_mutex_unlock(&pDevice->lock);
return result;
}
MA_API ma_bool32 ma_device_is_started(ma_device* pDevice)
{
if (pDevice == NULL) {
return MA_FALSE;
}
return ma_device__get_state(pDevice) == MA_STATE_STARTED;
}
MA_API ma_result ma_device_set_master_volume(ma_device* pDevice, float volume)
{
if (pDevice == NULL) {
return MA_INVALID_ARGS;
}
if (volume < 0.0f || volume > 1.0f) {
return MA_INVALID_ARGS;
}
pDevice->masterVolumeFactor = volume;
return MA_SUCCESS;
}
MA_API ma_result ma_device_get_master_volume(ma_device* pDevice, float* pVolume)
{
if (pVolume == NULL) {
return MA_INVALID_ARGS;
}
if (pDevice == NULL) {
*pVolume = 0;
return MA_INVALID_ARGS;
}
*pVolume = pDevice->masterVolumeFactor;
return MA_SUCCESS;
}
MA_API ma_result ma_device_set_master_gain_db(ma_device* pDevice, float gainDB)
{
if (gainDB > 0) {
return MA_INVALID_ARGS;
}
return ma_device_set_master_volume(pDevice, ma_gain_db_to_factor(gainDB));
}
MA_API ma_result ma_device_get_master_gain_db(ma_device* pDevice, float* pGainDB)
{
float factor;
ma_result result;
if (pGainDB == NULL) {
return MA_INVALID_ARGS;
}
result = ma_device_get_master_volume(pDevice, &factor);
if (result != MA_SUCCESS) {
*pGainDB = 0;
return result;
}
*pGainDB = ma_factor_to_gain_db(factor);
return MA_SUCCESS;
}
#endif /* MA_NO_DEVICE_IO */
MA_API ma_uint32 ma_scale_buffer_size(ma_uint32 baseBufferSize, float scale)
{
return ma_max(1, (ma_uint32)(baseBufferSize*scale));
}
MA_API ma_uint32 ma_calculate_buffer_size_in_milliseconds_from_frames(ma_uint32 bufferSizeInFrames, ma_uint32 sampleRate)
{
return bufferSizeInFrames / (sampleRate/1000);
}
MA_API ma_uint32 ma_calculate_buffer_size_in_frames_from_milliseconds(ma_uint32 bufferSizeInMilliseconds, ma_uint32 sampleRate)
{
return bufferSizeInMilliseconds * (sampleRate/1000);
}
MA_API void ma_copy_pcm_frames(void* dst, const void* src, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
{
if (dst == src) {
return; /* No-op. */
}
ma_copy_memory_64(dst, src, frameCount * ma_get_bytes_per_frame(format, channels));
}
MA_API void ma_silence_pcm_frames(void* p, ma_uint64 frameCount, ma_format format, ma_uint32 channels)
{
if (format == ma_format_u8) {
ma_uint64 sampleCount = frameCount * channels;
ma_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
((ma_uint8*)p)[iSample] = 128;
}
} else {
ma_zero_memory_64(p, frameCount * ma_get_bytes_per_frame(format, channels));
}
}
MA_API void* ma_offset_pcm_frames_ptr(void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels)
{
return ma_offset_ptr(p, offsetInFrames * ma_get_bytes_per_frame(format, channels));
}
MA_API const void* ma_offset_pcm_frames_const_ptr(const void* p, ma_uint64 offsetInFrames, ma_format format, ma_uint32 channels)
{
return ma_offset_ptr(p, offsetInFrames * ma_get_bytes_per_frame(format, channels));
}
MA_API void ma_clip_samples_f32(float* p, ma_uint64 sampleCount)
{
ma_uint32 iSample;
/* TODO: Research a branchless SSE implementation. */
for (iSample = 0; iSample < sampleCount; iSample += 1) {
p[iSample] = ma_clip_f32(p[iSample]);
}
}
MA_API void ma_copy_and_apply_volume_factor_u8(ma_uint8* pSamplesOut, const ma_uint8* pSamplesIn, ma_uint32 sampleCount, float factor)
{
ma_uint32 iSample;
if (pSamplesOut == NULL || pSamplesIn == NULL) {
return;
}
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamplesOut[iSample] = (ma_uint8)(pSamplesIn[iSample] * factor);
}
}
MA_API void ma_copy_and_apply_volume_factor_s16(ma_int16* pSamplesOut, const ma_int16* pSamplesIn, ma_uint32 sampleCount, float factor)
{
ma_uint32 iSample;
if (pSamplesOut == NULL || pSamplesIn == NULL) {
return;
}
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamplesOut[iSample] = (ma_int16)(pSamplesIn[iSample] * factor);
}
}
MA_API void ma_copy_and_apply_volume_factor_s24(void* pSamplesOut, const void* pSamplesIn, ma_uint32 sampleCount, float factor)
{
ma_uint32 iSample;
ma_uint8* pSamplesOut8;
ma_uint8* pSamplesIn8;
if (pSamplesOut == NULL || pSamplesIn == NULL) {
return;
}
pSamplesOut8 = (ma_uint8*)pSamplesOut;
pSamplesIn8 = (ma_uint8*)pSamplesIn;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
ma_int32 sampleS32;
sampleS32 = (ma_int32)(((ma_uint32)(pSamplesIn8[iSample*3+0]) << 8) | ((ma_uint32)(pSamplesIn8[iSample*3+1]) << 16) | ((ma_uint32)(pSamplesIn8[iSample*3+2])) << 24);
sampleS32 = (ma_int32)(sampleS32 * factor);
pSamplesOut8[iSample*3+0] = (ma_uint8)(((ma_uint32)sampleS32 & 0x0000FF00) >> 8);
pSamplesOut8[iSample*3+1] = (ma_uint8)(((ma_uint32)sampleS32 & 0x00FF0000) >> 16);
pSamplesOut8[iSample*3+2] = (ma_uint8)(((ma_uint32)sampleS32 & 0xFF000000) >> 24);
}
}
MA_API void ma_copy_and_apply_volume_factor_s32(ma_int32* pSamplesOut, const ma_int32* pSamplesIn, ma_uint32 sampleCount, float factor)
{
ma_uint32 iSample;
if (pSamplesOut == NULL || pSamplesIn == NULL) {
return;
}
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamplesOut[iSample] = (ma_int32)(pSamplesIn[iSample] * factor);
}
}
MA_API void ma_copy_and_apply_volume_factor_f32(float* pSamplesOut, const float* pSamplesIn, ma_uint32 sampleCount, float factor)
{
ma_uint32 iSample;
if (pSamplesOut == NULL || pSamplesIn == NULL) {
return;
}
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamplesOut[iSample] = pSamplesIn[iSample] * factor;
}
}
MA_API void ma_apply_volume_factor_u8(ma_uint8* pSamples, ma_uint32 sampleCount, float factor)
{
ma_copy_and_apply_volume_factor_u8(pSamples, pSamples, sampleCount, factor);
}
MA_API void ma_apply_volume_factor_s16(ma_int16* pSamples, ma_uint32 sampleCount, float factor)
{
ma_copy_and_apply_volume_factor_s16(pSamples, pSamples, sampleCount, factor);
}
MA_API void ma_apply_volume_factor_s24(void* pSamples, ma_uint32 sampleCount, float factor)
{
ma_copy_and_apply_volume_factor_s24(pSamples, pSamples, sampleCount, factor);
}
MA_API void ma_apply_volume_factor_s32(ma_int32* pSamples, ma_uint32 sampleCount, float factor)
{
ma_copy_and_apply_volume_factor_s32(pSamples, pSamples, sampleCount, factor);
}
MA_API void ma_apply_volume_factor_f32(float* pSamples, ma_uint32 sampleCount, float factor)
{
ma_copy_and_apply_volume_factor_f32(pSamples, pSamples, sampleCount, factor);
}
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFramesOut, const ma_uint8* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_u8(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
}
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFramesOut, const ma_int16* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_s16(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
}
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s24(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_s24(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
}
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFramesOut, const ma_int32* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_s32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
}
MA_API void ma_copy_and_apply_volume_factor_pcm_frames_f32(float* pPCMFramesOut, const float* pPCMFramesIn, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_f32(pPCMFramesOut, pPCMFramesIn, frameCount*channels, factor);
}
MA_API void ma_copy_and_apply_volume_factor_pcm_frames(void* pPCMFramesOut, const void* pPCMFramesIn, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor)
{
switch (format)
{
case ma_format_u8: ma_copy_and_apply_volume_factor_pcm_frames_u8 ((ma_uint8*)pPCMFramesOut, (const ma_uint8*)pPCMFramesIn, frameCount, channels, factor); return;
case ma_format_s16: ma_copy_and_apply_volume_factor_pcm_frames_s16((ma_int16*)pPCMFramesOut, (const ma_int16*)pPCMFramesIn, frameCount, channels, factor); return;
case ma_format_s24: ma_copy_and_apply_volume_factor_pcm_frames_s24( pPCMFramesOut, pPCMFramesIn, frameCount, channels, factor); return;
case ma_format_s32: ma_copy_and_apply_volume_factor_pcm_frames_s32((ma_int32*)pPCMFramesOut, (const ma_int32*)pPCMFramesIn, frameCount, channels, factor); return;
case ma_format_f32: ma_copy_and_apply_volume_factor_pcm_frames_f32( (float*)pPCMFramesOut, (const float*)pPCMFramesIn, frameCount, channels, factor); return;
default: return; /* Do nothing. */
}
}
MA_API void ma_apply_volume_factor_pcm_frames_u8(ma_uint8* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_pcm_frames_u8(pPCMFrames, pPCMFrames, frameCount, channels, factor);
}
MA_API void ma_apply_volume_factor_pcm_frames_s16(ma_int16* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_pcm_frames_s16(pPCMFrames, pPCMFrames, frameCount, channels, factor);
}
MA_API void ma_apply_volume_factor_pcm_frames_s24(void* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_pcm_frames_s24(pPCMFrames, pPCMFrames, frameCount, channels, factor);
}
MA_API void ma_apply_volume_factor_pcm_frames_s32(ma_int32* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_pcm_frames_s32(pPCMFrames, pPCMFrames, frameCount, channels, factor);
}
MA_API void ma_apply_volume_factor_pcm_frames_f32(float* pPCMFrames, ma_uint32 frameCount, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_pcm_frames_f32(pPCMFrames, pPCMFrames, frameCount, channels, factor);
}
MA_API void ma_apply_volume_factor_pcm_frames(void* pPCMFrames, ma_uint32 frameCount, ma_format format, ma_uint32 channels, float factor)
{
ma_copy_and_apply_volume_factor_pcm_frames(pPCMFrames, pPCMFrames, frameCount, format, channels, factor);
}
MA_API float ma_factor_to_gain_db(float factor)
{
return (float)(20*ma_log10f(factor));
}
MA_API float ma_gain_db_to_factor(float gain)
{
return (float)ma_powf(10, gain/20.0f);
}
/**************************************************************************************************************************************************************
Format Conversion
**************************************************************************************************************************************************************/
static MA_INLINE ma_int16 ma_pcm_sample_f32_to_s16(float x)
{
return (ma_int16)(x * 32767.0f);
}
static MA_INLINE ma_int16 ma_pcm_sample_u8_to_s16_no_scale(ma_uint8 x)
{
return (ma_int16)((ma_int16)x - 128);
}
static MA_INLINE ma_int64 ma_pcm_sample_s24_to_s32_no_scale(const ma_uint8* x)
{
return (ma_int64)(((ma_uint64)x[0] << 40) | ((ma_uint64)x[1] << 48) | ((ma_uint64)x[2] << 56)) >> 40; /* Make sure the sign bits are maintained. */
}
static MA_INLINE void ma_pcm_sample_s32_to_s24_no_scale(ma_int64 x, ma_uint8* s24)
{
s24[0] = (ma_uint8)((x & 0x000000FF) >> 0);
s24[1] = (ma_uint8)((x & 0x0000FF00) >> 8);
s24[2] = (ma_uint8)((x & 0x00FF0000) >> 16);
}
static MA_INLINE ma_uint8 ma_clip_u8(ma_int16 x)
{
return (ma_uint8)(ma_clamp(x, -128, 127) + 128);
}
static MA_INLINE ma_int16 ma_clip_s16(ma_int32 x)
{
return (ma_int16)ma_clamp(x, -32768, 32767);
}
static MA_INLINE ma_int64 ma_clip_s24(ma_int64 x)
{
return (ma_int64)ma_clamp(x, -8388608, 8388607);
}
static MA_INLINE ma_int32 ma_clip_s32(ma_int64 x)
{
/* This dance is to silence warnings with -std=c89. A good compiler should be able to optimize this away. */
ma_int64 clipMin;
ma_int64 clipMax;
clipMin = -((ma_int64)2147483647 + 1);
clipMax = (ma_int64)2147483647;
return (ma_int32)ma_clamp(x, clipMin, clipMax);
}
/* u8 */
MA_API void ma_pcm_u8_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
(void)ditherMode;
ma_copy_memory_64(dst, src, count * sizeof(ma_uint8));
}
static MA_INLINE void ma_pcm_u8_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int16* dst_s16 = (ma_int16*)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int16 x = src_u8[i];
x = (ma_int16)(x - 128);
x = (ma_int16)(x << 8);
dst_s16[i] = x;
}
(void)ditherMode;
}
static MA_INLINE void ma_pcm_u8_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_u8_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_u8_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_u8_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_u8_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_u8_to_s16__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_u8_to_s16__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_u8_to_s16__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_u8_to_s16__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_u8_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_u8_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_s24 = (ma_uint8*)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int16 x = src_u8[i];
x = (ma_int16)(x - 128);
dst_s24[i*3+0] = 0;
dst_s24[i*3+1] = 0;
dst_s24[i*3+2] = (ma_uint8)((ma_int8)x);
}
(void)ditherMode;
}
static MA_INLINE void ma_pcm_u8_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_u8_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_u8_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_u8_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_u8_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_u8_to_s24__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_u8_to_s24__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_u8_to_s24__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_u8_to_s24__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_u8_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_u8_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int32 x = src_u8[i];
x = x - 128;
x = x << 24;
dst_s32[i] = x;
}
(void)ditherMode;
}
static MA_INLINE void ma_pcm_u8_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_u8_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_u8_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_u8_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_u8_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_u8_to_s32__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_u8_to_s32__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_u8_to_s32__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_u8_to_s32__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_u8_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_u8_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
float* dst_f32 = (float*)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
float x = (float)src_u8[i];
x = x * 0.00784313725490196078f; /* 0..255 to 0..2 */
x = x - 1; /* 0..2 to -1..1 */
dst_f32[i] = x;
}
(void)ditherMode;
}
static MA_INLINE void ma_pcm_u8_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_u8_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_u8_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_u8_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_u8_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_u8_to_f32__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_u8_to_f32__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_u8_to_f32__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_u8_to_f32__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_u8_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
}
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
static MA_INLINE void ma_pcm_interleave_u8__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_uint8** src_u8 = (const ma_uint8**)src;
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame];
}
}
}
#else
static MA_INLINE void ma_pcm_interleave_u8__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_uint8** src_u8 = (const ma_uint8**)src;
if (channels == 1) {
ma_copy_memory_64(dst, src[0], frameCount * sizeof(ma_uint8));
} else if (channels == 2) {
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
dst_u8[iFrame*2 + 0] = src_u8[0][iFrame];
dst_u8[iFrame*2 + 1] = src_u8[1][iFrame];
}
} else {
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst_u8[iFrame*channels + iChannel] = src_u8[iChannel][iFrame];
}
}
}
}
#endif
MA_API void ma_pcm_interleave_u8(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_interleave_u8__reference(dst, src, frameCount, channels);
#else
ma_pcm_interleave_u8__optimized(dst, src, frameCount, channels);
#endif
}
static MA_INLINE void ma_pcm_deinterleave_u8__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8** dst_u8 = (ma_uint8**)dst;
const ma_uint8* src_u8 = (const ma_uint8*)src;
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst_u8[iChannel][iFrame] = src_u8[iFrame*channels + iChannel];
}
}
}
static MA_INLINE void ma_pcm_deinterleave_u8__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels);
}
MA_API void ma_pcm_deinterleave_u8(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_deinterleave_u8__reference(dst, src, frameCount, channels);
#else
ma_pcm_deinterleave_u8__optimized(dst, src, frameCount, channels);
#endif
}
/* s16 */
static MA_INLINE void ma_pcm_s16_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
if (ditherMode == ma_dither_mode_none) {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int16 x = src_s16[i];
x = (ma_int16)(x >> 8);
x = (ma_int16)(x + 128);
dst_u8[i] = (ma_uint8)x;
}
} else {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int16 x = src_s16[i];
/* Dither. Don't overflow. */
ma_int32 dither = ma_dither_s32(ditherMode, -0x80, 0x7F);
if ((x + dither) <= 0x7FFF) {
x = (ma_int16)(x + dither);
} else {
x = 0x7FFF;
}
x = (ma_int16)(x >> 8);
x = (ma_int16)(x + 128);
dst_u8[i] = (ma_uint8)x;
}
}
}
static MA_INLINE void ma_pcm_s16_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s16_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s16_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s16_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s16_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s16_to_u8__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s16_to_u8__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s16_to_u8__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s16_to_u8__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s16_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
}
MA_API void ma_pcm_s16_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
(void)ditherMode;
ma_copy_memory_64(dst, src, count * sizeof(ma_int16));
}
static MA_INLINE void ma_pcm_s16_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_s24 = (ma_uint8*)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
dst_s24[i*3+0] = 0;
dst_s24[i*3+1] = (ma_uint8)(src_s16[i] & 0xFF);
dst_s24[i*3+2] = (ma_uint8)(src_s16[i] >> 8);
}
(void)ditherMode;
}
static MA_INLINE void ma_pcm_s16_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s16_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s16_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s16_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s16_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s16_to_s24__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s16_to_s24__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s16_to_s24__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s16_to_s24__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s16_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_s16_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
dst_s32[i] = src_s16[i] << 16;
}
(void)ditherMode;
}
static MA_INLINE void ma_pcm_s16_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s16_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s16_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s16_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s16_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s16_to_s32__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s16_to_s32__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s16_to_s32__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s16_to_s32__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s16_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_s16_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
float* dst_f32 = (float*)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
float x = (float)src_s16[i];
#if 0
/* The accurate way. */
x = x + 32768.0f; /* -32768..32767 to 0..65535 */
x = x * 0.00003051804379339284f; /* 0..65535 to 0..2 */
x = x - 1; /* 0..2 to -1..1 */
#else
/* The fast way. */
x = x * 0.000030517578125f; /* -32768..32767 to -1..0.999969482421875 */
#endif
dst_f32[i] = x;
}
(void)ditherMode;
}
static MA_INLINE void ma_pcm_s16_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s16_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s16_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s16_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s16_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s16_to_f32__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s16_to_f32__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s16_to_f32__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s16_to_f32__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s16_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_interleave_s16__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_int16* dst_s16 = (ma_int16*)dst;
const ma_int16** src_s16 = (const ma_int16**)src;
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst_s16[iFrame*channels + iChannel] = src_s16[iChannel][iFrame];
}
}
}
static MA_INLINE void ma_pcm_interleave_s16__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_interleave_s16__reference(dst, src, frameCount, channels);
}
MA_API void ma_pcm_interleave_s16(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_interleave_s16__reference(dst, src, frameCount, channels);
#else
ma_pcm_interleave_s16__optimized(dst, src, frameCount, channels);
#endif
}
static MA_INLINE void ma_pcm_deinterleave_s16__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_int16** dst_s16 = (ma_int16**)dst;
const ma_int16* src_s16 = (const ma_int16*)src;
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst_s16[iChannel][iFrame] = src_s16[iFrame*channels + iChannel];
}
}
}
static MA_INLINE void ma_pcm_deinterleave_s16__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels);
}
MA_API void ma_pcm_deinterleave_s16(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_deinterleave_s16__reference(dst, src, frameCount, channels);
#else
ma_pcm_deinterleave_s16__optimized(dst, src, frameCount, channels);
#endif
}
/* s24 */
static MA_INLINE void ma_pcm_s24_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_uint8* src_s24 = (const ma_uint8*)src;
if (ditherMode == ma_dither_mode_none) {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
dst_u8[i] = (ma_uint8)((ma_int8)src_s24[i*3 + 2] + 128);
}
} else {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24);
/* Dither. Don't overflow. */
ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF);
if ((ma_int64)x + dither <= 0x7FFFFFFF) {
x = x + dither;
} else {
x = 0x7FFFFFFF;
}
x = x >> 24;
x = x + 128;
dst_u8[i] = (ma_uint8)x;
}
}
}
static MA_INLINE void ma_pcm_s24_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s24_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s24_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s24_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s24_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s24_to_u8__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s24_to_u8__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s24_to_u8__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s24_to_u8__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s24_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_s24_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int16* dst_s16 = (ma_int16*)dst;
const ma_uint8* src_s24 = (const ma_uint8*)src;
if (ditherMode == ma_dither_mode_none) {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_uint16 dst_lo = ((ma_uint16)src_s24[i*3 + 1]);
ma_uint16 dst_hi = (ma_uint16)((ma_uint16)src_s24[i*3 + 2] << 8);
dst_s16[i] = (ma_int16)(dst_lo | dst_hi);
}
} else {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int32 x = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24);
/* Dither. Don't overflow. */
ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF);
if ((ma_int64)x + dither <= 0x7FFFFFFF) {
x = x + dither;
} else {
x = 0x7FFFFFFF;
}
x = x >> 16;
dst_s16[i] = (ma_int16)x;
}
}
}
static MA_INLINE void ma_pcm_s24_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s24_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s24_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s24_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s24_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s24_to_s16__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s24_to_s16__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s24_to_s16__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s24_to_s16__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s24_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
}
MA_API void ma_pcm_s24_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
(void)ditherMode;
ma_copy_memory_64(dst, src, count * 3);
}
static MA_INLINE void ma_pcm_s24_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const ma_uint8* src_s24 = (const ma_uint8*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
dst_s32[i] = (ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24);
}
(void)ditherMode;
}
static MA_INLINE void ma_pcm_s24_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s24_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s24_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s24_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s24_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s24_to_s32__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s24_to_s32__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s24_to_s32__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s24_to_s32__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s24_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_s24_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
float* dst_f32 = (float*)dst;
const ma_uint8* src_s24 = (const ma_uint8*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
float x = (float)(((ma_int32)(((ma_uint32)(src_s24[i*3+0]) << 8) | ((ma_uint32)(src_s24[i*3+1]) << 16) | ((ma_uint32)(src_s24[i*3+2])) << 24)) >> 8);
#if 0
/* The accurate way. */
x = x + 8388608.0f; /* -8388608..8388607 to 0..16777215 */
x = x * 0.00000011920929665621f; /* 0..16777215 to 0..2 */
x = x - 1; /* 0..2 to -1..1 */
#else
/* The fast way. */
x = x * 0.00000011920928955078125f; /* -8388608..8388607 to -1..0.999969482421875 */
#endif
dst_f32[i] = x;
}
(void)ditherMode;
}
static MA_INLINE void ma_pcm_s24_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s24_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s24_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s24_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s24_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s24_to_f32__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s24_to_f32__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s24_to_f32__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s24_to_f32__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s24_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_interleave_s24__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8* dst8 = (ma_uint8*)dst;
const ma_uint8** src8 = (const ma_uint8**)src;
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst8[iFrame*3*channels + iChannel*3 + 0] = src8[iChannel][iFrame*3 + 0];
dst8[iFrame*3*channels + iChannel*3 + 1] = src8[iChannel][iFrame*3 + 1];
dst8[iFrame*3*channels + iChannel*3 + 2] = src8[iChannel][iFrame*3 + 2];
}
}
}
static MA_INLINE void ma_pcm_interleave_s24__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_interleave_s24__reference(dst, src, frameCount, channels);
}
MA_API void ma_pcm_interleave_s24(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_interleave_s24__reference(dst, src, frameCount, channels);
#else
ma_pcm_interleave_s24__optimized(dst, src, frameCount, channels);
#endif
}
static MA_INLINE void ma_pcm_deinterleave_s24__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_uint8** dst8 = (ma_uint8**)dst;
const ma_uint8* src8 = (const ma_uint8*)src;
ma_uint32 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst8[iChannel][iFrame*3 + 0] = src8[iFrame*3*channels + iChannel*3 + 0];
dst8[iChannel][iFrame*3 + 1] = src8[iFrame*3*channels + iChannel*3 + 1];
dst8[iChannel][iFrame*3 + 2] = src8[iFrame*3*channels + iChannel*3 + 2];
}
}
}
static MA_INLINE void ma_pcm_deinterleave_s24__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels);
}
MA_API void ma_pcm_deinterleave_s24(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_deinterleave_s24__reference(dst, src, frameCount, channels);
#else
ma_pcm_deinterleave_s24__optimized(dst, src, frameCount, channels);
#endif
}
/* s32 */
static MA_INLINE void ma_pcm_s32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_u8 = (ma_uint8*)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
if (ditherMode == ma_dither_mode_none) {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int32 x = src_s32[i];
x = x >> 24;
x = x + 128;
dst_u8[i] = (ma_uint8)x;
}
} else {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int32 x = src_s32[i];
/* Dither. Don't overflow. */
ma_int32 dither = ma_dither_s32(ditherMode, -0x800000, 0x7FFFFF);
if ((ma_int64)x + dither <= 0x7FFFFFFF) {
x = x + dither;
} else {
x = 0x7FFFFFFF;
}
x = x >> 24;
x = x + 128;
dst_u8[i] = (ma_uint8)x;
}
}
}
static MA_INLINE void ma_pcm_s32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s32_to_u8__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s32_to_u8__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s32_to_u8__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s32_to_u8__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_s32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int16* dst_s16 = (ma_int16*)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
if (ditherMode == ma_dither_mode_none) {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int32 x = src_s32[i];
x = x >> 16;
dst_s16[i] = (ma_int16)x;
}
} else {
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int32 x = src_s32[i];
/* Dither. Don't overflow. */
ma_int32 dither = ma_dither_s32(ditherMode, -0x8000, 0x7FFF);
if ((ma_int64)x + dither <= 0x7FFFFFFF) {
x = x + dither;
} else {
x = 0x7FFFFFFF;
}
x = x >> 16;
dst_s16[i] = (ma_int16)x;
}
}
}
static MA_INLINE void ma_pcm_s32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s32_to_s16__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s32_to_s16__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s32_to_s16__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s32_to_s16__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s32_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_s32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_s24 = (ma_uint8*)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_uint32 x = (ma_uint32)src_s32[i];
dst_s24[i*3+0] = (ma_uint8)((x & 0x0000FF00) >> 8);
dst_s24[i*3+1] = (ma_uint8)((x & 0x00FF0000) >> 16);
dst_s24[i*3+2] = (ma_uint8)((x & 0xFF000000) >> 24);
}
(void)ditherMode; /* No dithering for s32 -> s24. */
}
static MA_INLINE void ma_pcm_s32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s32_to_s24__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s32_to_s24__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s32_to_s24__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s32_to_s24__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
}
MA_API void ma_pcm_s32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
(void)ditherMode;
ma_copy_memory_64(dst, src, count * sizeof(ma_int32));
}
static MA_INLINE void ma_pcm_s32_to_f32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
float* dst_f32 = (float*)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
double x = src_s32[i];
#if 0
x = x + 2147483648.0;
x = x * 0.0000000004656612873077392578125;
x = x - 1;
#else
x = x / 2147483648.0;
#endif
dst_f32[i] = (float)x;
}
(void)ditherMode; /* No dithering for s32 -> f32. */
}
static MA_INLINE void ma_pcm_s32_to_f32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_s32_to_f32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_s32_to_f32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_s32_to_f32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_s32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_s32_to_f32__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_s32_to_f32__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_s32_to_f32__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_s32_to_f32__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_s32_to_f32__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_interleave_s32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const ma_int32** src_s32 = (const ma_int32**)src;
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst_s32[iFrame*channels + iChannel] = src_s32[iChannel][iFrame];
}
}
}
static MA_INLINE void ma_pcm_interleave_s32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_interleave_s32__reference(dst, src, frameCount, channels);
}
MA_API void ma_pcm_interleave_s32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_interleave_s32__reference(dst, src, frameCount, channels);
#else
ma_pcm_interleave_s32__optimized(dst, src, frameCount, channels);
#endif
}
static MA_INLINE void ma_pcm_deinterleave_s32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_int32** dst_s32 = (ma_int32**)dst;
const ma_int32* src_s32 = (const ma_int32*)src;
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst_s32[iChannel][iFrame] = src_s32[iFrame*channels + iChannel];
}
}
}
static MA_INLINE void ma_pcm_deinterleave_s32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels);
}
MA_API void ma_pcm_deinterleave_s32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_deinterleave_s32__reference(dst, src, frameCount, channels);
#else
ma_pcm_deinterleave_s32__optimized(dst, src, frameCount, channels);
#endif
}
/* f32 */
static MA_INLINE void ma_pcm_f32_to_u8__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_uint8* dst_u8 = (ma_uint8*)dst;
const float* src_f32 = (const float*)src;
float ditherMin = 0;
float ditherMax = 0;
if (ditherMode != ma_dither_mode_none) {
ditherMin = 1.0f / -128;
ditherMax = 1.0f / 127;
}
for (i = 0; i < count; i += 1) {
float x = src_f32[i];
x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
x = x + 1; /* -1..1 to 0..2 */
x = x * 127.5f; /* 0..2 to 0..255 */
dst_u8[i] = (ma_uint8)x;
}
}
static MA_INLINE void ma_pcm_f32_to_u8__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_f32_to_u8__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_f32_to_u8__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_f32_to_u8__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_f32_to_u8(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_f32_to_u8__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_f32_to_u8__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_f32_to_u8__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_f32_to_u8__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_f32_to_u8__optimized(dst, src, count, ditherMode);
}
#endif
}
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
static MA_INLINE void ma_pcm_f32_to_s16__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_int16* dst_s16 = (ma_int16*)dst;
const float* src_f32 = (const float*)src;
float ditherMin = 0;
float ditherMax = 0;
if (ditherMode != ma_dither_mode_none) {
ditherMin = 1.0f / -32768;
ditherMax = 1.0f / 32767;
}
for (i = 0; i < count; i += 1) {
float x = src_f32[i];
x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
#if 0
/* The accurate way. */
x = x + 1; /* -1..1 to 0..2 */
x = x * 32767.5f; /* 0..2 to 0..65535 */
x = x - 32768.0f; /* 0...65535 to -32768..32767 */
#else
/* The fast way. */
x = x * 32767.0f; /* -1..1 to -32767..32767 */
#endif
dst_s16[i] = (ma_int16)x;
}
}
#else
static MA_INLINE void ma_pcm_f32_to_s16__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_uint64 i4;
ma_uint64 count4;
ma_int16* dst_s16 = (ma_int16*)dst;
const float* src_f32 = (const float*)src;
float ditherMin = 0;
float ditherMax = 0;
if (ditherMode != ma_dither_mode_none) {
ditherMin = 1.0f / -32768;
ditherMax = 1.0f / 32767;
}
/* Unrolled. */
i = 0;
count4 = count >> 2;
for (i4 = 0; i4 < count4; i4 += 1) {
float d0 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
float d1 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
float d2 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
float d3 = ma_dither_f32(ditherMode, ditherMin, ditherMax);
float x0 = src_f32[i+0];
float x1 = src_f32[i+1];
float x2 = src_f32[i+2];
float x3 = src_f32[i+3];
x0 = x0 + d0;
x1 = x1 + d1;
x2 = x2 + d2;
x3 = x3 + d3;
x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0));
x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1));
x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2));
x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3));
x0 = x0 * 32767.0f;
x1 = x1 * 32767.0f;
x2 = x2 * 32767.0f;
x3 = x3 * 32767.0f;
dst_s16[i+0] = (ma_int16)x0;
dst_s16[i+1] = (ma_int16)x1;
dst_s16[i+2] = (ma_int16)x2;
dst_s16[i+3] = (ma_int16)x3;
i += 4;
}
/* Leftover. */
for (; i < count; i += 1) {
float x = src_f32[i];
x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
x = x * 32767.0f; /* -1..1 to -32767..32767 */
dst_s16[i] = (ma_int16)x;
}
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_f32_to_s16__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_uint64 i8;
ma_uint64 count8;
ma_int16* dst_s16;
const float* src_f32;
float ditherMin;
float ditherMax;
/* Both the input and output buffers need to be aligned to 16 bytes. */
if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) {
ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
return;
}
dst_s16 = (ma_int16*)dst;
src_f32 = (const float*)src;
ditherMin = 0;
ditherMax = 0;
if (ditherMode != ma_dither_mode_none) {
ditherMin = 1.0f / -32768;
ditherMax = 1.0f / 32767;
}
i = 0;
/* SSE2. SSE allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */
count8 = count >> 3;
for (i8 = 0; i8 < count8; i8 += 1) {
__m128 d0;
__m128 d1;
__m128 x0;
__m128 x1;
if (ditherMode == ma_dither_mode_none) {
d0 = _mm_set1_ps(0);
d1 = _mm_set1_ps(0);
} else if (ditherMode == ma_dither_mode_rectangle) {
d0 = _mm_set_ps(
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax)
);
d1 = _mm_set_ps(
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax)
);
} else {
d0 = _mm_set_ps(
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax)
);
d1 = _mm_set_ps(
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax)
);
}
x0 = *((__m128*)(src_f32 + i) + 0);
x1 = *((__m128*)(src_f32 + i) + 1);
x0 = _mm_add_ps(x0, d0);
x1 = _mm_add_ps(x1, d1);
x0 = _mm_mul_ps(x0, _mm_set1_ps(32767.0f));
x1 = _mm_mul_ps(x1, _mm_set1_ps(32767.0f));
_mm_stream_si128(((__m128i*)(dst_s16 + i)), _mm_packs_epi32(_mm_cvttps_epi32(x0), _mm_cvttps_epi32(x1)));
i += 8;
}
/* Leftover. */
for (; i < count; i += 1) {
float x = src_f32[i];
x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
x = x * 32767.0f; /* -1..1 to -32767..32767 */
dst_s16[i] = (ma_int16)x;
}
}
#endif /* SSE2 */
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_f32_to_s16__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_uint64 i16;
ma_uint64 count16;
ma_int16* dst_s16;
const float* src_f32;
float ditherMin;
float ditherMax;
/* Both the input and output buffers need to be aligned to 32 bytes. */
if ((((ma_uintptr)dst & 31) != 0) || (((ma_uintptr)src & 31) != 0)) {
ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
return;
}
dst_s16 = (ma_int16*)dst;
src_f32 = (const float*)src;
ditherMin = 0;
ditherMax = 0;
if (ditherMode != ma_dither_mode_none) {
ditherMin = 1.0f / -32768;
ditherMax = 1.0f / 32767;
}
i = 0;
/* AVX2. AVX2 allows us to output 16 s16's at a time which means our loop is unrolled 16 times. */
count16 = count >> 4;
for (i16 = 0; i16 < count16; i16 += 1) {
__m256 d0;
__m256 d1;
__m256 x0;
__m256 x1;
__m256i i0;
__m256i i1;
__m256i p0;
__m256i p1;
__m256i r;
if (ditherMode == ma_dither_mode_none) {
d0 = _mm256_set1_ps(0);
d1 = _mm256_set1_ps(0);
} else if (ditherMode == ma_dither_mode_rectangle) {
d0 = _mm256_set_ps(
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax)
);
d1 = _mm256_set_ps(
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax),
ma_dither_f32_rectangle(ditherMin, ditherMax)
);
} else {
d0 = _mm256_set_ps(
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax)
);
d1 = _mm256_set_ps(
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax),
ma_dither_f32_triangle(ditherMin, ditherMax)
);
}
x0 = *((__m256*)(src_f32 + i) + 0);
x1 = *((__m256*)(src_f32 + i) + 1);
x0 = _mm256_add_ps(x0, d0);
x1 = _mm256_add_ps(x1, d1);
x0 = _mm256_mul_ps(x0, _mm256_set1_ps(32767.0f));
x1 = _mm256_mul_ps(x1, _mm256_set1_ps(32767.0f));
/* Computing the final result is a little more complicated for AVX2 than SSE2. */
i0 = _mm256_cvttps_epi32(x0);
i1 = _mm256_cvttps_epi32(x1);
p0 = _mm256_permute2x128_si256(i0, i1, 0 | 32);
p1 = _mm256_permute2x128_si256(i0, i1, 1 | 48);
r = _mm256_packs_epi32(p0, p1);
_mm256_stream_si256(((__m256i*)(dst_s16 + i)), r);
i += 16;
}
/* Leftover. */
for (; i < count; i += 1) {
float x = src_f32[i];
x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
x = x * 32767.0f; /* -1..1 to -32767..32767 */
dst_s16[i] = (ma_int16)x;
}
}
#endif /* AVX2 */
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_f32_to_s16__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint64 i;
ma_uint64 i8;
ma_uint64 count8;
ma_int16* dst_s16;
const float* src_f32;
float ditherMin;
float ditherMax;
if (!ma_has_neon()) {
return ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
}
/* Both the input and output buffers need to be aligned to 16 bytes. */
if ((((ma_uintptr)dst & 15) != 0) || (((ma_uintptr)src & 15) != 0)) {
ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
return;
}
dst_s16 = (ma_int16*)dst;
src_f32 = (const float*)src;
ditherMin = 0;
ditherMax = 0;
if (ditherMode != ma_dither_mode_none) {
ditherMin = 1.0f / -32768;
ditherMax = 1.0f / 32767;
}
i = 0;
/* NEON. NEON allows us to output 8 s16's at a time which means our loop is unrolled 8 times. */
count8 = count >> 3;
for (i8 = 0; i8 < count8; i8 += 1) {
float32x4_t d0;
float32x4_t d1;
float32x4_t x0;
float32x4_t x1;
int32x4_t i0;
int32x4_t i1;
if (ditherMode == ma_dither_mode_none) {
d0 = vmovq_n_f32(0);
d1 = vmovq_n_f32(0);
} else if (ditherMode == ma_dither_mode_rectangle) {
float d0v[4];
d0v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax);
d0v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax);
d0v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax);
d0v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax);
d0 = vld1q_f32(d0v);
float d1v[4];
d1v[0] = ma_dither_f32_rectangle(ditherMin, ditherMax);
d1v[1] = ma_dither_f32_rectangle(ditherMin, ditherMax);
d1v[2] = ma_dither_f32_rectangle(ditherMin, ditherMax);
d1v[3] = ma_dither_f32_rectangle(ditherMin, ditherMax);
d1 = vld1q_f32(d1v);
} else {
float d0v[4];
d0v[0] = ma_dither_f32_triangle(ditherMin, ditherMax);
d0v[1] = ma_dither_f32_triangle(ditherMin, ditherMax);
d0v[2] = ma_dither_f32_triangle(ditherMin, ditherMax);
d0v[3] = ma_dither_f32_triangle(ditherMin, ditherMax);
d0 = vld1q_f32(d0v);
float d1v[4];
d1v[0] = ma_dither_f32_triangle(ditherMin, ditherMax);
d1v[1] = ma_dither_f32_triangle(ditherMin, ditherMax);
d1v[2] = ma_dither_f32_triangle(ditherMin, ditherMax);
d1v[3] = ma_dither_f32_triangle(ditherMin, ditherMax);
d1 = vld1q_f32(d1v);
}
x0 = *((float32x4_t*)(src_f32 + i) + 0);
x1 = *((float32x4_t*)(src_f32 + i) + 1);
x0 = vaddq_f32(x0, d0);
x1 = vaddq_f32(x1, d1);
x0 = vmulq_n_f32(x0, 32767.0f);
x1 = vmulq_n_f32(x1, 32767.0f);
i0 = vcvtq_s32_f32(x0);
i1 = vcvtq_s32_f32(x1);
*((int16x8_t*)(dst_s16 + i)) = vcombine_s16(vqmovn_s32(i0), vqmovn_s32(i1));
i += 8;
}
/* Leftover. */
for (; i < count; i += 1) {
float x = src_f32[i];
x = x + ma_dither_f32(ditherMode, ditherMin, ditherMax);
x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
x = x * 32767.0f; /* -1..1 to -32767..32767 */
dst_s16[i] = (ma_int16)x;
}
}
#endif /* Neon */
#endif /* MA_USE_REFERENCE_CONVERSION_APIS */
MA_API void ma_pcm_f32_to_s16(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_f32_to_s16__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_f32_to_s16__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_f32_to_s16__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_f32_to_s16__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_f32_to_s16__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_f32_to_s24__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_uint8* dst_s24 = (ma_uint8*)dst;
const float* src_f32 = (const float*)src;
ma_uint64 i;
for (i = 0; i < count; i += 1) {
ma_int32 r;
float x = src_f32[i];
x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
#if 0
/* The accurate way. */
x = x + 1; /* -1..1 to 0..2 */
x = x * 8388607.5f; /* 0..2 to 0..16777215 */
x = x - 8388608.0f; /* 0..16777215 to -8388608..8388607 */
#else
/* The fast way. */
x = x * 8388607.0f; /* -1..1 to -8388607..8388607 */
#endif
r = (ma_int32)x;
dst_s24[(i*3)+0] = (ma_uint8)((r & 0x0000FF) >> 0);
dst_s24[(i*3)+1] = (ma_uint8)((r & 0x00FF00) >> 8);
dst_s24[(i*3)+2] = (ma_uint8)((r & 0xFF0000) >> 16);
}
(void)ditherMode; /* No dithering for f32 -> s24. */
}
static MA_INLINE void ma_pcm_f32_to_s24__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_f32_to_s24__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_f32_to_s24__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_f32_to_s24__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_f32_to_s24(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_f32_to_s24__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_f32_to_s24__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_f32_to_s24__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_f32_to_s24__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_f32_to_s24__optimized(dst, src, count, ditherMode);
}
#endif
}
static MA_INLINE void ma_pcm_f32_to_s32__reference(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_int32* dst_s32 = (ma_int32*)dst;
const float* src_f32 = (const float*)src;
ma_uint32 i;
for (i = 0; i < count; i += 1) {
double x = src_f32[i];
x = ((x < -1) ? -1 : ((x > 1) ? 1 : x)); /* clip */
#if 0
/* The accurate way. */
x = x + 1; /* -1..1 to 0..2 */
x = x * 2147483647.5; /* 0..2 to 0..4294967295 */
x = x - 2147483648.0; /* 0...4294967295 to -2147483648..2147483647 */
#else
/* The fast way. */
x = x * 2147483647.0; /* -1..1 to -2147483647..2147483647 */
#endif
dst_s32[i] = (ma_int32)x;
}
(void)ditherMode; /* No dithering for f32 -> s32. */
}
static MA_INLINE void ma_pcm_f32_to_s32__optimized(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode);
}
#if defined(MA_SUPPORT_SSE2)
static MA_INLINE void ma_pcm_f32_to_s32__sse2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_AVX2)
static MA_INLINE void ma_pcm_f32_to_s32__avx2(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
#if defined(MA_SUPPORT_NEON)
static MA_INLINE void ma_pcm_f32_to_s32__neon(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
MA_API void ma_pcm_f32_to_s32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_f32_to_s32__reference(dst, src, count, ditherMode);
#else
# if MA_PREFERRED_SIMD == MA_SIMD_AVX2
if (ma_has_avx2()) {
ma_pcm_f32_to_s32__avx2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_SSE2
if (ma_has_sse2()) {
ma_pcm_f32_to_s32__sse2(dst, src, count, ditherMode);
} else
#elif MA_PREFERRED_SIMD == MA_SIMD_NEON
if (ma_has_neon()) {
ma_pcm_f32_to_s32__neon(dst, src, count, ditherMode);
} else
#endif
{
ma_pcm_f32_to_s32__optimized(dst, src, count, ditherMode);
}
#endif
}
MA_API void ma_pcm_f32_to_f32(void* dst, const void* src, ma_uint64 count, ma_dither_mode ditherMode)
{
(void)ditherMode;
ma_copy_memory_64(dst, src, count * sizeof(float));
}
static void ma_pcm_interleave_f32__reference(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
float* dst_f32 = (float*)dst;
const float** src_f32 = (const float**)src;
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst_f32[iFrame*channels + iChannel] = src_f32[iChannel][iFrame];
}
}
}
static void ma_pcm_interleave_f32__optimized(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_interleave_f32__reference(dst, src, frameCount, channels);
}
MA_API void ma_pcm_interleave_f32(void* dst, const void** src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_interleave_f32__reference(dst, src, frameCount, channels);
#else
ma_pcm_interleave_f32__optimized(dst, src, frameCount, channels);
#endif
}
static void ma_pcm_deinterleave_f32__reference(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
float** dst_f32 = (float**)dst;
const float* src_f32 = (const float*)src;
ma_uint64 iFrame;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; iChannel += 1) {
dst_f32[iChannel][iFrame] = src_f32[iFrame*channels + iChannel];
}
}
}
static void ma_pcm_deinterleave_f32__optimized(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels);
}
MA_API void ma_pcm_deinterleave_f32(void** dst, const void* src, ma_uint64 frameCount, ma_uint32 channels)
{
#ifdef MA_USE_REFERENCE_CONVERSION_APIS
ma_pcm_deinterleave_f32__reference(dst, src, frameCount, channels);
#else
ma_pcm_deinterleave_f32__optimized(dst, src, frameCount, channels);
#endif
}
MA_API void ma_pcm_convert(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 sampleCount, ma_dither_mode ditherMode)
{
if (formatOut == formatIn) {
ma_copy_memory_64(pOut, pIn, sampleCount * ma_get_bytes_per_sample(formatOut));
return;
}
switch (formatIn)
{
case ma_format_u8:
{
switch (formatOut)
{
case ma_format_s16: ma_pcm_u8_to_s16(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s24: ma_pcm_u8_to_s24(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s32: ma_pcm_u8_to_s32(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_f32: ma_pcm_u8_to_f32(pOut, pIn, sampleCount, ditherMode); return;
default: break;
}
} break;
case ma_format_s16:
{
switch (formatOut)
{
case ma_format_u8: ma_pcm_s16_to_u8( pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s24: ma_pcm_s16_to_s24(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s32: ma_pcm_s16_to_s32(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_f32: ma_pcm_s16_to_f32(pOut, pIn, sampleCount, ditherMode); return;
default: break;
}
} break;
case ma_format_s24:
{
switch (formatOut)
{
case ma_format_u8: ma_pcm_s24_to_u8( pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s16: ma_pcm_s24_to_s16(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s32: ma_pcm_s24_to_s32(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_f32: ma_pcm_s24_to_f32(pOut, pIn, sampleCount, ditherMode); return;
default: break;
}
} break;
case ma_format_s32:
{
switch (formatOut)
{
case ma_format_u8: ma_pcm_s32_to_u8( pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s16: ma_pcm_s32_to_s16(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s24: ma_pcm_s32_to_s24(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_f32: ma_pcm_s32_to_f32(pOut, pIn, sampleCount, ditherMode); return;
default: break;
}
} break;
case ma_format_f32:
{
switch (formatOut)
{
case ma_format_u8: ma_pcm_f32_to_u8( pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s16: ma_pcm_f32_to_s16(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s24: ma_pcm_f32_to_s24(pOut, pIn, sampleCount, ditherMode); return;
case ma_format_s32: ma_pcm_f32_to_s32(pOut, pIn, sampleCount, ditherMode); return;
default: break;
}
} break;
default: break;
}
}
MA_API void ma_convert_pcm_frames_format(void* pOut, ma_format formatOut, const void* pIn, ma_format formatIn, ma_uint64 frameCount, ma_uint32 channels, ma_dither_mode ditherMode)
{
ma_pcm_convert(pOut, formatOut, pIn, formatIn, frameCount * channels, ditherMode);
}
MA_API void ma_deinterleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void* pInterleavedPCMFrames, void** ppDeinterleavedPCMFrames)
{
if (pInterleavedPCMFrames == NULL || ppDeinterleavedPCMFrames == NULL) {
return; /* Invalid args. */
}
/* For efficiency we do this per format. */
switch (format) {
case ma_format_s16:
{
const ma_int16* pSrcS16 = (const ma_int16*)pInterleavedPCMFrames;
ma_uint64 iPCMFrame;
for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
ma_int16* pDstS16 = (ma_int16*)ppDeinterleavedPCMFrames[iChannel];
pDstS16[iPCMFrame] = pSrcS16[iPCMFrame*channels+iChannel];
}
}
} break;
case ma_format_f32:
{
const float* pSrcF32 = (const float*)pInterleavedPCMFrames;
ma_uint64 iPCMFrame;
for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
float* pDstF32 = (float*)ppDeinterleavedPCMFrames[iChannel];
pDstF32[iPCMFrame] = pSrcF32[iPCMFrame*channels+iChannel];
}
}
} break;
default:
{
ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format);
ma_uint64 iPCMFrame;
for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
void* pDst = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes);
const void* pSrc = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes);
memcpy(pDst, pSrc, sampleSizeInBytes);
}
}
} break;
}
}
MA_API void ma_interleave_pcm_frames(ma_format format, ma_uint32 channels, ma_uint64 frameCount, const void** ppDeinterleavedPCMFrames, void* pInterleavedPCMFrames)
{
switch (format)
{
case ma_format_s16:
{
ma_int16* pDstS16 = (ma_int16*)pInterleavedPCMFrames;
ma_uint64 iPCMFrame;
for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
const ma_int16* pSrcS16 = (const ma_int16*)ppDeinterleavedPCMFrames[iChannel];
pDstS16[iPCMFrame*channels+iChannel] = pSrcS16[iPCMFrame];
}
}
} break;
case ma_format_f32:
{
float* pDstF32 = (float*)pInterleavedPCMFrames;
ma_uint64 iPCMFrame;
for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
const float* pSrcF32 = (const float*)ppDeinterleavedPCMFrames[iChannel];
pDstF32[iPCMFrame*channels+iChannel] = pSrcF32[iPCMFrame];
}
}
} break;
default:
{
ma_uint32 sampleSizeInBytes = ma_get_bytes_per_sample(format);
ma_uint64 iPCMFrame;
for (iPCMFrame = 0; iPCMFrame < frameCount; ++iPCMFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
void* pDst = ma_offset_ptr(pInterleavedPCMFrames, (iPCMFrame*channels+iChannel)*sampleSizeInBytes);
const void* pSrc = ma_offset_ptr(ppDeinterleavedPCMFrames[iChannel], iPCMFrame*sampleSizeInBytes);
memcpy(pDst, pSrc, sampleSizeInBytes);
}
}
} break;
}
}
/**************************************************************************************************************************************************************
Biquad Filter
**************************************************************************************************************************************************************/
#ifndef MA_BIQUAD_FIXED_POINT_SHIFT
#define MA_BIQUAD_FIXED_POINT_SHIFT 14
#endif
static ma_int32 ma_biquad_float_to_fp(double x)
{
return (ma_int32)(x * (1 << MA_BIQUAD_FIXED_POINT_SHIFT));
}
MA_API ma_biquad_config ma_biquad_config_init(ma_format format, ma_uint32 channels, double b0, double b1, double b2, double a0, double a1, double a2)
{
ma_biquad_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.b0 = b0;
config.b1 = b1;
config.b2 = b2;
config.a0 = a0;
config.a1 = a1;
config.a2 = a2;
return config;
}
MA_API ma_result ma_biquad_init(const ma_biquad_config* pConfig, ma_biquad* pBQ)
{
if (pBQ == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pBQ);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
return ma_biquad_reinit(pConfig, pBQ);
}
MA_API ma_result ma_biquad_reinit(const ma_biquad_config* pConfig, ma_biquad* pBQ)
{
if (pBQ == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
if (pConfig->a0 == 0) {
return MA_INVALID_ARGS; /* Division by zero. */
}
/* Only supporting f32 and s16. */
if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
return MA_INVALID_ARGS;
}
/* The format cannot be changed after initialization. */
if (pBQ->format != ma_format_unknown && pBQ->format != pConfig->format) {
return MA_INVALID_OPERATION;
}
/* The channel count cannot be changed after initialization. */
if (pBQ->channels != 0 && pBQ->channels != pConfig->channels) {
return MA_INVALID_OPERATION;
}
pBQ->format = pConfig->format;
pBQ->channels = pConfig->channels;
/* Normalize. */
if (pConfig->format == ma_format_f32) {
pBQ->b0.f32 = (float)(pConfig->b0 / pConfig->a0);
pBQ->b1.f32 = (float)(pConfig->b1 / pConfig->a0);
pBQ->b2.f32 = (float)(pConfig->b2 / pConfig->a0);
pBQ->a1.f32 = (float)(pConfig->a1 / pConfig->a0);
pBQ->a2.f32 = (float)(pConfig->a2 / pConfig->a0);
} else {
pBQ->b0.s32 = ma_biquad_float_to_fp(pConfig->b0 / pConfig->a0);
pBQ->b1.s32 = ma_biquad_float_to_fp(pConfig->b1 / pConfig->a0);
pBQ->b2.s32 = ma_biquad_float_to_fp(pConfig->b2 / pConfig->a0);
pBQ->a1.s32 = ma_biquad_float_to_fp(pConfig->a1 / pConfig->a0);
pBQ->a2.s32 = ma_biquad_float_to_fp(pConfig->a2 / pConfig->a0);
}
return MA_SUCCESS;
}
static MA_INLINE void ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(ma_biquad* pBQ, float* pY, const float* pX)
{
ma_uint32 c;
const float b0 = pBQ->b0.f32;
const float b1 = pBQ->b1.f32;
const float b2 = pBQ->b2.f32;
const float a1 = pBQ->a1.f32;
const float a2 = pBQ->a2.f32;
for (c = 0; c < pBQ->channels; c += 1) {
float r1 = pBQ->r1[c].f32;
float r2 = pBQ->r2[c].f32;
float x = pX[c];
float y;
y = b0*x + r1;
r1 = b1*x - a1*y + r2;
r2 = b2*x - a2*y;
pY[c] = y;
pBQ->r1[c].f32 = r1;
pBQ->r2[c].f32 = r2;
}
}
static MA_INLINE void ma_biquad_process_pcm_frame_f32(ma_biquad* pBQ, float* pY, const float* pX)
{
ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(pBQ, pY, pX);
}
static MA_INLINE void ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(ma_biquad* pBQ, ma_int16* pY, const ma_int16* pX)
{
ma_uint32 c;
const ma_int32 b0 = pBQ->b0.s32;
const ma_int32 b1 = pBQ->b1.s32;
const ma_int32 b2 = pBQ->b2.s32;
const ma_int32 a1 = pBQ->a1.s32;
const ma_int32 a2 = pBQ->a2.s32;
for (c = 0; c < pBQ->channels; c += 1) {
ma_int32 r1 = pBQ->r1[c].s32;
ma_int32 r2 = pBQ->r2[c].s32;
ma_int32 x = pX[c];
ma_int32 y;
y = (b0*x + r1) >> MA_BIQUAD_FIXED_POINT_SHIFT;
r1 = (b1*x - a1*y + r2);
r2 = (b2*x - a2*y);
pY[c] = (ma_int16)ma_clamp(y, -32768, 32767);
pBQ->r1[c].s32 = r1;
pBQ->r2[c].s32 = r2;
}
}
static MA_INLINE void ma_biquad_process_pcm_frame_s16(ma_biquad* pBQ, ma_int16* pY, const ma_int16* pX)
{
ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(pBQ, pY, pX);
}
MA_API ma_result ma_biquad_process_pcm_frames(ma_biquad* pBQ, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_uint32 n;
if (pBQ == NULL || pFramesOut == NULL || pFramesIn == NULL) {
return MA_INVALID_ARGS;
}
/* Note that the logic below needs to support in-place filtering. That is, it must support the case where pFramesOut and pFramesIn are the same. */
if (pBQ->format == ma_format_f32) {
/* */ float* pY = ( float*)pFramesOut;
const float* pX = (const float*)pFramesIn;
for (n = 0; n < frameCount; n += 1) {
ma_biquad_process_pcm_frame_f32__direct_form_2_transposed(pBQ, pY, pX);
pY += pBQ->channels;
pX += pBQ->channels;
}
} else if (pBQ->format == ma_format_s16) {
/* */ ma_int16* pY = ( ma_int16*)pFramesOut;
const ma_int16* pX = (const ma_int16*)pFramesIn;
for (n = 0; n < frameCount; n += 1) {
ma_biquad_process_pcm_frame_s16__direct_form_2_transposed(pBQ, pY, pX);
pY += pBQ->channels;
pX += pBQ->channels;
}
} else {
MA_ASSERT(MA_FALSE);
return MA_INVALID_ARGS; /* Format not supported. Should never hit this because it's checked in ma_biquad_init() and ma_biquad_reinit(). */
}
return MA_SUCCESS;
}
MA_API ma_uint32 ma_biquad_get_latency(ma_biquad* pBQ)
{
if (pBQ == NULL) {
return 0;
}
return 2;
}
/**************************************************************************************************************************************************************
Low-Pass Filter
**************************************************************************************************************************************************************/
MA_API ma_lpf1_config ma_lpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
{
ma_lpf1_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
config.q = 0.5;
return config;
}
MA_API ma_lpf2_config ma_lpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q)
{
ma_lpf2_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
config.q = q;
/* Q cannot be 0 or else it'll result in a division by 0. In this case just default to 0.707107. */
if (config.q == 0) {
config.q = 0.707107;
}
return config;
}
MA_API ma_result ma_lpf1_init(const ma_lpf1_config* pConfig, ma_lpf1* pLPF)
{
if (pLPF == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pLPF);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
return ma_lpf1_reinit(pConfig, pLPF);
}
MA_API ma_result ma_lpf1_reinit(const ma_lpf1_config* pConfig, ma_lpf1* pLPF)
{
double a;
if (pLPF == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
/* Only supporting f32 and s16. */
if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
return MA_INVALID_ARGS;
}
/* The format cannot be changed after initialization. */
if (pLPF->format != ma_format_unknown && pLPF->format != pConfig->format) {
return MA_INVALID_OPERATION;
}
/* The channel count cannot be changed after initialization. */
if (pLPF->channels != 0 && pLPF->channels != pConfig->channels) {
return MA_INVALID_OPERATION;
}
pLPF->format = pConfig->format;
pLPF->channels = pConfig->channels;
a = ma_exp(-2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate);
if (pConfig->format == ma_format_f32) {
pLPF->a.f32 = (float)a;
} else {
pLPF->a.s32 = ma_biquad_float_to_fp(a);
}
return MA_SUCCESS;
}
static MA_INLINE void ma_lpf1_process_pcm_frame_f32(ma_lpf1* pLPF, float* pY, const float* pX)
{
ma_uint32 c;
const float a = pLPF->a.f32;
const float b = 1 - a;
for (c = 0; c < pLPF->channels; c += 1) {
float r1 = pLPF->r1[c].f32;
float x = pX[c];
float y;
y = b*x + a*r1;
pY[c] = y;
pLPF->r1[c].f32 = y;
}
}
static MA_INLINE void ma_lpf1_process_pcm_frame_s16(ma_lpf1* pLPF, ma_int16* pY, const ma_int16* pX)
{
ma_uint32 c;
const ma_int32 a = pLPF->a.s32;
const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a);
for (c = 0; c < pLPF->channels; c += 1) {
ma_int32 r1 = pLPF->r1[c].s32;
ma_int32 x = pX[c];
ma_int32 y;
y = (b*x + a*r1) >> MA_BIQUAD_FIXED_POINT_SHIFT;
pY[c] = (ma_int16)y;
pLPF->r1[c].s32 = (ma_int32)y;
}
}
MA_API ma_result ma_lpf1_process_pcm_frames(ma_lpf1* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_uint32 n;
if (pLPF == NULL || pFramesOut == NULL || pFramesIn == NULL) {
return MA_INVALID_ARGS;
}
/* Note that the logic below needs to support in-place filtering. That is, it must support the case where pFramesOut and pFramesIn are the same. */
if (pLPF->format == ma_format_f32) {
/* */ float* pY = ( float*)pFramesOut;
const float* pX = (const float*)pFramesIn;
for (n = 0; n < frameCount; n += 1) {
ma_lpf1_process_pcm_frame_f32(pLPF, pY, pX);
pY += pLPF->channels;
pX += pLPF->channels;
}
} else if (pLPF->format == ma_format_s16) {
/* */ ma_int16* pY = ( ma_int16*)pFramesOut;
const ma_int16* pX = (const ma_int16*)pFramesIn;
for (n = 0; n < frameCount; n += 1) {
ma_lpf1_process_pcm_frame_s16(pLPF, pY, pX);
pY += pLPF->channels;
pX += pLPF->channels;
}
} else {
MA_ASSERT(MA_FALSE);
return MA_INVALID_ARGS; /* Format not supported. Should never hit this because it's checked in ma_biquad_init() and ma_biquad_reinit(). */
}
return MA_SUCCESS;
}
MA_API ma_uint32 ma_lpf1_get_latency(ma_lpf1* pLPF)
{
if (pLPF == NULL) {
return 0;
}
return 1;
}
static MA_INLINE ma_biquad_config ma_lpf2__get_biquad_config(const ma_lpf2_config* pConfig)
{
ma_biquad_config bqConfig;
double q;
double w;
double s;
double c;
double a;
MA_ASSERT(pConfig != NULL);
q = pConfig->q;
w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
a = s / (2*q);
bqConfig.b0 = (1 - c) / 2;
bqConfig.b1 = 1 - c;
bqConfig.b2 = (1 - c) / 2;
bqConfig.a0 = 1 + a;
bqConfig.a1 = -2 * c;
bqConfig.a2 = 1 - a;
bqConfig.format = pConfig->format;
bqConfig.channels = pConfig->channels;
return bqConfig;
}
MA_API ma_result ma_lpf2_init(const ma_lpf2_config* pConfig, ma_lpf2* pLPF)
{
ma_result result;
ma_biquad_config bqConfig;
if (pLPF == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pLPF);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_lpf2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pLPF->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_lpf2_reinit(const ma_lpf2_config* pConfig, ma_lpf2* pLPF)
{
ma_result result;
ma_biquad_config bqConfig;
if (pLPF == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_lpf2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pLPF->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
static MA_INLINE void ma_lpf2_process_pcm_frame_s16(ma_lpf2* pLPF, ma_int16* pFrameOut, const ma_int16* pFrameIn)
{
ma_biquad_process_pcm_frame_s16(&pLPF->bq, pFrameOut, pFrameIn);
}
static MA_INLINE void ma_lpf2_process_pcm_frame_f32(ma_lpf2* pLPF, float* pFrameOut, const float* pFrameIn)
{
ma_biquad_process_pcm_frame_f32(&pLPF->bq, pFrameOut, pFrameIn);
}
MA_API ma_result ma_lpf2_process_pcm_frames(ma_lpf2* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pLPF == NULL) {
return MA_INVALID_ARGS;
}
return ma_biquad_process_pcm_frames(&pLPF->bq, pFramesOut, pFramesIn, frameCount);
}
MA_API ma_uint32 ma_lpf2_get_latency(ma_lpf2* pLPF)
{
if (pLPF == NULL) {
return 0;
}
return ma_biquad_get_latency(&pLPF->bq);
}
MA_API ma_lpf_config ma_lpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order)
{
ma_lpf_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
config.order = ma_min(order, MA_MAX_FILTER_ORDER);
return config;
}
static ma_result ma_lpf_reinit__internal(const ma_lpf_config* pConfig, ma_lpf* pLPF, ma_bool32 isNew)
{
ma_result result;
ma_uint32 lpf1Count;
ma_uint32 lpf2Count;
ma_uint32 ilpf1;
ma_uint32 ilpf2;
if (pLPF == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
/* Only supporting f32 and s16. */
if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
return MA_INVALID_ARGS;
}
/* The format cannot be changed after initialization. */
if (pLPF->format != ma_format_unknown && pLPF->format != pConfig->format) {
return MA_INVALID_OPERATION;
}
/* The channel count cannot be changed after initialization. */
if (pLPF->channels != 0 && pLPF->channels != pConfig->channels) {
return MA_INVALID_OPERATION;
}
if (pConfig->order > MA_MAX_FILTER_ORDER) {
return MA_INVALID_ARGS;
}
lpf1Count = pConfig->order % 2;
lpf2Count = pConfig->order / 2;
MA_ASSERT(lpf1Count <= ma_countof(pLPF->lpf1));
MA_ASSERT(lpf2Count <= ma_countof(pLPF->lpf2));
/* The filter order can't change between reinits. */
if (!isNew) {
if (pLPF->lpf1Count != lpf1Count || pLPF->lpf2Count != lpf2Count) {
return MA_INVALID_OPERATION;
}
}
for (ilpf1 = 0; ilpf1 < lpf1Count; ilpf1 += 1) {
ma_lpf1_config lpf1Config = ma_lpf1_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency);
if (isNew) {
result = ma_lpf1_init(&lpf1Config, &pLPF->lpf1[ilpf1]);
} else {
result = ma_lpf1_reinit(&lpf1Config, &pLPF->lpf1[ilpf1]);
}
if (result != MA_SUCCESS) {
return result;
}
}
for (ilpf2 = 0; ilpf2 < lpf2Count; ilpf2 += 1) {
ma_lpf2_config lpf2Config;
double q;
double a;
/* Tempting to use 0.707107, but won't result in a Butterworth filter if the order is > 2. */
if (lpf1Count == 1) {
a = (1 + ilpf2*1) * (MA_PI_D/(pConfig->order*1)); /* Odd order. */
} else {
a = (1 + ilpf2*2) * (MA_PI_D/(pConfig->order*2)); /* Even order. */
}
q = 1 / (2*ma_cos(a));
lpf2Config = ma_lpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, q);
if (isNew) {
result = ma_lpf2_init(&lpf2Config, &pLPF->lpf2[ilpf2]);
} else {
result = ma_lpf2_reinit(&lpf2Config, &pLPF->lpf2[ilpf2]);
}
if (result != MA_SUCCESS) {
return result;
}
}
pLPF->lpf1Count = lpf1Count;
pLPF->lpf2Count = lpf2Count;
pLPF->format = pConfig->format;
pLPF->channels = pConfig->channels;
return MA_SUCCESS;
}
MA_API ma_result ma_lpf_init(const ma_lpf_config* pConfig, ma_lpf* pLPF)
{
if (pLPF == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pLPF);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
return ma_lpf_reinit__internal(pConfig, pLPF, /*isNew*/MA_TRUE);
}
MA_API ma_result ma_lpf_reinit(const ma_lpf_config* pConfig, ma_lpf* pLPF)
{
return ma_lpf_reinit__internal(pConfig, pLPF, /*isNew*/MA_FALSE);
}
static MA_INLINE void ma_lpf_process_pcm_frame_f32(ma_lpf* pLPF, float* pY, const void* pX)
{
ma_uint32 ilpf1;
ma_uint32 ilpf2;
MA_ASSERT(pLPF->format == ma_format_f32);
MA_COPY_MEMORY(pY, pX, ma_get_bytes_per_frame(pLPF->format, pLPF->channels));
for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) {
ma_lpf1_process_pcm_frame_f32(&pLPF->lpf1[ilpf1], pY, pY);
}
for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) {
ma_lpf2_process_pcm_frame_f32(&pLPF->lpf2[ilpf2], pY, pY);
}
}
static MA_INLINE void ma_lpf_process_pcm_frame_s16(ma_lpf* pLPF, ma_int16* pY, const ma_int16* pX)
{
ma_uint32 ilpf1;
ma_uint32 ilpf2;
MA_ASSERT(pLPF->format == ma_format_s16);
MA_COPY_MEMORY(pY, pX, ma_get_bytes_per_frame(pLPF->format, pLPF->channels));
for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) {
ma_lpf1_process_pcm_frame_s16(&pLPF->lpf1[ilpf1], pY, pY);
}
for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) {
ma_lpf2_process_pcm_frame_s16(&pLPF->lpf2[ilpf2], pY, pY);
}
}
MA_API ma_result ma_lpf_process_pcm_frames(ma_lpf* pLPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_result result;
ma_uint32 ilpf1;
ma_uint32 ilpf2;
if (pLPF == NULL) {
return MA_INVALID_ARGS;
}
/* Faster path for in-place. */
if (pFramesOut == pFramesIn) {
for (ilpf1 = 0; ilpf1 < pLPF->lpf1Count; ilpf1 += 1) {
result = ma_lpf1_process_pcm_frames(&pLPF->lpf1[ilpf1], pFramesOut, pFramesOut, frameCount);
if (result != MA_SUCCESS) {
return result;
}
}
for (ilpf2 = 0; ilpf2 < pLPF->lpf2Count; ilpf2 += 1) {
result = ma_lpf2_process_pcm_frames(&pLPF->lpf2[ilpf2], pFramesOut, pFramesOut, frameCount);
if (result != MA_SUCCESS) {
return result;
}
}
}
/* Slightly slower path for copying. */
if (pFramesOut != pFramesIn) {
ma_uint32 iFrame;
/* */ if (pLPF->format == ma_format_f32) {
/* */ float* pFramesOutF32 = ( float*)pFramesOut;
const float* pFramesInF32 = (const float*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_lpf_process_pcm_frame_f32(pLPF, pFramesOutF32, pFramesInF32);
pFramesOutF32 += pLPF->channels;
pFramesInF32 += pLPF->channels;
}
} else if (pLPF->format == ma_format_s16) {
/* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_lpf_process_pcm_frame_s16(pLPF, pFramesOutS16, pFramesInS16);
pFramesOutS16 += pLPF->channels;
pFramesInS16 += pLPF->channels;
}
} else {
MA_ASSERT(MA_FALSE);
return MA_INVALID_OPERATION; /* Should never hit this. */
}
}
return MA_SUCCESS;
}
MA_API ma_uint32 ma_lpf_get_latency(ma_lpf* pLPF)
{
if (pLPF == NULL) {
return 0;
}
return pLPF->lpf2Count*2 + pLPF->lpf1Count;
}
/**************************************************************************************************************************************************************
High-Pass Filtering
**************************************************************************************************************************************************************/
MA_API ma_hpf1_config ma_hpf1_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency)
{
ma_hpf1_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
return config;
}
MA_API ma_hpf2_config ma_hpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q)
{
ma_hpf2_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
config.q = q;
/* Q cannot be 0 or else it'll result in a division by 0. In this case just default to 0.707107. */
if (config.q == 0) {
config.q = 0.707107;
}
return config;
}
MA_API ma_result ma_hpf1_init(const ma_hpf1_config* pConfig, ma_hpf1* pHPF)
{
if (pHPF == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pHPF);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
return ma_hpf1_reinit(pConfig, pHPF);
}
MA_API ma_result ma_hpf1_reinit(const ma_hpf1_config* pConfig, ma_hpf1* pHPF)
{
double a;
if (pHPF == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
/* Only supporting f32 and s16. */
if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
return MA_INVALID_ARGS;
}
/* The format cannot be changed after initialization. */
if (pHPF->format != ma_format_unknown && pHPF->format != pConfig->format) {
return MA_INVALID_OPERATION;
}
/* The channel count cannot be changed after initialization. */
if (pHPF->channels != 0 && pHPF->channels != pConfig->channels) {
return MA_INVALID_OPERATION;
}
pHPF->format = pConfig->format;
pHPF->channels = pConfig->channels;
a = ma_exp(-2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate);
if (pConfig->format == ma_format_f32) {
pHPF->a.f32 = (float)a;
} else {
pHPF->a.s32 = ma_biquad_float_to_fp(a);
}
return MA_SUCCESS;
}
static MA_INLINE void ma_hpf1_process_pcm_frame_f32(ma_hpf1* pHPF, float* pY, const float* pX)
{
ma_uint32 c;
const float a = 1 - pHPF->a.f32;
const float b = 1 - a;
for (c = 0; c < pHPF->channels; c += 1) {
float r1 = pHPF->r1[c].f32;
float x = pX[c];
float y;
y = b*x - a*r1;
pY[c] = y;
pHPF->r1[c].f32 = y;
}
}
static MA_INLINE void ma_hpf1_process_pcm_frame_s16(ma_hpf1* pHPF, ma_int16* pY, const ma_int16* pX)
{
ma_uint32 c;
const ma_int32 a = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - pHPF->a.s32);
const ma_int32 b = ((1 << MA_BIQUAD_FIXED_POINT_SHIFT) - a);
for (c = 0; c < pHPF->channels; c += 1) {
ma_int32 r1 = pHPF->r1[c].s32;
ma_int32 x = pX[c];
ma_int32 y;
y = (b*x - a*r1) >> MA_BIQUAD_FIXED_POINT_SHIFT;
pY[c] = (ma_int16)y;
pHPF->r1[c].s32 = (ma_int32)y;
}
}
MA_API ma_result ma_hpf1_process_pcm_frames(ma_hpf1* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_uint32 n;
if (pHPF == NULL || pFramesOut == NULL || pFramesIn == NULL) {
return MA_INVALID_ARGS;
}
/* Note that the logic below needs to support in-place filtering. That is, it must support the case where pFramesOut and pFramesIn are the same. */
if (pHPF->format == ma_format_f32) {
/* */ float* pY = ( float*)pFramesOut;
const float* pX = (const float*)pFramesIn;
for (n = 0; n < frameCount; n += 1) {
ma_hpf1_process_pcm_frame_f32(pHPF, pY, pX);
pY += pHPF->channels;
pX += pHPF->channels;
}
} else if (pHPF->format == ma_format_s16) {
/* */ ma_int16* pY = ( ma_int16*)pFramesOut;
const ma_int16* pX = (const ma_int16*)pFramesIn;
for (n = 0; n < frameCount; n += 1) {
ma_hpf1_process_pcm_frame_s16(pHPF, pY, pX);
pY += pHPF->channels;
pX += pHPF->channels;
}
} else {
MA_ASSERT(MA_FALSE);
return MA_INVALID_ARGS; /* Format not supported. Should never hit this because it's checked in ma_biquad_init() and ma_biquad_reinit(). */
}
return MA_SUCCESS;
}
MA_API ma_uint32 ma_hpf1_get_latency(ma_hpf1* pHPF)
{
if (pHPF == NULL) {
return 0;
}
return 1;
}
static MA_INLINE ma_biquad_config ma_hpf2__get_biquad_config(const ma_hpf2_config* pConfig)
{
ma_biquad_config bqConfig;
double q;
double w;
double s;
double c;
double a;
MA_ASSERT(pConfig != NULL);
q = pConfig->q;
w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
a = s / (2*q);
bqConfig.b0 = (1 + c) / 2;
bqConfig.b1 = -(1 + c);
bqConfig.b2 = (1 + c) / 2;
bqConfig.a0 = 1 + a;
bqConfig.a1 = -2 * c;
bqConfig.a2 = 1 - a;
bqConfig.format = pConfig->format;
bqConfig.channels = pConfig->channels;
return bqConfig;
}
MA_API ma_result ma_hpf2_init(const ma_hpf2_config* pConfig, ma_hpf2* pHPF)
{
ma_result result;
ma_biquad_config bqConfig;
if (pHPF == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pHPF);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_hpf2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pHPF->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_hpf2_reinit(const ma_hpf2_config* pConfig, ma_hpf2* pHPF)
{
ma_result result;
ma_biquad_config bqConfig;
if (pHPF == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_hpf2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pHPF->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
static MA_INLINE void ma_hpf2_process_pcm_frame_s16(ma_hpf2* pHPF, ma_int16* pFrameOut, const ma_int16* pFrameIn)
{
ma_biquad_process_pcm_frame_s16(&pHPF->bq, pFrameOut, pFrameIn);
}
static MA_INLINE void ma_hpf2_process_pcm_frame_f32(ma_hpf2* pHPF, float* pFrameOut, const float* pFrameIn)
{
ma_biquad_process_pcm_frame_f32(&pHPF->bq, pFrameOut, pFrameIn);
}
MA_API ma_result ma_hpf2_process_pcm_frames(ma_hpf2* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pHPF == NULL) {
return MA_INVALID_ARGS;
}
return ma_biquad_process_pcm_frames(&pHPF->bq, pFramesOut, pFramesIn, frameCount);
}
MA_API ma_uint32 ma_hpf2_get_latency(ma_hpf2* pHPF)
{
if (pHPF == NULL) {
return 0;
}
return ma_biquad_get_latency(&pHPF->bq);
}
MA_API ma_hpf_config ma_hpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order)
{
ma_hpf_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
config.order = ma_min(order, MA_MAX_FILTER_ORDER);
return config;
}
static ma_result ma_hpf_reinit__internal(const ma_hpf_config* pConfig, ma_hpf* pHPF, ma_bool32 isNew)
{
ma_result result;
ma_uint32 hpf1Count;
ma_uint32 hpf2Count;
ma_uint32 ihpf1;
ma_uint32 ihpf2;
if (pHPF == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
/* Only supporting f32 and s16. */
if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
return MA_INVALID_ARGS;
}
/* The format cannot be changed after initialization. */
if (pHPF->format != ma_format_unknown && pHPF->format != pConfig->format) {
return MA_INVALID_OPERATION;
}
/* The channel count cannot be changed after initialization. */
if (pHPF->channels != 0 && pHPF->channels != pConfig->channels) {
return MA_INVALID_OPERATION;
}
if (pConfig->order > MA_MAX_FILTER_ORDER) {
return MA_INVALID_ARGS;
}
hpf1Count = pConfig->order % 2;
hpf2Count = pConfig->order / 2;
MA_ASSERT(hpf1Count <= ma_countof(pHPF->hpf1));
MA_ASSERT(hpf2Count <= ma_countof(pHPF->hpf2));
/* The filter order can't change between reinits. */
if (!isNew) {
if (pHPF->hpf1Count != hpf1Count || pHPF->hpf2Count != hpf2Count) {
return MA_INVALID_OPERATION;
}
}
for (ihpf1 = 0; ihpf1 < hpf1Count; ihpf1 += 1) {
ma_hpf1_config hpf1Config = ma_hpf1_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency);
if (isNew) {
result = ma_hpf1_init(&hpf1Config, &pHPF->hpf1[ihpf1]);
} else {
result = ma_hpf1_reinit(&hpf1Config, &pHPF->hpf1[ihpf1]);
}
if (result != MA_SUCCESS) {
return result;
}
}
for (ihpf2 = 0; ihpf2 < hpf2Count; ihpf2 += 1) {
ma_hpf2_config hpf2Config;
double q;
double a;
/* Tempting to use 0.707107, but won't result in a Butterworth filter if the order is > 2. */
if (hpf1Count == 1) {
a = (1 + ihpf2*1) * (MA_PI_D/(pConfig->order*1)); /* Odd order. */
} else {
a = (1 + ihpf2*2) * (MA_PI_D/(pConfig->order*2)); /* Even order. */
}
q = 1 / (2*ma_cos(a));
hpf2Config = ma_hpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, q);
if (isNew) {
result = ma_hpf2_init(&hpf2Config, &pHPF->hpf2[ihpf2]);
} else {
result = ma_hpf2_reinit(&hpf2Config, &pHPF->hpf2[ihpf2]);
}
if (result != MA_SUCCESS) {
return result;
}
}
pHPF->hpf1Count = hpf1Count;
pHPF->hpf2Count = hpf2Count;
pHPF->format = pConfig->format;
pHPF->channels = pConfig->channels;
return MA_SUCCESS;
}
MA_API ma_result ma_hpf_init(const ma_hpf_config* pConfig, ma_hpf* pHPF)
{
if (pHPF == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pHPF);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
return ma_hpf_reinit__internal(pConfig, pHPF, /*isNew*/MA_TRUE);
}
MA_API ma_result ma_hpf_reinit(const ma_hpf_config* pConfig, ma_hpf* pHPF)
{
return ma_hpf_reinit__internal(pConfig, pHPF, /*isNew*/MA_FALSE);
}
MA_API ma_result ma_hpf_process_pcm_frames(ma_hpf* pHPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_result result;
ma_uint32 ihpf1;
ma_uint32 ihpf2;
if (pHPF == NULL) {
return MA_INVALID_ARGS;
}
/* Faster path for in-place. */
if (pFramesOut == pFramesIn) {
for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) {
result = ma_hpf1_process_pcm_frames(&pHPF->hpf1[ihpf1], pFramesOut, pFramesOut, frameCount);
if (result != MA_SUCCESS) {
return result;
}
}
for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) {
result = ma_hpf2_process_pcm_frames(&pHPF->hpf2[ihpf2], pFramesOut, pFramesOut, frameCount);
if (result != MA_SUCCESS) {
return result;
}
}
}
/* Slightly slower path for copying. */
if (pFramesOut != pFramesIn) {
ma_uint32 iFrame;
/* */ if (pHPF->format == ma_format_f32) {
/* */ float* pFramesOutF32 = ( float*)pFramesOut;
const float* pFramesInF32 = (const float*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
MA_COPY_MEMORY(pFramesOutF32, pFramesInF32, ma_get_bytes_per_frame(pHPF->format, pHPF->channels));
for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) {
ma_hpf1_process_pcm_frame_f32(&pHPF->hpf1[ihpf1], pFramesOutF32, pFramesOutF32);
}
for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) {
ma_hpf2_process_pcm_frame_f32(&pHPF->hpf2[ihpf2], pFramesOutF32, pFramesOutF32);
}
pFramesOutF32 += pHPF->channels;
pFramesInF32 += pHPF->channels;
}
} else if (pHPF->format == ma_format_s16) {
/* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
MA_COPY_MEMORY(pFramesOutS16, pFramesInS16, ma_get_bytes_per_frame(pHPF->format, pHPF->channels));
for (ihpf1 = 0; ihpf1 < pHPF->hpf1Count; ihpf1 += 1) {
ma_hpf1_process_pcm_frame_s16(&pHPF->hpf1[ihpf1], pFramesOutS16, pFramesOutS16);
}
for (ihpf2 = 0; ihpf2 < pHPF->hpf2Count; ihpf2 += 1) {
ma_hpf2_process_pcm_frame_s16(&pHPF->hpf2[ihpf2], pFramesOutS16, pFramesOutS16);
}
pFramesOutS16 += pHPF->channels;
pFramesInS16 += pHPF->channels;
}
} else {
MA_ASSERT(MA_FALSE);
return MA_INVALID_OPERATION; /* Should never hit this. */
}
}
return MA_SUCCESS;
}
MA_API ma_uint32 ma_hpf_get_latency(ma_hpf* pHPF)
{
if (pHPF == NULL) {
return 0;
}
return pHPF->hpf2Count*2 + pHPF->hpf1Count;
}
/**************************************************************************************************************************************************************
Band-Pass Filtering
**************************************************************************************************************************************************************/
MA_API ma_bpf2_config ma_bpf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, double q)
{
ma_bpf2_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
config.q = q;
/* Q cannot be 0 or else it'll result in a division by 0. In this case just default to 0.707107. */
if (config.q == 0) {
config.q = 0.707107;
}
return config;
}
static MA_INLINE ma_biquad_config ma_bpf2__get_biquad_config(const ma_bpf2_config* pConfig)
{
ma_biquad_config bqConfig;
double q;
double w;
double s;
double c;
double a;
MA_ASSERT(pConfig != NULL);
q = pConfig->q;
w = 2 * MA_PI_D * pConfig->cutoffFrequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
a = s / (2*q);
bqConfig.b0 = q * a;
bqConfig.b1 = 0;
bqConfig.b2 = -q * a;
bqConfig.a0 = 1 + a;
bqConfig.a1 = -2 * c;
bqConfig.a2 = 1 - a;
bqConfig.format = pConfig->format;
bqConfig.channels = pConfig->channels;
return bqConfig;
}
MA_API ma_result ma_bpf2_init(const ma_bpf2_config* pConfig, ma_bpf2* pBPF)
{
ma_result result;
ma_biquad_config bqConfig;
if (pBPF == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pBPF);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_bpf2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pBPF->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_bpf2_reinit(const ma_bpf2_config* pConfig, ma_bpf2* pBPF)
{
ma_result result;
ma_biquad_config bqConfig;
if (pBPF == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_bpf2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pBPF->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
static MA_INLINE void ma_bpf2_process_pcm_frame_s16(ma_bpf2* pBPF, ma_int16* pFrameOut, const ma_int16* pFrameIn)
{
ma_biquad_process_pcm_frame_s16(&pBPF->bq, pFrameOut, pFrameIn);
}
static MA_INLINE void ma_bpf2_process_pcm_frame_f32(ma_bpf2* pBPF, float* pFrameOut, const float* pFrameIn)
{
ma_biquad_process_pcm_frame_f32(&pBPF->bq, pFrameOut, pFrameIn);
}
MA_API ma_result ma_bpf2_process_pcm_frames(ma_bpf2* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pBPF == NULL) {
return MA_INVALID_ARGS;
}
return ma_biquad_process_pcm_frames(&pBPF->bq, pFramesOut, pFramesIn, frameCount);
}
MA_API ma_uint32 ma_bpf2_get_latency(ma_bpf2* pBPF)
{
if (pBPF == NULL) {
return 0;
}
return ma_biquad_get_latency(&pBPF->bq);
}
MA_API ma_bpf_config ma_bpf_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double cutoffFrequency, ma_uint32 order)
{
ma_bpf_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.cutoffFrequency = cutoffFrequency;
config.order = ma_min(order, MA_MAX_FILTER_ORDER);
return config;
}
static ma_result ma_bpf_reinit__internal(const ma_bpf_config* pConfig, ma_bpf* pBPF, ma_bool32 isNew)
{
ma_result result;
ma_uint32 bpf2Count;
ma_uint32 ibpf2;
if (pBPF == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
/* Only supporting f32 and s16. */
if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
return MA_INVALID_ARGS;
}
/* The format cannot be changed after initialization. */
if (pBPF->format != ma_format_unknown && pBPF->format != pConfig->format) {
return MA_INVALID_OPERATION;
}
/* The channel count cannot be changed after initialization. */
if (pBPF->channels != 0 && pBPF->channels != pConfig->channels) {
return MA_INVALID_OPERATION;
}
if (pConfig->order > MA_MAX_FILTER_ORDER) {
return MA_INVALID_ARGS;
}
/* We must have an even number of order. */
if ((pConfig->order & 0x1) != 0) {
return MA_INVALID_ARGS;
}
bpf2Count = pConfig->order / 2;
MA_ASSERT(bpf2Count <= ma_countof(pBPF->bpf2));
/* The filter order can't change between reinits. */
if (!isNew) {
if (pBPF->bpf2Count != bpf2Count) {
return MA_INVALID_OPERATION;
}
}
for (ibpf2 = 0; ibpf2 < bpf2Count; ibpf2 += 1) {
ma_bpf2_config bpf2Config;
double q;
/* TODO: Calculate Q to make this a proper Butterworth filter. */
q = 0.707107;
bpf2Config = ma_bpf2_config_init(pConfig->format, pConfig->channels, pConfig->sampleRate, pConfig->cutoffFrequency, q);
if (isNew) {
result = ma_bpf2_init(&bpf2Config, &pBPF->bpf2[ibpf2]);
} else {
result = ma_bpf2_reinit(&bpf2Config, &pBPF->bpf2[ibpf2]);
}
if (result != MA_SUCCESS) {
return result;
}
}
pBPF->bpf2Count = bpf2Count;
pBPF->format = pConfig->format;
pBPF->channels = pConfig->channels;
return MA_SUCCESS;
}
MA_API ma_result ma_bpf_init(const ma_bpf_config* pConfig, ma_bpf* pBPF)
{
if (pBPF == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pBPF);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
return ma_bpf_reinit__internal(pConfig, pBPF, /*isNew*/MA_TRUE);
}
MA_API ma_result ma_bpf_reinit(const ma_bpf_config* pConfig, ma_bpf* pBPF)
{
return ma_bpf_reinit__internal(pConfig, pBPF, /*isNew*/MA_FALSE);
}
MA_API ma_result ma_bpf_process_pcm_frames(ma_bpf* pBPF, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_result result;
ma_uint32 ibpf2;
if (pBPF == NULL) {
return MA_INVALID_ARGS;
}
/* Faster path for in-place. */
if (pFramesOut == pFramesIn) {
for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) {
result = ma_bpf2_process_pcm_frames(&pBPF->bpf2[ibpf2], pFramesOut, pFramesOut, frameCount);
if (result != MA_SUCCESS) {
return result;
}
}
}
/* Slightly slower path for copying. */
if (pFramesOut != pFramesIn) {
ma_uint32 iFrame;
/* */ if (pBPF->format == ma_format_f32) {
/* */ float* pFramesOutF32 = ( float*)pFramesOut;
const float* pFramesInF32 = (const float*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
MA_COPY_MEMORY(pFramesOutF32, pFramesInF32, ma_get_bytes_per_frame(pBPF->format, pBPF->channels));
for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) {
ma_bpf2_process_pcm_frame_f32(&pBPF->bpf2[ibpf2], pFramesOutF32, pFramesOutF32);
}
pFramesOutF32 += pBPF->channels;
pFramesInF32 += pBPF->channels;
}
} else if (pBPF->format == ma_format_s16) {
/* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
MA_COPY_MEMORY(pFramesOutS16, pFramesInS16, ma_get_bytes_per_frame(pBPF->format, pBPF->channels));
for (ibpf2 = 0; ibpf2 < pBPF->bpf2Count; ibpf2 += 1) {
ma_bpf2_process_pcm_frame_s16(&pBPF->bpf2[ibpf2], pFramesOutS16, pFramesOutS16);
}
pFramesOutS16 += pBPF->channels;
pFramesInS16 += pBPF->channels;
}
} else {
MA_ASSERT(MA_FALSE);
return MA_INVALID_OPERATION; /* Should never hit this. */
}
}
return MA_SUCCESS;
}
MA_API ma_uint32 ma_bpf_get_latency(ma_bpf* pBPF)
{
if (pBPF == NULL) {
return 0;
}
return pBPF->bpf2Count*2;
}
/**************************************************************************************************************************************************************
Notching Filter
**************************************************************************************************************************************************************/
MA_API ma_notch2_config ma_notch2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double q, double frequency)
{
ma_notch2_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.q = q;
config.frequency = frequency;
if (config.q == 0) {
config.q = 0.707107;
}
return config;
}
static MA_INLINE ma_biquad_config ma_notch2__get_biquad_config(const ma_notch2_config* pConfig)
{
ma_biquad_config bqConfig;
double q;
double w;
double s;
double c;
double a;
MA_ASSERT(pConfig != NULL);
q = pConfig->q;
w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
a = s / (2*q);
bqConfig.b0 = 1;
bqConfig.b1 = -2 * c;
bqConfig.b2 = 1;
bqConfig.a0 = 1 + a;
bqConfig.a1 = -2 * c;
bqConfig.a2 = 1 - a;
bqConfig.format = pConfig->format;
bqConfig.channels = pConfig->channels;
return bqConfig;
}
MA_API ma_result ma_notch2_init(const ma_notch2_config* pConfig, ma_notch2* pFilter)
{
ma_result result;
ma_biquad_config bqConfig;
if (pFilter == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pFilter);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_notch2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pFilter->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_notch2_reinit(const ma_notch2_config* pConfig, ma_notch2* pFilter)
{
ma_result result;
ma_biquad_config bqConfig;
if (pFilter == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_notch2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pFilter->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
static MA_INLINE void ma_notch2_process_pcm_frame_s16(ma_notch2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn)
{
ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn);
}
static MA_INLINE void ma_notch2_process_pcm_frame_f32(ma_notch2* pFilter, float* pFrameOut, const float* pFrameIn)
{
ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn);
}
MA_API ma_result ma_notch2_process_pcm_frames(ma_notch2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pFilter == NULL) {
return MA_INVALID_ARGS;
}
return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount);
}
MA_API ma_uint32 ma_notch2_get_latency(ma_notch2* pFilter)
{
if (pFilter == NULL) {
return 0;
}
return ma_biquad_get_latency(&pFilter->bq);
}
/**************************************************************************************************************************************************************
Peaking EQ Filter
**************************************************************************************************************************************************************/
MA_API ma_peak2_config ma_peak2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double q, double frequency)
{
ma_peak2_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.gainDB = gainDB;
config.q = q;
config.frequency = frequency;
if (config.q == 0) {
config.q = 0.707107;
}
return config;
}
static MA_INLINE ma_biquad_config ma_peak2__get_biquad_config(const ma_peak2_config* pConfig)
{
ma_biquad_config bqConfig;
double q;
double w;
double s;
double c;
double a;
double A;
MA_ASSERT(pConfig != NULL);
q = pConfig->q;
w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
a = s / (2*q);
A = ma_pow(10, (pConfig->gainDB / 40));
bqConfig.b0 = 1 + (a * A);
bqConfig.b1 = -2 * c;
bqConfig.b2 = 1 - (a * A);
bqConfig.a0 = 1 + (a / A);
bqConfig.a1 = -2 * c;
bqConfig.a2 = 1 - (a / A);
bqConfig.format = pConfig->format;
bqConfig.channels = pConfig->channels;
return bqConfig;
}
MA_API ma_result ma_peak2_init(const ma_peak2_config* pConfig, ma_peak2* pFilter)
{
ma_result result;
ma_biquad_config bqConfig;
if (pFilter == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pFilter);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_peak2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pFilter->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_peak2_reinit(const ma_peak2_config* pConfig, ma_peak2* pFilter)
{
ma_result result;
ma_biquad_config bqConfig;
if (pFilter == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_peak2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pFilter->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
static MA_INLINE void ma_peak2_process_pcm_frame_s16(ma_peak2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn)
{
ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn);
}
static MA_INLINE void ma_peak2_process_pcm_frame_f32(ma_peak2* pFilter, float* pFrameOut, const float* pFrameIn)
{
ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn);
}
MA_API ma_result ma_peak2_process_pcm_frames(ma_peak2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pFilter == NULL) {
return MA_INVALID_ARGS;
}
return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount);
}
MA_API ma_uint32 ma_peak2_get_latency(ma_peak2* pFilter)
{
if (pFilter == NULL) {
return 0;
}
return ma_biquad_get_latency(&pFilter->bq);
}
/**************************************************************************************************************************************************************
Low Shelf Filter
**************************************************************************************************************************************************************/
MA_API ma_loshelf2_config ma_loshelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency)
{
ma_loshelf2_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.gainDB = gainDB;
config.shelfSlope = shelfSlope;
config.frequency = frequency;
return config;
}
static MA_INLINE ma_biquad_config ma_loshelf2__get_biquad_config(const ma_loshelf2_config* pConfig)
{
ma_biquad_config bqConfig;
double w;
double s;
double c;
double A;
double S;
double a;
double sqrtA;
MA_ASSERT(pConfig != NULL);
w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
A = ma_pow(10, (pConfig->gainDB / 40));
S = pConfig->shelfSlope;
a = s/2 * ma_sqrt((A + 1/A) * (1/S - 1) + 2);
sqrtA = 2*ma_sqrt(A)*a;
bqConfig.b0 = A * ((A + 1) - (A - 1)*c + sqrtA);
bqConfig.b1 = 2 * A * ((A - 1) - (A + 1)*c);
bqConfig.b2 = A * ((A + 1) - (A - 1)*c - sqrtA);
bqConfig.a0 = (A + 1) + (A - 1)*c + sqrtA;
bqConfig.a1 = -2 * ((A - 1) + (A + 1)*c);
bqConfig.a2 = (A + 1) + (A - 1)*c - sqrtA;
bqConfig.format = pConfig->format;
bqConfig.channels = pConfig->channels;
return bqConfig;
}
MA_API ma_result ma_loshelf2_init(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter)
{
ma_result result;
ma_biquad_config bqConfig;
if (pFilter == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pFilter);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_loshelf2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pFilter->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_loshelf2_reinit(const ma_loshelf2_config* pConfig, ma_loshelf2* pFilter)
{
ma_result result;
ma_biquad_config bqConfig;
if (pFilter == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_loshelf2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pFilter->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
static MA_INLINE void ma_loshelf2_process_pcm_frame_s16(ma_loshelf2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn)
{
ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn);
}
static MA_INLINE void ma_loshelf2_process_pcm_frame_f32(ma_loshelf2* pFilter, float* pFrameOut, const float* pFrameIn)
{
ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn);
}
MA_API ma_result ma_loshelf2_process_pcm_frames(ma_loshelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pFilter == NULL) {
return MA_INVALID_ARGS;
}
return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount);
}
MA_API ma_uint32 ma_loshelf2_get_latency(ma_loshelf2* pFilter)
{
if (pFilter == NULL) {
return 0;
}
return ma_biquad_get_latency(&pFilter->bq);
}
/**************************************************************************************************************************************************************
High Shelf Filter
**************************************************************************************************************************************************************/
MA_API ma_hishelf2_config ma_hishelf2_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, double gainDB, double shelfSlope, double frequency)
{
ma_hishelf2_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.gainDB = gainDB;
config.shelfSlope = shelfSlope;
config.frequency = frequency;
return config;
}
static MA_INLINE ma_biquad_config ma_hishelf2__get_biquad_config(const ma_hishelf2_config* pConfig)
{
ma_biquad_config bqConfig;
double w;
double s;
double c;
double A;
double S;
double a;
double sqrtA;
MA_ASSERT(pConfig != NULL);
w = 2 * MA_PI_D * pConfig->frequency / pConfig->sampleRate;
s = ma_sin(w);
c = ma_cos(w);
A = ma_pow(10, (pConfig->gainDB / 40));
S = pConfig->shelfSlope;
a = s/2 * ma_sqrt((A + 1/A) * (1/S - 1) + 2);
sqrtA = 2*ma_sqrt(A)*a;
bqConfig.b0 = A * ((A + 1) + (A - 1)*c + sqrtA);
bqConfig.b1 = -2 * A * ((A - 1) + (A + 1)*c);
bqConfig.b2 = A * ((A + 1) + (A - 1)*c - sqrtA);
bqConfig.a0 = (A + 1) - (A - 1)*c + sqrtA;
bqConfig.a1 = 2 * ((A - 1) - (A + 1)*c);
bqConfig.a2 = (A + 1) - (A - 1)*c - sqrtA;
bqConfig.format = pConfig->format;
bqConfig.channels = pConfig->channels;
return bqConfig;
}
MA_API ma_result ma_hishelf2_init(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter)
{
ma_result result;
ma_biquad_config bqConfig;
if (pFilter == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pFilter);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_hishelf2__get_biquad_config(pConfig);
result = ma_biquad_init(&bqConfig, &pFilter->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_hishelf2_reinit(const ma_hishelf2_config* pConfig, ma_hishelf2* pFilter)
{
ma_result result;
ma_biquad_config bqConfig;
if (pFilter == NULL || pConfig == NULL) {
return MA_INVALID_ARGS;
}
bqConfig = ma_hishelf2__get_biquad_config(pConfig);
result = ma_biquad_reinit(&bqConfig, &pFilter->bq);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
static MA_INLINE void ma_hishelf2_process_pcm_frame_s16(ma_hishelf2* pFilter, ma_int16* pFrameOut, const ma_int16* pFrameIn)
{
ma_biquad_process_pcm_frame_s16(&pFilter->bq, pFrameOut, pFrameIn);
}
static MA_INLINE void ma_hishelf2_process_pcm_frame_f32(ma_hishelf2* pFilter, float* pFrameOut, const float* pFrameIn)
{
ma_biquad_process_pcm_frame_f32(&pFilter->bq, pFrameOut, pFrameIn);
}
MA_API ma_result ma_hishelf2_process_pcm_frames(ma_hishelf2* pFilter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pFilter == NULL) {
return MA_INVALID_ARGS;
}
return ma_biquad_process_pcm_frames(&pFilter->bq, pFramesOut, pFramesIn, frameCount);
}
MA_API ma_uint32 ma_hishelf2_get_latency(ma_hishelf2* pFilter)
{
if (pFilter == NULL) {
return 0;
}
return ma_biquad_get_latency(&pFilter->bq);
}
/**************************************************************************************************************************************************************
Resampling
**************************************************************************************************************************************************************/
MA_API ma_linear_resampler_config ma_linear_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
ma_linear_resampler_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRateIn = sampleRateIn;
config.sampleRateOut = sampleRateOut;
config.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
config.lpfNyquistFactor = 1;
return config;
}
static void ma_linear_resampler_adjust_timer_for_new_rate(ma_linear_resampler* pResampler, ma_uint32 oldSampleRateOut, ma_uint32 newSampleRateOut)
{
/*
So what's happening here? Basically we need to adjust the fractional component of the time advance based on the new rate. The old time advance will
be based on the old sample rate, but we are needing to adjust it to that it's based on the new sample rate.
*/
ma_uint32 oldRateTimeWhole = pResampler->inTimeFrac / oldSampleRateOut; /* <-- This should almost never be anything other than 0, but leaving it here to make this more general and robust just in case. */
ma_uint32 oldRateTimeFract = pResampler->inTimeFrac % oldSampleRateOut;
pResampler->inTimeFrac =
(oldRateTimeWhole * newSampleRateOut) +
((oldRateTimeFract * newSampleRateOut) / oldSampleRateOut);
/* Make sure the fractional part is less than the output sample rate. */
pResampler->inTimeInt += pResampler->inTimeFrac / pResampler->config.sampleRateOut;
pResampler->inTimeFrac = pResampler->inTimeFrac % pResampler->config.sampleRateOut;
}
static ma_result ma_linear_resampler_set_rate_internal(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_bool32 isResamplerAlreadyInitialized)
{
ma_result result;
ma_uint32 gcf;
ma_uint32 lpfSampleRate;
double lpfCutoffFrequency;
ma_lpf_config lpfConfig;
ma_uint32 oldSampleRateOut; /* Required for adjusting time advance down the bottom. */
if (pResampler == NULL) {
return MA_INVALID_ARGS;
}
if (sampleRateIn == 0 || sampleRateOut == 0) {
return MA_INVALID_ARGS;
}
oldSampleRateOut = pResampler->config.sampleRateOut;
pResampler->config.sampleRateIn = sampleRateIn;
pResampler->config.sampleRateOut = sampleRateOut;
/* Simplify the sample rate. */
gcf = ma_gcf_u32(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut);
pResampler->config.sampleRateIn /= gcf;
pResampler->config.sampleRateOut /= gcf;
/* Always initialize the low-pass filter, even when the order is 0. */
if (pResampler->config.lpfOrder > MA_MAX_FILTER_ORDER) {
return MA_INVALID_ARGS;
}
lpfSampleRate = (ma_uint32)(ma_max(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut));
lpfCutoffFrequency = ( double)(ma_min(pResampler->config.sampleRateIn, pResampler->config.sampleRateOut) * 0.5 * pResampler->config.lpfNyquistFactor);
lpfConfig = ma_lpf_config_init(pResampler->config.format, pResampler->config.channels, lpfSampleRate, lpfCutoffFrequency, pResampler->config.lpfOrder);
/*
If the resampler is alreay initialized we don't want to do a fresh initialization of the low-pass filter because it will result in the cached frames
getting cleared. Instead we re-initialize the filter which will maintain any cached frames.
*/
if (isResamplerAlreadyInitialized) {
result = ma_lpf_reinit(&lpfConfig, &pResampler->lpf);
} else {
result = ma_lpf_init(&lpfConfig, &pResampler->lpf);
}
if (result != MA_SUCCESS) {
return result;
}
pResampler->inAdvanceInt = pResampler->config.sampleRateIn / pResampler->config.sampleRateOut;
pResampler->inAdvanceFrac = pResampler->config.sampleRateIn % pResampler->config.sampleRateOut;
/* Our timer was based on the old rate. We need to adjust it so that it's based on the new rate. */
ma_linear_resampler_adjust_timer_for_new_rate(pResampler, oldSampleRateOut, pResampler->config.sampleRateOut);
return MA_SUCCESS;
}
MA_API ma_result ma_linear_resampler_init(const ma_linear_resampler_config* pConfig, ma_linear_resampler* pResampler)
{
ma_result result;
if (pResampler == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pResampler);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
pResampler->config = *pConfig;
/* Setting the rate will set up the filter and time advances for us. */
result = ma_linear_resampler_set_rate_internal(pResampler, pConfig->sampleRateIn, pConfig->sampleRateOut, /* isResamplerAlreadyInitialized = */ MA_FALSE);
if (result != MA_SUCCESS) {
return result;
}
pResampler->inTimeInt = 1; /* Set this to one to force an input sample to always be loaded for the first output frame. */
pResampler->inTimeFrac = 0;
return MA_SUCCESS;
}
MA_API void ma_linear_resampler_uninit(ma_linear_resampler* pResampler)
{
if (pResampler == NULL) {
return;
}
}
static MA_INLINE ma_int16 ma_linear_resampler_mix_s16(ma_int16 x, ma_int16 y, ma_int32 a, const ma_int32 shift)
{
ma_int32 b;
ma_int32 c;
ma_int32 r;
MA_ASSERT(a <= (1<<shift));
b = x * ((1<<shift) - a);
c = y * a;
r = b + c;
return (ma_int16)(r >> shift);
}
static void ma_linear_resampler_interpolate_frame_s16(ma_linear_resampler* pResampler, ma_int16* pFrameOut)
{
ma_uint32 c;
ma_uint32 a;
const ma_uint32 shift = 12;
MA_ASSERT(pResampler != NULL);
MA_ASSERT(pFrameOut != NULL);
a = (pResampler->inTimeFrac << shift) / pResampler->config.sampleRateOut;
for (c = 0; c < pResampler->config.channels; c += 1) {
ma_int16 s = ma_linear_resampler_mix_s16(pResampler->x0.s16[c], pResampler->x1.s16[c], a, shift);
pFrameOut[c] = s;
}
}
static void ma_linear_resampler_interpolate_frame_f32(ma_linear_resampler* pResampler, float* pFrameOut)
{
ma_uint32 c;
float a;
MA_ASSERT(pResampler != NULL);
MA_ASSERT(pFrameOut != NULL);
a = (float)pResampler->inTimeFrac / pResampler->config.sampleRateOut;
for (c = 0; c < pResampler->config.channels; c += 1) {
float s = ma_mix_f32_fast(pResampler->x0.f32[c], pResampler->x1.f32[c], a);
pFrameOut[c] = s;
}
}
static ma_result ma_linear_resampler_process_pcm_frames_s16_downsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
const ma_int16* pFramesInS16;
/* */ ma_int16* pFramesOutS16;
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 framesProcessedIn;
ma_uint64 framesProcessedOut;
MA_ASSERT(pResampler != NULL);
MA_ASSERT(pFrameCountIn != NULL);
MA_ASSERT(pFrameCountOut != NULL);
pFramesInS16 = (const ma_int16*)pFramesIn;
pFramesOutS16 = ( ma_int16*)pFramesOut;
frameCountIn = *pFrameCountIn;
frameCountOut = *pFrameCountOut;
framesProcessedIn = 0;
framesProcessedOut = 0;
while (framesProcessedOut < frameCountOut) {
/* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */
while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) {
ma_uint32 iChannel;
if (pFramesInS16 != NULL) {
for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel];
pResampler->x1.s16[iChannel] = pFramesInS16[iChannel];
}
pFramesInS16 += pResampler->config.channels;
} else {
for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel];
pResampler->x1.s16[iChannel] = 0;
}
}
/* Filter. */
ma_lpf_process_pcm_frame_s16(&pResampler->lpf, pResampler->x1.s16, pResampler->x1.s16);
framesProcessedIn += 1;
pResampler->inTimeInt -= 1;
}
if (pResampler->inTimeInt > 0) {
break; /* Ran out of input data. */
}
/* Getting here means the frames have been loaded and filtered and we can generate the next output frame. */
if (pFramesOutS16 != NULL) {
MA_ASSERT(pResampler->inTimeInt == 0);
ma_linear_resampler_interpolate_frame_s16(pResampler, pFramesOutS16);
pFramesOutS16 += pResampler->config.channels;
}
framesProcessedOut += 1;
/* Advance time forward. */
pResampler->inTimeInt += pResampler->inAdvanceInt;
pResampler->inTimeFrac += pResampler->inAdvanceFrac;
if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) {
pResampler->inTimeFrac -= pResampler->config.sampleRateOut;
pResampler->inTimeInt += 1;
}
}
*pFrameCountIn = framesProcessedIn;
*pFrameCountOut = framesProcessedOut;
return MA_SUCCESS;
}
static ma_result ma_linear_resampler_process_pcm_frames_s16_upsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
const ma_int16* pFramesInS16;
/* */ ma_int16* pFramesOutS16;
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 framesProcessedIn;
ma_uint64 framesProcessedOut;
MA_ASSERT(pResampler != NULL);
MA_ASSERT(pFrameCountIn != NULL);
MA_ASSERT(pFrameCountOut != NULL);
pFramesInS16 = (const ma_int16*)pFramesIn;
pFramesOutS16 = ( ma_int16*)pFramesOut;
frameCountIn = *pFrameCountIn;
frameCountOut = *pFrameCountOut;
framesProcessedIn = 0;
framesProcessedOut = 0;
while (framesProcessedOut < frameCountOut) {
/* Before interpolating we need to load the buffers. */
while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) {
ma_uint32 iChannel;
if (pFramesInS16 != NULL) {
for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel];
pResampler->x1.s16[iChannel] = pFramesInS16[iChannel];
}
pFramesInS16 += pResampler->config.channels;
} else {
for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
pResampler->x0.s16[iChannel] = pResampler->x1.s16[iChannel];
pResampler->x1.s16[iChannel] = 0;
}
}
framesProcessedIn += 1;
pResampler->inTimeInt -= 1;
}
if (pResampler->inTimeInt > 0) {
break; /* Ran out of input data. */
}
/* Getting here means the frames have been loaded and we can generate the next output frame. */
if (pFramesOutS16 != NULL) {
MA_ASSERT(pResampler->inTimeInt == 0);
ma_linear_resampler_interpolate_frame_s16(pResampler, pFramesOutS16);
/* Filter. */
ma_lpf_process_pcm_frame_s16(&pResampler->lpf, pFramesOutS16, pFramesOutS16);
pFramesOutS16 += pResampler->config.channels;
}
framesProcessedOut += 1;
/* Advance time forward. */
pResampler->inTimeInt += pResampler->inAdvanceInt;
pResampler->inTimeFrac += pResampler->inAdvanceFrac;
if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) {
pResampler->inTimeFrac -= pResampler->config.sampleRateOut;
pResampler->inTimeInt += 1;
}
}
*pFrameCountIn = framesProcessedIn;
*pFrameCountOut = framesProcessedOut;
return MA_SUCCESS;
}
static ma_result ma_linear_resampler_process_pcm_frames_s16(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
MA_ASSERT(pResampler != NULL);
if (pResampler->config.sampleRateIn > pResampler->config.sampleRateOut) {
return ma_linear_resampler_process_pcm_frames_s16_downsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
} else {
return ma_linear_resampler_process_pcm_frames_s16_upsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
}
}
static ma_result ma_linear_resampler_process_pcm_frames_f32_downsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
const float* pFramesInF32;
/* */ float* pFramesOutF32;
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 framesProcessedIn;
ma_uint64 framesProcessedOut;
MA_ASSERT(pResampler != NULL);
MA_ASSERT(pFrameCountIn != NULL);
MA_ASSERT(pFrameCountOut != NULL);
pFramesInF32 = (const float*)pFramesIn;
pFramesOutF32 = ( float*)pFramesOut;
frameCountIn = *pFrameCountIn;
frameCountOut = *pFrameCountOut;
framesProcessedIn = 0;
framesProcessedOut = 0;
while (framesProcessedOut < frameCountOut) {
/* Before interpolating we need to load the buffers. When doing this we need to ensure we run every input sample through the filter. */
while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) {
ma_uint32 iChannel;
if (pFramesInF32 != NULL) {
for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel];
pResampler->x1.f32[iChannel] = pFramesInF32[iChannel];
}
pFramesInF32 += pResampler->config.channels;
} else {
for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel];
pResampler->x1.f32[iChannel] = 0;
}
}
/* Filter. */
ma_lpf_process_pcm_frame_f32(&pResampler->lpf, pResampler->x1.f32, pResampler->x1.f32);
framesProcessedIn += 1;
pResampler->inTimeInt -= 1;
}
if (pResampler->inTimeInt > 0) {
break; /* Ran out of input data. */
}
/* Getting here means the frames have been loaded and filtered and we can generate the next output frame. */
if (pFramesOutF32 != NULL) {
MA_ASSERT(pResampler->inTimeInt == 0);
ma_linear_resampler_interpolate_frame_f32(pResampler, pFramesOutF32);
pFramesOutF32 += pResampler->config.channels;
}
framesProcessedOut += 1;
/* Advance time forward. */
pResampler->inTimeInt += pResampler->inAdvanceInt;
pResampler->inTimeFrac += pResampler->inAdvanceFrac;
if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) {
pResampler->inTimeFrac -= pResampler->config.sampleRateOut;
pResampler->inTimeInt += 1;
}
}
*pFrameCountIn = framesProcessedIn;
*pFrameCountOut = framesProcessedOut;
return MA_SUCCESS;
}
static ma_result ma_linear_resampler_process_pcm_frames_f32_upsample(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
const float* pFramesInF32;
/* */ float* pFramesOutF32;
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 framesProcessedIn;
ma_uint64 framesProcessedOut;
MA_ASSERT(pResampler != NULL);
MA_ASSERT(pFrameCountIn != NULL);
MA_ASSERT(pFrameCountOut != NULL);
pFramesInF32 = (const float*)pFramesIn;
pFramesOutF32 = ( float*)pFramesOut;
frameCountIn = *pFrameCountIn;
frameCountOut = *pFrameCountOut;
framesProcessedIn = 0;
framesProcessedOut = 0;
while (framesProcessedOut < frameCountOut) {
/* Before interpolating we need to load the buffers. */
while (pResampler->inTimeInt > 0 && frameCountIn > framesProcessedIn) {
ma_uint32 iChannel;
if (pFramesInF32 != NULL) {
for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel];
pResampler->x1.f32[iChannel] = pFramesInF32[iChannel];
}
pFramesInF32 += pResampler->config.channels;
} else {
for (iChannel = 0; iChannel < pResampler->config.channels; iChannel += 1) {
pResampler->x0.f32[iChannel] = pResampler->x1.f32[iChannel];
pResampler->x1.f32[iChannel] = 0;
}
}
framesProcessedIn += 1;
pResampler->inTimeInt -= 1;
}
if (pResampler->inTimeInt > 0) {
break; /* Ran out of input data. */
}
/* Getting here means the frames have been loaded and we can generate the next output frame. */
if (pFramesOutF32 != NULL) {
MA_ASSERT(pResampler->inTimeInt == 0);
ma_linear_resampler_interpolate_frame_f32(pResampler, pFramesOutF32);
/* Filter. */
ma_lpf_process_pcm_frame_f32(&pResampler->lpf, pFramesOutF32, pFramesOutF32);
pFramesOutF32 += pResampler->config.channels;
}
framesProcessedOut += 1;
/* Advance time forward. */
pResampler->inTimeInt += pResampler->inAdvanceInt;
pResampler->inTimeFrac += pResampler->inAdvanceFrac;
if (pResampler->inTimeFrac >= pResampler->config.sampleRateOut) {
pResampler->inTimeFrac -= pResampler->config.sampleRateOut;
pResampler->inTimeInt += 1;
}
}
*pFrameCountIn = framesProcessedIn;
*pFrameCountOut = framesProcessedOut;
return MA_SUCCESS;
}
static ma_result ma_linear_resampler_process_pcm_frames_f32(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
MA_ASSERT(pResampler != NULL);
if (pResampler->config.sampleRateIn > pResampler->config.sampleRateOut) {
return ma_linear_resampler_process_pcm_frames_f32_downsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
} else {
return ma_linear_resampler_process_pcm_frames_f32_upsample(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
}
}
MA_API ma_result ma_linear_resampler_process_pcm_frames(ma_linear_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
if (pResampler == NULL) {
return MA_INVALID_ARGS;
}
/* */ if (pResampler->config.format == ma_format_s16) {
return ma_linear_resampler_process_pcm_frames_s16(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
} else if (pResampler->config.format == ma_format_f32) {
return ma_linear_resampler_process_pcm_frames_f32(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
} else {
/* Should never get here. Getting here means the format is not supported and you didn't check the return value of ma_linear_resampler_init(). */
MA_ASSERT(MA_FALSE);
return MA_INVALID_ARGS;
}
}
MA_API ma_result ma_linear_resampler_set_rate(ma_linear_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
return ma_linear_resampler_set_rate_internal(pResampler, sampleRateIn, sampleRateOut, /* isResamplerAlreadyInitialized = */ MA_TRUE);
}
MA_API ma_result ma_linear_resampler_set_rate_ratio(ma_linear_resampler* pResampler, float ratioInOut)
{
ma_uint32 n;
ma_uint32 d;
d = 1000;
n = (ma_uint32)(ratioInOut * d);
if (n == 0) {
return MA_INVALID_ARGS; /* Ratio too small. */
}
MA_ASSERT(n != 0);
return ma_linear_resampler_set_rate(pResampler, n, d);
}
MA_API ma_uint64 ma_linear_resampler_get_required_input_frame_count(ma_linear_resampler* pResampler, ma_uint64 outputFrameCount)
{
ma_uint64 inputFrameCount;
if (pResampler == NULL) {
return 0;
}
if (outputFrameCount == 0) {
return 0;
}
/* Any whole input frames are consumed before the first output frame is generated. */
inputFrameCount = pResampler->inTimeInt;
outputFrameCount -= 1;
/* The rest of the output frames can be calculated in constant time. */
inputFrameCount += outputFrameCount * pResampler->inAdvanceInt;
inputFrameCount += (pResampler->inTimeFrac + (outputFrameCount * pResampler->inAdvanceFrac)) / pResampler->config.sampleRateOut;
return inputFrameCount;
}
MA_API ma_uint64 ma_linear_resampler_get_expected_output_frame_count(ma_linear_resampler* pResampler, ma_uint64 inputFrameCount)
{
ma_uint64 outputFrameCount;
ma_uint64 preliminaryInputFrameCountFromFrac;
ma_uint64 preliminaryInputFrameCount;
if (pResampler == NULL) {
return 0;
}
/*
The first step is to get a preliminary output frame count. This will either be exactly equal to what we need, or less by 1. We need to
determine how many input frames will be consumed by this value. If it's greater than our original input frame count it means we won't
be able to generate an extra frame because we will have run out of input data. Otherwise we will have enough input for the generation
of an extra output frame. This add-by-one logic is necessary due to how the data loading logic works when processing frames.
*/
outputFrameCount = (inputFrameCount * pResampler->config.sampleRateOut) / pResampler->config.sampleRateIn;
/*
We need to determine how many *whole* input frames will have been processed to generate our preliminary output frame count. This is
used in the logic below to determine whether or not we need to add an extra output frame.
*/
preliminaryInputFrameCountFromFrac = (pResampler->inTimeFrac + outputFrameCount*pResampler->inAdvanceFrac) / pResampler->config.sampleRateOut;
preliminaryInputFrameCount = (pResampler->inTimeInt + outputFrameCount*pResampler->inAdvanceInt ) + preliminaryInputFrameCountFromFrac;
/*
If the total number of *whole* input frames that would be required to generate our preliminary output frame count is greather than
the amount of whole input frames we have available as input we need to *not* add an extra output frame as there won't be enough data
to actually process. Otherwise we need to add the extra output frame.
*/
if (preliminaryInputFrameCount <= inputFrameCount) {
outputFrameCount += 1;
}
return outputFrameCount;
}
MA_API ma_uint64 ma_linear_resampler_get_input_latency(ma_linear_resampler* pResampler)
{
if (pResampler == NULL) {
return 0;
}
return 1 + ma_lpf_get_latency(&pResampler->lpf);
}
MA_API ma_uint64 ma_linear_resampler_get_output_latency(ma_linear_resampler* pResampler)
{
if (pResampler == NULL) {
return 0;
}
return ma_linear_resampler_get_input_latency(pResampler) * pResampler->config.sampleRateOut / pResampler->config.sampleRateIn;
}
#if defined(ma_speex_resampler_h)
#define MA_HAS_SPEEX_RESAMPLER
static ma_result ma_result_from_speex_err(int err)
{
switch (err)
{
case RESAMPLER_ERR_SUCCESS: return MA_SUCCESS;
case RESAMPLER_ERR_ALLOC_FAILED: return MA_OUT_OF_MEMORY;
case RESAMPLER_ERR_BAD_STATE: return MA_ERROR;
case RESAMPLER_ERR_INVALID_ARG: return MA_INVALID_ARGS;
case RESAMPLER_ERR_PTR_OVERLAP: return MA_INVALID_ARGS;
case RESAMPLER_ERR_OVERFLOW: return MA_ERROR;
default: return MA_ERROR;
}
}
#endif /* ma_speex_resampler_h */
MA_API ma_resampler_config ma_resampler_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut, ma_resample_algorithm algorithm)
{
ma_resampler_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRateIn = sampleRateIn;
config.sampleRateOut = sampleRateOut;
config.algorithm = algorithm;
/* Linear. */
config.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
config.linear.lpfNyquistFactor = 1;
/* Speex. */
config.speex.quality = 3; /* Cannot leave this as 0 as that is actually a valid value for Speex resampling quality. */
return config;
}
MA_API ma_result ma_resampler_init(const ma_resampler_config* pConfig, ma_resampler* pResampler)
{
ma_result result;
if (pResampler == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pResampler);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
if (pConfig->format != ma_format_f32 && pConfig->format != ma_format_s16) {
return MA_INVALID_ARGS;
}
pResampler->config = *pConfig;
switch (pConfig->algorithm)
{
case ma_resample_algorithm_linear:
{
ma_linear_resampler_config linearConfig;
linearConfig = ma_linear_resampler_config_init(pConfig->format, pConfig->channels, pConfig->sampleRateIn, pConfig->sampleRateOut);
linearConfig.lpfOrder = pConfig->linear.lpfOrder;
linearConfig.lpfNyquistFactor = pConfig->linear.lpfNyquistFactor;
result = ma_linear_resampler_init(&linearConfig, &pResampler->state.linear);
if (result != MA_SUCCESS) {
return result;
}
} break;
case ma_resample_algorithm_speex:
{
#if defined(MA_HAS_SPEEX_RESAMPLER)
int speexErr;
pResampler->state.speex.pSpeexResamplerState = speex_resampler_init(pConfig->channels, pConfig->sampleRateIn, pConfig->sampleRateOut, pConfig->speex.quality, &speexErr);
if (pResampler->state.speex.pSpeexResamplerState == NULL) {
return ma_result_from_speex_err(speexErr);
}
#else
/* Speex resampler not available. */
return MA_NO_BACKEND;
#endif
} break;
default: return MA_INVALID_ARGS;
}
return MA_SUCCESS;
}
MA_API void ma_resampler_uninit(ma_resampler* pResampler)
{
if (pResampler == NULL) {
return;
}
if (pResampler->config.algorithm == ma_resample_algorithm_linear) {
ma_linear_resampler_uninit(&pResampler->state.linear);
}
#if defined(MA_HAS_SPEEX_RESAMPLER)
if (pResampler->config.algorithm == ma_resample_algorithm_speex) {
speex_resampler_destroy((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState);
}
#endif
}
static ma_result ma_resampler_process_pcm_frames__read__linear(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
return ma_linear_resampler_process_pcm_frames(&pResampler->state.linear, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
}
#if defined(MA_HAS_SPEEX_RESAMPLER)
static ma_result ma_resampler_process_pcm_frames__read__speex(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
int speexErr;
ma_uint64 frameCountOut;
ma_uint64 frameCountIn;
ma_uint64 framesProcessedOut;
ma_uint64 framesProcessedIn;
unsigned int framesPerIteration = UINT_MAX;
MA_ASSERT(pResampler != NULL);
MA_ASSERT(pFramesOut != NULL);
MA_ASSERT(pFrameCountOut != NULL);
MA_ASSERT(pFrameCountIn != NULL);
/*
Reading from the Speex resampler requires a bit of dancing around for a few reasons. The first thing is that it's frame counts
are in unsigned int's whereas ours is in ma_uint64. We therefore need to run the conversion in a loop. The other, more complicated
problem, is that we need to keep track of the input time, similar to what we do with the linear resampler. The reason we need to
do this is for ma_resampler_get_required_input_frame_count() and ma_resampler_get_expected_output_frame_count().
*/
frameCountOut = *pFrameCountOut;
frameCountIn = *pFrameCountIn;
framesProcessedOut = 0;
framesProcessedIn = 0;
while (framesProcessedOut < frameCountOut && framesProcessedIn < frameCountIn) {
unsigned int frameCountInThisIteration;
unsigned int frameCountOutThisIteration;
const void* pFramesInThisIteration;
void* pFramesOutThisIteration;
frameCountInThisIteration = framesPerIteration;
if ((ma_uint64)frameCountInThisIteration > (frameCountIn - framesProcessedIn)) {
frameCountInThisIteration = (unsigned int)(frameCountIn - framesProcessedIn);
}
frameCountOutThisIteration = framesPerIteration;
if ((ma_uint64)frameCountOutThisIteration > (frameCountOut - framesProcessedOut)) {
frameCountOutThisIteration = (unsigned int)(frameCountOut - framesProcessedOut);
}
pFramesInThisIteration = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pResampler->config.format, pResampler->config.channels));
pFramesOutThisIteration = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pResampler->config.format, pResampler->config.channels));
if (pResampler->config.format == ma_format_f32) {
speexErr = speex_resampler_process_interleaved_float((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, (const float*)pFramesInThisIteration, &frameCountInThisIteration, (float*)pFramesOutThisIteration, &frameCountOutThisIteration);
} else if (pResampler->config.format == ma_format_s16) {
speexErr = speex_resampler_process_interleaved_int((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, (const spx_int16_t*)pFramesInThisIteration, &frameCountInThisIteration, (spx_int16_t*)pFramesOutThisIteration, &frameCountOutThisIteration);
} else {
/* Format not supported. Should never get here. */
MA_ASSERT(MA_FALSE);
return MA_INVALID_OPERATION;
}
if (speexErr != RESAMPLER_ERR_SUCCESS) {
return ma_result_from_speex_err(speexErr);
}
framesProcessedIn += frameCountInThisIteration;
framesProcessedOut += frameCountOutThisIteration;
}
*pFrameCountOut = framesProcessedOut;
*pFrameCountIn = framesProcessedIn;
return MA_SUCCESS;
}
#endif
static ma_result ma_resampler_process_pcm_frames__read(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
MA_ASSERT(pResampler != NULL);
MA_ASSERT(pFramesOut != NULL);
/* pFramesOut is not NULL, which means we must have a capacity. */
if (pFrameCountOut == NULL) {
return MA_INVALID_ARGS;
}
/* It doesn't make sense to not have any input frames to process. */
if (pFrameCountIn == NULL || pFramesIn == NULL) {
return MA_INVALID_ARGS;
}
switch (pResampler->config.algorithm)
{
case ma_resample_algorithm_linear:
{
return ma_resampler_process_pcm_frames__read__linear(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
}
case ma_resample_algorithm_speex:
{
#if defined(MA_HAS_SPEEX_RESAMPLER)
return ma_resampler_process_pcm_frames__read__speex(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
#else
break;
#endif
}
default: break;
}
/* Should never get here. */
MA_ASSERT(MA_FALSE);
return MA_INVALID_ARGS;
}
static ma_result ma_resampler_process_pcm_frames__seek__linear(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, ma_uint64* pFrameCountOut)
{
MA_ASSERT(pResampler != NULL);
/* Seeking is supported natively by the linear resampler. */
return ma_linear_resampler_process_pcm_frames(&pResampler->state.linear, pFramesIn, pFrameCountIn, NULL, pFrameCountOut);
}
#if defined(MA_HAS_SPEEX_RESAMPLER)
static ma_result ma_resampler_process_pcm_frames__seek__speex(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, ma_uint64* pFrameCountOut)
{
/* The generic seek method is implemented in on top of ma_resampler_process_pcm_frames__read() by just processing into a dummy buffer. */
float devnull[8192];
ma_uint64 totalOutputFramesToProcess;
ma_uint64 totalOutputFramesProcessed;
ma_uint64 totalInputFramesProcessed;
ma_uint32 bpf;
ma_result result;
MA_ASSERT(pResampler != NULL);
totalOutputFramesProcessed = 0;
totalInputFramesProcessed = 0;
bpf = ma_get_bytes_per_frame(pResampler->config.format, pResampler->config.channels);
if (pFrameCountOut != NULL) {
/* Seek by output frames. */
totalOutputFramesToProcess = *pFrameCountOut;
} else {
/* Seek by input frames. */
MA_ASSERT(pFrameCountIn != NULL);
totalOutputFramesToProcess = ma_resampler_get_expected_output_frame_count(pResampler, *pFrameCountIn);
}
if (pFramesIn != NULL) {
/* Process input data. */
MA_ASSERT(pFrameCountIn != NULL);
while (totalOutputFramesProcessed < totalOutputFramesToProcess && totalInputFramesProcessed < *pFrameCountIn) {
ma_uint64 inputFramesToProcessThisIteration = (*pFrameCountIn - totalInputFramesProcessed);
ma_uint64 outputFramesToProcessThisIteration = (totalOutputFramesToProcess - totalOutputFramesProcessed);
if (outputFramesToProcessThisIteration > sizeof(devnull) / bpf) {
outputFramesToProcessThisIteration = sizeof(devnull) / bpf;
}
result = ma_resampler_process_pcm_frames__read(pResampler, ma_offset_ptr(pFramesIn, totalInputFramesProcessed*bpf), &inputFramesToProcessThisIteration, ma_offset_ptr(devnull, totalOutputFramesProcessed*bpf), &outputFramesToProcessThisIteration);
if (result != MA_SUCCESS) {
return result;
}
totalOutputFramesProcessed += outputFramesToProcessThisIteration;
totalInputFramesProcessed += inputFramesToProcessThisIteration;
}
} else {
/* Don't process input data - just update timing and filter state as if zeroes were passed in. */
while (totalOutputFramesProcessed < totalOutputFramesToProcess) {
ma_uint64 inputFramesToProcessThisIteration = 16384;
ma_uint64 outputFramesToProcessThisIteration = (totalOutputFramesToProcess - totalOutputFramesProcessed);
if (outputFramesToProcessThisIteration > sizeof(devnull) / bpf) {
outputFramesToProcessThisIteration = sizeof(devnull) / bpf;
}
result = ma_resampler_process_pcm_frames__read(pResampler, NULL, &inputFramesToProcessThisIteration, ma_offset_ptr(devnull, totalOutputFramesProcessed*bpf), &outputFramesToProcessThisIteration);
if (result != MA_SUCCESS) {
return result;
}
totalOutputFramesProcessed += outputFramesToProcessThisIteration;
totalInputFramesProcessed += inputFramesToProcessThisIteration;
}
}
if (pFrameCountIn != NULL) {
*pFrameCountIn = totalInputFramesProcessed;
}
if (pFrameCountOut != NULL) {
*pFrameCountOut = totalOutputFramesProcessed;
}
return MA_SUCCESS;
}
#endif
static ma_result ma_resampler_process_pcm_frames__seek(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, ma_uint64* pFrameCountOut)
{
MA_ASSERT(pResampler != NULL);
switch (pResampler->config.algorithm)
{
case ma_resample_algorithm_linear:
{
return ma_resampler_process_pcm_frames__seek__linear(pResampler, pFramesIn, pFrameCountIn, pFrameCountOut);
} break;
case ma_resample_algorithm_speex:
{
#if defined(MA_HAS_SPEEX_RESAMPLER)
return ma_resampler_process_pcm_frames__seek__speex(pResampler, pFramesIn, pFrameCountIn, pFrameCountOut);
#else
break;
#endif
};
default: break;
}
/* Should never hit this. */
MA_ASSERT(MA_FALSE);
return MA_INVALID_ARGS;
}
MA_API ma_result ma_resampler_process_pcm_frames(ma_resampler* pResampler, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
if (pResampler == NULL) {
return MA_INVALID_ARGS;
}
if (pFrameCountOut == NULL && pFrameCountIn == NULL) {
return MA_INVALID_ARGS;
}
if (pFramesOut != NULL) {
/* Reading. */
return ma_resampler_process_pcm_frames__read(pResampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
} else {
/* Seeking. */
return ma_resampler_process_pcm_frames__seek(pResampler, pFramesIn, pFrameCountIn, pFrameCountOut);
}
}
MA_API ma_result ma_resampler_set_rate(ma_resampler* pResampler, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
if (pResampler == NULL) {
return MA_INVALID_ARGS;
}
if (sampleRateIn == 0 || sampleRateOut == 0) {
return MA_INVALID_ARGS;
}
pResampler->config.sampleRateIn = sampleRateIn;
pResampler->config.sampleRateOut = sampleRateOut;
switch (pResampler->config.algorithm)
{
case ma_resample_algorithm_linear:
{
return ma_linear_resampler_set_rate(&pResampler->state.linear, sampleRateIn, sampleRateOut);
} break;
case ma_resample_algorithm_speex:
{
#if defined(MA_HAS_SPEEX_RESAMPLER)
return ma_result_from_speex_err(speex_resampler_set_rate((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, sampleRateIn, sampleRateOut));
#else
break;
#endif
};
default: break;
}
/* Should never get here. */
MA_ASSERT(MA_FALSE);
return MA_INVALID_OPERATION;
}
MA_API ma_result ma_resampler_set_rate_ratio(ma_resampler* pResampler, float ratio)
{
if (pResampler == NULL) {
return MA_INVALID_ARGS;
}
if (pResampler->config.algorithm == ma_resample_algorithm_linear) {
return ma_linear_resampler_set_rate_ratio(&pResampler->state.linear, ratio);
} else {
/* Getting here means the backend does not have native support for setting the rate as a ratio so we just do it generically. */
ma_uint32 n;
ma_uint32 d;
d = 1000;
n = (ma_uint32)(ratio * d);
if (n == 0) {
return MA_INVALID_ARGS; /* Ratio too small. */
}
MA_ASSERT(n != 0);
return ma_resampler_set_rate(pResampler, n, d);
}
}
MA_API ma_uint64 ma_resampler_get_required_input_frame_count(ma_resampler* pResampler, ma_uint64 outputFrameCount)
{
if (pResampler == NULL) {
return 0;
}
if (outputFrameCount == 0) {
return 0;
}
switch (pResampler->config.algorithm)
{
case ma_resample_algorithm_linear:
{
return ma_linear_resampler_get_required_input_frame_count(&pResampler->state.linear, outputFrameCount);
}
case ma_resample_algorithm_speex:
{
#if defined(MA_HAS_SPEEX_RESAMPLER)
ma_uint64 count;
int speexErr = ma_speex_resampler_get_required_input_frame_count((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, outputFrameCount, &count);
if (speexErr != RESAMPLER_ERR_SUCCESS) {
return 0;
}
return count;
#else
break;
#endif
}
default: break;
}
/* Should never get here. */
MA_ASSERT(MA_FALSE);
return 0;
}
MA_API ma_uint64 ma_resampler_get_expected_output_frame_count(ma_resampler* pResampler, ma_uint64 inputFrameCount)
{
if (pResampler == NULL) {
return 0; /* Invalid args. */
}
if (inputFrameCount == 0) {
return 0;
}
switch (pResampler->config.algorithm)
{
case ma_resample_algorithm_linear:
{
return ma_linear_resampler_get_expected_output_frame_count(&pResampler->state.linear, inputFrameCount);
}
case ma_resample_algorithm_speex:
{
#if defined(MA_HAS_SPEEX_RESAMPLER)
ma_uint64 count;
int speexErr = ma_speex_resampler_get_expected_output_frame_count((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState, inputFrameCount, &count);
if (speexErr != RESAMPLER_ERR_SUCCESS) {
return 0;
}
return count;
#else
break;
#endif
}
default: break;
}
/* Should never get here. */
MA_ASSERT(MA_FALSE);
return 0;
}
MA_API ma_uint64 ma_resampler_get_input_latency(ma_resampler* pResampler)
{
if (pResampler == NULL) {
return 0;
}
switch (pResampler->config.algorithm)
{
case ma_resample_algorithm_linear:
{
return ma_linear_resampler_get_input_latency(&pResampler->state.linear);
}
case ma_resample_algorithm_speex:
{
#if defined(MA_HAS_SPEEX_RESAMPLER)
return (ma_uint64)ma_speex_resampler_get_input_latency((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState);
#else
break;
#endif
}
default: break;
}
/* Should never get here. */
MA_ASSERT(MA_FALSE);
return 0;
}
MA_API ma_uint64 ma_resampler_get_output_latency(ma_resampler* pResampler)
{
if (pResampler == NULL) {
return 0;
}
switch (pResampler->config.algorithm)
{
case ma_resample_algorithm_linear:
{
return ma_linear_resampler_get_output_latency(&pResampler->state.linear);
}
case ma_resample_algorithm_speex:
{
#if defined(MA_HAS_SPEEX_RESAMPLER)
return (ma_uint64)ma_speex_resampler_get_output_latency((SpeexResamplerState*)pResampler->state.speex.pSpeexResamplerState);
#else
break;
#endif
}
default: break;
}
/* Should never get here. */
MA_ASSERT(MA_FALSE);
return 0;
}
/**************************************************************************************************************************************************************
Channel Conversion
**************************************************************************************************************************************************************/
#ifndef MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT
#define MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT 12
#endif
#define MA_PLANE_LEFT 0
#define MA_PLANE_RIGHT 1
#define MA_PLANE_FRONT 2
#define MA_PLANE_BACK 3
#define MA_PLANE_BOTTOM 4
#define MA_PLANE_TOP 5
static float g_maChannelPlaneRatios[MA_CHANNEL_POSITION_COUNT][6] = {
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_NONE */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_MONO */
{ 0.5f, 0.0f, 0.5f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_LEFT */
{ 0.0f, 0.5f, 0.5f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_RIGHT */
{ 0.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_CENTER */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_LFE */
{ 0.5f, 0.0f, 0.0f, 0.5f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_LEFT */
{ 0.0f, 0.5f, 0.0f, 0.5f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_RIGHT */
{ 0.25f, 0.0f, 0.75f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_LEFT_CENTER */
{ 0.0f, 0.25f, 0.75f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_FRONT_RIGHT_CENTER */
{ 0.0f, 0.0f, 0.0f, 1.0f, 0.0f, 0.0f}, /* MA_CHANNEL_BACK_CENTER */
{ 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_SIDE_LEFT */
{ 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_SIDE_RIGHT */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f}, /* MA_CHANNEL_TOP_CENTER */
{ 0.33f, 0.0f, 0.33f, 0.0f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_FRONT_LEFT */
{ 0.0f, 0.0f, 0.5f, 0.0f, 0.0f, 0.5f}, /* MA_CHANNEL_TOP_FRONT_CENTER */
{ 0.0f, 0.33f, 0.33f, 0.0f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_FRONT_RIGHT */
{ 0.33f, 0.0f, 0.0f, 0.33f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_BACK_LEFT */
{ 0.0f, 0.0f, 0.0f, 0.5f, 0.0f, 0.5f}, /* MA_CHANNEL_TOP_BACK_CENTER */
{ 0.0f, 0.33f, 0.0f, 0.33f, 0.0f, 0.34f}, /* MA_CHANNEL_TOP_BACK_RIGHT */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_0 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_1 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_2 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_3 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_4 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_5 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_6 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_7 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_8 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_9 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_10 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_11 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_12 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_13 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_14 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_15 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_16 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_17 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_18 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_19 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_20 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_21 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_22 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_23 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_24 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_25 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_26 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_27 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_28 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_29 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_30 */
{ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f}, /* MA_CHANNEL_AUX_31 */
};
static float ma_calculate_channel_position_rectangular_weight(ma_channel channelPositionA, ma_channel channelPositionB)
{
/*
Imagine the following simplified example: You have a single input speaker which is the front/left speaker which you want to convert to
the following output configuration:
- front/left
- side/left
- back/left
The front/left output is easy - it the same speaker position so it receives the full contribution of the front/left input. The amount
of contribution to apply to the side/left and back/left speakers, however, is a bit more complicated.
Imagine the front/left speaker as emitting audio from two planes - the front plane and the left plane. You can think of the front/left
speaker emitting half of it's total volume from the front, and the other half from the left. Since part of it's volume is being emitted
from the left side, and the side/left and back/left channels also emit audio from the left plane, one would expect that they would
receive some amount of contribution from front/left speaker. The amount of contribution depends on how many planes are shared between
the two speakers. Note that in the examples below I've added a top/front/left speaker as an example just to show how the math works
across 3 spatial dimensions.
The first thing to do is figure out how each speaker's volume is spread over each of plane:
- front/left: 2 planes (front and left) = 1/2 = half it's total volume on each plane
- side/left: 1 plane (left only) = 1/1 = entire volume from left plane
- back/left: 2 planes (back and left) = 1/2 = half it's total volume on each plane
- top/front/left: 3 planes (top, front and left) = 1/3 = one third it's total volume on each plane
The amount of volume each channel contributes to each of it's planes is what controls how much it is willing to given and take to other
channels on the same plane. The volume that is willing to the given by one channel is multiplied by the volume that is willing to be
taken by the other to produce the final contribution.
*/
/* Contribution = Sum(Volume to Give * Volume to Take) */
float contribution =
g_maChannelPlaneRatios[channelPositionA][0] * g_maChannelPlaneRatios[channelPositionB][0] +
g_maChannelPlaneRatios[channelPositionA][1] * g_maChannelPlaneRatios[channelPositionB][1] +
g_maChannelPlaneRatios[channelPositionA][2] * g_maChannelPlaneRatios[channelPositionB][2] +
g_maChannelPlaneRatios[channelPositionA][3] * g_maChannelPlaneRatios[channelPositionB][3] +
g_maChannelPlaneRatios[channelPositionA][4] * g_maChannelPlaneRatios[channelPositionB][4] +
g_maChannelPlaneRatios[channelPositionA][5] * g_maChannelPlaneRatios[channelPositionB][5];
return contribution;
}
MA_API ma_channel_converter_config ma_channel_converter_config_init(ma_format format, ma_uint32 channelsIn, const ma_channel channelMapIn[MA_MAX_CHANNELS], ma_uint32 channelsOut, const ma_channel channelMapOut[MA_MAX_CHANNELS], ma_channel_mix_mode mixingMode)
{
ma_channel_converter_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channelsIn = channelsIn;
config.channelsOut = channelsOut;
ma_channel_map_copy(config.channelMapIn, channelMapIn, channelsIn);
ma_channel_map_copy(config.channelMapOut, channelMapOut, channelsOut);
config.mixingMode = mixingMode;
return config;
}
static ma_int32 ma_channel_converter_float_to_fixed(float x)
{
return (ma_int32)(x * (1<<MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT));
}
static ma_bool32 ma_is_spatial_channel_position(ma_channel channelPosition)
{
int i;
if (channelPosition == MA_CHANNEL_NONE || channelPosition == MA_CHANNEL_MONO || channelPosition == MA_CHANNEL_LFE) {
return MA_FALSE;
}
for (i = 0; i < 6; ++i) { /* Each side of a cube. */
if (g_maChannelPlaneRatios[channelPosition][i] != 0) {
return MA_TRUE;
}
}
return MA_FALSE;
}
MA_API ma_result ma_channel_converter_init(const ma_channel_converter_config* pConfig, ma_channel_converter* pConverter)
{
ma_uint32 iChannelIn;
ma_uint32 iChannelOut;
if (pConverter == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pConverter);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
if (!ma_channel_map_valid(pConfig->channelsIn, pConfig->channelMapIn)) {
return MA_INVALID_ARGS; /* Invalid input channel map. */
}
if (!ma_channel_map_valid(pConfig->channelsOut, pConfig->channelMapOut)) {
return MA_INVALID_ARGS; /* Invalid output channel map. */
}
pConverter->format = pConfig->format;
pConverter->channelsIn = pConfig->channelsIn;
pConverter->channelsOut = pConfig->channelsOut;
ma_channel_map_copy(pConverter->channelMapIn, pConfig->channelMapIn, pConfig->channelsIn);
ma_channel_map_copy(pConverter->channelMapOut, pConfig->channelMapOut, pConfig->channelsOut);
pConverter->mixingMode = pConfig->mixingMode;
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; iChannelIn += 1) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
if (pConverter->format == ma_format_f32) {
pConverter->weights.f32[iChannelIn][iChannelOut] = pConfig->weights[iChannelIn][iChannelOut];
} else {
pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(pConfig->weights[iChannelIn][iChannelOut]);
}
}
}
/* If the input and output channels and channel maps are the same we should use a passthrough. */
if (pConverter->channelsIn == pConverter->channelsOut) {
if (ma_channel_map_equal(pConverter->channelsIn, pConverter->channelMapIn, pConverter->channelMapOut)) {
pConverter->isPassthrough = MA_TRUE;
}
if (ma_channel_map_blank(pConverter->channelsIn, pConverter->channelMapIn) || ma_channel_map_blank(pConverter->channelsOut, pConverter->channelMapOut)) {
pConverter->isPassthrough = MA_TRUE;
}
}
/*
We can use a simple case for expanding the mono channel. This will used when expanding a mono input into any output so long
as no LFE is present in the output.
*/
if (!pConverter->isPassthrough) {
if (pConverter->channelsIn == 1 && pConverter->channelMapIn[0] == MA_CHANNEL_MONO) {
/* Optimal case if no LFE is in the output channel map. */
pConverter->isSimpleMonoExpansion = MA_TRUE;
if (ma_channel_map_contains_channel_position(pConverter->channelsOut, pConverter->channelMapOut, MA_CHANNEL_LFE)) {
pConverter->isSimpleMonoExpansion = MA_FALSE;
}
}
}
/* Another optimized case is stereo to mono. */
if (!pConverter->isPassthrough) {
if (pConverter->channelsOut == 1 && pConverter->channelMapOut[0] == MA_CHANNEL_MONO && pConverter->channelsIn == 2) {
/* Optimal case if no LFE is in the input channel map. */
pConverter->isStereoToMono = MA_TRUE;
if (ma_channel_map_contains_channel_position(pConverter->channelsIn, pConverter->channelMapIn, MA_CHANNEL_LFE)) {
pConverter->isStereoToMono = MA_FALSE;
}
}
}
/*
Here is where we do a bit of pre-processing to know how each channel should be combined to make up the output. Rules:
1) If it's a passthrough, do nothing - it's just a simple memcpy().
2) If the channel counts are the same and every channel position in the input map is present in the output map, use a
simple shuffle. An example might be different 5.1 channel layouts.
3) Otherwise channels are blended based on spatial locality.
*/
if (!pConverter->isPassthrough) {
if (pConverter->channelsIn == pConverter->channelsOut) {
ma_bool32 areAllChannelPositionsPresent = MA_TRUE;
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
ma_bool32 isInputChannelPositionInOutput = MA_FALSE;
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
if (pConverter->channelMapIn[iChannelIn] == pConverter->channelMapOut[iChannelOut]) {
isInputChannelPositionInOutput = MA_TRUE;
break;
}
}
if (!isInputChannelPositionInOutput) {
areAllChannelPositionsPresent = MA_FALSE;
break;
}
}
if (areAllChannelPositionsPresent) {
pConverter->isSimpleShuffle = MA_TRUE;
/*
All the router will be doing is rearranging channels which means all we need to do is use a shuffling table which is just
a mapping between the index of the input channel to the index of the output channel.
*/
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
if (pConverter->channelMapIn[iChannelIn] == pConverter->channelMapOut[iChannelOut]) {
pConverter->shuffleTable[iChannelIn] = (ma_uint8)iChannelOut;
break;
}
}
}
}
}
}
/*
Here is where weights are calculated. Note that we calculate the weights at all times, even when using a passthrough and simple
shuffling. We use different algorithms for calculating weights depending on our mixing mode.
In simple mode we don't do any blending (except for converting between mono, which is done in a later step). Instead we just
map 1:1 matching channels. In this mode, if no channels in the input channel map correspond to anything in the output channel
map, nothing will be heard!
*/
/* In all cases we need to make sure all channels that are present in both channel maps have a 1:1 mapping. */
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
if (channelPosIn == channelPosOut) {
if (pConverter->format == ma_format_f32) {
pConverter->weights.f32[iChannelIn][iChannelOut] = 1;
} else {
pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT);
}
}
}
}
/*
The mono channel is accumulated on all other channels, except LFE. Make sure in this loop we exclude output mono channels since
they were handled in the pass above.
*/
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
if (channelPosIn == MA_CHANNEL_MONO) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
if (channelPosOut != MA_CHANNEL_NONE && channelPosOut != MA_CHANNEL_MONO && channelPosOut != MA_CHANNEL_LFE) {
if (pConverter->format == ma_format_f32) {
pConverter->weights.f32[iChannelIn][iChannelOut] = 1;
} else {
pConverter->weights.s16[iChannelIn][iChannelOut] = (1 << MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT);
}
}
}
}
}
/* The output mono channel is the average of all non-none, non-mono and non-lfe input channels. */
{
ma_uint32 len = 0;
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
if (channelPosIn != MA_CHANNEL_NONE && channelPosIn != MA_CHANNEL_MONO && channelPosIn != MA_CHANNEL_LFE) {
len += 1;
}
}
if (len > 0) {
float monoWeight = 1.0f / len;
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
if (channelPosOut == MA_CHANNEL_MONO) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
if (channelPosIn != MA_CHANNEL_NONE && channelPosIn != MA_CHANNEL_MONO && channelPosIn != MA_CHANNEL_LFE) {
if (pConverter->format == ma_format_f32) {
pConverter->weights.f32[iChannelIn][iChannelOut] = monoWeight;
} else {
pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(monoWeight);
}
}
}
}
}
}
}
/* Input and output channels that are not present on the other side need to be blended in based on spatial locality. */
switch (pConverter->mixingMode)
{
case ma_channel_mix_mode_rectangular:
{
/* Unmapped input channels. */
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
if (ma_is_spatial_channel_position(channelPosIn)) {
if (!ma_channel_map_contains_channel_position(pConverter->channelsOut, pConverter->channelMapOut, channelPosIn)) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
if (ma_is_spatial_channel_position(channelPosOut)) {
float weight = 0;
if (pConverter->mixingMode == ma_channel_mix_mode_rectangular) {
weight = ma_calculate_channel_position_rectangular_weight(channelPosIn, channelPosOut);
}
/* Only apply the weight if we haven't already got some contribution from the respective channels. */
if (pConverter->format == ma_format_f32) {
if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) {
pConverter->weights.f32[iChannelIn][iChannelOut] = weight;
}
} else {
if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) {
pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight);
}
}
}
}
}
}
}
/* Unmapped output channels. */
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
ma_channel channelPosOut = pConverter->channelMapOut[iChannelOut];
if (ma_is_spatial_channel_position(channelPosOut)) {
if (!ma_channel_map_contains_channel_position(pConverter->channelsIn, pConverter->channelMapIn, channelPosOut)) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
ma_channel channelPosIn = pConverter->channelMapIn[iChannelIn];
if (ma_is_spatial_channel_position(channelPosIn)) {
float weight = 0;
if (pConverter->mixingMode == ma_channel_mix_mode_rectangular) {
weight = ma_calculate_channel_position_rectangular_weight(channelPosIn, channelPosOut);
}
/* Only apply the weight if we haven't already got some contribution from the respective channels. */
if (pConverter->format == ma_format_f32) {
if (pConverter->weights.f32[iChannelIn][iChannelOut] == 0) {
pConverter->weights.f32[iChannelIn][iChannelOut] = weight;
}
} else {
if (pConverter->weights.s16[iChannelIn][iChannelOut] == 0) {
pConverter->weights.s16[iChannelIn][iChannelOut] = ma_channel_converter_float_to_fixed(weight);
}
}
}
}
}
}
}
} break;
case ma_channel_mix_mode_custom_weights:
case ma_channel_mix_mode_simple:
default:
{
/* Fallthrough. */
} break;
}
return MA_SUCCESS;
}
MA_API void ma_channel_converter_uninit(ma_channel_converter* pConverter)
{
if (pConverter == NULL) {
return;
}
}
static ma_result ma_channel_converter_process_pcm_frames__passthrough(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
MA_ASSERT(pConverter != NULL);
MA_ASSERT(pFramesOut != NULL);
MA_ASSERT(pFramesIn != NULL);
ma_copy_memory_64(pFramesOut, pFramesIn, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut));
return MA_SUCCESS;
}
static ma_result ma_channel_converter_process_pcm_frames__simple_shuffle(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_uint32 iFrame;
ma_uint32 iChannelIn;
MA_ASSERT(pConverter != NULL);
MA_ASSERT(pFramesOut != NULL);
MA_ASSERT(pFramesIn != NULL);
MA_ASSERT(pConverter->channelsIn == pConverter->channelsOut);
switch (pConverter->format)
{
case ma_format_u8:
{
/* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut;
const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
pFramesOutU8[pConverter->shuffleTable[iChannelIn]] = pFramesInU8[iChannelIn];
}
pFramesOutU8 += pConverter->channelsOut;
pFramesInU8 += pConverter->channelsIn;
}
} break;
case ma_format_s16:
{
/* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
pFramesOutS16[pConverter->shuffleTable[iChannelIn]] = pFramesInS16[iChannelIn];
}
pFramesOutS16 += pConverter->channelsOut;
pFramesInS16 += pConverter->channelsIn;
}
} break;
case ma_format_s24:
{
/* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut;
const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
ma_uint32 iChannelOut = pConverter->shuffleTable[iChannelIn];
pFramesOutS24[iChannelOut*3 + 0] = pFramesInS24[iChannelIn*3 + 0];
pFramesOutS24[iChannelOut*3 + 1] = pFramesInS24[iChannelIn*3 + 1];
pFramesOutS24[iChannelOut*3 + 2] = pFramesInS24[iChannelIn*3 + 2];
}
pFramesOutS24 += pConverter->channelsOut*3;
pFramesInS24 += pConverter->channelsIn*3;
}
} break;
case ma_format_s32:
{
/* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut;
const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
pFramesOutS32[pConverter->shuffleTable[iChannelIn]] = pFramesInS32[iChannelIn];
}
pFramesOutS32 += pConverter->channelsOut;
pFramesInS32 += pConverter->channelsIn;
}
} break;
case ma_format_f32:
{
/* */ float* pFramesOutF32 = ( float*)pFramesOut;
const float* pFramesInF32 = (const float*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
pFramesOutF32[pConverter->shuffleTable[iChannelIn]] = pFramesInF32[iChannelIn];
}
pFramesOutF32 += pConverter->channelsOut;
pFramesInF32 += pConverter->channelsIn;
}
} break;
default: return MA_INVALID_OPERATION; /* Unknown format. */
}
return MA_SUCCESS;
}
static ma_result ma_channel_converter_process_pcm_frames__simple_mono_expansion(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_uint64 iFrame;
MA_ASSERT(pConverter != NULL);
MA_ASSERT(pFramesOut != NULL);
MA_ASSERT(pFramesIn != NULL);
MA_ASSERT(pConverter->channelsIn == 1);
switch (pConverter->format)
{
case ma_format_u8:
{
/* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut;
const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
pFramesOutU8[iFrame*pConverter->channelsOut + iChannel] = pFramesInU8[iFrame];
}
}
} break;
case ma_format_s16:
{
/* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
if (pConverter->channelsOut == 2) {
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
pFramesOutS16[iFrame*2 + 0] = pFramesInS16[iFrame];
pFramesOutS16[iFrame*2 + 1] = pFramesInS16[iFrame];
}
} else {
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
pFramesOutS16[iFrame*pConverter->channelsOut + iChannel] = pFramesInS16[iFrame];
}
}
}
} break;
case ma_format_s24:
{
/* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut;
const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
ma_uint64 iSampleOut = iFrame*pConverter->channelsOut + iChannel;
ma_uint64 iSampleIn = iFrame;
pFramesOutS24[iSampleOut*3 + 0] = pFramesInS24[iSampleIn*3 + 0];
pFramesOutS24[iSampleOut*3 + 1] = pFramesInS24[iSampleIn*3 + 1];
pFramesOutS24[iSampleOut*3 + 2] = pFramesInS24[iSampleIn*3 + 2];
}
}
} break;
case ma_format_s32:
{
/* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut;
const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
pFramesOutS32[iFrame*pConverter->channelsOut + iChannel] = pFramesInS32[iFrame];
}
}
} break;
case ma_format_f32:
{
/* */ float* pFramesOutF32 = ( float*)pFramesOut;
const float* pFramesInF32 = (const float*)pFramesIn;
if (pConverter->channelsOut == 2) {
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
pFramesOutF32[iFrame*2 + 0] = pFramesInF32[iFrame];
pFramesOutF32[iFrame*2 + 1] = pFramesInF32[iFrame];
}
} else {
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pConverter->channelsOut; iChannel += 1) {
pFramesOutF32[iFrame*pConverter->channelsOut + iChannel] = pFramesInF32[iFrame];
}
}
}
} break;
default: return MA_INVALID_OPERATION; /* Unknown format. */
}
return MA_SUCCESS;
}
static ma_result ma_channel_converter_process_pcm_frames__stereo_to_mono(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_uint64 iFrame;
MA_ASSERT(pConverter != NULL);
MA_ASSERT(pFramesOut != NULL);
MA_ASSERT(pFramesIn != NULL);
MA_ASSERT(pConverter->channelsIn == 2);
MA_ASSERT(pConverter->channelsOut == 1);
switch (pConverter->format)
{
case ma_format_u8:
{
/* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut;
const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
pFramesOutU8[iFrame] = ma_clip_u8((ma_int16)((ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8[iFrame*2+0]) + ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8[iFrame*2+1])) / 2));
}
} break;
case ma_format_s16:
{
/* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
pFramesOutS16[iFrame] = (ma_int16)(((ma_int32)pFramesInS16[iFrame*2+0] + (ma_int32)pFramesInS16[iFrame*2+1]) / 2);
}
} break;
case ma_format_s24:
{
/* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut;
const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
ma_int64 s24_0 = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24[(iFrame*2+0)*3]);
ma_int64 s24_1 = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24[(iFrame*2+1)*3]);
ma_pcm_sample_s32_to_s24_no_scale((s24_0 + s24_1) / 2, &pFramesOutS24[iFrame*3]);
}
} break;
case ma_format_s32:
{
/* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut;
const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
pFramesOutS32[iFrame] = (ma_int16)(((ma_int32)pFramesInS32[iFrame*2+0] + (ma_int32)pFramesInS32[iFrame*2+1]) / 2);
}
} break;
case ma_format_f32:
{
/* */ float* pFramesOutF32 = ( float*)pFramesOut;
const float* pFramesInF32 = (const float*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; ++iFrame) {
pFramesOutF32[iFrame] = (pFramesInF32[iFrame*2+0] + pFramesInF32[iFrame*2+0]) * 0.5f;
}
} break;
default: return MA_INVALID_OPERATION; /* Unknown format. */
}
return MA_SUCCESS;
}
static ma_result ma_channel_converter_process_pcm_frames__weights(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
ma_uint32 iFrame;
ma_uint32 iChannelIn;
ma_uint32 iChannelOut;
MA_ASSERT(pConverter != NULL);
MA_ASSERT(pFramesOut != NULL);
MA_ASSERT(pFramesIn != NULL);
/* This is the more complicated case. Each of the output channels is accumulated with 0 or more input channels. */
/* Clear. */
ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut));
/* Accumulate. */
switch (pConverter->format)
{
case ma_format_u8:
{
/* */ ma_uint8* pFramesOutU8 = ( ma_uint8*)pFramesOut;
const ma_uint8* pFramesInU8 = (const ma_uint8*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
ma_int16 u8_O = ma_pcm_sample_u8_to_s16_no_scale(pFramesOutU8[iFrame*pConverter->channelsOut + iChannelOut]);
ma_int16 u8_I = ma_pcm_sample_u8_to_s16_no_scale(pFramesInU8 [iFrame*pConverter->channelsIn + iChannelIn ]);
ma_int32 s = (ma_int32)ma_clamp(u8_O + ((u8_I * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT), -128, 127);
pFramesOutU8[iFrame*pConverter->channelsOut + iChannelOut] = ma_clip_u8((ma_int16)s);
}
}
}
} break;
case ma_format_s16:
{
/* */ ma_int16* pFramesOutS16 = ( ma_int16*)pFramesOut;
const ma_int16* pFramesInS16 = (const ma_int16*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
ma_int32 s = pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut];
s += (pFramesInS16[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT;
pFramesOutS16[iFrame*pConverter->channelsOut + iChannelOut] = (ma_int16)ma_clamp(s, -32768, 32767);
}
}
}
} break;
case ma_format_s24:
{
/* */ ma_uint8* pFramesOutS24 = ( ma_uint8*)pFramesOut;
const ma_uint8* pFramesInS24 = (const ma_uint8*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
ma_int64 s24_O = ma_pcm_sample_s24_to_s32_no_scale(&pFramesOutS24[(iFrame*pConverter->channelsOut + iChannelOut)*3]);
ma_int64 s24_I = ma_pcm_sample_s24_to_s32_no_scale(&pFramesInS24 [(iFrame*pConverter->channelsIn + iChannelIn )*3]);
ma_int64 s24 = (ma_int32)ma_clamp(s24_O + ((s24_I * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT), -8388608, 8388607);
ma_pcm_sample_s32_to_s24_no_scale(s24, &pFramesOutS24[(iFrame*pConverter->channelsOut + iChannelOut)*3]);
}
}
}
} break;
case ma_format_s32:
{
/* */ ma_int32* pFramesOutS32 = ( ma_int32*)pFramesOut;
const ma_int32* pFramesInS32 = (const ma_int32*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
ma_int64 s = pFramesOutS32[iFrame*pConverter->channelsOut + iChannelOut];
s += (pFramesInS32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.s16[iChannelIn][iChannelOut]) >> MA_CHANNEL_CONVERTER_FIXED_POINT_SHIFT;
pFramesOutS32[iFrame*pConverter->channelsOut + iChannelOut] = ma_clip_s32(s);
}
}
}
} break;
case ma_format_f32:
{
/* */ float* pFramesOutF32 = ( float*)pFramesOut;
const float* pFramesInF32 = (const float*)pFramesIn;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannelIn = 0; iChannelIn < pConverter->channelsIn; ++iChannelIn) {
for (iChannelOut = 0; iChannelOut < pConverter->channelsOut; ++iChannelOut) {
pFramesOutF32[iFrame*pConverter->channelsOut + iChannelOut] += pFramesInF32[iFrame*pConverter->channelsIn + iChannelIn] * pConverter->weights.f32[iChannelIn][iChannelOut];
}
}
}
} break;
default: return MA_INVALID_OPERATION; /* Unknown format. */
}
return MA_SUCCESS;
}
MA_API ma_result ma_channel_converter_process_pcm_frames(ma_channel_converter* pConverter, void* pFramesOut, const void* pFramesIn, ma_uint64 frameCount)
{
if (pConverter == NULL) {
return MA_INVALID_ARGS;
}
if (pFramesOut == NULL) {
return MA_INVALID_ARGS;
}
if (pFramesIn == NULL) {
ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->format, pConverter->channelsOut));
return MA_SUCCESS;
}
if (pConverter->isPassthrough) {
return ma_channel_converter_process_pcm_frames__passthrough(pConverter, pFramesOut, pFramesIn, frameCount);
} else if (pConverter->isSimpleShuffle) {
return ma_channel_converter_process_pcm_frames__simple_shuffle(pConverter, pFramesOut, pFramesIn, frameCount);
} else if (pConverter->isSimpleMonoExpansion) {
return ma_channel_converter_process_pcm_frames__simple_mono_expansion(pConverter, pFramesOut, pFramesIn, frameCount);
} else if (pConverter->isStereoToMono) {
return ma_channel_converter_process_pcm_frames__stereo_to_mono(pConverter, pFramesOut, pFramesIn, frameCount);
} else {
return ma_channel_converter_process_pcm_frames__weights(pConverter, pFramesOut, pFramesIn, frameCount);
}
}
/**************************************************************************************************************************************************************
Data Conversion
**************************************************************************************************************************************************************/
MA_API ma_data_converter_config ma_data_converter_config_init_default()
{
ma_data_converter_config config;
MA_ZERO_OBJECT(&config);
config.ditherMode = ma_dither_mode_none;
config.resampling.algorithm = ma_resample_algorithm_linear;
config.resampling.allowDynamicSampleRate = MA_FALSE; /* Disable dynamic sample rates by default because dynamic rate adjustments should be quite rare and it allows an optimization for cases when the in and out sample rates are the same. */
/* Linear resampling defaults. */
config.resampling.linear.lpfOrder = 1;
config.resampling.linear.lpfNyquistFactor = 1;
/* Speex resampling defaults. */
config.resampling.speex.quality = 3;
return config;
}
MA_API ma_data_converter_config ma_data_converter_config_init(ma_format formatIn, ma_format formatOut, ma_uint32 channelsIn, ma_uint32 channelsOut, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
ma_data_converter_config config = ma_data_converter_config_init_default();
config.formatIn = formatIn;
config.formatOut = formatOut;
config.channelsIn = channelsIn;
config.channelsOut = channelsOut;
config.sampleRateIn = sampleRateIn;
config.sampleRateOut = sampleRateOut;
return config;
}
MA_API ma_result ma_data_converter_init(const ma_data_converter_config* pConfig, ma_data_converter* pConverter)
{
ma_result result;
ma_format midFormat;
if (pConverter == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pConverter);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
pConverter->config = *pConfig;
/* Basic validation. */
if (pConfig->channelsIn < MA_MIN_CHANNELS || pConfig->channelsOut < MA_MIN_CHANNELS ||
pConfig->channelsIn > MA_MAX_CHANNELS || pConfig->channelsOut > MA_MAX_CHANNELS) {
return MA_INVALID_ARGS;
}
/*
We want to avoid as much data conversion as possible. The channel converter and resampler both support s16 and f32 natively. We need to decide
on the format to use for this stage. We call this the mid format because it's used in the middle stage of the conversion pipeline. If the output
format is either s16 or f32 we use that one. If that is not the case it will do the same thing for the input format. If it's neither we just
use f32.
*/
/* */ if (pConverter->config.formatOut == ma_format_s16 || pConverter->config.formatOut == ma_format_f32) {
midFormat = pConverter->config.formatOut;
} else if (pConverter->config.formatIn == ma_format_s16 || pConverter->config.formatIn == ma_format_f32) {
midFormat = pConverter->config.formatIn;
} else {
midFormat = ma_format_f32;
}
/* Channel converter. We always initialize this, but we check if it configures itself as a passthrough to determine whether or not it's needed. */
{
ma_uint32 iChannelIn;
ma_uint32 iChannelOut;
ma_channel_converter_config channelConverterConfig;
channelConverterConfig = ma_channel_converter_config_init(midFormat, pConverter->config.channelsIn, pConverter->config.channelMapIn, pConverter->config.channelsOut, pConverter->config.channelMapOut, pConverter->config.channelMixMode);
/* Channel weights. */
for (iChannelIn = 0; iChannelIn < pConverter->config.channelsIn; iChannelIn += 1) {
for (iChannelOut = 0; iChannelOut < pConverter->config.channelsOut; iChannelOut += 1) {
channelConverterConfig.weights[iChannelIn][iChannelOut] = pConverter->config.channelWeights[iChannelIn][iChannelOut];
}
}
result = ma_channel_converter_init(&channelConverterConfig, &pConverter->channelConverter);
if (result != MA_SUCCESS) {
return result;
}
/* If the channel converter is not a passthrough we need to enable it. Otherwise we can skip it. */
if (pConverter->channelConverter.isPassthrough == MA_FALSE) {
pConverter->hasChannelConverter = MA_TRUE;
}
}
/* Always enable dynamic sample rates if the input sample rate is different because we're always going to need a resampler in this case anyway. */
if (pConverter->config.resampling.allowDynamicSampleRate == MA_FALSE) {
pConverter->config.resampling.allowDynamicSampleRate = pConverter->config.sampleRateIn != pConverter->config.sampleRateOut;
}
/* Resampler. */
if (pConverter->config.resampling.allowDynamicSampleRate) {
ma_resampler_config resamplerConfig;
ma_uint32 resamplerChannels;
/* The resampler is the most expensive part of the conversion process, so we need to do it at the stage where the channel count is at it's lowest. */
if (pConverter->config.channelsIn < pConverter->config.channelsOut) {
resamplerChannels = pConverter->config.channelsIn;
} else {
resamplerChannels = pConverter->config.channelsOut;
}
resamplerConfig = ma_resampler_config_init(midFormat, resamplerChannels, pConverter->config.sampleRateIn, pConverter->config.sampleRateOut, pConverter->config.resampling.algorithm);
resamplerConfig.linear.lpfOrder = pConverter->config.resampling.linear.lpfOrder;
resamplerConfig.linear.lpfNyquistFactor = pConverter->config.resampling.linear.lpfNyquistFactor;
resamplerConfig.speex.quality = pConverter->config.resampling.speex.quality;
result = ma_resampler_init(&resamplerConfig, &pConverter->resampler);
if (result != MA_SUCCESS) {
return result;
}
pConverter->hasResampler = MA_TRUE;
}
/* We can simplify pre- and post-format conversion if we have neither channel conversion nor resampling. */
if (pConverter->hasChannelConverter == MA_FALSE && pConverter->hasResampler == MA_FALSE) {
/* We have neither channel conversion nor resampling so we'll only need one of pre- or post-format conversion, or none if the input and output formats are the same. */
if (pConverter->config.formatIn == pConverter->config.formatOut) {
/* The formats are the same so we can just pass through. */
pConverter->hasPreFormatConversion = MA_FALSE;
pConverter->hasPostFormatConversion = MA_FALSE;
} else {
/* The formats are different so we need to do either pre- or post-format conversion. It doesn't matter which. */
pConverter->hasPreFormatConversion = MA_FALSE;
pConverter->hasPostFormatConversion = MA_TRUE;
}
} else {
/* We have a channel converter and/or resampler so we'll need channel conversion based on the mid format. */
if (pConverter->config.formatIn != midFormat) {
pConverter->hasPreFormatConversion = MA_TRUE;
}
if (pConverter->config.formatOut != midFormat) {
pConverter->hasPostFormatConversion = MA_TRUE;
}
}
/* We can enable passthrough optimizations if applicable. Note that we'll only be able to do this if the sample rate is static. */
if (pConverter->hasPreFormatConversion == MA_FALSE &&
pConverter->hasPostFormatConversion == MA_FALSE &&
pConverter->hasChannelConverter == MA_FALSE &&
pConverter->hasResampler == MA_FALSE) {
pConverter->isPassthrough = MA_TRUE;
}
return MA_SUCCESS;
}
MA_API void ma_data_converter_uninit(ma_data_converter* pConverter)
{
if (pConverter == NULL) {
return;
}
if (pConverter->hasResampler) {
ma_resampler_uninit(&pConverter->resampler);
}
}
static ma_result ma_data_converter_process_pcm_frames__passthrough(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 frameCount;
MA_ASSERT(pConverter != NULL);
frameCountIn = 0;
if (pFrameCountIn != NULL) {
frameCountIn = *pFrameCountIn;
}
frameCountOut = 0;
if (pFrameCountOut != NULL) {
frameCountOut = *pFrameCountOut;
}
frameCount = ma_min(frameCountIn, frameCountOut);
if (pFramesOut != NULL) {
if (pFramesIn != NULL) {
ma_copy_memory_64(pFramesOut, pFramesIn, frameCount * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
} else {
ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
}
}
if (pFrameCountIn != NULL) {
*pFrameCountIn = frameCount;
}
if (pFrameCountOut != NULL) {
*pFrameCountOut = frameCount;
}
return MA_SUCCESS;
}
static ma_result ma_data_converter_process_pcm_frames__format_only(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 frameCount;
MA_ASSERT(pConverter != NULL);
frameCountIn = 0;
if (pFrameCountIn != NULL) {
frameCountIn = *pFrameCountIn;
}
frameCountOut = 0;
if (pFrameCountOut != NULL) {
frameCountOut = *pFrameCountOut;
}
frameCount = ma_min(frameCountIn, frameCountOut);
if (pFramesOut != NULL) {
if (pFramesIn != NULL) {
ma_convert_pcm_frames_format(pFramesOut, pConverter->config.formatOut, pFramesIn, pConverter->config.formatIn, frameCount, pConverter->config.channelsIn, pConverter->config.ditherMode);
} else {
ma_zero_memory_64(pFramesOut, frameCount * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
}
}
if (pFrameCountIn != NULL) {
*pFrameCountIn = frameCount;
}
if (pFrameCountOut != NULL) {
*pFrameCountOut = frameCount;
}
return MA_SUCCESS;
}
static ma_result ma_data_converter_process_pcm_frames__resample_with_format_conversion(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
ma_result result = MA_SUCCESS;
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 framesProcessedIn;
ma_uint64 framesProcessedOut;
MA_ASSERT(pConverter != NULL);
frameCountIn = 0;
if (pFrameCountIn != NULL) {
frameCountIn = *pFrameCountIn;
}
frameCountOut = 0;
if (pFrameCountOut != NULL) {
frameCountOut = *pFrameCountOut;
}
framesProcessedIn = 0;
framesProcessedOut = 0;
while (framesProcessedOut < frameCountOut) {
ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
const ma_uint32 tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
const void* pFramesInThisIteration;
/* */ void* pFramesOutThisIteration;
ma_uint64 frameCountInThisIteration;
ma_uint64 frameCountOutThisIteration;
if (pFramesIn != NULL) {
pFramesInThisIteration = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pConverter->config.formatIn, pConverter->config.channelsIn));
} else {
pFramesInThisIteration = NULL;
}
if (pFramesOut != NULL) {
pFramesOutThisIteration = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
} else {
pFramesOutThisIteration = NULL;
}
/* Do a pre format conversion if necessary. */
if (pConverter->hasPreFormatConversion) {
ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
const ma_uint32 tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
frameCountInThisIteration = (frameCountIn - framesProcessedIn);
if (frameCountInThisIteration > tempBufferInCap) {
frameCountInThisIteration = tempBufferInCap;
}
if (pConverter->hasPostFormatConversion) {
if (frameCountInThisIteration > tempBufferOutCap) {
frameCountInThisIteration = tempBufferOutCap;
}
}
if (pFramesInThisIteration != NULL) {
ma_convert_pcm_frames_format(pTempBufferIn, pConverter->resampler.config.format, pFramesInThisIteration, pConverter->config.formatIn, frameCountInThisIteration, pConverter->config.channelsIn, pConverter->config.ditherMode);
} else {
MA_ZERO_MEMORY(pTempBufferIn, sizeof(pTempBufferIn));
}
frameCountOutThisIteration = (frameCountOut - framesProcessedOut);
if (pConverter->hasPostFormatConversion) {
/* Both input and output conversion required. Output to the temp buffer. */
if (frameCountOutThisIteration > tempBufferOutCap) {
frameCountOutThisIteration = tempBufferOutCap;
}
result = ma_resampler_process_pcm_frames(&pConverter->resampler, pTempBufferIn, &frameCountInThisIteration, pTempBufferOut, &frameCountOutThisIteration);
} else {
/* Only pre-format required. Output straight to the output buffer. */
result = ma_resampler_process_pcm_frames(&pConverter->resampler, pTempBufferIn, &frameCountInThisIteration, pFramesOutThisIteration, &frameCountOutThisIteration);
}
if (result != MA_SUCCESS) {
break;
}
} else {
/* No pre-format required. Just read straight from the input buffer. */
MA_ASSERT(pConverter->hasPostFormatConversion == MA_TRUE);
frameCountInThisIteration = (frameCountIn - framesProcessedIn);
frameCountOutThisIteration = (frameCountOut - framesProcessedOut);
if (frameCountOutThisIteration > tempBufferOutCap) {
frameCountOutThisIteration = tempBufferOutCap;
}
result = ma_resampler_process_pcm_frames(&pConverter->resampler, pFramesInThisIteration, &frameCountInThisIteration, pTempBufferOut, &frameCountOutThisIteration);
if (result != MA_SUCCESS) {
break;
}
}
/* If we are doing a post format conversion we need to do that now. */
if (pConverter->hasPostFormatConversion) {
if (pFramesOutThisIteration != NULL) {
ma_convert_pcm_frames_format(pFramesOutThisIteration, pConverter->config.formatOut, pTempBufferOut, pConverter->resampler.config.format, frameCountOutThisIteration, pConverter->resampler.config.channels, pConverter->config.ditherMode);
}
}
framesProcessedIn += frameCountInThisIteration;
framesProcessedOut += frameCountOutThisIteration;
MA_ASSERT(framesProcessedIn <= frameCountIn);
MA_ASSERT(framesProcessedOut <= frameCountOut);
if (frameCountOutThisIteration == 0) {
break; /* Consumed all of our input data. */
}
}
if (pFrameCountIn != NULL) {
*pFrameCountIn = framesProcessedIn;
}
if (pFrameCountOut != NULL) {
*pFrameCountOut = framesProcessedOut;
}
return result;
}
static ma_result ma_data_converter_process_pcm_frames__resample_only(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
MA_ASSERT(pConverter != NULL);
if (pConverter->hasPreFormatConversion == MA_FALSE && pConverter->hasPostFormatConversion == MA_FALSE) {
/* Neither pre- nor post-format required. This is simple case where only resampling is required. */
return ma_resampler_process_pcm_frames(&pConverter->resampler, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
} else {
/* Format conversion required. */
return ma_data_converter_process_pcm_frames__resample_with_format_conversion(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
}
}
static ma_result ma_data_converter_process_pcm_frames__channels_only(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
ma_result result;
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 frameCount;
MA_ASSERT(pConverter != NULL);
frameCountIn = 0;
if (pFrameCountIn != NULL) {
frameCountIn = *pFrameCountIn;
}
frameCountOut = 0;
if (pFrameCountOut != NULL) {
frameCountOut = *pFrameCountOut;
}
frameCount = ma_min(frameCountIn, frameCountOut);
if (pConverter->hasPreFormatConversion == MA_FALSE && pConverter->hasPostFormatConversion == MA_FALSE) {
/* No format conversion required. */
result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pFramesOut, pFramesIn, frameCount);
if (result != MA_SUCCESS) {
return result;
}
} else {
/* Format conversion required. */
ma_uint64 framesProcessed = 0;
while (framesProcessed < frameCount) {
ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
const ma_uint32 tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsOut);
const void* pFramesInThisIteration;
/* */ void* pFramesOutThisIteration;
ma_uint64 frameCountThisIteration;
if (pFramesIn != NULL) {
pFramesInThisIteration = ma_offset_ptr(pFramesIn, framesProcessed * ma_get_bytes_per_frame(pConverter->config.formatIn, pConverter->config.channelsIn));
} else {
pFramesInThisIteration = NULL;
}
if (pFramesOut != NULL) {
pFramesOutThisIteration = ma_offset_ptr(pFramesOut, framesProcessed * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
} else {
pFramesOutThisIteration = NULL;
}
/* Do a pre format conversion if necessary. */
if (pConverter->hasPreFormatConversion) {
ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
const ma_uint32 tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsIn);
frameCountThisIteration = (frameCount - framesProcessed);
if (frameCountThisIteration > tempBufferInCap) {
frameCountThisIteration = tempBufferInCap;
}
if (pConverter->hasPostFormatConversion) {
if (frameCountThisIteration > tempBufferOutCap) {
frameCountThisIteration = tempBufferOutCap;
}
}
if (pFramesInThisIteration != NULL) {
ma_convert_pcm_frames_format(pTempBufferIn, pConverter->channelConverter.format, pFramesInThisIteration, pConverter->config.formatIn, frameCountThisIteration, pConverter->config.channelsIn, pConverter->config.ditherMode);
} else {
MA_ZERO_MEMORY(pTempBufferIn, sizeof(pTempBufferIn));
}
if (pConverter->hasPostFormatConversion) {
/* Both input and output conversion required. Output to the temp buffer. */
result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pTempBufferOut, pTempBufferIn, frameCountThisIteration);
} else {
/* Only pre-format required. Output straight to the output buffer. */
result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pFramesOutThisIteration, pTempBufferIn, frameCountThisIteration);
}
if (result != MA_SUCCESS) {
break;
}
} else {
/* No pre-format required. Just read straight from the input buffer. */
MA_ASSERT(pConverter->hasPostFormatConversion == MA_TRUE);
frameCountThisIteration = (frameCount - framesProcessed);
if (frameCountThisIteration > tempBufferOutCap) {
frameCountThisIteration = tempBufferOutCap;
}
result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pTempBufferOut, pFramesInThisIteration, frameCountThisIteration);
if (result != MA_SUCCESS) {
break;
}
}
/* If we are doing a post format conversion we need to do that now. */
if (pConverter->hasPostFormatConversion) {
if (pFramesOutThisIteration != NULL) {
ma_convert_pcm_frames_format(pFramesOutThisIteration, pConverter->config.formatOut, pTempBufferOut, pConverter->channelConverter.format, frameCountThisIteration, pConverter->channelConverter.channelsOut, pConverter->config.ditherMode);
}
}
framesProcessed += frameCountThisIteration;
}
}
if (pFrameCountIn != NULL) {
*pFrameCountIn = frameCount;
}
if (pFrameCountOut != NULL) {
*pFrameCountOut = frameCount;
}
return MA_SUCCESS;
}
static ma_result ma_data_converter_process_pcm_frames__resampling_first(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
ma_result result;
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 framesProcessedIn;
ma_uint64 framesProcessedOut;
ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format. */
ma_uint64 tempBufferInCap;
ma_uint8 pTempBufferMid[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format, channel converter input format. */
ma_uint64 tempBufferMidCap;
ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In channel converter output format. */
ma_uint64 tempBufferOutCap;
MA_ASSERT(pConverter != NULL);
MA_ASSERT(pConverter->resampler.config.format == pConverter->channelConverter.format);
MA_ASSERT(pConverter->resampler.config.channels == pConverter->channelConverter.channelsIn);
MA_ASSERT(pConverter->resampler.config.channels < pConverter->channelConverter.channelsOut);
frameCountIn = 0;
if (pFrameCountIn != NULL) {
frameCountIn = *pFrameCountIn;
}
frameCountOut = 0;
if (pFrameCountOut != NULL) {
frameCountOut = *pFrameCountOut;
}
framesProcessedIn = 0;
framesProcessedOut = 0;
tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
tempBufferMidCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsOut);
while (framesProcessedOut < frameCountOut) {
ma_uint64 frameCountInThisIteration;
ma_uint64 frameCountOutThisIteration;
const void* pRunningFramesIn = NULL;
void* pRunningFramesOut = NULL;
const void* pResampleBufferIn;
void* pChannelsBufferOut;
if (pFramesIn != NULL) {
pRunningFramesIn = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pConverter->config.formatIn, pConverter->config.channelsIn));
}
if (pFramesOut != NULL) {
pRunningFramesOut = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
}
/* Run input data through the resampler and output it to the temporary buffer. */
frameCountInThisIteration = (frameCountIn - framesProcessedIn);
if (pConverter->hasPreFormatConversion) {
if (frameCountInThisIteration > tempBufferInCap) {
frameCountInThisIteration = tempBufferInCap;
}
}
frameCountOutThisIteration = (frameCountOut - framesProcessedOut);
if (frameCountOutThisIteration > tempBufferMidCap) {
frameCountOutThisIteration = tempBufferMidCap;
}
/* We can't read more frames than can fit in the output buffer. */
if (pConverter->hasPostFormatConversion) {
if (frameCountOutThisIteration > tempBufferOutCap) {
frameCountOutThisIteration = tempBufferOutCap;
}
}
/* We need to ensure we don't try to process too many input frames that we run out of room in the output buffer. If this happens we'll end up glitching. */
{
ma_uint64 requiredInputFrameCount = ma_resampler_get_required_input_frame_count(&pConverter->resampler, frameCountOutThisIteration);
if (frameCountInThisIteration > requiredInputFrameCount) {
frameCountInThisIteration = requiredInputFrameCount;
}
}
if (pConverter->hasPreFormatConversion) {
if (pFramesIn != NULL) {
ma_convert_pcm_frames_format(pTempBufferIn, pConverter->resampler.config.format, pRunningFramesIn, pConverter->config.formatIn, frameCountInThisIteration, pConverter->config.channelsIn, pConverter->config.ditherMode);
pResampleBufferIn = pTempBufferIn;
} else {
pResampleBufferIn = NULL;
}
} else {
pResampleBufferIn = pRunningFramesIn;
}
result = ma_resampler_process_pcm_frames(&pConverter->resampler, pResampleBufferIn, &frameCountInThisIteration, pTempBufferMid, &frameCountOutThisIteration);
if (result != MA_SUCCESS) {
return result;
}
/*
The input data has been resampled so now we need to run it through the channel converter. The input data is always contained in pTempBufferMid. We only need to do
this part if we have an output buffer.
*/
if (pFramesOut != NULL) {
if (pConverter->hasPostFormatConversion) {
pChannelsBufferOut = pTempBufferOut;
} else {
pChannelsBufferOut = pRunningFramesOut;
}
result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pChannelsBufferOut, pTempBufferMid, frameCountOutThisIteration);
if (result != MA_SUCCESS) {
return result;
}
/* Finally we do post format conversion. */
if (pConverter->hasPostFormatConversion) {
ma_convert_pcm_frames_format(pRunningFramesOut, pConverter->config.formatOut, pChannelsBufferOut, pConverter->channelConverter.format, frameCountOutThisIteration, pConverter->channelConverter.channelsOut, pConverter->config.ditherMode);
}
}
framesProcessedIn += frameCountInThisIteration;
framesProcessedOut += frameCountOutThisIteration;
MA_ASSERT(framesProcessedIn <= frameCountIn);
MA_ASSERT(framesProcessedOut <= frameCountOut);
if (frameCountOutThisIteration == 0) {
break; /* Consumed all of our input data. */
}
}
if (pFrameCountIn != NULL) {
*pFrameCountIn = framesProcessedIn;
}
if (pFrameCountOut != NULL) {
*pFrameCountOut = framesProcessedOut;
}
return MA_SUCCESS;
}
static ma_result ma_data_converter_process_pcm_frames__channels_first(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
ma_result result;
ma_uint64 frameCountIn;
ma_uint64 frameCountOut;
ma_uint64 framesProcessedIn;
ma_uint64 framesProcessedOut;
ma_uint8 pTempBufferIn[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format. */
ma_uint64 tempBufferInCap;
ma_uint8 pTempBufferMid[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In resampler format, channel converter input format. */
ma_uint64 tempBufferMidCap;
ma_uint8 pTempBufferOut[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In channel converter output format. */
ma_uint64 tempBufferOutCap;
MA_ASSERT(pConverter != NULL);
MA_ASSERT(pConverter->resampler.config.format == pConverter->channelConverter.format);
MA_ASSERT(pConverter->resampler.config.channels == pConverter->channelConverter.channelsOut);
MA_ASSERT(pConverter->resampler.config.channels < pConverter->channelConverter.channelsIn);
frameCountIn = 0;
if (pFrameCountIn != NULL) {
frameCountIn = *pFrameCountIn;
}
frameCountOut = 0;
if (pFrameCountOut != NULL) {
frameCountOut = *pFrameCountOut;
}
framesProcessedIn = 0;
framesProcessedOut = 0;
tempBufferInCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsIn);
tempBufferMidCap = sizeof(pTempBufferIn) / ma_get_bytes_per_frame(pConverter->channelConverter.format, pConverter->channelConverter.channelsOut);
tempBufferOutCap = sizeof(pTempBufferOut) / ma_get_bytes_per_frame(pConverter->resampler.config.format, pConverter->resampler.config.channels);
while (framesProcessedOut < frameCountOut) {
ma_uint64 frameCountInThisIteration;
ma_uint64 frameCountOutThisIteration;
const void* pRunningFramesIn = NULL;
void* pRunningFramesOut = NULL;
const void* pChannelsBufferIn;
void* pResampleBufferOut;
if (pFramesIn != NULL) {
pRunningFramesIn = ma_offset_ptr(pFramesIn, framesProcessedIn * ma_get_bytes_per_frame(pConverter->config.formatIn, pConverter->config.channelsIn));
}
if (pFramesOut != NULL) {
pRunningFramesOut = ma_offset_ptr(pFramesOut, framesProcessedOut * ma_get_bytes_per_frame(pConverter->config.formatOut, pConverter->config.channelsOut));
}
/* Run input data through the channel converter and output it to the temporary buffer. */
frameCountInThisIteration = (frameCountIn - framesProcessedIn);
if (pConverter->hasPreFormatConversion) {
if (frameCountInThisIteration > tempBufferInCap) {
frameCountInThisIteration = tempBufferInCap;
}
if (pRunningFramesIn != NULL) {
ma_convert_pcm_frames_format(pTempBufferIn, pConverter->channelConverter.format, pRunningFramesIn, pConverter->config.formatIn, frameCountInThisIteration, pConverter->config.channelsIn, pConverter->config.ditherMode);
pChannelsBufferIn = pTempBufferIn;
} else {
pChannelsBufferIn = NULL;
}
} else {
pChannelsBufferIn = pRunningFramesIn;
}
/*
We can't convert more frames than will fit in the output buffer. We shouldn't actually need to do this check because the channel count is always reduced
in this case which means we should always have capacity, but I'm leaving it here just for safety for future maintenance.
*/
if (frameCountInThisIteration > tempBufferMidCap) {
frameCountInThisIteration = tempBufferMidCap;
}
/*
Make sure we don't read any more input frames than we need to fill the output frame count. If we do this we will end up in a situation where we lose some
input samples and will end up glitching.
*/
frameCountOutThisIteration = (frameCountOut - framesProcessedOut);
if (frameCountOutThisIteration > tempBufferMidCap) {
frameCountOutThisIteration = tempBufferMidCap;
}
if (pConverter->hasPostFormatConversion) {
ma_uint64 requiredInputFrameCount;
if (frameCountOutThisIteration > tempBufferOutCap) {
frameCountOutThisIteration = tempBufferOutCap;
}
requiredInputFrameCount = ma_resampler_get_required_input_frame_count(&pConverter->resampler, frameCountOutThisIteration);
if (frameCountInThisIteration > requiredInputFrameCount) {
frameCountInThisIteration = requiredInputFrameCount;
}
}
result = ma_channel_converter_process_pcm_frames(&pConverter->channelConverter, pTempBufferMid, pChannelsBufferIn, frameCountInThisIteration);
if (result != MA_SUCCESS) {
return result;
}
/* At this point we have converted the channels to the output channel count which we now need to resample. */
if (pConverter->hasPostFormatConversion) {
pResampleBufferOut = pTempBufferOut;
} else {
pResampleBufferOut = pRunningFramesOut;
}
result = ma_resampler_process_pcm_frames(&pConverter->resampler, pTempBufferMid, &frameCountInThisIteration, pResampleBufferOut, &frameCountOutThisIteration);
if (result != MA_SUCCESS) {
return result;
}
/* Finally we can do the post format conversion. */
if (pConverter->hasPostFormatConversion) {
if (pRunningFramesOut != NULL) {
ma_convert_pcm_frames_format(pRunningFramesOut, pConverter->config.formatOut, pResampleBufferOut, pConverter->resampler.config.format, frameCountOutThisIteration, pConverter->config.channelsOut, pConverter->config.ditherMode);
}
}
framesProcessedIn += frameCountInThisIteration;
framesProcessedOut += frameCountOutThisIteration;
MA_ASSERT(framesProcessedIn <= frameCountIn);
MA_ASSERT(framesProcessedOut <= frameCountOut);
if (frameCountOutThisIteration == 0) {
break; /* Consumed all of our input data. */
}
}
if (pFrameCountIn != NULL) {
*pFrameCountIn = framesProcessedIn;
}
if (pFrameCountOut != NULL) {
*pFrameCountOut = framesProcessedOut;
}
return MA_SUCCESS;
}
MA_API ma_result ma_data_converter_process_pcm_frames(ma_data_converter* pConverter, const void* pFramesIn, ma_uint64* pFrameCountIn, void* pFramesOut, ma_uint64* pFrameCountOut)
{
if (pConverter == NULL) {
return MA_INVALID_ARGS;
}
if (pConverter->isPassthrough) {
return ma_data_converter_process_pcm_frames__passthrough(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
}
/*
Here is where the real work is done. Getting here means we're not using a passthrough and we need to move the data through each of the relevant stages. The order
of our stages depends on the input and output channel count. If the input channels is less than the output channels we want to do sample rate conversion first so
that it has less work (resampling is the most expensive part of format conversion).
*/
if (pConverter->config.channelsIn < pConverter->config.channelsOut) {
/* Do resampling first, if necessary. */
MA_ASSERT(pConverter->hasChannelConverter == MA_TRUE);
if (pConverter->hasResampler) {
/* Resampling first. */
return ma_data_converter_process_pcm_frames__resampling_first(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
} else {
/* Resampling not required. */
return ma_data_converter_process_pcm_frames__channels_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
}
} else {
/* Do channel conversion first, if necessary. */
if (pConverter->hasChannelConverter) {
if (pConverter->hasResampler) {
/* Channel routing first. */
return ma_data_converter_process_pcm_frames__channels_first(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
} else {
/* Resampling not required. */
return ma_data_converter_process_pcm_frames__channels_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
}
} else {
/* Channel routing not required. */
if (pConverter->hasResampler) {
/* Resampling only. */
return ma_data_converter_process_pcm_frames__resample_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
} else {
/* No channel routing nor resampling required. Just format conversion. */
return ma_data_converter_process_pcm_frames__format_only(pConverter, pFramesIn, pFrameCountIn, pFramesOut, pFrameCountOut);
}
}
}
}
MA_API ma_result ma_data_converter_set_rate(ma_data_converter* pConverter, ma_uint32 sampleRateIn, ma_uint32 sampleRateOut)
{
if (pConverter == NULL) {
return MA_INVALID_ARGS;
}
if (pConverter->hasResampler == MA_FALSE) {
return MA_INVALID_OPERATION; /* Dynamic resampling not enabled. */
}
return ma_resampler_set_rate(&pConverter->resampler, sampleRateIn, sampleRateOut);
}
MA_API ma_result ma_data_converter_set_rate_ratio(ma_data_converter* pConverter, float ratioInOut)
{
if (pConverter == NULL) {
return MA_INVALID_ARGS;
}
if (pConverter->hasResampler == MA_FALSE) {
return MA_INVALID_OPERATION; /* Dynamic resampling not enabled. */
}
return ma_resampler_set_rate_ratio(&pConverter->resampler, ratioInOut);
}
MA_API ma_uint64 ma_data_converter_get_required_input_frame_count(ma_data_converter* pConverter, ma_uint64 outputFrameCount)
{
if (pConverter == NULL) {
return 0;
}
if (pConverter->hasResampler) {
return ma_resampler_get_required_input_frame_count(&pConverter->resampler, outputFrameCount);
} else {
return outputFrameCount; /* 1:1 */
}
}
MA_API ma_uint64 ma_data_converter_get_expected_output_frame_count(ma_data_converter* pConverter, ma_uint64 inputFrameCount)
{
if (pConverter == NULL) {
return 0;
}
if (pConverter->hasResampler) {
return ma_resampler_get_expected_output_frame_count(&pConverter->resampler, inputFrameCount);
} else {
return inputFrameCount; /* 1:1 */
}
}
MA_API ma_uint64 ma_data_converter_get_input_latency(ma_data_converter* pConverter)
{
if (pConverter == NULL) {
return 0;
}
if (pConverter->hasResampler) {
return ma_resampler_get_input_latency(&pConverter->resampler);
}
return 0; /* No latency without a resampler. */
}
MA_API ma_uint64 ma_data_converter_get_output_latency(ma_data_converter* pConverter)
{
if (pConverter == NULL) {
return 0;
}
if (pConverter->hasResampler) {
return ma_resampler_get_output_latency(&pConverter->resampler);
}
return 0; /* No latency without a resampler. */
}
/**************************************************************************************************************************************************************
Channel Maps
**************************************************************************************************************************************************************/
static void ma_get_standard_channel_map_microsoft(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
/* Based off the speaker configurations mentioned here: https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ksmedia/ns-ksmedia-ksaudio_channel_config */
switch (channels)
{
case 1:
{
channelMap[0] = MA_CHANNEL_MONO;
} break;
case 2:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
} break;
case 3: /* Not defined, but best guess. */
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
} break;
case 4:
{
#ifndef MA_USE_QUAD_MICROSOFT_CHANNEL_MAP
/* Surround. Using the Surround profile has the advantage of the 3rd channel (MA_CHANNEL_FRONT_CENTER) mapping nicely with higher channel counts. */
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_BACK_CENTER;
#else
/* Quad. */
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
#endif
} break;
case 5: /* Not defined, but best guess. */
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_BACK_LEFT;
channelMap[4] = MA_CHANNEL_BACK_RIGHT;
} break;
case 6:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_LFE;
channelMap[4] = MA_CHANNEL_SIDE_LEFT;
channelMap[5] = MA_CHANNEL_SIDE_RIGHT;
} break;
case 7: /* Not defined, but best guess. */
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_LFE;
channelMap[4] = MA_CHANNEL_BACK_CENTER;
channelMap[5] = MA_CHANNEL_SIDE_LEFT;
channelMap[6] = MA_CHANNEL_SIDE_RIGHT;
} break;
case 8:
default:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_LFE;
channelMap[4] = MA_CHANNEL_BACK_LEFT;
channelMap[5] = MA_CHANNEL_BACK_RIGHT;
channelMap[6] = MA_CHANNEL_SIDE_LEFT;
channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
} break;
}
/* Remainder. */
if (channels > 8) {
ma_uint32 iChannel;
for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
}
}
}
static void ma_get_standard_channel_map_alsa(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
switch (channels)
{
case 1:
{
channelMap[0] = MA_CHANNEL_MONO;
} break;
case 2:
{
channelMap[0] = MA_CHANNEL_LEFT;
channelMap[1] = MA_CHANNEL_RIGHT;
} break;
case 3:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
} break;
case 4:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
} break;
case 5:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
} break;
case 6:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
channelMap[5] = MA_CHANNEL_LFE;
} break;
case 7:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
channelMap[5] = MA_CHANNEL_LFE;
channelMap[6] = MA_CHANNEL_BACK_CENTER;
} break;
case 8:
default:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
channelMap[5] = MA_CHANNEL_LFE;
channelMap[6] = MA_CHANNEL_SIDE_LEFT;
channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
} break;
}
/* Remainder. */
if (channels > 8) {
ma_uint32 iChannel;
for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
}
}
}
static void ma_get_standard_channel_map_rfc3551(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
switch (channels)
{
case 1:
{
channelMap[0] = MA_CHANNEL_MONO;
} break;
case 2:
{
channelMap[0] = MA_CHANNEL_LEFT;
channelMap[1] = MA_CHANNEL_RIGHT;
} break;
case 3:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
} break;
case 4:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_CENTER;
channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
channelMap[3] = MA_CHANNEL_BACK_CENTER;
} break;
case 5:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_BACK_LEFT;
channelMap[4] = MA_CHANNEL_BACK_RIGHT;
} break;
case 6:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_SIDE_LEFT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_FRONT_RIGHT;
channelMap[4] = MA_CHANNEL_SIDE_RIGHT;
channelMap[5] = MA_CHANNEL_BACK_CENTER;
} break;
}
/* Remainder. */
if (channels > 8) {
ma_uint32 iChannel;
for (iChannel = 6; iChannel < MA_MAX_CHANNELS; ++iChannel) {
channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6));
}
}
}
static void ma_get_standard_channel_map_flac(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
switch (channels)
{
case 1:
{
channelMap[0] = MA_CHANNEL_MONO;
} break;
case 2:
{
channelMap[0] = MA_CHANNEL_LEFT;
channelMap[1] = MA_CHANNEL_RIGHT;
} break;
case 3:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
} break;
case 4:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
} break;
case 5:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_BACK_LEFT;
channelMap[4] = MA_CHANNEL_BACK_RIGHT;
} break;
case 6:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_LFE;
channelMap[4] = MA_CHANNEL_BACK_LEFT;
channelMap[5] = MA_CHANNEL_BACK_RIGHT;
} break;
case 7:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_LFE;
channelMap[4] = MA_CHANNEL_BACK_CENTER;
channelMap[5] = MA_CHANNEL_SIDE_LEFT;
channelMap[6] = MA_CHANNEL_SIDE_RIGHT;
} break;
case 8:
default:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
channelMap[3] = MA_CHANNEL_LFE;
channelMap[4] = MA_CHANNEL_BACK_LEFT;
channelMap[5] = MA_CHANNEL_BACK_RIGHT;
channelMap[6] = MA_CHANNEL_SIDE_LEFT;
channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
} break;
}
/* Remainder. */
if (channels > 8) {
ma_uint32 iChannel;
for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
}
}
}
static void ma_get_standard_channel_map_vorbis(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
/* In Vorbis' type 0 channel mapping, the first two channels are not always the standard left/right - it will have the center speaker where the right usually goes. Why?! */
switch (channels)
{
case 1:
{
channelMap[0] = MA_CHANNEL_MONO;
} break;
case 2:
{
channelMap[0] = MA_CHANNEL_LEFT;
channelMap[1] = MA_CHANNEL_RIGHT;
} break;
case 3:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_CENTER;
channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
} break;
case 4:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
} break;
case 5:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_CENTER;
channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
channelMap[3] = MA_CHANNEL_BACK_LEFT;
channelMap[4] = MA_CHANNEL_BACK_RIGHT;
} break;
case 6:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_CENTER;
channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
channelMap[3] = MA_CHANNEL_BACK_LEFT;
channelMap[4] = MA_CHANNEL_BACK_RIGHT;
channelMap[5] = MA_CHANNEL_LFE;
} break;
case 7:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_CENTER;
channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
channelMap[3] = MA_CHANNEL_SIDE_LEFT;
channelMap[4] = MA_CHANNEL_SIDE_RIGHT;
channelMap[5] = MA_CHANNEL_BACK_CENTER;
channelMap[6] = MA_CHANNEL_LFE;
} break;
case 8:
default:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_CENTER;
channelMap[2] = MA_CHANNEL_FRONT_RIGHT;
channelMap[3] = MA_CHANNEL_SIDE_LEFT;
channelMap[4] = MA_CHANNEL_SIDE_RIGHT;
channelMap[5] = MA_CHANNEL_BACK_LEFT;
channelMap[6] = MA_CHANNEL_BACK_RIGHT;
channelMap[7] = MA_CHANNEL_LFE;
} break;
}
/* Remainder. */
if (channels > 8) {
ma_uint32 iChannel;
for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
}
}
}
static void ma_get_standard_channel_map_sound4(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
switch (channels)
{
case 1:
{
channelMap[0] = MA_CHANNEL_MONO;
} break;
case 2:
{
channelMap[0] = MA_CHANNEL_LEFT;
channelMap[1] = MA_CHANNEL_RIGHT;
} break;
case 3:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_CENTER;
} break;
case 4:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
} break;
case 5:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
} break;
case 6:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
channelMap[5] = MA_CHANNEL_LFE;
} break;
case 7:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
channelMap[5] = MA_CHANNEL_BACK_CENTER;
channelMap[6] = MA_CHANNEL_LFE;
} break;
case 8:
default:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
channelMap[5] = MA_CHANNEL_LFE;
channelMap[6] = MA_CHANNEL_SIDE_LEFT;
channelMap[7] = MA_CHANNEL_SIDE_RIGHT;
} break;
}
/* Remainder. */
if (channels > 8) {
ma_uint32 iChannel;
for (iChannel = 8; iChannel < MA_MAX_CHANNELS; ++iChannel) {
channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-8));
}
}
}
static void ma_get_standard_channel_map_sndio(ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
switch (channels)
{
case 1:
{
channelMap[0] = MA_CHANNEL_MONO;
} break;
case 2:
{
channelMap[0] = MA_CHANNEL_LEFT;
channelMap[1] = MA_CHANNEL_RIGHT;
} break;
case 3:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_FRONT_CENTER;
} break;
case 4:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
} break;
case 5:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
} break;
case 6:
default:
{
channelMap[0] = MA_CHANNEL_FRONT_LEFT;
channelMap[1] = MA_CHANNEL_FRONT_RIGHT;
channelMap[2] = MA_CHANNEL_BACK_LEFT;
channelMap[3] = MA_CHANNEL_BACK_RIGHT;
channelMap[4] = MA_CHANNEL_FRONT_CENTER;
channelMap[5] = MA_CHANNEL_LFE;
} break;
}
/* Remainder. */
if (channels > 6) {
ma_uint32 iChannel;
for (iChannel = 6; iChannel < MA_MAX_CHANNELS; ++iChannel) {
channelMap[iChannel] = (ma_channel)(MA_CHANNEL_AUX_0 + (iChannel-6));
}
}
}
MA_API void ma_get_standard_channel_map(ma_standard_channel_map standardChannelMap, ma_uint32 channels, ma_channel channelMap[MA_MAX_CHANNELS])
{
switch (standardChannelMap)
{
case ma_standard_channel_map_alsa:
{
ma_get_standard_channel_map_alsa(channels, channelMap);
} break;
case ma_standard_channel_map_rfc3551:
{
ma_get_standard_channel_map_rfc3551(channels, channelMap);
} break;
case ma_standard_channel_map_flac:
{
ma_get_standard_channel_map_flac(channels, channelMap);
} break;
case ma_standard_channel_map_vorbis:
{
ma_get_standard_channel_map_vorbis(channels, channelMap);
} break;
case ma_standard_channel_map_sound4:
{
ma_get_standard_channel_map_sound4(channels, channelMap);
} break;
case ma_standard_channel_map_sndio:
{
ma_get_standard_channel_map_sndio(channels, channelMap);
} break;
case ma_standard_channel_map_microsoft:
default:
{
ma_get_standard_channel_map_microsoft(channels, channelMap);
} break;
}
}
MA_API void ma_channel_map_copy(ma_channel* pOut, const ma_channel* pIn, ma_uint32 channels)
{
if (pOut != NULL && pIn != NULL && channels > 0) {
MA_COPY_MEMORY(pOut, pIn, sizeof(*pOut) * channels);
}
}
MA_API ma_bool32 ma_channel_map_valid(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
{
if (channelMap == NULL) {
return MA_FALSE;
}
/* A channel count of 0 is invalid. */
if (channels == 0) {
return MA_FALSE;
}
/* It does not make sense to have a mono channel when there is more than 1 channel. */
if (channels > 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
if (channelMap[iChannel] == MA_CHANNEL_MONO) {
return MA_FALSE;
}
}
}
return MA_TRUE;
}
MA_API ma_bool32 ma_channel_map_equal(ma_uint32 channels, const ma_channel channelMapA[MA_MAX_CHANNELS], const ma_channel channelMapB[MA_MAX_CHANNELS])
{
ma_uint32 iChannel;
if (channelMapA == channelMapB) {
return MA_FALSE;
}
if (channels == 0 || channels > MA_MAX_CHANNELS) {
return MA_FALSE;
}
for (iChannel = 0; iChannel < channels; ++iChannel) {
if (channelMapA[iChannel] != channelMapB[iChannel]) {
return MA_FALSE;
}
}
return MA_TRUE;
}
MA_API ma_bool32 ma_channel_map_blank(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS])
{
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
if (channelMap[iChannel] != MA_CHANNEL_NONE) {
return MA_FALSE;
}
}
return MA_TRUE;
}
MA_API ma_bool32 ma_channel_map_contains_channel_position(ma_uint32 channels, const ma_channel channelMap[MA_MAX_CHANNELS], ma_channel channelPosition)
{
ma_uint32 iChannel;
for (iChannel = 0; iChannel < channels; ++iChannel) {
if (channelMap[iChannel] == channelPosition) {
return MA_TRUE;
}
}
return MA_FALSE;
}
/**************************************************************************************************************************************************************
Conversion Helpers
**************************************************************************************************************************************************************/
MA_API ma_uint64 ma_convert_frames(void* pOut, ma_uint64 frameCountOut, ma_format formatOut, ma_uint32 channelsOut, ma_uint32 sampleRateOut, const void* pIn, ma_uint64 frameCountIn, ma_format formatIn, ma_uint32 channelsIn, ma_uint32 sampleRateIn)
{
ma_data_converter_config config;
config = ma_data_converter_config_init(formatIn, formatOut, channelsIn, channelsOut, sampleRateIn, sampleRateOut);
ma_get_standard_channel_map(ma_standard_channel_map_default, channelsOut, config.channelMapOut);
ma_get_standard_channel_map(ma_standard_channel_map_default, channelsIn, config.channelMapIn);
config.resampling.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
return ma_convert_frames_ex(pOut, frameCountOut, pIn, frameCountIn, &config);
}
MA_API ma_uint64 ma_convert_frames_ex(void* pOut, ma_uint64 frameCountOut, const void* pIn, ma_uint64 frameCountIn, const ma_data_converter_config* pConfig)
{
ma_result result;
ma_data_converter converter;
if (frameCountIn == 0 || pConfig == NULL) {
return 0;
}
result = ma_data_converter_init(pConfig, &converter);
if (result != MA_SUCCESS) {
return 0; /* Failed to initialize the data converter. */
}
if (pOut == NULL) {
frameCountOut = ma_data_converter_get_expected_output_frame_count(&converter, frameCountIn);
} else {
result = ma_data_converter_process_pcm_frames(&converter, pIn, &frameCountIn, pOut, &frameCountOut);
if (result != MA_SUCCESS) {
frameCountOut = 0;
}
}
ma_data_converter_uninit(&converter);
return frameCountOut;
}
/**************************************************************************************************************************************************************
Ring Buffer
**************************************************************************************************************************************************************/
static MA_INLINE ma_uint32 ma_rb__extract_offset_in_bytes(ma_uint32 encodedOffset)
{
return encodedOffset & 0x7FFFFFFF;
}
static MA_INLINE ma_uint32 ma_rb__extract_offset_loop_flag(ma_uint32 encodedOffset)
{
return encodedOffset & 0x80000000;
}
static MA_INLINE void* ma_rb__get_read_ptr(ma_rb* pRB)
{
MA_ASSERT(pRB != NULL);
return ma_offset_ptr(pRB->pBuffer, ma_rb__extract_offset_in_bytes(pRB->encodedReadOffset));
}
static MA_INLINE void* ma_rb__get_write_ptr(ma_rb* pRB)
{
MA_ASSERT(pRB != NULL);
return ma_offset_ptr(pRB->pBuffer, ma_rb__extract_offset_in_bytes(pRB->encodedWriteOffset));
}
static MA_INLINE ma_uint32 ma_rb__construct_offset(ma_uint32 offsetInBytes, ma_uint32 offsetLoopFlag)
{
return offsetLoopFlag | offsetInBytes;
}
static MA_INLINE void ma_rb__deconstruct_offset(ma_uint32 encodedOffset, ma_uint32* pOffsetInBytes, ma_uint32* pOffsetLoopFlag)
{
MA_ASSERT(pOffsetInBytes != NULL);
MA_ASSERT(pOffsetLoopFlag != NULL);
*pOffsetInBytes = ma_rb__extract_offset_in_bytes(encodedOffset);
*pOffsetLoopFlag = ma_rb__extract_offset_loop_flag(encodedOffset);
}
MA_API ma_result ma_rb_init_ex(size_t subbufferSizeInBytes, size_t subbufferCount, size_t subbufferStrideInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB)
{
ma_result result;
const ma_uint32 maxSubBufferSize = 0x7FFFFFFF - (MA_SIMD_ALIGNMENT-1);
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
if (subbufferSizeInBytes == 0 || subbufferCount == 0) {
return MA_INVALID_ARGS;
}
if (subbufferSizeInBytes > maxSubBufferSize) {
return MA_INVALID_ARGS; /* Maximum buffer size is ~2GB. The most significant bit is a flag for use internally. */
}
MA_ZERO_OBJECT(pRB);
result = ma_allocation_callbacks_init_copy(&pRB->allocationCallbacks, pAllocationCallbacks);
if (result != MA_SUCCESS) {
return result;
}
pRB->subbufferSizeInBytes = (ma_uint32)subbufferSizeInBytes;
pRB->subbufferCount = (ma_uint32)subbufferCount;
if (pOptionalPreallocatedBuffer != NULL) {
pRB->subbufferStrideInBytes = (ma_uint32)subbufferStrideInBytes;
pRB->pBuffer = pOptionalPreallocatedBuffer;
} else {
size_t bufferSizeInBytes;
/*
Here is where we allocate our own buffer. We always want to align this to MA_SIMD_ALIGNMENT for future SIMD optimization opportunity. To do this
we need to make sure the stride is a multiple of MA_SIMD_ALIGNMENT.
*/
pRB->subbufferStrideInBytes = (pRB->subbufferSizeInBytes + (MA_SIMD_ALIGNMENT-1)) & ~MA_SIMD_ALIGNMENT;
bufferSizeInBytes = (size_t)pRB->subbufferCount*pRB->subbufferStrideInBytes;
pRB->pBuffer = ma_aligned_malloc(bufferSizeInBytes, MA_SIMD_ALIGNMENT, &pRB->allocationCallbacks);
if (pRB->pBuffer == NULL) {
return MA_OUT_OF_MEMORY;
}
MA_ZERO_MEMORY(pRB->pBuffer, bufferSizeInBytes);
pRB->ownsBuffer = MA_TRUE;
}
return MA_SUCCESS;
}
MA_API ma_result ma_rb_init(size_t bufferSizeInBytes, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_rb* pRB)
{
return ma_rb_init_ex(bufferSizeInBytes, 1, 0, pOptionalPreallocatedBuffer, pAllocationCallbacks, pRB);
}
MA_API void ma_rb_uninit(ma_rb* pRB)
{
if (pRB == NULL) {
return;
}
if (pRB->ownsBuffer) {
ma_aligned_free(pRB->pBuffer, &pRB->allocationCallbacks);
}
}
MA_API void ma_rb_reset(ma_rb* pRB)
{
if (pRB == NULL) {
return;
}
pRB->encodedReadOffset = 0;
pRB->encodedWriteOffset = 0;
}
MA_API ma_result ma_rb_acquire_read(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut)
{
ma_uint32 writeOffset;
ma_uint32 writeOffsetInBytes;
ma_uint32 writeOffsetLoopFlag;
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
ma_uint32 readOffsetLoopFlag;
size_t bytesAvailable;
size_t bytesRequested;
if (pRB == NULL || pSizeInBytes == NULL || ppBufferOut == NULL) {
return MA_INVALID_ARGS;
}
/* The returned buffer should never move ahead of the write pointer. */
writeOffset = pRB->encodedWriteOffset;
ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag);
readOffset = pRB->encodedReadOffset;
ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag);
/*
The number of bytes available depends on whether or not the read and write pointers are on the same loop iteration. If so, we
can only read up to the write pointer. If not, we can only read up to the end of the buffer.
*/
if (readOffsetLoopFlag == writeOffsetLoopFlag) {
bytesAvailable = writeOffsetInBytes - readOffsetInBytes;
} else {
bytesAvailable = pRB->subbufferSizeInBytes - readOffsetInBytes;
}
bytesRequested = *pSizeInBytes;
if (bytesRequested > bytesAvailable) {
bytesRequested = bytesAvailable;
}
*pSizeInBytes = bytesRequested;
(*ppBufferOut) = ma_rb__get_read_ptr(pRB);
return MA_SUCCESS;
}
MA_API ma_result ma_rb_commit_read(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
ma_uint32 readOffsetLoopFlag;
ma_uint32 newReadOffsetInBytes;
ma_uint32 newReadOffsetLoopFlag;
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
/* Validate the buffer. */
if (pBufferOut != ma_rb__get_read_ptr(pRB)) {
return MA_INVALID_ARGS;
}
readOffset = pRB->encodedReadOffset;
ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag);
/* Check that sizeInBytes is correct. It should never go beyond the end of the buffer. */
newReadOffsetInBytes = (ma_uint32)(readOffsetInBytes + sizeInBytes);
if (newReadOffsetInBytes > pRB->subbufferSizeInBytes) {
return MA_INVALID_ARGS; /* <-- sizeInBytes will cause the read offset to overflow. */
}
/* Move the read pointer back to the start if necessary. */
newReadOffsetLoopFlag = readOffsetLoopFlag;
if (newReadOffsetInBytes == pRB->subbufferSizeInBytes) {
newReadOffsetInBytes = 0;
newReadOffsetLoopFlag ^= 0x80000000;
}
c89atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetLoopFlag, newReadOffsetInBytes));
return MA_SUCCESS;
}
MA_API ma_result ma_rb_acquire_write(ma_rb* pRB, size_t* pSizeInBytes, void** ppBufferOut)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
ma_uint32 readOffsetLoopFlag;
ma_uint32 writeOffset;
ma_uint32 writeOffsetInBytes;
ma_uint32 writeOffsetLoopFlag;
size_t bytesAvailable;
size_t bytesRequested;
if (pRB == NULL || pSizeInBytes == NULL || ppBufferOut == NULL) {
return MA_INVALID_ARGS;
}
/* The returned buffer should never overtake the read buffer. */
readOffset = pRB->encodedReadOffset;
ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag);
writeOffset = pRB->encodedWriteOffset;
ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag);
/*
In the case of writing, if the write pointer and the read pointer are on the same loop iteration we can only
write up to the end of the buffer. Otherwise we can only write up to the read pointer. The write pointer should
never overtake the read pointer.
*/
if (writeOffsetLoopFlag == readOffsetLoopFlag) {
bytesAvailable = pRB->subbufferSizeInBytes - writeOffsetInBytes;
} else {
bytesAvailable = readOffsetInBytes - writeOffsetInBytes;
}
bytesRequested = *pSizeInBytes;
if (bytesRequested > bytesAvailable) {
bytesRequested = bytesAvailable;
}
*pSizeInBytes = bytesRequested;
*ppBufferOut = ma_rb__get_write_ptr(pRB);
/* Clear the buffer if desired. */
if (pRB->clearOnWriteAcquire) {
MA_ZERO_MEMORY(*ppBufferOut, *pSizeInBytes);
}
return MA_SUCCESS;
}
MA_API ma_result ma_rb_commit_write(ma_rb* pRB, size_t sizeInBytes, void* pBufferOut)
{
ma_uint32 writeOffset;
ma_uint32 writeOffsetInBytes;
ma_uint32 writeOffsetLoopFlag;
ma_uint32 newWriteOffsetInBytes;
ma_uint32 newWriteOffsetLoopFlag;
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
/* Validate the buffer. */
if (pBufferOut != ma_rb__get_write_ptr(pRB)) {
return MA_INVALID_ARGS;
}
writeOffset = pRB->encodedWriteOffset;
ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag);
/* Check that sizeInBytes is correct. It should never go beyond the end of the buffer. */
newWriteOffsetInBytes = (ma_uint32)(writeOffsetInBytes + sizeInBytes);
if (newWriteOffsetInBytes > pRB->subbufferSizeInBytes) {
return MA_INVALID_ARGS; /* <-- sizeInBytes will cause the read offset to overflow. */
}
/* Move the read pointer back to the start if necessary. */
newWriteOffsetLoopFlag = writeOffsetLoopFlag;
if (newWriteOffsetInBytes == pRB->subbufferSizeInBytes) {
newWriteOffsetInBytes = 0;
newWriteOffsetLoopFlag ^= 0x80000000;
}
c89atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetLoopFlag, newWriteOffsetInBytes));
return MA_SUCCESS;
}
MA_API ma_result ma_rb_seek_read(ma_rb* pRB, size_t offsetInBytes)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
ma_uint32 readOffsetLoopFlag;
ma_uint32 writeOffset;
ma_uint32 writeOffsetInBytes;
ma_uint32 writeOffsetLoopFlag;
ma_uint32 newReadOffsetInBytes;
ma_uint32 newReadOffsetLoopFlag;
if (pRB == NULL || offsetInBytes > pRB->subbufferSizeInBytes) {
return MA_INVALID_ARGS;
}
readOffset = pRB->encodedReadOffset;
ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag);
writeOffset = pRB->encodedWriteOffset;
ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag);
newReadOffsetInBytes = readOffsetInBytes;
newReadOffsetLoopFlag = readOffsetLoopFlag;
/* We cannot go past the write buffer. */
if (readOffsetLoopFlag == writeOffsetLoopFlag) {
if ((readOffsetInBytes + offsetInBytes) > writeOffsetInBytes) {
newReadOffsetInBytes = writeOffsetInBytes;
} else {
newReadOffsetInBytes = (ma_uint32)(readOffsetInBytes + offsetInBytes);
}
} else {
/* May end up looping. */
if ((readOffsetInBytes + offsetInBytes) >= pRB->subbufferSizeInBytes) {
newReadOffsetInBytes = (ma_uint32)(readOffsetInBytes + offsetInBytes) - pRB->subbufferSizeInBytes;
newReadOffsetLoopFlag ^= 0x80000000; /* <-- Looped. */
} else {
newReadOffsetInBytes = (ma_uint32)(readOffsetInBytes + offsetInBytes);
}
}
c89atomic_exchange_32(&pRB->encodedReadOffset, ma_rb__construct_offset(newReadOffsetInBytes, newReadOffsetLoopFlag));
return MA_SUCCESS;
}
MA_API ma_result ma_rb_seek_write(ma_rb* pRB, size_t offsetInBytes)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
ma_uint32 readOffsetLoopFlag;
ma_uint32 writeOffset;
ma_uint32 writeOffsetInBytes;
ma_uint32 writeOffsetLoopFlag;
ma_uint32 newWriteOffsetInBytes;
ma_uint32 newWriteOffsetLoopFlag;
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
readOffset = pRB->encodedReadOffset;
ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag);
writeOffset = pRB->encodedWriteOffset;
ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag);
newWriteOffsetInBytes = writeOffsetInBytes;
newWriteOffsetLoopFlag = writeOffsetLoopFlag;
/* We cannot go past the write buffer. */
if (readOffsetLoopFlag == writeOffsetLoopFlag) {
/* May end up looping. */
if ((writeOffsetInBytes + offsetInBytes) >= pRB->subbufferSizeInBytes) {
newWriteOffsetInBytes = (ma_uint32)(writeOffsetInBytes + offsetInBytes) - pRB->subbufferSizeInBytes;
newWriteOffsetLoopFlag ^= 0x80000000; /* <-- Looped. */
} else {
newWriteOffsetInBytes = (ma_uint32)(writeOffsetInBytes + offsetInBytes);
}
} else {
if ((writeOffsetInBytes + offsetInBytes) > readOffsetInBytes) {
newWriteOffsetInBytes = readOffsetInBytes;
} else {
newWriteOffsetInBytes = (ma_uint32)(writeOffsetInBytes + offsetInBytes);
}
}
c89atomic_exchange_32(&pRB->encodedWriteOffset, ma_rb__construct_offset(newWriteOffsetInBytes, newWriteOffsetLoopFlag));
return MA_SUCCESS;
}
MA_API ma_int32 ma_rb_pointer_distance(ma_rb* pRB)
{
ma_uint32 readOffset;
ma_uint32 readOffsetInBytes;
ma_uint32 readOffsetLoopFlag;
ma_uint32 writeOffset;
ma_uint32 writeOffsetInBytes;
ma_uint32 writeOffsetLoopFlag;
if (pRB == NULL) {
return 0;
}
readOffset = pRB->encodedReadOffset;
ma_rb__deconstruct_offset(readOffset, &readOffsetInBytes, &readOffsetLoopFlag);
writeOffset = pRB->encodedWriteOffset;
ma_rb__deconstruct_offset(writeOffset, &writeOffsetInBytes, &writeOffsetLoopFlag);
if (readOffsetLoopFlag == writeOffsetLoopFlag) {
return writeOffsetInBytes - readOffsetInBytes;
} else {
return writeOffsetInBytes + (pRB->subbufferSizeInBytes - readOffsetInBytes);
}
}
MA_API ma_uint32 ma_rb_available_read(ma_rb* pRB)
{
ma_int32 dist;
if (pRB == NULL) {
return 0;
}
dist = ma_rb_pointer_distance(pRB);
if (dist < 0) {
return 0;
}
return dist;
}
MA_API ma_uint32 ma_rb_available_write(ma_rb* pRB)
{
if (pRB == NULL) {
return 0;
}
return (ma_uint32)(ma_rb_get_subbuffer_size(pRB) - ma_rb_pointer_distance(pRB));
}
MA_API size_t ma_rb_get_subbuffer_size(ma_rb* pRB)
{
if (pRB == NULL) {
return 0;
}
return pRB->subbufferSizeInBytes;
}
MA_API size_t ma_rb_get_subbuffer_stride(ma_rb* pRB)
{
if (pRB == NULL) {
return 0;
}
if (pRB->subbufferStrideInBytes == 0) {
return (size_t)pRB->subbufferSizeInBytes;
}
return (size_t)pRB->subbufferStrideInBytes;
}
MA_API size_t ma_rb_get_subbuffer_offset(ma_rb* pRB, size_t subbufferIndex)
{
if (pRB == NULL) {
return 0;
}
return subbufferIndex * ma_rb_get_subbuffer_stride(pRB);
}
MA_API void* ma_rb_get_subbuffer_ptr(ma_rb* pRB, size_t subbufferIndex, void* pBuffer)
{
if (pRB == NULL) {
return NULL;
}
return ma_offset_ptr(pBuffer, ma_rb_get_subbuffer_offset(pRB, subbufferIndex));
}
static MA_INLINE ma_uint32 ma_pcm_rb_get_bpf(ma_pcm_rb* pRB)
{
MA_ASSERT(pRB != NULL);
return ma_get_bytes_per_frame(pRB->format, pRB->channels);
}
MA_API ma_result ma_pcm_rb_init_ex(ma_format format, ma_uint32 channels, ma_uint32 subbufferSizeInFrames, ma_uint32 subbufferCount, ma_uint32 subbufferStrideInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB)
{
ma_uint32 bpf;
ma_result result;
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pRB);
bpf = ma_get_bytes_per_frame(format, channels);
if (bpf == 0) {
return MA_INVALID_ARGS;
}
result = ma_rb_init_ex(subbufferSizeInFrames*bpf, subbufferCount, subbufferStrideInFrames*bpf, pOptionalPreallocatedBuffer, pAllocationCallbacks, &pRB->rb);
if (result != MA_SUCCESS) {
return result;
}
pRB->format = format;
pRB->channels = channels;
return MA_SUCCESS;
}
MA_API ma_result ma_pcm_rb_init(ma_format format, ma_uint32 channels, ma_uint32 bufferSizeInFrames, void* pOptionalPreallocatedBuffer, const ma_allocation_callbacks* pAllocationCallbacks, ma_pcm_rb* pRB)
{
return ma_pcm_rb_init_ex(format, channels, bufferSizeInFrames, 1, 0, pOptionalPreallocatedBuffer, pAllocationCallbacks, pRB);
}
MA_API void ma_pcm_rb_uninit(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return;
}
ma_rb_uninit(&pRB->rb);
}
MA_API void ma_pcm_rb_reset(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return;
}
ma_rb_reset(&pRB->rb);
}
MA_API ma_result ma_pcm_rb_acquire_read(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut)
{
size_t sizeInBytes;
ma_result result;
if (pRB == NULL || pSizeInFrames == NULL) {
return MA_INVALID_ARGS;
}
sizeInBytes = *pSizeInFrames * ma_pcm_rb_get_bpf(pRB);
result = ma_rb_acquire_read(&pRB->rb, &sizeInBytes, ppBufferOut);
if (result != MA_SUCCESS) {
return result;
}
*pSizeInFrames = (ma_uint32)(sizeInBytes / (size_t)ma_pcm_rb_get_bpf(pRB));
return MA_SUCCESS;
}
MA_API ma_result ma_pcm_rb_commit_read(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut)
{
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
return ma_rb_commit_read(&pRB->rb, sizeInFrames * ma_pcm_rb_get_bpf(pRB), pBufferOut);
}
MA_API ma_result ma_pcm_rb_acquire_write(ma_pcm_rb* pRB, ma_uint32* pSizeInFrames, void** ppBufferOut)
{
size_t sizeInBytes;
ma_result result;
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
sizeInBytes = *pSizeInFrames * ma_pcm_rb_get_bpf(pRB);
result = ma_rb_acquire_write(&pRB->rb, &sizeInBytes, ppBufferOut);
if (result != MA_SUCCESS) {
return result;
}
*pSizeInFrames = (ma_uint32)(sizeInBytes / ma_pcm_rb_get_bpf(pRB));
return MA_SUCCESS;
}
MA_API ma_result ma_pcm_rb_commit_write(ma_pcm_rb* pRB, ma_uint32 sizeInFrames, void* pBufferOut)
{
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
return ma_rb_commit_write(&pRB->rb, sizeInFrames * ma_pcm_rb_get_bpf(pRB), pBufferOut);
}
MA_API ma_result ma_pcm_rb_seek_read(ma_pcm_rb* pRB, ma_uint32 offsetInFrames)
{
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
return ma_rb_seek_read(&pRB->rb, offsetInFrames * ma_pcm_rb_get_bpf(pRB));
}
MA_API ma_result ma_pcm_rb_seek_write(ma_pcm_rb* pRB, ma_uint32 offsetInFrames)
{
if (pRB == NULL) {
return MA_INVALID_ARGS;
}
return ma_rb_seek_write(&pRB->rb, offsetInFrames * ma_pcm_rb_get_bpf(pRB));
}
MA_API ma_int32 ma_pcm_rb_pointer_distance(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
}
return ma_rb_pointer_distance(&pRB->rb) / ma_pcm_rb_get_bpf(pRB);
}
MA_API ma_uint32 ma_pcm_rb_available_read(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
}
return ma_rb_available_read(&pRB->rb) / ma_pcm_rb_get_bpf(pRB);
}
MA_API ma_uint32 ma_pcm_rb_available_write(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
}
return ma_rb_available_write(&pRB->rb) / ma_pcm_rb_get_bpf(pRB);
}
MA_API ma_uint32 ma_pcm_rb_get_subbuffer_size(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
}
return (ma_uint32)(ma_rb_get_subbuffer_size(&pRB->rb) / ma_pcm_rb_get_bpf(pRB));
}
MA_API ma_uint32 ma_pcm_rb_get_subbuffer_stride(ma_pcm_rb* pRB)
{
if (pRB == NULL) {
return 0;
}
return (ma_uint32)(ma_rb_get_subbuffer_stride(&pRB->rb) / ma_pcm_rb_get_bpf(pRB));
}
MA_API ma_uint32 ma_pcm_rb_get_subbuffer_offset(ma_pcm_rb* pRB, ma_uint32 subbufferIndex)
{
if (pRB == NULL) {
return 0;
}
return (ma_uint32)(ma_rb_get_subbuffer_offset(&pRB->rb, subbufferIndex) / ma_pcm_rb_get_bpf(pRB));
}
MA_API void* ma_pcm_rb_get_subbuffer_ptr(ma_pcm_rb* pRB, ma_uint32 subbufferIndex, void* pBuffer)
{
if (pRB == NULL) {
return NULL;
}
return ma_rb_get_subbuffer_ptr(&pRB->rb, subbufferIndex, pBuffer);
}
/**************************************************************************************************************************************************************
Miscellaneous Helpers
**************************************************************************************************************************************************************/
MA_API const char* ma_result_description(ma_result result)
{
switch (result)
{
case MA_SUCCESS: return "No error";
case MA_ERROR: return "Unknown error";
case MA_INVALID_ARGS: return "Invalid argument";
case MA_INVALID_OPERATION: return "Invalid operation";
case MA_OUT_OF_MEMORY: return "Out of memory";
case MA_OUT_OF_RANGE: return "Out of range";
case MA_ACCESS_DENIED: return "Permission denied";
case MA_DOES_NOT_EXIST: return "Resource does not exist";
case MA_ALREADY_EXISTS: return "Resource already exists";
case MA_TOO_MANY_OPEN_FILES: return "Too many open files";
case MA_INVALID_FILE: return "Invalid file";
case MA_TOO_BIG: return "Too large";
case MA_PATH_TOO_LONG: return "Path too long";
case MA_NAME_TOO_LONG: return "Name too long";
case MA_NOT_DIRECTORY: return "Not a directory";
case MA_IS_DIRECTORY: return "Is a directory";
case MA_DIRECTORY_NOT_EMPTY: return "Directory not empty";
case MA_END_OF_FILE: return "End of file";
case MA_NO_SPACE: return "No space available";
case MA_BUSY: return "Device or resource busy";
case MA_IO_ERROR: return "Input/output error";
case MA_INTERRUPT: return "Interrupted";
case MA_UNAVAILABLE: return "Resource unavailable";
case MA_ALREADY_IN_USE: return "Resource already in use";
case MA_BAD_ADDRESS: return "Bad address";
case MA_BAD_SEEK: return "Illegal seek";
case MA_BAD_PIPE: return "Broken pipe";
case MA_DEADLOCK: return "Deadlock";
case MA_TOO_MANY_LINKS: return "Too many links";
case MA_NOT_IMPLEMENTED: return "Not implemented";
case MA_NO_MESSAGE: return "No message of desired type";
case MA_BAD_MESSAGE: return "Invalid message";
case MA_NO_DATA_AVAILABLE: return "No data available";
case MA_INVALID_DATA: return "Invalid data";
case MA_TIMEOUT: return "Timeout";
case MA_NO_NETWORK: return "Network unavailable";
case MA_NOT_UNIQUE: return "Not unique";
case MA_NOT_SOCKET: return "Socket operation on non-socket";
case MA_NO_ADDRESS: return "Destination address required";
case MA_BAD_PROTOCOL: return "Protocol wrong type for socket";
case MA_PROTOCOL_UNAVAILABLE: return "Protocol not available";
case MA_PROTOCOL_NOT_SUPPORTED: return "Protocol not supported";
case MA_PROTOCOL_FAMILY_NOT_SUPPORTED: return "Protocol family not supported";
case MA_ADDRESS_FAMILY_NOT_SUPPORTED: return "Address family not supported";
case MA_SOCKET_NOT_SUPPORTED: return "Socket type not supported";
case MA_CONNECTION_RESET: return "Connection reset";
case MA_ALREADY_CONNECTED: return "Already connected";
case MA_NOT_CONNECTED: return "Not connected";
case MA_CONNECTION_REFUSED: return "Connection refused";
case MA_NO_HOST: return "No host";
case MA_IN_PROGRESS: return "Operation in progress";
case MA_CANCELLED: return "Operation cancelled";
case MA_MEMORY_ALREADY_MAPPED: return "Memory already mapped";
case MA_AT_END: return "Reached end of collection";
case MA_FORMAT_NOT_SUPPORTED: return "Format not supported";
case MA_DEVICE_TYPE_NOT_SUPPORTED: return "Device type not supported";
case MA_SHARE_MODE_NOT_SUPPORTED: return "Share mode not supported";
case MA_NO_BACKEND: return "No backend";
case MA_NO_DEVICE: return "No device";
case MA_API_NOT_FOUND: return "API not found";
case MA_INVALID_DEVICE_CONFIG: return "Invalid device config";
case MA_DEVICE_NOT_INITIALIZED: return "Device not initialized";
case MA_DEVICE_NOT_STARTED: return "Device not started";
case MA_FAILED_TO_INIT_BACKEND: return "Failed to initialize backend";
case MA_FAILED_TO_OPEN_BACKEND_DEVICE: return "Failed to open backend device";
case MA_FAILED_TO_START_BACKEND_DEVICE: return "Failed to start backend device";
case MA_FAILED_TO_STOP_BACKEND_DEVICE: return "Failed to stop backend device";
default: return "Unknown error";
}
}
MA_API void* ma_malloc(size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
return ma__malloc_from_callbacks(sz, pAllocationCallbacks);
} else {
return ma__malloc_default(sz, NULL);
}
}
MA_API void* ma_realloc(void* p, size_t sz, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(p, sz, pAllocationCallbacks->pUserData);
} else {
return NULL; /* This requires a native implementation of realloc(). */
}
} else {
return ma__realloc_default(p, sz, NULL);
}
}
MA_API void ma_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
ma__free_from_callbacks(p, pAllocationCallbacks);
} else {
ma__free_default(p, NULL);
}
}
MA_API void* ma_aligned_malloc(size_t sz, size_t alignment, const ma_allocation_callbacks* pAllocationCallbacks)
{
size_t extraBytes;
void* pUnaligned;
void* pAligned;
if (alignment == 0) {
return 0;
}
extraBytes = alignment-1 + sizeof(void*);
pUnaligned = ma_malloc(sz + extraBytes, pAllocationCallbacks);
if (pUnaligned == NULL) {
return NULL;
}
pAligned = (void*)(((ma_uintptr)pUnaligned + extraBytes) & ~((ma_uintptr)(alignment-1)));
((void**)pAligned)[-1] = pUnaligned;
return pAligned;
}
MA_API void ma_aligned_free(void* p, const ma_allocation_callbacks* pAllocationCallbacks)
{
ma_free(((void**)p)[-1], pAllocationCallbacks);
}
MA_API const char* ma_get_format_name(ma_format format)
{
switch (format)
{
case ma_format_unknown: return "Unknown";
case ma_format_u8: return "8-bit Unsigned Integer";
case ma_format_s16: return "16-bit Signed Integer";
case ma_format_s24: return "24-bit Signed Integer (Tightly Packed)";
case ma_format_s32: return "32-bit Signed Integer";
case ma_format_f32: return "32-bit IEEE Floating Point";
default: return "Invalid";
}
}
MA_API void ma_blend_f32(float* pOut, float* pInA, float* pInB, float factor, ma_uint32 channels)
{
ma_uint32 i;
for (i = 0; i < channels; ++i) {
pOut[i] = ma_mix_f32(pInA[i], pInB[i], factor);
}
}
MA_API ma_uint32 ma_get_bytes_per_sample(ma_format format)
{
ma_uint32 sizes[] = {
0, /* unknown */
1, /* u8 */
2, /* s16 */
3, /* s24 */
4, /* s32 */
4, /* f32 */
};
return sizes[format];
}
MA_API ma_result ma_data_source_read_pcm_frames(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead, ma_bool32 loop)
{
ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
if (pCallbacks == NULL) {
return MA_INVALID_ARGS;
}
if (pCallbacks->onRead == NULL) {
return MA_NOT_IMPLEMENTED;
}
/* A very small optimization for the non looping case. */
if (loop == MA_FALSE) {
return pCallbacks->onRead(pDataSource, pFramesOut, frameCount, pFramesRead);
} else {
ma_format format;
ma_uint32 channels;
if (ma_data_source_get_data_format(pDataSource, &format, &channels) != MA_SUCCESS) {
return pCallbacks->onRead(pDataSource, pFramesOut, frameCount, pFramesRead); /* We don't have a way to retrieve the data format which means we don't know how to offset the output buffer. Just read as much as we can. */
} else {
ma_result result = MA_SUCCESS;
ma_uint64 totalFramesProcessed;
void* pRunningFramesOut = pFramesOut;
totalFramesProcessed = 0;
while (totalFramesProcessed < frameCount) {
ma_uint64 framesProcessed;
ma_uint64 framesRemaining = frameCount - totalFramesProcessed;
result = pCallbacks->onRead(pDataSource, pRunningFramesOut, framesRemaining, &framesProcessed);
totalFramesProcessed += framesProcessed;
/*
If we encounted an error from the read callback, make sure it's propagated to the caller. The caller may need to know whether or not MA_BUSY is returned which is
not necessarily considered an error.
*/
if (result != MA_SUCCESS) {
break;
}
/*
We can determine if we've reached the end by checking the return value of the onRead() callback. If it's less than what we requested it means
we've reached the end. To loop back to the start, all we need to do is seek back to the first frame.
*/
if (framesProcessed < framesRemaining) {
if (ma_data_source_seek_to_pcm_frame(pDataSource, 0) != MA_SUCCESS) {
break;
}
}
if (pRunningFramesOut != NULL) {
pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesProcessed * ma_get_bytes_per_frame(format, channels));
}
}
*pFramesRead = totalFramesProcessed;
return result;
}
}
}
MA_API ma_result ma_data_source_seek_pcm_frames(ma_data_source* pDataSource, ma_uint64 frameCount, ma_uint64* pFramesSeeked, ma_bool32 loop)
{
return ma_data_source_read_pcm_frames(pDataSource, NULL, frameCount, pFramesSeeked, loop);
}
MA_API ma_result ma_data_source_seek_to_pcm_frame(ma_data_source* pDataSource, ma_uint64 frameIndex)
{
ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
if (pCallbacks == NULL || pCallbacks->onSeek == NULL) {
return MA_INVALID_ARGS;
}
return pCallbacks->onSeek(pDataSource, frameIndex);
}
MA_API ma_result ma_data_source_map(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount)
{
ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
if (pCallbacks == NULL || pCallbacks->onMap == NULL) {
return MA_INVALID_ARGS;
}
return pCallbacks->onMap(pDataSource, ppFramesOut, pFrameCount);
}
MA_API ma_result ma_data_source_unmap(ma_data_source* pDataSource, ma_uint64 frameCount)
{
ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
if (pCallbacks == NULL || pCallbacks->onUnmap == NULL) {
return MA_INVALID_ARGS;
}
return pCallbacks->onUnmap(pDataSource, frameCount);
}
MA_API ma_result ma_data_source_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
{
ma_result result;
ma_format format;
ma_uint32 channels;
ma_data_source_callbacks* pCallbacks = (ma_data_source_callbacks*)pDataSource;
if (pCallbacks == NULL || pCallbacks->onGetDataFormat == NULL) {
return MA_INVALID_ARGS;
}
result = pCallbacks->onGetDataFormat(pDataSource, &format, &channels);
if (result != MA_SUCCESS) {
return result;
}
if (pFormat != NULL) {
*pFormat = format;
}
if (pChannels != NULL) {
*pChannels = channels;
}
return MA_SUCCESS;
}
MA_API ma_audio_buffer_config ma_audio_buffer_config_init(ma_format format, ma_uint32 channels, ma_uint64 sizeInFrames, const void* pData, const ma_allocation_callbacks* pAllocationCallbacks)
{
ma_audio_buffer_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sizeInFrames = sizeInFrames;
config.pData = pData;
ma_allocation_callbacks_init_copy(&config.allocationCallbacks, pAllocationCallbacks);
return config;
}
static ma_result ma_audio_buffer__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead)
{
ma_uint64 framesRead = ma_audio_buffer_read_pcm_frames((ma_audio_buffer*)pDataSource, pFramesOut, frameCount, MA_FALSE);
if (pFramesRead != NULL) {
*pFramesRead = framesRead;
}
if (framesRead < frameCount) {
return MA_AT_END;
}
return MA_SUCCESS;
}
static ma_result ma_audio_buffer__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex)
{
return ma_audio_buffer_seek_to_pcm_frame((ma_audio_buffer*)pDataSource, frameIndex);
}
static ma_result ma_audio_buffer__data_source_on_map(ma_data_source* pDataSource, void** ppFramesOut, ma_uint64* pFrameCount)
{
return ma_audio_buffer_map((ma_audio_buffer*)pDataSource, ppFramesOut, pFrameCount);
}
static ma_result ma_audio_buffer__data_source_on_unmap(ma_data_source* pDataSource, ma_uint64 frameCount)
{
return ma_audio_buffer_unmap((ma_audio_buffer*)pDataSource, frameCount);
}
static ma_result ma_audio_buffer__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
{
ma_audio_buffer* pAudioBuffer = (ma_audio_buffer*)pDataSource;
*pFormat = pAudioBuffer->format;
*pChannels = pAudioBuffer->channels;
return MA_SUCCESS;
}
static ma_result ma_audio_buffer_init_ex(const ma_audio_buffer_config* pConfig, ma_bool32 doCopy, ma_audio_buffer* pAudioBuffer)
{
if (pAudioBuffer == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_MEMORY(pAudioBuffer, sizeof(*pAudioBuffer) - sizeof(pAudioBuffer->_pExtraData)); /* Safety. Don't overwrite the extra data. */
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
if (pConfig->sizeInFrames == 0) {
return MA_INVALID_ARGS; /* Not allowing buffer sizes of 0 frames. */
}
pAudioBuffer->ds.onRead = ma_audio_buffer__data_source_on_read;
pAudioBuffer->ds.onSeek = ma_audio_buffer__data_source_on_seek;
pAudioBuffer->ds.onMap = ma_audio_buffer__data_source_on_map;
pAudioBuffer->ds.onUnmap = ma_audio_buffer__data_source_on_unmap;
pAudioBuffer->ds.onGetDataFormat = ma_audio_buffer__data_source_on_get_data_format;
pAudioBuffer->format = pConfig->format;
pAudioBuffer->channels = pConfig->channels;
pAudioBuffer->cursor = 0;
pAudioBuffer->sizeInFrames = pConfig->sizeInFrames;
pAudioBuffer->pData = NULL; /* Set properly later. */
ma_allocation_callbacks_init_copy(&pAudioBuffer->allocationCallbacks, &pConfig->allocationCallbacks);
if (doCopy) {
ma_uint64 allocationSizeInBytes;
void* pData;
allocationSizeInBytes = pAudioBuffer->sizeInFrames * ma_get_bytes_per_frame(pAudioBuffer->format, pAudioBuffer->channels);
if (allocationSizeInBytes > MA_SIZE_MAX) {
return MA_OUT_OF_MEMORY; /* Too big. */
}
pData = ma__malloc_from_callbacks((size_t)allocationSizeInBytes, &pAudioBuffer->allocationCallbacks); /* Safe cast to size_t. */
if (pData == NULL) {
return MA_OUT_OF_MEMORY;
}
if (pConfig->pData != NULL) {
ma_copy_pcm_frames(pData, pConfig->pData, pAudioBuffer->sizeInFrames, pAudioBuffer->format, pAudioBuffer->channels);
} else {
ma_silence_pcm_frames(pData, pAudioBuffer->sizeInFrames, pAudioBuffer->format, pAudioBuffer->channels);
}
pAudioBuffer->pData = pData;
pAudioBuffer->ownsData = MA_TRUE;
} else {
pAudioBuffer->pData = pConfig->pData;
pAudioBuffer->ownsData = MA_FALSE;
}
return MA_SUCCESS;
}
static void ma_audio_buffer_uninit_ex(ma_audio_buffer* pAudioBuffer, ma_bool32 doFree)
{
if (pAudioBuffer == NULL) {
return;
}
if (pAudioBuffer->ownsData && pAudioBuffer->pData != &pAudioBuffer->_pExtraData[0]) {
ma__free_from_callbacks((void*)pAudioBuffer->pData, &pAudioBuffer->allocationCallbacks); /* Naugty const cast, but OK in this case since we've guarded it with the ownsData check. */
}
if (doFree) {
ma_allocation_callbacks allocationCallbacks = pAudioBuffer->allocationCallbacks;
ma__free_from_callbacks(pAudioBuffer, &allocationCallbacks);
}
}
MA_API ma_result ma_audio_buffer_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer)
{
return ma_audio_buffer_init_ex(pConfig, MA_FALSE, pAudioBuffer);
}
MA_API ma_result ma_audio_buffer_init_copy(const ma_audio_buffer_config* pConfig, ma_audio_buffer* pAudioBuffer)
{
return ma_audio_buffer_init_ex(pConfig, MA_TRUE, pAudioBuffer);
}
MA_API ma_result ma_audio_buffer_alloc_and_init(const ma_audio_buffer_config* pConfig, ma_audio_buffer** ppAudioBuffer)
{
ma_result result;
ma_audio_buffer* pAudioBuffer;
ma_audio_buffer_config innerConfig; /* We'll be making some changes to the config, so need to make a copy. */
ma_uint64 allocationSizeInBytes;
if (ppAudioBuffer == NULL) {
return MA_INVALID_ARGS;
}
*ppAudioBuffer = NULL; /* Safety. */
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
innerConfig = *pConfig;
ma_allocation_callbacks_init_copy(&innerConfig.allocationCallbacks, &pConfig->allocationCallbacks);
allocationSizeInBytes = sizeof(*pAudioBuffer) - sizeof(pAudioBuffer->_pExtraData) + (pConfig->sizeInFrames * ma_get_bytes_per_frame(pConfig->format, pConfig->channels));
if (allocationSizeInBytes > MA_SIZE_MAX) {
return MA_OUT_OF_MEMORY; /* Too big. */
}
pAudioBuffer = (ma_audio_buffer*)ma__malloc_from_callbacks((size_t)allocationSizeInBytes, &innerConfig.allocationCallbacks); /* Safe cast to size_t. */
if (pAudioBuffer == NULL) {
return MA_OUT_OF_MEMORY;
}
if (pConfig->pData != NULL) {
ma_copy_pcm_frames(&pAudioBuffer->_pExtraData[0], pConfig->pData, pConfig->sizeInFrames, pConfig->format, pConfig->channels);
} else {
ma_silence_pcm_frames(&pAudioBuffer->_pExtraData[0], pConfig->sizeInFrames, pConfig->format, pConfig->channels);
}
innerConfig.pData = &pAudioBuffer->_pExtraData[0];
result = ma_audio_buffer_init_ex(&innerConfig, MA_FALSE, pAudioBuffer);
if (result != MA_SUCCESS) {
ma__free_from_callbacks(pAudioBuffer, &innerConfig.allocationCallbacks);
return result;
}
*ppAudioBuffer = pAudioBuffer;
return MA_SUCCESS;
}
MA_API void ma_audio_buffer_uninit(ma_audio_buffer* pAudioBuffer)
{
ma_audio_buffer_uninit_ex(pAudioBuffer, MA_FALSE);
}
MA_API void ma_audio_buffer_uninit_and_free(ma_audio_buffer* pAudioBuffer)
{
ma_audio_buffer_uninit_ex(pAudioBuffer, MA_TRUE);
}
MA_API ma_uint64 ma_audio_buffer_read_pcm_frames(ma_audio_buffer* pAudioBuffer, void* pFramesOut, ma_uint64 frameCount, ma_bool32 loop)
{
ma_uint64 totalFramesRead = 0;
if (pAudioBuffer == NULL) {
return 0;
}
if (frameCount == 0) {
return 0;
}
while (totalFramesRead < frameCount) {
ma_uint64 framesAvailable = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor;
ma_uint64 framesRemaining = frameCount - totalFramesRead;
ma_uint64 framesToRead;
framesToRead = framesRemaining;
if (framesToRead > framesAvailable) {
framesToRead = framesAvailable;
}
if (pFramesOut != NULL) {
ma_copy_pcm_frames(pFramesOut, ma_offset_ptr(pAudioBuffer->pData, pAudioBuffer->cursor * ma_get_bytes_per_frame(pAudioBuffer->format, pAudioBuffer->channels)), frameCount, pAudioBuffer->format, pAudioBuffer->channels);
}
totalFramesRead += framesToRead;
pAudioBuffer->cursor += framesToRead;
if (pAudioBuffer->cursor == pAudioBuffer->sizeInFrames) {
if (loop) {
pAudioBuffer->cursor = 0;
} else {
break; /* We've reached the end and we're not looping. Done. */
}
}
MA_ASSERT(pAudioBuffer->cursor < pAudioBuffer->sizeInFrames);
}
return frameCount;
}
MA_API ma_result ma_audio_buffer_seek_to_pcm_frame(ma_audio_buffer* pAudioBuffer, ma_uint64 frameIndex)
{
if (pAudioBuffer == NULL) {
return MA_INVALID_ARGS;
}
if (frameIndex > pAudioBuffer->sizeInFrames) {
return MA_INVALID_ARGS;
}
pAudioBuffer->cursor = (size_t)frameIndex;
return MA_SUCCESS;
}
MA_API ma_result ma_audio_buffer_map(ma_audio_buffer* pAudioBuffer, void** ppFramesOut, ma_uint64* pFrameCount)
{
ma_uint64 framesAvailable;
ma_uint64 frameCount = 0;
if (ppFramesOut != NULL) {
*ppFramesOut = NULL; /* Safety. */
}
if (pFrameCount != NULL) {
frameCount = *pFrameCount;
*pFrameCount = 0; /* Safety. */
}
if (pAudioBuffer == NULL || ppFramesOut == NULL || pFrameCount == NULL) {
return MA_INVALID_ARGS;
}
framesAvailable = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor;
if (frameCount > framesAvailable) {
frameCount = framesAvailable;
}
*ppFramesOut = ma_offset_ptr(pAudioBuffer->pData, pAudioBuffer->cursor * ma_get_bytes_per_frame(pAudioBuffer->format, pAudioBuffer->channels));
*pFrameCount = frameCount;
return MA_SUCCESS;
}
MA_API ma_result ma_audio_buffer_unmap(ma_audio_buffer* pAudioBuffer, ma_uint64 frameCount)
{
ma_uint64 framesAvailable;
if (pAudioBuffer == NULL) {
return MA_INVALID_ARGS;
}
framesAvailable = pAudioBuffer->sizeInFrames - pAudioBuffer->cursor;
if (frameCount > framesAvailable) {
return MA_INVALID_ARGS; /* The frame count was too big. This should never happen in an unmapping. Need to make sure the caller is aware of this. */
}
pAudioBuffer->cursor += frameCount;
if (pAudioBuffer->cursor == pAudioBuffer->sizeInFrames) {
return MA_AT_END; /* Successful. Need to tell the caller that the end has been reached so that it can loop if desired. */
} else {
return MA_SUCCESS;
}
}
MA_API ma_result ma_audio_buffer_at_end(ma_audio_buffer* pAudioBuffer)
{
if (pAudioBuffer == NULL) {
return MA_FALSE;
}
return pAudioBuffer->cursor == pAudioBuffer->sizeInFrames;
}
/**************************************************************************************************************************************************************
VFS
**************************************************************************************************************************************************************/
MA_API ma_result ma_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
{
ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
if (pFile == NULL) {
return MA_INVALID_ARGS;
}
*pFile = NULL;
if (pVFS == NULL || pFilePath == NULL || openMode == 0) {
return MA_INVALID_ARGS;
}
if (pCallbacks->onOpen == NULL) {
return MA_NOT_IMPLEMENTED;
}
return pCallbacks->onOpen(pVFS, pFilePath, openMode, pFile);
}
MA_API ma_result ma_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
{
ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
if (pFile == NULL) {
return MA_INVALID_ARGS;
}
*pFile = NULL;
if (pVFS == NULL || pFilePath == NULL || openMode == 0) {
return MA_INVALID_ARGS;
}
if (pCallbacks->onOpenW == NULL) {
return MA_NOT_IMPLEMENTED;
}
return pCallbacks->onOpenW(pVFS, pFilePath, openMode, pFile);
}
MA_API ma_result ma_vfs_close(ma_vfs* pVFS, ma_vfs_file file)
{
ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
if (pVFS == NULL || file == NULL) {
return MA_INVALID_ARGS;
}
if (pCallbacks->onClose == NULL) {
return MA_NOT_IMPLEMENTED;
}
return pCallbacks->onClose(pVFS, file);
}
MA_API ma_result ma_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead)
{
ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
if (pBytesRead != NULL) {
*pBytesRead = 0;
}
if (pVFS == NULL || file == NULL || pDst == NULL) {
return MA_INVALID_ARGS;
}
if (pCallbacks->onRead == NULL) {
return MA_NOT_IMPLEMENTED;
}
return pCallbacks->onRead(pVFS, file, pDst, sizeInBytes, pBytesRead);
}
MA_API ma_result ma_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten)
{
ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
if (pBytesWritten == NULL) {
*pBytesWritten = 0;
}
if (pVFS == NULL || file == NULL || pSrc == NULL) {
return MA_INVALID_ARGS;
}
if (pCallbacks->onWrite == NULL) {
return MA_NOT_IMPLEMENTED;
}
return pCallbacks->onWrite(pVFS, file, pSrc, sizeInBytes, pBytesWritten);
}
MA_API ma_result ma_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin)
{
ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
if (pVFS == NULL || file == NULL) {
return MA_INVALID_ARGS;
}
if (pCallbacks->onSeek == NULL) {
return MA_NOT_IMPLEMENTED;
}
return pCallbacks->onSeek(pVFS, file, offset, origin);
}
MA_API ma_result ma_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor)
{
ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
if (pCursor == NULL) {
return MA_INVALID_ARGS;
}
*pCursor = 0;
if (pVFS == NULL || file == NULL) {
return MA_INVALID_ARGS;
}
if (pCallbacks->onTell == NULL) {
return MA_NOT_IMPLEMENTED;
}
return pCallbacks->onTell(pVFS, file, pCursor);
}
MA_API ma_result ma_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo)
{
ma_vfs_callbacks* pCallbacks = (ma_vfs_callbacks*)pVFS;
if (pInfo == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pInfo);
if (pVFS == NULL || file == NULL) {
return MA_INVALID_ARGS;
}
if (pCallbacks->onInfo == NULL) {
return MA_NOT_IMPLEMENTED;
}
return pCallbacks->onInfo(pVFS, file, pInfo);
}
static ma_result ma_vfs_open_and_read_file_ex(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks, ma_uint32 allocationType)
{
ma_result result;
ma_vfs_file file;
ma_file_info info;
void* pData;
size_t bytesRead;
(void)allocationType;
if (ppData != NULL) {
*ppData = NULL;
}
if (pSize != NULL) {
*pSize = 0;
}
if (ppData == NULL) {
return MA_INVALID_ARGS;
}
result = ma_vfs_open(pVFS, pFilePath, MA_OPEN_MODE_READ, &file);
if (result != MA_SUCCESS) {
return result;
}
result = ma_vfs_info(pVFS, file, &info);
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, file);
return result;
}
if (info.sizeInBytes > MA_SIZE_MAX) {
ma_vfs_close(pVFS, file);
return MA_TOO_BIG;
}
pData = ma__malloc_from_callbacks((size_t)info.sizeInBytes, pAllocationCallbacks); /* Safe cast. */
if (pData == NULL) {
ma_vfs_close(pVFS, file);
return result;
}
result = ma_vfs_read(pVFS, file, pData, (size_t)info.sizeInBytes, &bytesRead); /* Safe cast. */
ma_vfs_close(pVFS, file);
if (result != MA_SUCCESS) {
ma__free_from_callbacks(pData, pAllocationCallbacks);
return result;
}
if (pSize != NULL) {
*pSize = bytesRead;
}
MA_ASSERT(ppData != NULL);
*ppData = pData;
return MA_SUCCESS;
}
ma_result ma_vfs_open_and_read_file(ma_vfs* pVFS, const char* pFilePath, void** ppData, size_t* pSize, const ma_allocation_callbacks* pAllocationCallbacks)
{
return ma_vfs_open_and_read_file_ex(pVFS, pFilePath, ppData, pSize, pAllocationCallbacks, 0 /*MA_ALLOCATION_TYPE_GENERAL*/);
}
#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
static void ma_default_vfs__get_open_settings_win32(ma_uint32 openMode, DWORD* pDesiredAccess, DWORD* pShareMode, DWORD* pCreationDisposition)
{
*pDesiredAccess = 0;
if ((openMode & MA_OPEN_MODE_READ) != 0) {
*pDesiredAccess |= GENERIC_READ;
}
if ((openMode & MA_OPEN_MODE_WRITE) != 0) {
*pDesiredAccess |= GENERIC_WRITE;
}
*pShareMode = 0;
if ((openMode & MA_OPEN_MODE_READ) != 0) {
*pShareMode |= FILE_SHARE_READ;
}
if ((openMode & MA_OPEN_MODE_WRITE) != 0) {
*pCreationDisposition = CREATE_ALWAYS; /* Opening in write mode. Truncate. */
} else {
*pCreationDisposition = OPEN_EXISTING; /* Opening in read mode. File must exist. */
}
}
static ma_result ma_default_vfs_open__win32(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
{
HANDLE hFile;
DWORD dwDesiredAccess;
DWORD dwShareMode;
DWORD dwCreationDisposition;
(void)pVFS;
ma_default_vfs__get_open_settings_win32(openMode, &dwDesiredAccess, &dwShareMode, &dwCreationDisposition);
hFile = CreateFileA(pFilePath, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile == INVALID_HANDLE_VALUE) {
return ma_result_from_GetLastError(GetLastError());
}
*pFile = hFile;
return MA_SUCCESS;
}
static ma_result ma_default_vfs_open_w__win32(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
{
HANDLE hFile;
DWORD dwDesiredAccess;
DWORD dwShareMode;
DWORD dwCreationDisposition;
(void)pVFS;
ma_default_vfs__get_open_settings_win32(openMode, &dwDesiredAccess, &dwShareMode, &dwCreationDisposition);
hFile = CreateFileW(pFilePath, dwDesiredAccess, dwShareMode, NULL, dwCreationDisposition, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile == INVALID_HANDLE_VALUE) {
return ma_result_from_GetLastError(GetLastError());
}
*pFile = hFile;
return MA_SUCCESS;
}
static ma_result ma_default_vfs_close__win32(ma_vfs* pVFS, ma_vfs_file file)
{
(void)pVFS;
if (CloseHandle((HANDLE)file) == 0) {
return ma_result_from_GetLastError(GetLastError());
}
return MA_SUCCESS;
}
static ma_result ma_default_vfs_read__win32(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead)
{
ma_result result = MA_SUCCESS;
size_t totalBytesRead;
(void)pVFS;
totalBytesRead = 0;
while (totalBytesRead < sizeInBytes) {
size_t bytesRemaining;
DWORD bytesToRead;
DWORD bytesRead;
BOOL readResult;
bytesRemaining = sizeInBytes - totalBytesRead;
if (bytesRemaining > 0xFFFFFFFF) {
bytesToRead = 0xFFFFFFFF;
} else {
bytesToRead = (DWORD)bytesRemaining;
}
readResult = ReadFile((HANDLE)file, ma_offset_ptr(pDst, totalBytesRead), bytesToRead, &bytesRead, NULL);
totalBytesRead += bytesRead;
if (bytesRead < bytesToRead || (readResult == 1 && bytesRead == 0)) {
break; /* EOF */
}
if (readResult == 0) {
result = ma_result_from_GetLastError(GetLastError());
break;
}
}
if (pBytesRead != NULL) {
*pBytesRead = totalBytesRead;
}
return result;
}
static ma_result ma_default_vfs_write__win32(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten)
{
ma_result result = MA_SUCCESS;
size_t totalBytesWritten;
(void)pVFS;
totalBytesWritten = 0;
while (totalBytesWritten < sizeInBytes) {
size_t bytesRemaining;
DWORD bytesToWrite;
DWORD bytesWritten;
BOOL writeResult;
bytesRemaining = sizeInBytes - totalBytesWritten;
if (bytesRemaining > 0xFFFFFFFF) {
bytesToWrite = 0xFFFFFFFF;
} else {
bytesToWrite = (DWORD)bytesRemaining;
}
writeResult = WriteFile((HANDLE)file, ma_offset_ptr(pSrc, totalBytesWritten), bytesToWrite, &bytesWritten, NULL);
totalBytesWritten += bytesWritten;
if (writeResult == 0) {
result = ma_result_from_GetLastError(GetLastError());
break;
}
}
if (pBytesWritten == NULL) {
*pBytesWritten = totalBytesWritten;
}
return result;
}
#if !defined(WINVER) || WINVER <= 0x0502
WINBASEAPI BOOL WINAPI SetFilePointerEx(HANDLE hFile, LARGE_INTEGER liDistanceToMove, LARGE_INTEGER* pNewFilePointer, DWORD dwMoveMethod);
#endif
static ma_result ma_default_vfs_seek__win32(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin)
{
LARGE_INTEGER liDistanceToMove;
DWORD dwMoveMethod;
BOOL result;
(void)pVFS;
liDistanceToMove.QuadPart = offset;
/* */ if (origin == ma_seek_origin_current) {
dwMoveMethod = FILE_CURRENT;
} else if (origin == ma_seek_origin_end) {
dwMoveMethod = FILE_END;
} else {
dwMoveMethod = FILE_BEGIN;
}
result = SetFilePointerEx((HANDLE)file, liDistanceToMove, NULL, dwMoveMethod);
if (result == 0) {
return ma_result_from_GetLastError(GetLastError());
}
return MA_SUCCESS;
}
static ma_result ma_default_vfs_tell__win32(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor)
{
LARGE_INTEGER liZero;
LARGE_INTEGER liTell;
BOOL result;
(void)pVFS;
liZero.QuadPart = 0;
result = SetFilePointerEx((HANDLE)file, liZero, &liTell, FILE_CURRENT);
if (result == 0) {
return ma_result_from_GetLastError(GetLastError());
}
if (pCursor != NULL) {
*pCursor = liTell.QuadPart;
}
return MA_SUCCESS;
}
static ma_result ma_default_vfs_info__win32(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo)
{
BY_HANDLE_FILE_INFORMATION fi;
BOOL result;
(void)pVFS;
result = GetFileInformationByHandle((HANDLE)file, &fi);
if (result == 0) {
return ma_result_from_GetLastError(GetLastError());
}
pInfo->sizeInBytes = ((ma_uint64)fi.nFileSizeHigh << 32) | ((ma_uint64)fi.nFileSizeLow);
return MA_SUCCESS;
}
#else
static ma_result ma_default_vfs_open__stdio(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
{
ma_result result;
FILE* pFileStd;
const char* pOpenModeStr;
MA_ASSERT(pFilePath != NULL);
MA_ASSERT(openMode != 0);
MA_ASSERT(pFile != NULL);
(void)pVFS;
if ((openMode & MA_OPEN_MODE_READ) != 0) {
if ((openMode & MA_OPEN_MODE_WRITE) != 0) {
pOpenModeStr = "r+";
} else {
pOpenModeStr = "rb";
}
} else {
pOpenModeStr = "wb";
}
result = ma_fopen(&pFileStd, pFilePath, pOpenModeStr);
if (result != MA_SUCCESS) {
return result;
}
*pFile = pFileStd;
return MA_SUCCESS;
}
static ma_result ma_default_vfs_open_w__stdio(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
{
ma_result result;
FILE* pFileStd;
const wchar_t* pOpenModeStr;
MA_ASSERT(pFilePath != NULL);
MA_ASSERT(openMode != 0);
MA_ASSERT(pFile != NULL);
(void)pVFS;
if ((openMode & MA_OPEN_MODE_READ) != 0) {
if ((openMode & MA_OPEN_MODE_WRITE) != 0) {
pOpenModeStr = L"r+";
} else {
pOpenModeStr = L"rb";
}
} else {
pOpenModeStr = L"wb";
}
result = ma_wfopen(&pFileStd, pFilePath, pOpenModeStr, (pVFS != NULL) ? &((ma_default_vfs*)pVFS)->allocationCallbacks : NULL);
if (result != MA_SUCCESS) {
return result;
}
*pFile = pFileStd;
return MA_SUCCESS;
}
static ma_result ma_default_vfs_close__stdio(ma_vfs* pVFS, ma_vfs_file file)
{
MA_ASSERT(file != NULL);
(void)pVFS;
fclose((FILE*)file);
return MA_SUCCESS;
}
static ma_result ma_default_vfs_read__stdio(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead)
{
size_t result;
MA_ASSERT(file != NULL);
MA_ASSERT(pDst != NULL);
(void)pVFS;
result = fread(pDst, 1, sizeInBytes, (FILE*)file);
if (pBytesRead != NULL) {
*pBytesRead = result;
}
if (result != sizeInBytes) {
if (feof((FILE*)file)) {
return MA_END_OF_FILE;
} else {
return ma_result_from_errno(ferror((FILE*)file));
}
}
return MA_SUCCESS;
}
static ma_result ma_default_vfs_write__stdio(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten)
{
size_t result;
MA_ASSERT(file != NULL);
MA_ASSERT(pSrc != NULL);
(void)pVFS;
result = fwrite(pSrc, 1, sizeInBytes, (FILE*)file);
if (pBytesWritten != NULL) {
*pBytesWritten = result;
}
if (result != sizeInBytes) {
return ma_result_from_errno(ferror((FILE*)file));
}
return MA_SUCCESS;
}
static ma_result ma_default_vfs_seek__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin)
{
int result;
MA_ASSERT(file != NULL);
(void)pVFS;
#if defined(_WIN32)
#if defined(_MSC_VER) && _MSC_VER > 1200
result = _fseeki64((FILE*)file, offset, origin);
#else
/* No _fseeki64() so restrict to 31 bits. */
if (origin > 0x7FFFFFFF) {
return MA_OUT_OF_RANGE;
}
result = fseek((FILE*)file, (int)offset, origin);
#endif
#else
result = fseek((FILE*)file, (long int)offset, origin);
#endif
if (result != 0) {
return MA_ERROR;
}
return MA_SUCCESS;
}
static ma_result ma_default_vfs_tell__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor)
{
ma_int64 result;
MA_ASSERT(file != NULL);
MA_ASSERT(pCursor != NULL);
(void)pVFS;
#if defined(_WIN32)
#if defined(_MSC_VER) && _MSC_VER > 1200
result = _ftelli64((FILE*)file);
#else
result = ftell((FILE*)file);
#endif
#else
result = ftell((FILE*)file);
#endif
*pCursor = result;
return MA_SUCCESS;
}
#if !((defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 1) || defined(_XOPEN_SOURCE) || defined(_POSIX_SOURCE))
int fileno(FILE *stream);
#endif
static ma_result ma_default_vfs_info__stdio(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo)
{
int fd;
struct stat info;
MA_ASSERT(file != NULL);
MA_ASSERT(pInfo != NULL);
(void)pVFS;
#if defined(_MSC_VER)
fd = _fileno((FILE*)file);
#else
fd = fileno((FILE*)file);
#endif
if (fstat(fd, &info) != 0) {
return ma_result_from_errno(errno);
}
pInfo->sizeInBytes = info.st_size;
return MA_SUCCESS;
}
#endif
static ma_result ma_default_vfs_open(ma_vfs* pVFS, const char* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
{
if (pFile == NULL) {
return MA_INVALID_ARGS;
}
*pFile = NULL;
if (pFilePath == NULL || openMode == 0) {
return MA_INVALID_ARGS;
}
#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
return ma_default_vfs_open__win32(pVFS, pFilePath, openMode, pFile);
#else
return ma_default_vfs_open__stdio(pVFS, pFilePath, openMode, pFile);
#endif
}
static ma_result ma_default_vfs_open_w(ma_vfs* pVFS, const wchar_t* pFilePath, ma_uint32 openMode, ma_vfs_file* pFile)
{
if (pFile == NULL) {
return MA_INVALID_ARGS;
}
*pFile = NULL;
if (pFilePath == NULL || openMode == 0) {
return MA_INVALID_ARGS;
}
#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
return ma_default_vfs_open_w__win32(pVFS, pFilePath, openMode, pFile);
#else
return ma_default_vfs_open_w__stdio(pVFS, pFilePath, openMode, pFile);
#endif
}
static ma_result ma_default_vfs_close(ma_vfs* pVFS, ma_vfs_file file)
{
if (file == NULL) {
return MA_INVALID_ARGS;
}
#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
return ma_default_vfs_close__win32(pVFS, file);
#else
return ma_default_vfs_close__stdio(pVFS, file);
#endif
}
static ma_result ma_default_vfs_read(ma_vfs* pVFS, ma_vfs_file file, void* pDst, size_t sizeInBytes, size_t* pBytesRead)
{
if (file == NULL || pDst == NULL) {
return MA_INVALID_ARGS;
}
#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
return ma_default_vfs_read__win32(pVFS, file, pDst, sizeInBytes, pBytesRead);
#else
return ma_default_vfs_read__stdio(pVFS, file, pDst, sizeInBytes, pBytesRead);
#endif
}
static ma_result ma_default_vfs_write(ma_vfs* pVFS, ma_vfs_file file, const void* pSrc, size_t sizeInBytes, size_t* pBytesWritten)
{
if (file == NULL || pSrc == NULL) {
return MA_INVALID_ARGS;
}
#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
return ma_default_vfs_write__win32(pVFS, file, pSrc, sizeInBytes, pBytesWritten);
#else
return ma_default_vfs_write__stdio(pVFS, file, pSrc, sizeInBytes, pBytesWritten);
#endif
}
static ma_result ma_default_vfs_seek(ma_vfs* pVFS, ma_vfs_file file, ma_int64 offset, ma_seek_origin origin)
{
if (file == NULL) {
return MA_INVALID_ARGS;
}
#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
return ma_default_vfs_seek__win32(pVFS, file, offset, origin);
#else
return ma_default_vfs_seek__stdio(pVFS, file, offset, origin);
#endif
}
static ma_result ma_default_vfs_tell(ma_vfs* pVFS, ma_vfs_file file, ma_int64* pCursor)
{
if (pCursor == NULL) {
return MA_INVALID_ARGS;
}
*pCursor = 0;
if (file == NULL) {
return MA_INVALID_ARGS;
}
#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
return ma_default_vfs_tell__win32(pVFS, file, pCursor);
#else
return ma_default_vfs_tell__stdio(pVFS, file, pCursor);
#endif
}
static ma_result ma_default_vfs_info(ma_vfs* pVFS, ma_vfs_file file, ma_file_info* pInfo)
{
if (pInfo == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pInfo);
if (file == NULL) {
return MA_INVALID_ARGS;
}
#if defined(MA_WIN32) && defined(MA_WIN32_DESKTOP)
return ma_default_vfs_info__win32(pVFS, file, pInfo);
#else
return ma_default_vfs_info__stdio(pVFS, file, pInfo);
#endif
}
MA_API ma_result ma_default_vfs_init(ma_default_vfs* pVFS, const ma_allocation_callbacks* pAllocationCallbacks)
{
if (pVFS == NULL) {
return MA_INVALID_ARGS;
}
pVFS->cb.onOpen = ma_default_vfs_open;
pVFS->cb.onOpenW = ma_default_vfs_open_w;
pVFS->cb.onClose = ma_default_vfs_close;
pVFS->cb.onRead = ma_default_vfs_read;
pVFS->cb.onWrite = ma_default_vfs_write;
pVFS->cb.onSeek = ma_default_vfs_seek;
pVFS->cb.onTell = ma_default_vfs_tell;
pVFS->cb.onInfo = ma_default_vfs_info;
ma_allocation_callbacks_init_copy(&pVFS->allocationCallbacks, pAllocationCallbacks);
return MA_SUCCESS;
}
/**************************************************************************************************************************************************************
Decoding
**************************************************************************************************************************************************************/
#ifndef MA_NO_DECODING
#ifndef MA_NO_WAV
/* dr_wav_h begin */
#ifndef dr_wav_h
#define dr_wav_h
#ifdef __cplusplus
extern "C" {
#endif
#define DRWAV_STRINGIFY(x) #x
#define DRWAV_XSTRINGIFY(x) DRWAV_STRINGIFY(x)
#define DRWAV_VERSION_MAJOR 0
#define DRWAV_VERSION_MINOR 12
#define DRWAV_VERSION_REVISION 6
#define DRWAV_VERSION_STRING DRWAV_XSTRINGIFY(DRWAV_VERSION_MAJOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_MINOR) "." DRWAV_XSTRINGIFY(DRWAV_VERSION_REVISION)
#include <stddef.h>
#ifdef _MSC_VER
#if defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
#pragma GCC diagnostic ignored "-Wlong-long"
#pragma GCC diagnostic ignored "-Wc++11-long-long"
#endif
typedef signed __int8 drwav_int8;
typedef unsigned __int8 drwav_uint8;
typedef signed __int16 drwav_int16;
typedef unsigned __int16 drwav_uint16;
typedef signed __int32 drwav_int32;
typedef unsigned __int32 drwav_uint32;
typedef signed __int64 drwav_int64;
typedef unsigned __int64 drwav_uint64;
#if defined(__clang__)
#pragma GCC diagnostic pop
#endif
#else
#include <stdint.h>
typedef int8_t drwav_int8;
typedef uint8_t drwav_uint8;
typedef int16_t drwav_int16;
typedef uint16_t drwav_uint16;
typedef int32_t drwav_int32;
typedef uint32_t drwav_uint32;
typedef int64_t drwav_int64;
typedef uint64_t drwav_uint64;
#endif
typedef drwav_uint8 drwav_bool8;
typedef drwav_uint32 drwav_bool32;
#define DRWAV_TRUE 1
#define DRWAV_FALSE 0
#if !defined(DRWAV_API)
#if defined(DRWAV_DLL)
#if defined(_WIN32)
#define DRWAV_DLL_IMPORT __declspec(dllimport)
#define DRWAV_DLL_EXPORT __declspec(dllexport)
#define DRWAV_DLL_PRIVATE static
#else
#if defined(__GNUC__) && __GNUC__ >= 4
#define DRWAV_DLL_IMPORT __attribute__((visibility("default")))
#define DRWAV_DLL_EXPORT __attribute__((visibility("default")))
#define DRWAV_DLL_PRIVATE __attribute__((visibility("hidden")))
#else
#define DRWAV_DLL_IMPORT
#define DRWAV_DLL_EXPORT
#define DRWAV_DLL_PRIVATE static
#endif
#endif
#if defined(DR_WAV_IMPLEMENTATION) || defined(DRWAV_IMPLEMENTATION)
#define DRWAV_API DRWAV_DLL_EXPORT
#else
#define DRWAV_API DRWAV_DLL_IMPORT
#endif
#define DRWAV_PRIVATE DRWAV_DLL_PRIVATE
#else
#define DRWAV_API extern
#define DRWAV_PRIVATE static
#endif
#endif
typedef drwav_int32 drwav_result;
#define DRWAV_SUCCESS 0
#define DRWAV_ERROR -1
#define DRWAV_INVALID_ARGS -2
#define DRWAV_INVALID_OPERATION -3
#define DRWAV_OUT_OF_MEMORY -4
#define DRWAV_OUT_OF_RANGE -5
#define DRWAV_ACCESS_DENIED -6
#define DRWAV_DOES_NOT_EXIST -7
#define DRWAV_ALREADY_EXISTS -8
#define DRWAV_TOO_MANY_OPEN_FILES -9
#define DRWAV_INVALID_FILE -10
#define DRWAV_TOO_BIG -11
#define DRWAV_PATH_TOO_LONG -12
#define DRWAV_NAME_TOO_LONG -13
#define DRWAV_NOT_DIRECTORY -14
#define DRWAV_IS_DIRECTORY -15
#define DRWAV_DIRECTORY_NOT_EMPTY -16
#define DRWAV_END_OF_FILE -17
#define DRWAV_NO_SPACE -18
#define DRWAV_BUSY -19
#define DRWAV_IO_ERROR -20
#define DRWAV_INTERRUPT -21
#define DRWAV_UNAVAILABLE -22
#define DRWAV_ALREADY_IN_USE -23
#define DRWAV_BAD_ADDRESS -24
#define DRWAV_BAD_SEEK -25
#define DRWAV_BAD_PIPE -26
#define DRWAV_DEADLOCK -27
#define DRWAV_TOO_MANY_LINKS -28
#define DRWAV_NOT_IMPLEMENTED -29
#define DRWAV_NO_MESSAGE -30
#define DRWAV_BAD_MESSAGE -31
#define DRWAV_NO_DATA_AVAILABLE -32
#define DRWAV_INVALID_DATA -33
#define DRWAV_TIMEOUT -34
#define DRWAV_NO_NETWORK -35
#define DRWAV_NOT_UNIQUE -36
#define DRWAV_NOT_SOCKET -37
#define DRWAV_NO_ADDRESS -38
#define DRWAV_BAD_PROTOCOL -39
#define DRWAV_PROTOCOL_UNAVAILABLE -40
#define DRWAV_PROTOCOL_NOT_SUPPORTED -41
#define DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED -42
#define DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED -43
#define DRWAV_SOCKET_NOT_SUPPORTED -44
#define DRWAV_CONNECTION_RESET -45
#define DRWAV_ALREADY_CONNECTED -46
#define DRWAV_NOT_CONNECTED -47
#define DRWAV_CONNECTION_REFUSED -48
#define DRWAV_NO_HOST -49
#define DRWAV_IN_PROGRESS -50
#define DRWAV_CANCELLED -51
#define DRWAV_MEMORY_ALREADY_MAPPED -52
#define DRWAV_AT_END -53
#define DR_WAVE_FORMAT_PCM 0x1
#define DR_WAVE_FORMAT_ADPCM 0x2
#define DR_WAVE_FORMAT_IEEE_FLOAT 0x3
#define DR_WAVE_FORMAT_ALAW 0x6
#define DR_WAVE_FORMAT_MULAW 0x7
#define DR_WAVE_FORMAT_DVI_ADPCM 0x11
#define DR_WAVE_FORMAT_EXTENSIBLE 0xFFFE
#ifndef DRWAV_MAX_SMPL_LOOPS
#define DRWAV_MAX_SMPL_LOOPS 1
#endif
#define DRWAV_SEQUENTIAL 0x00000001
DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision);
DRWAV_API const char* drwav_version_string();
typedef enum
{
drwav_seek_origin_start,
drwav_seek_origin_current
} drwav_seek_origin;
typedef enum
{
drwav_container_riff,
drwav_container_w64
} drwav_container;
typedef struct
{
union
{
drwav_uint8 fourcc[4];
drwav_uint8 guid[16];
} id;
drwav_uint64 sizeInBytes;
unsigned int paddingSize;
} drwav_chunk_header;
typedef struct
{
drwav_uint16 formatTag;
drwav_uint16 channels;
drwav_uint32 sampleRate;
drwav_uint32 avgBytesPerSec;
drwav_uint16 blockAlign;
drwav_uint16 bitsPerSample;
drwav_uint16 extendedSize;
drwav_uint16 validBitsPerSample;
drwav_uint32 channelMask;
drwav_uint8 subFormat[16];
} drwav_fmt;
DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT);
typedef size_t (* drwav_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
typedef size_t (* drwav_write_proc)(void* pUserData, const void* pData, size_t bytesToWrite);
typedef drwav_bool32 (* drwav_seek_proc)(void* pUserData, int offset, drwav_seek_origin origin);
typedef drwav_uint64 (* drwav_chunk_proc)(void* pChunkUserData, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_chunk_header* pChunkHeader, drwav_container container, const drwav_fmt* pFMT);
typedef struct
{
void* pUserData;
void* (* onMalloc)(size_t sz, void* pUserData);
void* (* onRealloc)(void* p, size_t sz, void* pUserData);
void (* onFree)(void* p, void* pUserData);
} drwav_allocation_callbacks;
typedef struct
{
const drwav_uint8* data;
size_t dataSize;
size_t currentReadPos;
} drwav__memory_stream;
typedef struct
{
void** ppData;
size_t* pDataSize;
size_t dataSize;
size_t dataCapacity;
size_t currentWritePos;
} drwav__memory_stream_write;
typedef struct
{
drwav_container container;
drwav_uint32 format;
drwav_uint32 channels;
drwav_uint32 sampleRate;
drwav_uint32 bitsPerSample;
} drwav_data_format;
typedef struct
{
drwav_uint32 cuePointId;
drwav_uint32 type;
drwav_uint32 start;
drwav_uint32 end;
drwav_uint32 fraction;
drwav_uint32 playCount;
} drwav_smpl_loop;
typedef struct
{
drwav_uint32 manufacturer;
drwav_uint32 product;
drwav_uint32 samplePeriod;
drwav_uint32 midiUnityNotes;
drwav_uint32 midiPitchFraction;
drwav_uint32 smpteFormat;
drwav_uint32 smpteOffset;
drwav_uint32 numSampleLoops;
drwav_uint32 samplerData;
drwav_smpl_loop loops[DRWAV_MAX_SMPL_LOOPS];
} drwav_smpl;
typedef struct
{
drwav_read_proc onRead;
drwav_write_proc onWrite;
drwav_seek_proc onSeek;
void* pUserData;
drwav_allocation_callbacks allocationCallbacks;
drwav_container container;
drwav_fmt fmt;
drwav_uint32 sampleRate;
drwav_uint16 channels;
drwav_uint16 bitsPerSample;
drwav_uint16 translatedFormatTag;
drwav_uint64 totalPCMFrameCount;
drwav_uint64 dataChunkDataSize;
drwav_uint64 dataChunkDataPos;
drwav_uint64 bytesRemaining;
drwav_uint64 dataChunkDataSizeTargetWrite;
drwav_bool32 isSequentialWrite;
drwav_smpl smpl;
drwav__memory_stream memoryStream;
drwav__memory_stream_write memoryStreamWrite;
struct
{
drwav_uint64 iCurrentPCMFrame;
} compressed;
struct
{
drwav_uint32 bytesRemainingInBlock;
drwav_uint16 predictor[2];
drwav_int32 delta[2];
drwav_int32 cachedFrames[4];
drwav_uint32 cachedFrameCount;
drwav_int32 prevFrames[2][2];
} msadpcm;
struct
{
drwav_uint32 bytesRemainingInBlock;
drwav_int32 predictor[2];
drwav_int32 stepIndex[2];
drwav_int32 cachedFrames[16];
drwav_uint32 cachedFrameCount;
} ima;
} drwav;
DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
DRWAV_API drwav_result drwav_uninit(drwav* pWav);
DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut);
DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex);
DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData);
DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData);
#ifndef DR_WAV_NO_CONVERSION_API
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut);
DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount);
DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount);
DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount);
DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut);
DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount);
DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount);
DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount);
DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut);
DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount);
DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount);
DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount);
DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount);
#endif
#ifndef DR_WAV_NO_STDIO
DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
#endif
DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks);
#ifndef DR_WAV_NO_CONVERSION_API
DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
#ifndef DR_WAV_NO_STDIO
DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
#endif
DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks);
#endif
DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks);
DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data);
DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data);
DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data);
DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data);
DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data);
DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data);
DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16]);
DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b);
#ifdef __cplusplus
}
#endif
#endif
/* dr_wav_h end */
#endif /* MA_NO_WAV */
#ifndef MA_NO_FLAC
/* dr_flac_h begin */
#ifndef dr_flac_h
#define dr_flac_h
#ifdef __cplusplus
extern "C" {
#endif
#define DRFLAC_STRINGIFY(x) #x
#define DRFLAC_XSTRINGIFY(x) DRFLAC_STRINGIFY(x)
#define DRFLAC_VERSION_MAJOR 0
#define DRFLAC_VERSION_MINOR 12
#define DRFLAC_VERSION_REVISION 14
#define DRFLAC_VERSION_STRING DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MAJOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_MINOR) "." DRFLAC_XSTRINGIFY(DRFLAC_VERSION_REVISION)
#include <stddef.h>
#ifdef _MSC_VER
#if defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
#pragma GCC diagnostic ignored "-Wlong-long"
#pragma GCC diagnostic ignored "-Wc++11-long-long"
#endif
typedef signed __int8 drflac_int8;
typedef unsigned __int8 drflac_uint8;
typedef signed __int16 drflac_int16;
typedef unsigned __int16 drflac_uint16;
typedef signed __int32 drflac_int32;
typedef unsigned __int32 drflac_uint32;
typedef signed __int64 drflac_int64;
typedef unsigned __int64 drflac_uint64;
#if defined(__clang__)
#pragma GCC diagnostic pop
#endif
#else
#include <stdint.h>
typedef int8_t drflac_int8;
typedef uint8_t drflac_uint8;
typedef int16_t drflac_int16;
typedef uint16_t drflac_uint16;
typedef int32_t drflac_int32;
typedef uint32_t drflac_uint32;
typedef int64_t drflac_int64;
typedef uint64_t drflac_uint64;
#endif
typedef drflac_uint8 drflac_bool8;
typedef drflac_uint32 drflac_bool32;
#define DRFLAC_TRUE 1
#define DRFLAC_FALSE 0
#if !defined(DRFLAC_API)
#if defined(DRFLAC_DLL)
#if defined(_WIN32)
#define DRFLAC_DLL_IMPORT __declspec(dllimport)
#define DRFLAC_DLL_EXPORT __declspec(dllexport)
#define DRFLAC_DLL_PRIVATE static
#else
#if defined(__GNUC__) && __GNUC__ >= 4
#define DRFLAC_DLL_IMPORT __attribute__((visibility("default")))
#define DRFLAC_DLL_EXPORT __attribute__((visibility("default")))
#define DRFLAC_DLL_PRIVATE __attribute__((visibility("hidden")))
#else
#define DRFLAC_DLL_IMPORT
#define DRFLAC_DLL_EXPORT
#define DRFLAC_DLL_PRIVATE static
#endif
#endif
#if defined(DR_FLAC_IMPLEMENTATION) || defined(DRFLAC_IMPLEMENTATION)
#define DRFLAC_API DRFLAC_DLL_EXPORT
#else
#define DRFLAC_API DRFLAC_DLL_IMPORT
#endif
#define DRFLAC_PRIVATE DRFLAC_DLL_PRIVATE
#else
#define DRFLAC_API extern
#define DRFLAC_PRIVATE static
#endif
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1700
#define DRFLAC_DEPRECATED __declspec(deprecated)
#elif (defined(__GNUC__) && __GNUC__ >= 4)
#define DRFLAC_DEPRECATED __attribute__((deprecated))
#elif defined(__has_feature)
#if __has_feature(attribute_deprecated)
#define DRFLAC_DEPRECATED __attribute__((deprecated))
#else
#define DRFLAC_DEPRECATED
#endif
#else
#define DRFLAC_DEPRECATED
#endif
DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision);
DRFLAC_API const char* drflac_version_string();
#ifndef DR_FLAC_BUFFER_SIZE
#define DR_FLAC_BUFFER_SIZE 4096
#endif
#if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
#define DRFLAC_64BIT
#endif
#ifdef DRFLAC_64BIT
typedef drflac_uint64 drflac_cache_t;
#else
typedef drflac_uint32 drflac_cache_t;
#endif
#define DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO 0
#define DRFLAC_METADATA_BLOCK_TYPE_PADDING 1
#define DRFLAC_METADATA_BLOCK_TYPE_APPLICATION 2
#define DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE 3
#define DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT 4
#define DRFLAC_METADATA_BLOCK_TYPE_CUESHEET 5
#define DRFLAC_METADATA_BLOCK_TYPE_PICTURE 6
#define DRFLAC_METADATA_BLOCK_TYPE_INVALID 127
#define DRFLAC_PICTURE_TYPE_OTHER 0
#define DRFLAC_PICTURE_TYPE_FILE_ICON 1
#define DRFLAC_PICTURE_TYPE_OTHER_FILE_ICON 2
#define DRFLAC_PICTURE_TYPE_COVER_FRONT 3
#define DRFLAC_PICTURE_TYPE_COVER_BACK 4
#define DRFLAC_PICTURE_TYPE_LEAFLET_PAGE 5
#define DRFLAC_PICTURE_TYPE_MEDIA 6
#define DRFLAC_PICTURE_TYPE_LEAD_ARTIST 7
#define DRFLAC_PICTURE_TYPE_ARTIST 8
#define DRFLAC_PICTURE_TYPE_CONDUCTOR 9
#define DRFLAC_PICTURE_TYPE_BAND 10
#define DRFLAC_PICTURE_TYPE_COMPOSER 11
#define DRFLAC_PICTURE_TYPE_LYRICIST 12
#define DRFLAC_PICTURE_TYPE_RECORDING_LOCATION 13
#define DRFLAC_PICTURE_TYPE_DURING_RECORDING 14
#define DRFLAC_PICTURE_TYPE_DURING_PERFORMANCE 15
#define DRFLAC_PICTURE_TYPE_SCREEN_CAPTURE 16
#define DRFLAC_PICTURE_TYPE_BRIGHT_COLORED_FISH 17
#define DRFLAC_PICTURE_TYPE_ILLUSTRATION 18
#define DRFLAC_PICTURE_TYPE_BAND_LOGOTYPE 19
#define DRFLAC_PICTURE_TYPE_PUBLISHER_LOGOTYPE 20
typedef enum
{
drflac_container_native,
drflac_container_ogg,
drflac_container_unknown
} drflac_container;
typedef enum
{
drflac_seek_origin_start,
drflac_seek_origin_current
} drflac_seek_origin;
#pragma pack(2)
typedef struct
{
drflac_uint64 firstPCMFrame;
drflac_uint64 flacFrameOffset;
drflac_uint16 pcmFrameCount;
} drflac_seekpoint;
#pragma pack()
typedef struct
{
drflac_uint16 minBlockSizeInPCMFrames;
drflac_uint16 maxBlockSizeInPCMFrames;
drflac_uint32 minFrameSizeInPCMFrames;
drflac_uint32 maxFrameSizeInPCMFrames;
drflac_uint32 sampleRate;
drflac_uint8 channels;
drflac_uint8 bitsPerSample;
drflac_uint64 totalPCMFrameCount;
drflac_uint8 md5[16];
} drflac_streaminfo;
typedef struct
{
drflac_uint32 type;
const void* pRawData;
drflac_uint32 rawDataSize;
union
{
drflac_streaminfo streaminfo;
struct
{
int unused;
} padding;
struct
{
drflac_uint32 id;
const void* pData;
drflac_uint32 dataSize;
} application;
struct
{
drflac_uint32 seekpointCount;
const drflac_seekpoint* pSeekpoints;
} seektable;
struct
{
drflac_uint32 vendorLength;
const char* vendor;
drflac_uint32 commentCount;
const void* pComments;
} vorbis_comment;
struct
{
char catalog[128];
drflac_uint64 leadInSampleCount;
drflac_bool32 isCD;
drflac_uint8 trackCount;
const void* pTrackData;
} cuesheet;
struct
{
drflac_uint32 type;
drflac_uint32 mimeLength;
const char* mime;
drflac_uint32 descriptionLength;
const char* description;
drflac_uint32 width;
drflac_uint32 height;
drflac_uint32 colorDepth;
drflac_uint32 indexColorCount;
drflac_uint32 pictureDataSize;
const drflac_uint8* pPictureData;
} picture;
} data;
} drflac_metadata;
typedef size_t (* drflac_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
typedef drflac_bool32 (* drflac_seek_proc)(void* pUserData, int offset, drflac_seek_origin origin);
typedef void (* drflac_meta_proc)(void* pUserData, drflac_metadata* pMetadata);
typedef struct
{
void* pUserData;
void* (* onMalloc)(size_t sz, void* pUserData);
void* (* onRealloc)(void* p, size_t sz, void* pUserData);
void (* onFree)(void* p, void* pUserData);
} drflac_allocation_callbacks;
typedef struct
{
const drflac_uint8* data;
size_t dataSize;
size_t currentReadPos;
} drflac__memory_stream;
typedef struct
{
drflac_read_proc onRead;
drflac_seek_proc onSeek;
void* pUserData;
size_t unalignedByteCount;
drflac_cache_t unalignedCache;
drflac_uint32 nextL2Line;
drflac_uint32 consumedBits;
drflac_cache_t cacheL2[DR_FLAC_BUFFER_SIZE/sizeof(drflac_cache_t)];
drflac_cache_t cache;
drflac_uint16 crc16;
drflac_cache_t crc16Cache;
drflac_uint32 crc16CacheIgnoredBytes;
} drflac_bs;
typedef struct
{
drflac_uint8 subframeType;
drflac_uint8 wastedBitsPerSample;
drflac_uint8 lpcOrder;
drflac_int32* pSamplesS32;
} drflac_subframe;
typedef struct
{
drflac_uint64 pcmFrameNumber;
drflac_uint32 flacFrameNumber;
drflac_uint32 sampleRate;
drflac_uint16 blockSizeInPCMFrames;
drflac_uint8 channelAssignment;
drflac_uint8 bitsPerSample;
drflac_uint8 crc8;
} drflac_frame_header;
typedef struct
{
drflac_frame_header header;
drflac_uint32 pcmFramesRemaining;
drflac_subframe subframes[8];
} drflac_frame;
typedef struct
{
drflac_meta_proc onMeta;
void* pUserDataMD;
drflac_allocation_callbacks allocationCallbacks;
drflac_uint32 sampleRate;
drflac_uint8 channels;
drflac_uint8 bitsPerSample;
drflac_uint16 maxBlockSizeInPCMFrames;
drflac_uint64 totalPCMFrameCount;
drflac_container container;
drflac_uint32 seekpointCount;
drflac_frame currentFLACFrame;
drflac_uint64 currentPCMFrame;
drflac_uint64 firstFLACFramePosInBytes;
drflac__memory_stream memoryStream;
drflac_int32* pDecodedSamples;
drflac_seekpoint* pSeekpoints;
void* _oggbs;
drflac_bool32 _noSeekTableSeek : 1;
drflac_bool32 _noBinarySearchSeek : 1;
drflac_bool32 _noBruteForceSeek : 1;
drflac_bs bs;
drflac_uint8 pExtraData[1];
} drflac;
DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API void drflac_close(drflac* pFlac);
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut);
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut);
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut);
DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex);
#ifndef DR_FLAC_NO_STDIO
DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
#endif
DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
#ifndef DR_FLAC_NO_STDIO
DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
#endif
DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks);
DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks);
typedef struct
{
drflac_uint32 countRemaining;
const char* pRunningData;
} drflac_vorbis_comment_iterator;
DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments);
DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut);
typedef struct
{
drflac_uint32 countRemaining;
const char* pRunningData;
} drflac_cuesheet_track_iterator;
#pragma pack(4)
typedef struct
{
drflac_uint64 offset;
drflac_uint8 index;
drflac_uint8 reserved[3];
} drflac_cuesheet_track_index;
#pragma pack()
typedef struct
{
drflac_uint64 offset;
drflac_uint8 trackNumber;
char ISRC[12];
drflac_bool8 isAudio;
drflac_bool8 preEmphasis;
drflac_uint8 indexCount;
const drflac_cuesheet_track_index* pIndexPoints;
} drflac_cuesheet_track;
DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData);
DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack);
#ifdef __cplusplus
}
#endif
#endif
/* dr_flac_h end */
#endif /* MA_NO_FLAC */
#ifndef MA_NO_MP3
/* dr_mp3_h begin */
#ifndef dr_mp3_h
#define dr_mp3_h
#ifdef __cplusplus
extern "C" {
#endif
#define DRMP3_STRINGIFY(x) #x
#define DRMP3_XSTRINGIFY(x) DRMP3_STRINGIFY(x)
#define DRMP3_VERSION_MAJOR 0
#define DRMP3_VERSION_MINOR 6
#define DRMP3_VERSION_REVISION 12
#define DRMP3_VERSION_STRING DRMP3_XSTRINGIFY(DRMP3_VERSION_MAJOR) "." DRMP3_XSTRINGIFY(DRMP3_VERSION_MINOR) "." DRMP3_XSTRINGIFY(DRMP3_VERSION_REVISION)
#include <stddef.h>
#ifdef _MSC_VER
#if defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wlanguage-extension-token"
#pragma GCC diagnostic ignored "-Wlong-long"
#pragma GCC diagnostic ignored "-Wc++11-long-long"
#endif
typedef signed __int8 drmp3_int8;
typedef unsigned __int8 drmp3_uint8;
typedef signed __int16 drmp3_int16;
typedef unsigned __int16 drmp3_uint16;
typedef signed __int32 drmp3_int32;
typedef unsigned __int32 drmp3_uint32;
typedef signed __int64 drmp3_int64;
typedef unsigned __int64 drmp3_uint64;
#if defined(__clang__)
#pragma GCC diagnostic pop
#endif
#else
#include <stdint.h>
typedef int8_t drmp3_int8;
typedef uint8_t drmp3_uint8;
typedef int16_t drmp3_int16;
typedef uint16_t drmp3_uint16;
typedef int32_t drmp3_int32;
typedef uint32_t drmp3_uint32;
typedef int64_t drmp3_int64;
typedef uint64_t drmp3_uint64;
#endif
typedef drmp3_uint8 drmp3_bool8;
typedef drmp3_uint32 drmp3_bool32;
#define DRMP3_TRUE 1
#define DRMP3_FALSE 0
#if !defined(DRMP3_API)
#if defined(DRMP3_DLL)
#if defined(_WIN32)
#define DRMP3_DLL_IMPORT __declspec(dllimport)
#define DRMP3_DLL_EXPORT __declspec(dllexport)
#define DRMP3_DLL_PRIVATE static
#else
#if defined(__GNUC__) && __GNUC__ >= 4
#define DRMP3_DLL_IMPORT __attribute__((visibility("default")))
#define DRMP3_DLL_EXPORT __attribute__((visibility("default")))
#define DRMP3_DLL_PRIVATE __attribute__((visibility("hidden")))
#else
#define DRMP3_DLL_IMPORT
#define DRMP3_DLL_EXPORT
#define DRMP3_DLL_PRIVATE static
#endif
#endif
#if defined(DR_MP3_IMPLEMENTATION) || defined(DRMP3_IMPLEMENTATION)
#define DRMP3_API DRMP3_DLL_EXPORT
#else
#define DRMP3_API DRMP3_DLL_IMPORT
#endif
#define DRMP3_PRIVATE DRMP3_DLL_PRIVATE
#else
#define DRMP3_API extern
#define DRMP3_PRIVATE static
#endif
#endif
typedef drmp3_int32 drmp3_result;
#define DRMP3_SUCCESS 0
#define DRMP3_ERROR -1
#define DRMP3_INVALID_ARGS -2
#define DRMP3_INVALID_OPERATION -3
#define DRMP3_OUT_OF_MEMORY -4
#define DRMP3_OUT_OF_RANGE -5
#define DRMP3_ACCESS_DENIED -6
#define DRMP3_DOES_NOT_EXIST -7
#define DRMP3_ALREADY_EXISTS -8
#define DRMP3_TOO_MANY_OPEN_FILES -9
#define DRMP3_INVALID_FILE -10
#define DRMP3_TOO_BIG -11
#define DRMP3_PATH_TOO_LONG -12
#define DRMP3_NAME_TOO_LONG -13
#define DRMP3_NOT_DIRECTORY -14
#define DRMP3_IS_DIRECTORY -15
#define DRMP3_DIRECTORY_NOT_EMPTY -16
#define DRMP3_END_OF_FILE -17
#define DRMP3_NO_SPACE -18
#define DRMP3_BUSY -19
#define DRMP3_IO_ERROR -20
#define DRMP3_INTERRUPT -21
#define DRMP3_UNAVAILABLE -22
#define DRMP3_ALREADY_IN_USE -23
#define DRMP3_BAD_ADDRESS -24
#define DRMP3_BAD_SEEK -25
#define DRMP3_BAD_PIPE -26
#define DRMP3_DEADLOCK -27
#define DRMP3_TOO_MANY_LINKS -28
#define DRMP3_NOT_IMPLEMENTED -29
#define DRMP3_NO_MESSAGE -30
#define DRMP3_BAD_MESSAGE -31
#define DRMP3_NO_DATA_AVAILABLE -32
#define DRMP3_INVALID_DATA -33
#define DRMP3_TIMEOUT -34
#define DRMP3_NO_NETWORK -35
#define DRMP3_NOT_UNIQUE -36
#define DRMP3_NOT_SOCKET -37
#define DRMP3_NO_ADDRESS -38
#define DRMP3_BAD_PROTOCOL -39
#define DRMP3_PROTOCOL_UNAVAILABLE -40
#define DRMP3_PROTOCOL_NOT_SUPPORTED -41
#define DRMP3_PROTOCOL_FAMILY_NOT_SUPPORTED -42
#define DRMP3_ADDRESS_FAMILY_NOT_SUPPORTED -43
#define DRMP3_SOCKET_NOT_SUPPORTED -44
#define DRMP3_CONNECTION_RESET -45
#define DRMP3_ALREADY_CONNECTED -46
#define DRMP3_NOT_CONNECTED -47
#define DRMP3_CONNECTION_REFUSED -48
#define DRMP3_NO_HOST -49
#define DRMP3_IN_PROGRESS -50
#define DRMP3_CANCELLED -51
#define DRMP3_MEMORY_ALREADY_MAPPED -52
#define DRMP3_AT_END -53
#define DRMP3_MAX_PCM_FRAMES_PER_MP3_FRAME 1152
#define DRMP3_MAX_SAMPLES_PER_FRAME (DRMP3_MAX_PCM_FRAMES_PER_MP3_FRAME*2)
#ifdef _MSC_VER
#define DRMP3_INLINE __forceinline
#elif defined(__GNUC__)
#if defined(__STRICT_ANSI__)
#define DRMP3_INLINE __inline__ __attribute__((always_inline))
#else
#define DRMP3_INLINE inline __attribute__((always_inline))
#endif
#else
#define DRMP3_INLINE
#endif
DRMP3_API void drmp3_version(drmp3_uint32* pMajor, drmp3_uint32* pMinor, drmp3_uint32* pRevision);
DRMP3_API const char* drmp3_version_string();
typedef struct
{
int frame_bytes, channels, hz, layer, bitrate_kbps;
} drmp3dec_frame_info;
typedef struct
{
float mdct_overlap[2][9*32], qmf_state[15*2*32];
int reserv, free_format_bytes;
drmp3_uint8 header[4], reserv_buf[511];
} drmp3dec;
DRMP3_API void drmp3dec_init(drmp3dec *dec);
DRMP3_API int drmp3dec_decode_frame(drmp3dec *dec, const drmp3_uint8 *mp3, int mp3_bytes, void *pcm, drmp3dec_frame_info *info);
DRMP3_API void drmp3dec_f32_to_s16(const float *in, drmp3_int16 *out, size_t num_samples);
#ifndef DRMP3_DEFAULT_CHANNELS
#define DRMP3_DEFAULT_CHANNELS 2
#endif
#ifndef DRMP3_DEFAULT_SAMPLE_RATE
#define DRMP3_DEFAULT_SAMPLE_RATE 44100
#endif
typedef enum
{
drmp3_seek_origin_start,
drmp3_seek_origin_current
} drmp3_seek_origin;
typedef struct
{
drmp3_uint64 seekPosInBytes;
drmp3_uint64 pcmFrameIndex;
drmp3_uint16 mp3FramesToDiscard;
drmp3_uint16 pcmFramesToDiscard;
} drmp3_seek_point;
typedef size_t (* drmp3_read_proc)(void* pUserData, void* pBufferOut, size_t bytesToRead);
typedef drmp3_bool32 (* drmp3_seek_proc)(void* pUserData, int offset, drmp3_seek_origin origin);
typedef struct
{
void* pUserData;
void* (* onMalloc)(size_t sz, void* pUserData);
void* (* onRealloc)(void* p, size_t sz, void* pUserData);
void (* onFree)(void* p, void* pUserData);
} drmp3_allocation_callbacks;
typedef struct
{
drmp3_uint32 channels;
drmp3_uint32 sampleRate;
} drmp3_config;
typedef struct
{
drmp3dec decoder;
drmp3dec_frame_info frameInfo;
drmp3_uint32 channels;
drmp3_uint32 sampleRate;
drmp3_read_proc onRead;
drmp3_seek_proc onSeek;
void* pUserData;
drmp3_allocation_callbacks allocationCallbacks;
drmp3_uint32 mp3FrameChannels;
drmp3_uint32 mp3FrameSampleRate;
drmp3_uint32 pcmFramesConsumedInMP3Frame;
drmp3_uint32 pcmFramesRemainingInMP3Frame;
drmp3_uint8 pcmFrames[sizeof(float)*DRMP3_MAX_SAMPLES_PER_FRAME];
drmp3_uint64 currentPCMFrame;
drmp3_uint64 streamCursor;
drmp3_seek_point* pSeekPoints;
drmp3_uint32 seekPointCount;
size_t dataSize;
size_t dataCapacity;
size_t dataConsumed;
drmp3_uint8* pData;
drmp3_bool32 atEnd : 1;
struct
{
const drmp3_uint8* pData;
size_t dataSize;
size_t currentReadPos;
} memory;
} drmp3;
DRMP3_API drmp3_bool32 drmp3_init(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks);
DRMP3_API drmp3_bool32 drmp3_init_memory(drmp3* pMP3, const void* pData, size_t dataSize, const drmp3_allocation_callbacks* pAllocationCallbacks);
#ifndef DR_MP3_NO_STDIO
DRMP3_API drmp3_bool32 drmp3_init_file(drmp3* pMP3, const char* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks);
DRMP3_API drmp3_bool32 drmp3_init_file_w(drmp3* pMP3, const wchar_t* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks);
#endif
DRMP3_API void drmp3_uninit(drmp3* pMP3);
DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_f32(drmp3* pMP3, drmp3_uint64 framesToRead, float* pBufferOut);
DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_s16(drmp3* pMP3, drmp3_uint64 framesToRead, drmp3_int16* pBufferOut);
DRMP3_API drmp3_bool32 drmp3_seek_to_pcm_frame(drmp3* pMP3, drmp3_uint64 frameIndex);
DRMP3_API drmp3_uint64 drmp3_get_pcm_frame_count(drmp3* pMP3);
DRMP3_API drmp3_uint64 drmp3_get_mp3_frame_count(drmp3* pMP3);
DRMP3_API drmp3_bool32 drmp3_get_mp3_and_pcm_frame_count(drmp3* pMP3, drmp3_uint64* pMP3FrameCount, drmp3_uint64* pPCMFrameCount);
DRMP3_API drmp3_bool32 drmp3_calculate_seek_points(drmp3* pMP3, drmp3_uint32* pSeekPointCount, drmp3_seek_point* pSeekPoints);
DRMP3_API drmp3_bool32 drmp3_bind_seek_table(drmp3* pMP3, drmp3_uint32 seekPointCount, drmp3_seek_point* pSeekPoints);
DRMP3_API float* drmp3_open_and_read_pcm_frames_f32(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
DRMP3_API drmp3_int16* drmp3_open_and_read_pcm_frames_s16(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
DRMP3_API float* drmp3_open_memory_and_read_pcm_frames_f32(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
DRMP3_API drmp3_int16* drmp3_open_memory_and_read_pcm_frames_s16(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
#ifndef DR_MP3_NO_STDIO
DRMP3_API float* drmp3_open_file_and_read_pcm_frames_f32(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
DRMP3_API drmp3_int16* drmp3_open_file_and_read_pcm_frames_s16(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks);
#endif
DRMP3_API void* drmp3_malloc(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks);
DRMP3_API void drmp3_free(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks);
#ifdef __cplusplus
}
#endif
#endif
/* dr_mp3_h end */
#endif /* MA_NO_MP3 */
static size_t ma_decoder_read_bytes(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
{
size_t bytesRead;
MA_ASSERT(pDecoder != NULL);
MA_ASSERT(pBufferOut != NULL);
bytesRead = pDecoder->onRead(pDecoder, pBufferOut, bytesToRead);
pDecoder->readPointer += bytesRead;
return bytesRead;
}
static ma_bool32 ma_decoder_seek_bytes(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin)
{
ma_bool32 wasSuccessful;
MA_ASSERT(pDecoder != NULL);
wasSuccessful = pDecoder->onSeek(pDecoder, byteOffset, origin);
if (wasSuccessful) {
if (origin == ma_seek_origin_start) {
pDecoder->readPointer = (ma_uint64)byteOffset;
} else {
pDecoder->readPointer += byteOffset;
}
}
return wasSuccessful;
}
MA_API ma_decoder_config ma_decoder_config_init(ma_format outputFormat, ma_uint32 outputChannels, ma_uint32 outputSampleRate)
{
ma_decoder_config config;
MA_ZERO_OBJECT(&config);
config.format = outputFormat;
config.channels = outputChannels;
config.sampleRate = outputSampleRate;
config.resampling.algorithm = ma_resample_algorithm_linear;
config.resampling.linear.lpfOrder = ma_min(MA_DEFAULT_RESAMPLER_LPF_ORDER, MA_MAX_FILTER_ORDER);
config.resampling.speex.quality = 3;
/* Note that we are intentionally leaving the channel map empty here which will cause the default channel map to be used. */
return config;
}
MA_API ma_decoder_config ma_decoder_config_init_copy(const ma_decoder_config* pConfig)
{
ma_decoder_config config;
if (pConfig != NULL) {
config = *pConfig;
} else {
MA_ZERO_OBJECT(&config);
}
return config;
}
static ma_result ma_decoder__init_data_converter(ma_decoder* pDecoder, const ma_decoder_config* pConfig)
{
ma_data_converter_config converterConfig;
MA_ASSERT(pDecoder != NULL);
/* Output format. */
if (pConfig->format == ma_format_unknown) {
pDecoder->outputFormat = pDecoder->internalFormat;
} else {
pDecoder->outputFormat = pConfig->format;
}
if (pConfig->channels == 0) {
pDecoder->outputChannels = pDecoder->internalChannels;
} else {
pDecoder->outputChannels = pConfig->channels;
}
if (pConfig->sampleRate == 0) {
pDecoder->outputSampleRate = pDecoder->internalSampleRate;
} else {
pDecoder->outputSampleRate = pConfig->sampleRate;
}
if (ma_channel_map_blank(pDecoder->outputChannels, pConfig->channelMap)) {
ma_get_standard_channel_map(ma_standard_channel_map_default, pDecoder->outputChannels, pDecoder->outputChannelMap);
} else {
MA_COPY_MEMORY(pDecoder->outputChannelMap, pConfig->channelMap, sizeof(pConfig->channelMap));
}
converterConfig = ma_data_converter_config_init(
pDecoder->internalFormat, pDecoder->outputFormat,
pDecoder->internalChannels, pDecoder->outputChannels,
pDecoder->internalSampleRate, pDecoder->outputSampleRate
);
ma_channel_map_copy(converterConfig.channelMapIn, pDecoder->internalChannelMap, pDecoder->internalChannels);
ma_channel_map_copy(converterConfig.channelMapOut, pDecoder->outputChannelMap, pDecoder->outputChannels);
converterConfig.channelMixMode = pConfig->channelMixMode;
converterConfig.ditherMode = pConfig->ditherMode;
converterConfig.resampling.allowDynamicSampleRate = MA_FALSE; /* Never allow dynamic sample rate conversion. Setting this to true will disable passthrough optimizations. */
converterConfig.resampling.algorithm = pConfig->resampling.algorithm;
converterConfig.resampling.linear.lpfOrder = pConfig->resampling.linear.lpfOrder;
converterConfig.resampling.speex.quality = pConfig->resampling.speex.quality;
return ma_data_converter_init(&converterConfig, &pDecoder->converter);
}
/* WAV */
#ifdef dr_wav_h
#define MA_HAS_WAV
static size_t ma_decoder_internal_on_read__wav(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
MA_ASSERT(pDecoder != NULL);
return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead);
}
static drwav_bool32 ma_decoder_internal_on_seek__wav(void* pUserData, int offset, drwav_seek_origin origin)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
MA_ASSERT(pDecoder != NULL);
return ma_decoder_seek_bytes(pDecoder, offset, (origin == drwav_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
}
static ma_uint64 ma_decoder_internal_on_read_pcm_frames__wav(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
drwav* pWav;
MA_ASSERT(pDecoder != NULL);
MA_ASSERT(pFramesOut != NULL);
pWav = (drwav*)pDecoder->pInternalDecoder;
MA_ASSERT(pWav != NULL);
switch (pDecoder->internalFormat) {
case ma_format_s16: return drwav_read_pcm_frames_s16(pWav, frameCount, (drwav_int16*)pFramesOut);
case ma_format_s32: return drwav_read_pcm_frames_s32(pWav, frameCount, (drwav_int32*)pFramesOut);
case ma_format_f32: return drwav_read_pcm_frames_f32(pWav, frameCount, (float*)pFramesOut);
default: break;
}
/* Should never get here. If we do, it means the internal format was not set correctly at initialization time. */
MA_ASSERT(MA_FALSE);
return 0;
}
static ma_result ma_decoder_internal_on_seek_to_pcm_frame__wav(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
drwav* pWav;
drwav_bool32 result;
pWav = (drwav*)pDecoder->pInternalDecoder;
MA_ASSERT(pWav != NULL);
result = drwav_seek_to_pcm_frame(pWav, frameIndex);
if (result) {
return MA_SUCCESS;
} else {
return MA_ERROR;
}
}
static ma_result ma_decoder_internal_on_uninit__wav(ma_decoder* pDecoder)
{
drwav_uninit((drwav*)pDecoder->pInternalDecoder);
ma__free_from_callbacks(pDecoder->pInternalDecoder, &pDecoder->allocationCallbacks);
return MA_SUCCESS;
}
static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__wav(ma_decoder* pDecoder)
{
return ((drwav*)pDecoder->pInternalDecoder)->totalPCMFrameCount;
}
static ma_result ma_decoder_init_wav__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
drwav* pWav;
drwav_allocation_callbacks allocationCallbacks;
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pDecoder != NULL);
pWav = (drwav*)ma__malloc_from_callbacks(sizeof(*pWav), &pDecoder->allocationCallbacks);
if (pWav == NULL) {
return MA_OUT_OF_MEMORY;
}
allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData;
allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc;
allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc;
allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree;
/* Try opening the decoder first. */
if (!drwav_init(pWav, ma_decoder_internal_on_read__wav, ma_decoder_internal_on_seek__wav, pDecoder, &allocationCallbacks)) {
ma__free_from_callbacks(pWav, &pDecoder->allocationCallbacks);
return MA_ERROR;
}
/* If we get here it means we successfully initialized the WAV decoder. We can now initialize the rest of the ma_decoder. */
pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__wav;
pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__wav;
pDecoder->onUninit = ma_decoder_internal_on_uninit__wav;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__wav;
pDecoder->pInternalDecoder = pWav;
/* Try to be as optimal as possible for the internal format. If miniaudio does not support a format we will fall back to f32. */
pDecoder->internalFormat = ma_format_unknown;
switch (pWav->translatedFormatTag) {
case DR_WAVE_FORMAT_PCM:
{
if (pWav->bitsPerSample == 8) {
pDecoder->internalFormat = ma_format_s16;
} else if (pWav->bitsPerSample == 16) {
pDecoder->internalFormat = ma_format_s16;
} else if (pWav->bitsPerSample == 32) {
pDecoder->internalFormat = ma_format_s32;
}
} break;
case DR_WAVE_FORMAT_IEEE_FLOAT:
{
if (pWav->bitsPerSample == 32) {
pDecoder->internalFormat = ma_format_f32;
}
} break;
case DR_WAVE_FORMAT_ALAW:
case DR_WAVE_FORMAT_MULAW:
case DR_WAVE_FORMAT_ADPCM:
case DR_WAVE_FORMAT_DVI_ADPCM:
{
pDecoder->internalFormat = ma_format_s16;
} break;
}
if (pDecoder->internalFormat == ma_format_unknown) {
pDecoder->internalFormat = ma_format_f32;
}
pDecoder->internalChannels = pWav->channels;
pDecoder->internalSampleRate = pWav->sampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_microsoft, pDecoder->internalChannels, pDecoder->internalChannelMap);
return MA_SUCCESS;
}
#endif /* dr_wav_h */
/* FLAC */
#ifdef dr_flac_h
#define MA_HAS_FLAC
static size_t ma_decoder_internal_on_read__flac(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
MA_ASSERT(pDecoder != NULL);
return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead);
}
static drflac_bool32 ma_decoder_internal_on_seek__flac(void* pUserData, int offset, drflac_seek_origin origin)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
MA_ASSERT(pDecoder != NULL);
return ma_decoder_seek_bytes(pDecoder, offset, (origin == drflac_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
}
static ma_uint64 ma_decoder_internal_on_read_pcm_frames__flac(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
drflac* pFlac;
MA_ASSERT(pDecoder != NULL);
MA_ASSERT(pFramesOut != NULL);
pFlac = (drflac*)pDecoder->pInternalDecoder;
MA_ASSERT(pFlac != NULL);
switch (pDecoder->internalFormat) {
case ma_format_s16: return drflac_read_pcm_frames_s16(pFlac, frameCount, (drflac_int16*)pFramesOut);
case ma_format_s32: return drflac_read_pcm_frames_s32(pFlac, frameCount, (drflac_int32*)pFramesOut);
case ma_format_f32: return drflac_read_pcm_frames_f32(pFlac, frameCount, (float*)pFramesOut);
default: break;
}
/* Should never get here. If we do, it means the internal format was not set correctly at initialization time. */
MA_ASSERT(MA_FALSE);
return 0;
}
static ma_result ma_decoder_internal_on_seek_to_pcm_frame__flac(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
drflac* pFlac;
drflac_bool32 result;
pFlac = (drflac*)pDecoder->pInternalDecoder;
MA_ASSERT(pFlac != NULL);
result = drflac_seek_to_pcm_frame(pFlac, frameIndex);
if (result) {
return MA_SUCCESS;
} else {
return MA_ERROR;
}
}
static ma_result ma_decoder_internal_on_uninit__flac(ma_decoder* pDecoder)
{
drflac_close((drflac*)pDecoder->pInternalDecoder);
return MA_SUCCESS;
}
static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__flac(ma_decoder* pDecoder)
{
return ((drflac*)pDecoder->pInternalDecoder)->totalPCMFrameCount;
}
static ma_result ma_decoder_init_flac__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
drflac* pFlac;
drflac_allocation_callbacks allocationCallbacks;
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pDecoder != NULL);
allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData;
allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc;
allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc;
allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree;
/* Try opening the decoder first. */
pFlac = drflac_open(ma_decoder_internal_on_read__flac, ma_decoder_internal_on_seek__flac, pDecoder, &allocationCallbacks);
if (pFlac == NULL) {
return MA_ERROR;
}
/* If we get here it means we successfully initialized the FLAC decoder. We can now initialize the rest of the ma_decoder. */
pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__flac;
pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__flac;
pDecoder->onUninit = ma_decoder_internal_on_uninit__flac;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__flac;
pDecoder->pInternalDecoder = pFlac;
/*
dr_flac supports reading as s32, s16 and f32. Try to do a one-to-one mapping if possible, but fall back to s32 if not. s32 is the "native" FLAC format
since it's the only one that's truly lossless.
*/
pDecoder->internalFormat = ma_format_s32;
if (pConfig->format == ma_format_s16) {
pDecoder->internalFormat = ma_format_s16;
} else if (pConfig->format == ma_format_f32) {
pDecoder->internalFormat = ma_format_f32;
}
pDecoder->internalChannels = pFlac->channels;
pDecoder->internalSampleRate = pFlac->sampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_flac, pDecoder->internalChannels, pDecoder->internalChannelMap);
return MA_SUCCESS;
}
#endif /* dr_flac_h */
/* MP3 */
#ifdef dr_mp3_h
#define MA_HAS_MP3
static size_t ma_decoder_internal_on_read__mp3(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
MA_ASSERT(pDecoder != NULL);
return ma_decoder_read_bytes(pDecoder, pBufferOut, bytesToRead);
}
static drmp3_bool32 ma_decoder_internal_on_seek__mp3(void* pUserData, int offset, drmp3_seek_origin origin)
{
ma_decoder* pDecoder = (ma_decoder*)pUserData;
MA_ASSERT(pDecoder != NULL);
return ma_decoder_seek_bytes(pDecoder, offset, (origin == drmp3_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
}
static ma_uint64 ma_decoder_internal_on_read_pcm_frames__mp3(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
drmp3* pMP3;
MA_ASSERT(pDecoder != NULL);
MA_ASSERT(pFramesOut != NULL);
pMP3 = (drmp3*)pDecoder->pInternalDecoder;
MA_ASSERT(pMP3 != NULL);
#if defined(DR_MP3_FLOAT_OUTPUT)
MA_ASSERT(pDecoder->internalFormat == ma_format_f32);
return drmp3_read_pcm_frames_f32(pMP3, frameCount, (float*)pFramesOut);
#else
MA_ASSERT(pDecoder->internalFormat == ma_format_s16);
return drmp3_read_pcm_frames_s16(pMP3, frameCount, (drmp3_int16*)pFramesOut);
#endif
}
static ma_result ma_decoder_internal_on_seek_to_pcm_frame__mp3(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
drmp3* pMP3;
drmp3_bool32 result;
pMP3 = (drmp3*)pDecoder->pInternalDecoder;
MA_ASSERT(pMP3 != NULL);
result = drmp3_seek_to_pcm_frame(pMP3, frameIndex);
if (result) {
return MA_SUCCESS;
} else {
return MA_ERROR;
}
}
static ma_result ma_decoder_internal_on_uninit__mp3(ma_decoder* pDecoder)
{
drmp3_uninit((drmp3*)pDecoder->pInternalDecoder);
ma__free_from_callbacks(pDecoder->pInternalDecoder, &pDecoder->allocationCallbacks);
return MA_SUCCESS;
}
static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__mp3(ma_decoder* pDecoder)
{
return drmp3_get_pcm_frame_count((drmp3*)pDecoder->pInternalDecoder);
}
static ma_result ma_decoder_init_mp3__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
drmp3* pMP3;
drmp3_allocation_callbacks allocationCallbacks;
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pDecoder != NULL);
pMP3 = (drmp3*)ma__malloc_from_callbacks(sizeof(*pMP3), &pDecoder->allocationCallbacks);
if (pMP3 == NULL) {
return MA_OUT_OF_MEMORY;
}
allocationCallbacks.pUserData = pDecoder->allocationCallbacks.pUserData;
allocationCallbacks.onMalloc = pDecoder->allocationCallbacks.onMalloc;
allocationCallbacks.onRealloc = pDecoder->allocationCallbacks.onRealloc;
allocationCallbacks.onFree = pDecoder->allocationCallbacks.onFree;
/*
Try opening the decoder first. We always use whatever dr_mp3 reports for channel count and sample rate. The format is determined by
the presence of DR_MP3_FLOAT_OUTPUT.
*/
if (!drmp3_init(pMP3, ma_decoder_internal_on_read__mp3, ma_decoder_internal_on_seek__mp3, pDecoder, &allocationCallbacks)) {
ma__free_from_callbacks(pMP3, &pDecoder->allocationCallbacks);
return MA_ERROR;
}
/* If we get here it means we successfully initialized the MP3 decoder. We can now initialize the rest of the ma_decoder. */
pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__mp3;
pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__mp3;
pDecoder->onUninit = ma_decoder_internal_on_uninit__mp3;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__mp3;
pDecoder->pInternalDecoder = pMP3;
/* Internal format. */
#if defined(DR_MP3_FLOAT_OUTPUT)
pDecoder->internalFormat = ma_format_f32;
#else
pDecoder->internalFormat = ma_format_s16;
#endif
pDecoder->internalChannels = pMP3->channels;
pDecoder->internalSampleRate = pMP3->sampleRate;
ma_get_standard_channel_map(ma_standard_channel_map_default, pDecoder->internalChannels, pDecoder->internalChannelMap);
return MA_SUCCESS;
}
#endif /* dr_mp3_h */
/* Vorbis */
#ifdef STB_VORBIS_INCLUDE_STB_VORBIS_H
#define MA_HAS_VORBIS
/* The size in bytes of each chunk of data to read from the Vorbis stream. */
#define MA_VORBIS_DATA_CHUNK_SIZE 4096
typedef struct
{
stb_vorbis* pInternalVorbis;
ma_uint8* pData;
size_t dataSize;
size_t dataCapacity;
ma_uint32 framesConsumed; /* The number of frames consumed in ppPacketData. */
ma_uint32 framesRemaining; /* The number of frames remaining in ppPacketData. */
float** ppPacketData;
} ma_vorbis_decoder;
static ma_uint64 ma_vorbis_decoder_read_pcm_frames(ma_vorbis_decoder* pVorbis, ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
float* pFramesOutF;
ma_uint64 totalFramesRead;
MA_ASSERT(pVorbis != NULL);
MA_ASSERT(pDecoder != NULL);
pFramesOutF = (float*)pFramesOut;
totalFramesRead = 0;
while (frameCount > 0) {
/* Read from the in-memory buffer first. */
ma_uint32 framesToReadFromCache = (ma_uint32)ma_min(pVorbis->framesRemaining, frameCount); /* Safe cast because pVorbis->framesRemaining is 32-bit. */
if (pFramesOut != NULL) {
ma_uint64 iFrame;
for (iFrame = 0; iFrame < framesToReadFromCache; iFrame += 1) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pDecoder->internalChannels; ++iChannel) {
pFramesOutF[iChannel] = pVorbis->ppPacketData[iChannel][pVorbis->framesConsumed+iFrame];
}
pFramesOutF += pDecoder->internalChannels;
}
}
pVorbis->framesConsumed += framesToReadFromCache;
pVorbis->framesRemaining -= framesToReadFromCache;
frameCount -= framesToReadFromCache;
totalFramesRead += framesToReadFromCache;
if (frameCount == 0) {
break;
}
MA_ASSERT(pVorbis->framesRemaining == 0);
/* We've run out of cached frames, so decode the next packet and continue iteration. */
do
{
int samplesRead;
int consumedDataSize;
if (pVorbis->dataSize > INT_MAX) {
break; /* Too big. */
}
samplesRead = 0;
consumedDataSize = stb_vorbis_decode_frame_pushdata(pVorbis->pInternalVorbis, pVorbis->pData, (int)pVorbis->dataSize, NULL, (float***)&pVorbis->ppPacketData, &samplesRead);
if (consumedDataSize != 0) {
size_t leftoverDataSize = (pVorbis->dataSize - (size_t)consumedDataSize);
size_t i;
for (i = 0; i < leftoverDataSize; ++i) {
pVorbis->pData[i] = pVorbis->pData[i + consumedDataSize];
}
pVorbis->dataSize = leftoverDataSize;
pVorbis->framesConsumed = 0;
pVorbis->framesRemaining = samplesRead;
break;
} else {
/* Need more data. If there's any room in the existing buffer allocation fill that first. Otherwise expand. */
size_t bytesRead;
if (pVorbis->dataCapacity == pVorbis->dataSize) {
/* No room. Expand. */
size_t oldCap = pVorbis->dataCapacity;
size_t newCap = pVorbis->dataCapacity + MA_VORBIS_DATA_CHUNK_SIZE;
ma_uint8* pNewData;
pNewData = (ma_uint8*)ma__realloc_from_callbacks(pVorbis->pData, newCap, oldCap, &pDecoder->allocationCallbacks);
if (pNewData == NULL) {
return totalFramesRead; /* Out of memory. */
}
pVorbis->pData = pNewData;
pVorbis->dataCapacity = newCap;
}
/* Fill in a chunk. */
bytesRead = ma_decoder_read_bytes(pDecoder, pVorbis->pData + pVorbis->dataSize, (pVorbis->dataCapacity - pVorbis->dataSize));
if (bytesRead == 0) {
return totalFramesRead; /* Error reading more data. */
}
pVorbis->dataSize += bytesRead;
}
} while (MA_TRUE);
}
return totalFramesRead;
}
static ma_result ma_vorbis_decoder_seek_to_pcm_frame(ma_vorbis_decoder* pVorbis, ma_decoder* pDecoder, ma_uint64 frameIndex)
{
float buffer[4096];
MA_ASSERT(pVorbis != NULL);
MA_ASSERT(pDecoder != NULL);
/*
This is terribly inefficient because stb_vorbis does not have a good seeking solution with it's push API. Currently this just performs
a full decode right from the start of the stream. Later on I'll need to write a layer that goes through all of the Ogg pages until we
find the one containing the sample we need. Then we know exactly where to seek for stb_vorbis.
TODO: Use seeking logic documented for stb_vorbis_flush_pushdata().
*/
if (!ma_decoder_seek_bytes(pDecoder, 0, ma_seek_origin_start)) {
return MA_ERROR;
}
stb_vorbis_flush_pushdata(pVorbis->pInternalVorbis);
pVorbis->framesConsumed = 0;
pVorbis->framesRemaining = 0;
pVorbis->dataSize = 0;
while (frameIndex > 0) {
ma_uint32 framesRead;
ma_uint32 framesToRead = ma_countof(buffer)/pDecoder->internalChannels;
if (framesToRead > frameIndex) {
framesToRead = (ma_uint32)frameIndex;
}
framesRead = (ma_uint32)ma_vorbis_decoder_read_pcm_frames(pVorbis, pDecoder, buffer, framesToRead);
if (framesRead == 0) {
return MA_ERROR;
}
frameIndex -= framesRead;
}
return MA_SUCCESS;
}
static ma_result ma_decoder_internal_on_seek_to_pcm_frame__vorbis(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
ma_vorbis_decoder* pVorbis = (ma_vorbis_decoder*)pDecoder->pInternalDecoder;
MA_ASSERT(pVorbis != NULL);
return ma_vorbis_decoder_seek_to_pcm_frame(pVorbis, pDecoder, frameIndex);
}
static ma_result ma_decoder_internal_on_uninit__vorbis(ma_decoder* pDecoder)
{
ma_vorbis_decoder* pVorbis = (ma_vorbis_decoder*)pDecoder->pInternalDecoder;
MA_ASSERT(pVorbis != NULL);
stb_vorbis_close(pVorbis->pInternalVorbis);
ma__free_from_callbacks(pVorbis->pData, &pDecoder->allocationCallbacks);
ma__free_from_callbacks(pVorbis, &pDecoder->allocationCallbacks);
return MA_SUCCESS;
}
static ma_uint64 ma_decoder_internal_on_read_pcm_frames__vorbis(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
ma_vorbis_decoder* pVorbis;
MA_ASSERT(pDecoder != NULL);
MA_ASSERT(pFramesOut != NULL);
MA_ASSERT(pDecoder->internalFormat == ma_format_f32);
pVorbis = (ma_vorbis_decoder*)pDecoder->pInternalDecoder;
MA_ASSERT(pVorbis != NULL);
return ma_vorbis_decoder_read_pcm_frames(pVorbis, pDecoder, pFramesOut, frameCount);
}
static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__vorbis(ma_decoder* pDecoder)
{
/* No good way to do this with Vorbis. */
(void)pDecoder;
return 0;
}
static ma_result ma_decoder_init_vorbis__internal(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
stb_vorbis* pInternalVorbis = NULL;
size_t dataSize = 0;
size_t dataCapacity = 0;
ma_uint8* pData = NULL;
stb_vorbis_info vorbisInfo;
size_t vorbisDataSize;
ma_vorbis_decoder* pVorbis;
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pDecoder != NULL);
/* We grow the buffer in chunks. */
do
{
/* Allocate memory for a new chunk. */
ma_uint8* pNewData;
size_t bytesRead;
int vorbisError = 0;
int consumedDataSize = 0;
size_t oldCapacity = dataCapacity;
dataCapacity += MA_VORBIS_DATA_CHUNK_SIZE;
pNewData = (ma_uint8*)ma__realloc_from_callbacks(pData, dataCapacity, oldCapacity, &pDecoder->allocationCallbacks);
if (pNewData == NULL) {
ma__free_from_callbacks(pData, &pDecoder->allocationCallbacks);
return MA_OUT_OF_MEMORY;
}
pData = pNewData;
/* Fill in a chunk. */
bytesRead = ma_decoder_read_bytes(pDecoder, pData + dataSize, (dataCapacity - dataSize));
if (bytesRead == 0) {
return MA_ERROR;
}
dataSize += bytesRead;
if (dataSize > INT_MAX) {
return MA_ERROR; /* Too big. */
}
pInternalVorbis = stb_vorbis_open_pushdata(pData, (int)dataSize, &consumedDataSize, &vorbisError, NULL);
if (pInternalVorbis != NULL) {
/*
If we get here it means we were able to open the stb_vorbis decoder. There may be some leftover bytes in our buffer, so
we need to move those bytes down to the front of the buffer since they'll be needed for future decoding.
*/
size_t leftoverDataSize = (dataSize - (size_t)consumedDataSize);
size_t i;
for (i = 0; i < leftoverDataSize; ++i) {
pData[i] = pData[i + consumedDataSize];
}
dataSize = leftoverDataSize;
break; /* Success. */
} else {
if (vorbisError == VORBIS_need_more_data) {
continue;
} else {
return MA_ERROR; /* Failed to open the stb_vorbis decoder. */
}
}
} while (MA_TRUE);
/* If we get here it means we successfully opened the Vorbis decoder. */
vorbisInfo = stb_vorbis_get_info(pInternalVorbis);
/* Don't allow more than MA_MAX_CHANNELS channels. */
if (vorbisInfo.channels > MA_MAX_CHANNELS) {
stb_vorbis_close(pInternalVorbis);
ma__free_from_callbacks(pData, &pDecoder->allocationCallbacks);
return MA_ERROR; /* Too many channels. */
}
vorbisDataSize = sizeof(ma_vorbis_decoder) + sizeof(float)*vorbisInfo.max_frame_size;
pVorbis = (ma_vorbis_decoder*)ma__malloc_from_callbacks(vorbisDataSize, &pDecoder->allocationCallbacks);
if (pVorbis == NULL) {
stb_vorbis_close(pInternalVorbis);
ma__free_from_callbacks(pData, &pDecoder->allocationCallbacks);
return MA_OUT_OF_MEMORY;
}
MA_ZERO_MEMORY(pVorbis, vorbisDataSize);
pVorbis->pInternalVorbis = pInternalVorbis;
pVorbis->pData = pData;
pVorbis->dataSize = dataSize;
pVorbis->dataCapacity = dataCapacity;
pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__vorbis;
pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__vorbis;
pDecoder->onUninit = ma_decoder_internal_on_uninit__vorbis;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__vorbis;
pDecoder->pInternalDecoder = pVorbis;
/* The internal format is always f32. */
pDecoder->internalFormat = ma_format_f32;
pDecoder->internalChannels = vorbisInfo.channels;
pDecoder->internalSampleRate = vorbisInfo.sample_rate;
ma_get_standard_channel_map(ma_standard_channel_map_vorbis, pDecoder->internalChannels, pDecoder->internalChannelMap);
return MA_SUCCESS;
}
#endif /* STB_VORBIS_INCLUDE_STB_VORBIS_H */
/* Raw */
static ma_uint64 ma_decoder_internal_on_read_pcm_frames__raw(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint32 bpf;
ma_uint64 totalFramesRead;
void* pRunningFramesOut;
MA_ASSERT(pDecoder != NULL);
/* For raw decoding we just read directly from the decoder's callbacks. */
bpf = ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels);
totalFramesRead = 0;
pRunningFramesOut = pFramesOut;
while (totalFramesRead < frameCount) {
ma_uint64 framesReadThisIteration;
ma_uint64 framesToReadThisIteration = (frameCount - totalFramesRead);
if (framesToReadThisIteration > 0x7FFFFFFF/bpf) {
framesToReadThisIteration = 0x7FFFFFFF/bpf;
}
if (pFramesOut != NULL) {
framesReadThisIteration = ma_decoder_read_bytes(pDecoder, pRunningFramesOut, (size_t)framesToReadThisIteration * bpf) / bpf; /* Safe cast to size_t. */
pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIteration * bpf);
} else {
/* We'll first try seeking. If this fails it means the end was reached and we'll to do a read-and-discard slow path to get the exact amount. */
if (ma_decoder_seek_bytes(pDecoder, (int)framesToReadThisIteration, ma_seek_origin_current)) {
framesReadThisIteration = framesToReadThisIteration;
} else {
/* Slow path. Need to fall back to a read-and-discard. This is required so we can get the exact number of remaining. */
ma_uint8 buffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE];
ma_uint32 bufferCap = sizeof(buffer) / bpf;
framesReadThisIteration = 0;
while (framesReadThisIteration < framesToReadThisIteration) {
ma_uint64 framesReadNow;
ma_uint64 framesToReadNow = framesToReadThisIteration - framesReadThisIteration;
if (framesToReadNow > bufferCap) {
framesToReadNow = bufferCap;
}
framesReadNow = ma_decoder_read_bytes(pDecoder, buffer, (size_t)(framesToReadNow * bpf)) / bpf; /* Safe cast. */
framesReadThisIteration += framesReadNow;
if (framesReadNow < framesToReadNow) {
break; /* The end has been reached. */
}
}
}
}
totalFramesRead += framesReadThisIteration;
if (framesReadThisIteration < framesToReadThisIteration) {
break; /* Done. */
}
}
return totalFramesRead;
}
static ma_result ma_decoder_internal_on_seek_to_pcm_frame__raw(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
ma_bool32 result = MA_FALSE;
ma_uint64 totalBytesToSeek;
MA_ASSERT(pDecoder != NULL);
if (pDecoder->onSeek == NULL) {
return MA_ERROR;
}
/* The callback uses a 32 bit integer whereas we use a 64 bit unsigned integer. We just need to continuously seek until we're at the correct position. */
totalBytesToSeek = frameIndex * ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels);
if (totalBytesToSeek < 0x7FFFFFFF) {
/* Simple case. */
result = ma_decoder_seek_bytes(pDecoder, (int)(frameIndex * ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels)), ma_seek_origin_start);
} else {
/* Complex case. Start by doing a seek relative to the start. Then keep looping using offset seeking. */
result = ma_decoder_seek_bytes(pDecoder, 0x7FFFFFFF, ma_seek_origin_start);
if (result == MA_TRUE) {
totalBytesToSeek -= 0x7FFFFFFF;
while (totalBytesToSeek > 0) {
ma_uint64 bytesToSeekThisIteration = totalBytesToSeek;
if (bytesToSeekThisIteration > 0x7FFFFFFF) {
bytesToSeekThisIteration = 0x7FFFFFFF;
}
result = ma_decoder_seek_bytes(pDecoder, (int)bytesToSeekThisIteration, ma_seek_origin_current);
if (result != MA_TRUE) {
break;
}
totalBytesToSeek -= bytesToSeekThisIteration;
}
}
}
if (result) {
return MA_SUCCESS;
} else {
return MA_ERROR;
}
}
static ma_result ma_decoder_internal_on_uninit__raw(ma_decoder* pDecoder)
{
(void)pDecoder;
return MA_SUCCESS;
}
static ma_uint64 ma_decoder_internal_on_get_length_in_pcm_frames__raw(ma_decoder* pDecoder)
{
(void)pDecoder;
return 0;
}
static ma_result ma_decoder_init_raw__internal(const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
{
MA_ASSERT(pConfigIn != NULL);
MA_ASSERT(pConfigOut != NULL);
MA_ASSERT(pDecoder != NULL);
pDecoder->onReadPCMFrames = ma_decoder_internal_on_read_pcm_frames__raw;
pDecoder->onSeekToPCMFrame = ma_decoder_internal_on_seek_to_pcm_frame__raw;
pDecoder->onUninit = ma_decoder_internal_on_uninit__raw;
pDecoder->onGetLengthInPCMFrames = ma_decoder_internal_on_get_length_in_pcm_frames__raw;
/* Internal format. */
pDecoder->internalFormat = pConfigIn->format;
pDecoder->internalChannels = pConfigIn->channels;
pDecoder->internalSampleRate = pConfigIn->sampleRate;
ma_channel_map_copy(pDecoder->internalChannelMap, pConfigIn->channelMap, pConfigIn->channels);
return MA_SUCCESS;
}
static ma_result ma_decoder__init_allocation_callbacks(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
MA_ASSERT(pDecoder != NULL);
if (pConfig != NULL) {
return ma_allocation_callbacks_init_copy(&pDecoder->allocationCallbacks, &pConfig->allocationCallbacks);
} else {
pDecoder->allocationCallbacks = ma_allocation_callbacks_init_default();
return MA_SUCCESS;
}
}
static ma_result ma_decoder__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead)
{
ma_uint64 framesRead = ma_decoder_read_pcm_frames((ma_decoder*)pDataSource, pFramesOut, frameCount);
if (pFramesRead != NULL) {
*pFramesRead = framesRead;
}
if (framesRead < frameCount) {
return MA_AT_END;
}
return MA_SUCCESS;
}
static ma_result ma_decoder__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex)
{
return ma_decoder_seek_to_pcm_frame((ma_decoder*)pDataSource, frameIndex);
}
static ma_result ma_decoder__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
{
ma_decoder* pDecoder = (ma_decoder*)pDataSource;
*pFormat = pDecoder->outputFormat;
*pChannels = pDecoder->outputChannels;
return MA_SUCCESS;
}
static ma_result ma_decoder__preinit(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result;
MA_ASSERT(pConfig != NULL);
if (pDecoder == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pDecoder);
if (onRead == NULL || onSeek == NULL) {
return MA_INVALID_ARGS;
}
pDecoder->ds.onRead = ma_decoder__data_source_on_read;
pDecoder->ds.onSeek = ma_decoder__data_source_on_seek;
pDecoder->ds.onGetDataFormat = ma_decoder__data_source_on_get_data_format;
pDecoder->onRead = onRead;
pDecoder->onSeek = onSeek;
pDecoder->pUserData = pUserData;
result = ma_decoder__init_allocation_callbacks(pConfig, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
static ma_result ma_decoder__postinit(const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result = MA_SUCCESS;
/* Basic validation in case the internal decoder supports different limits to miniaudio. */
if (pDecoder->internalChannels < MA_MIN_CHANNELS || pDecoder->internalChannels > MA_MAX_CHANNELS) {
result = MA_INVALID_DATA;
}
if (result == MA_SUCCESS) {
result = ma_decoder__init_data_converter(pDecoder, pConfig);
}
/* If we failed post initialization we need to uninitialize the decoder before returning to prevent a memory leak. */
if (result != MA_SUCCESS) {
ma_decoder_uninit(pDecoder);
return result;
}
return result;
}
MA_API ma_result ma_decoder_init_wav(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_WAV
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_wav__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
#else
(void)onRead;
(void)onSeek;
(void)pUserData;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_flac(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_FLAC
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_flac__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
#else
(void)onRead;
(void)onSeek;
(void)pUserData;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_mp3(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_MP3
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_mp3__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
#else
(void)onRead;
(void)onSeek;
(void)pUserData;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_vorbis(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_VORBIS
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_vorbis__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
#else
(void)onRead;
(void)onSeek;
(void)pUserData;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_raw(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
{
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfigOut);
result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_raw__internal(pConfigIn, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
}
static ma_result ma_decoder_init__internal(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result = MA_NO_BACKEND;
MA_ASSERT(pConfig != NULL);
MA_ASSERT(pDecoder != NULL);
/* Silence some warnings in the case that we don't have any decoder backends enabled. */
(void)onRead;
(void)onSeek;
(void)pUserData;
(void)pConfig;
(void)pDecoder;
/* We use trial and error to open a decoder. */
#ifdef MA_HAS_WAV
if (result != MA_SUCCESS) {
result = ma_decoder_init_wav__internal(pConfig, pDecoder);
if (result != MA_SUCCESS) {
onSeek(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
#ifdef MA_HAS_FLAC
if (result != MA_SUCCESS) {
result = ma_decoder_init_flac__internal(pConfig, pDecoder);
if (result != MA_SUCCESS) {
onSeek(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
#ifdef MA_HAS_MP3
if (result != MA_SUCCESS) {
result = ma_decoder_init_mp3__internal(pConfig, pDecoder);
if (result != MA_SUCCESS) {
onSeek(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
#ifdef MA_HAS_VORBIS
if (result != MA_SUCCESS) {
result = ma_decoder_init_vorbis__internal(pConfig, pDecoder);
if (result != MA_SUCCESS) {
onSeek(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init(ma_decoder_read_proc onRead, ma_decoder_seek_proc onSeek, void* pUserData, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit(onRead, onSeek, pUserData, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder_init__internal(onRead, onSeek, pUserData, &config, pDecoder);
}
static size_t ma_decoder__on_read_memory(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
{
size_t bytesRemaining;
MA_ASSERT(pDecoder->backend.memory.dataSize >= pDecoder->backend.memory.currentReadPos);
bytesRemaining = pDecoder->backend.memory.dataSize - pDecoder->backend.memory.currentReadPos;
if (bytesToRead > bytesRemaining) {
bytesToRead = bytesRemaining;
}
if (bytesToRead > 0) {
MA_COPY_MEMORY(pBufferOut, pDecoder->backend.memory.pData + pDecoder->backend.memory.currentReadPos, bytesToRead);
pDecoder->backend.memory.currentReadPos += bytesToRead;
}
return bytesToRead;
}
static ma_bool32 ma_decoder__on_seek_memory(ma_decoder* pDecoder, int byteOffset, ma_seek_origin origin)
{
if (origin == ma_seek_origin_current) {
if (byteOffset > 0) {
if (pDecoder->backend.memory.currentReadPos + byteOffset > pDecoder->backend.memory.dataSize) {
byteOffset = (int)(pDecoder->backend.memory.dataSize - pDecoder->backend.memory.currentReadPos); /* Trying to seek too far forward. */
}
} else {
if (pDecoder->backend.memory.currentReadPos < (size_t)-byteOffset) {
byteOffset = -(int)pDecoder->backend.memory.currentReadPos; /* Trying to seek too far backwards. */
}
}
/* This will never underflow thanks to the clamps above. */
pDecoder->backend.memory.currentReadPos += byteOffset;
} else {
if ((ma_uint32)byteOffset <= pDecoder->backend.memory.dataSize) {
pDecoder->backend.memory.currentReadPos = byteOffset;
} else {
pDecoder->backend.memory.currentReadPos = pDecoder->backend.memory.dataSize; /* Trying to seek too far forward. */
}
}
return MA_TRUE;
}
static ma_result ma_decoder__preinit_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result = ma_decoder__preinit(ma_decoder__on_read_memory, ma_decoder__on_seek_memory, NULL, pConfig, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
if (pData == NULL || dataSize == 0) {
return MA_INVALID_ARGS;
}
pDecoder->backend.memory.pData = (const ma_uint8*)pData;
pDecoder->backend.memory.dataSize = dataSize;
pDecoder->backend.memory.currentReadPos = 0;
(void)pConfig;
return MA_SUCCESS;
}
MA_API ma_result ma_decoder_init_memory(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder_init__internal(ma_decoder__on_read_memory, ma_decoder__on_seek_memory, NULL, &config, pDecoder);
}
MA_API ma_result ma_decoder_init_memory_wav(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_WAV
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_wav__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
#else
(void)pData;
(void)dataSize;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_memory_flac(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_FLAC
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_flac__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
#else
(void)pData;
(void)dataSize;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_memory_mp3(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_MP3
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_mp3__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
#else
(void)pData;
(void)dataSize;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_memory_vorbis(const void* pData, size_t dataSize, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_VORBIS
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfig); /* Make sure the config is not NULL. */
result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_vorbis__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
#else
(void)pData;
(void)dataSize;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_memory_raw(const void* pData, size_t dataSize, const ma_decoder_config* pConfigIn, const ma_decoder_config* pConfigOut, ma_decoder* pDecoder)
{
ma_decoder_config config;
ma_result result;
config = ma_decoder_config_init_copy(pConfigOut); /* Make sure the config is not NULL. */
result = ma_decoder__preinit_memory(pData, dataSize, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_raw__internal(pConfigIn, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__postinit(&config, pDecoder);
}
static const char* ma_path_file_name(const char* path)
{
const char* fileName;
if (path == NULL) {
return NULL;
}
fileName = path;
/* We just loop through the path until we find the last slash. */
while (path[0] != '\0') {
if (path[0] == '/' || path[0] == '\\') {
fileName = path;
}
path += 1;
}
/* At this point the file name is sitting on a slash, so just move forward. */
while (fileName[0] != '\0' && (fileName[0] == '/' || fileName[0] == '\\')) {
fileName += 1;
}
return fileName;
}
static const wchar_t* ma_path_file_name_w(const wchar_t* path)
{
const wchar_t* fileName;
if (path == NULL) {
return NULL;
}
fileName = path;
/* We just loop through the path until we find the last slash. */
while (path[0] != '\0') {
if (path[0] == '/' || path[0] == '\\') {
fileName = path;
}
path += 1;
}
/* At this point the file name is sitting on a slash, so just move forward. */
while (fileName[0] != '\0' && (fileName[0] == '/' || fileName[0] == '\\')) {
fileName += 1;
}
return fileName;
}
static const char* ma_path_extension(const char* path)
{
const char* extension;
const char* lastOccurance;
if (path == NULL) {
path = "";
}
extension = ma_path_file_name(path);
lastOccurance = NULL;
/* Just find the last '.' and return. */
while (extension[0] != '\0') {
if (extension[0] == '.') {
extension += 1;
lastOccurance = extension;
}
extension += 1;
}
return (lastOccurance != NULL) ? lastOccurance : extension;
}
static const wchar_t* ma_path_extension_w(const wchar_t* path)
{
const wchar_t* extension;
const wchar_t* lastOccurance;
if (path == NULL) {
path = L"";
}
extension = ma_path_file_name_w(path);
lastOccurance = NULL;
/* Just find the last '.' and return. */
while (extension[0] != '\0') {
if (extension[0] == '.') {
extension += 1;
lastOccurance = extension;
}
extension += 1;
}
return (lastOccurance != NULL) ? lastOccurance : extension;
}
static ma_bool32 ma_path_extension_equal(const char* path, const char* extension)
{
const char* ext1;
const char* ext2;
if (path == NULL || extension == NULL) {
return MA_FALSE;
}
ext1 = extension;
ext2 = ma_path_extension(path);
#if defined(_MSC_VER) || defined(__DMC__)
return _stricmp(ext1, ext2) == 0;
#else
return strcasecmp(ext1, ext2) == 0;
#endif
}
static ma_bool32 ma_path_extension_equal_w(const wchar_t* path, const wchar_t* extension)
{
const wchar_t* ext1;
const wchar_t* ext2;
if (path == NULL || extension == NULL) {
return MA_FALSE;
}
ext1 = extension;
ext2 = ma_path_extension_w(path);
#if defined(_MSC_VER) || defined(__DMC__)
return _wcsicmp(ext1, ext2) == 0;
#else
/*
I'm not aware of a wide character version of strcasecmp(). I'm therefore converting the extensions to multibyte strings and comparing those. This
isn't the most efficient way to do it, but it should work OK.
*/
{
char ext1MB[4096];
char ext2MB[4096];
const wchar_t* pext1 = ext1;
const wchar_t* pext2 = ext2;
mbstate_t mbs1;
mbstate_t mbs2;
MA_ZERO_OBJECT(&mbs1);
MA_ZERO_OBJECT(&mbs2);
if (wcsrtombs(ext1MB, &pext1, sizeof(ext1MB), &mbs1) == (size_t)-1) {
return MA_FALSE;
}
if (wcsrtombs(ext2MB, &pext2, sizeof(ext2MB), &mbs2) == (size_t)-1) {
return MA_FALSE;
}
return strcasecmp(ext1MB, ext2MB) == 0;
}
#endif
}
static size_t ma_decoder__on_read_vfs(ma_decoder* pDecoder, void* pBufferOut, size_t bytesToRead)
{
size_t bytesRead;
MA_ASSERT(pDecoder != NULL);
MA_ASSERT(pBufferOut != NULL);
if (pDecoder->backend.vfs.pVFS == NULL) {
ma_default_vfs_read(NULL, pDecoder->backend.vfs.file, pBufferOut, bytesToRead, &bytesRead);
} else {
ma_vfs_read(pDecoder->backend.vfs.pVFS, pDecoder->backend.vfs.file, pBufferOut, bytesToRead, &bytesRead);
}
return bytesRead;
}
static ma_bool32 ma_decoder__on_seek_vfs(ma_decoder* pDecoder, int offset, ma_seek_origin origin)
{
ma_result result;
MA_ASSERT(pDecoder != NULL);
if (pDecoder->backend.vfs.pVFS == NULL) {
result = ma_default_vfs_seek(NULL, pDecoder->backend.vfs.file, offset, origin);
} else {
result = ma_vfs_seek(pDecoder->backend.vfs.pVFS, pDecoder->backend.vfs.file, offset, origin);
}
if (result != MA_SUCCESS) {
return MA_FALSE;
}
return MA_TRUE;
}
static ma_result ma_decoder__preinit_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result;
ma_vfs_file file;
result = ma_decoder__preinit(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, pConfig, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
if (pFilePath == NULL || pFilePath[0] == '\0') {
return MA_INVALID_ARGS;
}
if (pVFS == NULL) {
result = ma_default_vfs_open(NULL, pFilePath, MA_OPEN_MODE_READ, &file);
} else {
result = ma_vfs_open(pVFS, pFilePath, MA_OPEN_MODE_READ, &file);
}
if (result != MA_SUCCESS) {
return result;
}
pDecoder->backend.vfs.pVFS = pVFS;
pDecoder->backend.vfs.file = file;
return MA_SUCCESS;
}
MA_API ma_result ma_decoder_init_vfs(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = MA_NO_BACKEND;
#ifdef MA_HAS_WAV
if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "wav")) {
result = ma_decoder_init_wav__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
#ifdef MA_HAS_FLAC
if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "flac")) {
result = ma_decoder_init_flac__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
#ifdef MA_HAS_MP3
if (result != MA_SUCCESS && ma_path_extension_equal(pFilePath, "mp3")) {
result = ma_decoder_init_mp3__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
/* If we still haven't got a result just use trial and error. Otherwise we can finish up. */
if (result != MA_SUCCESS) {
result = ma_decoder_init__internal(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, &config, pDecoder);
} else {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_decoder_init_vfs_wav(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_WAV
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_wav__internal(&config, pDecoder);
if (result == MA_SUCCESS) {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
}
return result;
#else
(void)pVFS;
(void)pFilePath;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_vfs_flac(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_FLAC
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_flac__internal(&config, pDecoder);
if (result == MA_SUCCESS) {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
}
return result;
#else
(void)pVFS;
(void)pFilePath;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_vfs_mp3(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_MP3
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_mp3__internal(&config, pDecoder);
if (result == MA_SUCCESS) {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
}
return result;
#else
(void)pVFS;
(void)pFilePath;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_vfs_vorbis(ma_vfs* pVFS, const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_VORBIS
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_vorbis__internal(&config, pDecoder);
if (result == MA_SUCCESS) {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
}
return result;
#else
(void)pVFS;
(void)pFilePath;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
static ma_result ma_decoder__preinit_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result;
ma_vfs_file file;
result = ma_decoder__preinit(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, pConfig, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
if (pFilePath == NULL || pFilePath[0] == '\0') {
return MA_INVALID_ARGS;
}
if (pVFS == NULL) {
result = ma_default_vfs_open_w(NULL, pFilePath, MA_OPEN_MODE_READ, &file);
} else {
result = ma_vfs_open_w(pVFS, pFilePath, MA_OPEN_MODE_READ, &file);
}
if (result != MA_SUCCESS) {
return result;
}
pDecoder->backend.vfs.pVFS = pVFS;
pDecoder->backend.vfs.file = file;
return MA_SUCCESS;
}
MA_API ma_result ma_decoder_init_vfs_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = MA_NO_BACKEND;
#ifdef MA_HAS_WAV
if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"wav")) {
result = ma_decoder_init_wav__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
#ifdef MA_HAS_FLAC
if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"flac")) {
result = ma_decoder_init_flac__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
#ifdef MA_HAS_MP3
if (result != MA_SUCCESS && ma_path_extension_equal_w(pFilePath, L"mp3")) {
result = ma_decoder_init_mp3__internal(&config, pDecoder);
if (result != MA_SUCCESS) {
ma_decoder__on_seek_vfs(pDecoder, 0, ma_seek_origin_start);
}
}
#endif
/* If we still haven't got a result just use trial and error. Otherwise we can finish up. */
if (result != MA_SUCCESS) {
result = ma_decoder_init__internal(ma_decoder__on_read_vfs, ma_decoder__on_seek_vfs, NULL, &config, pDecoder);
} else {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_decoder_init_vfs_wav_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_WAV
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_wav__internal(&config, pDecoder);
if (result == MA_SUCCESS) {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
}
return result;
#else
(void)pVFS;
(void)pFilePath;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_vfs_flac_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_FLAC
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_flac__internal(&config, pDecoder);
if (result == MA_SUCCESS) {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
}
return result;
#else
(void)pVFS;
(void)pFilePath;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_vfs_mp3_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_MP3
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_mp3__internal(&config, pDecoder);
if (result == MA_SUCCESS) {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
}
return result;
#else
(void)pVFS;
(void)pFilePath;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_vfs_vorbis_w(ma_vfs* pVFS, const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
#ifdef MA_HAS_VORBIS
ma_result result;
ma_decoder_config config;
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder__preinit_vfs_w(pVFS, pFilePath, &config, pDecoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder_init_vorbis__internal(&config, pDecoder);
if (result == MA_SUCCESS) {
result = ma_decoder__postinit(&config, pDecoder);
}
if (result != MA_SUCCESS) {
ma_vfs_close(pVFS, pDecoder->backend.vfs.file);
}
return result;
#else
(void)pVFS;
(void)pFilePath;
(void)pConfig;
(void)pDecoder;
return MA_NO_BACKEND;
#endif
}
MA_API ma_result ma_decoder_init_file(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init_file_wav(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs_wav(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init_file_flac(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs_flac(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init_file_mp3(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs_mp3(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init_file_vorbis(const char* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs_vorbis(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init_file_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs_w(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init_file_wav_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs_wav_w(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init_file_flac_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs_flac_w(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init_file_mp3_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs_mp3_w(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_init_file_vorbis_w(const wchar_t* pFilePath, const ma_decoder_config* pConfig, ma_decoder* pDecoder)
{
return ma_decoder_init_vfs_vorbis_w(NULL, pFilePath, pConfig, pDecoder);
}
MA_API ma_result ma_decoder_uninit(ma_decoder* pDecoder)
{
if (pDecoder == NULL) {
return MA_INVALID_ARGS;
}
if (pDecoder->onUninit) {
pDecoder->onUninit(pDecoder);
}
if (pDecoder->onRead == ma_decoder__on_read_vfs) {
if (pDecoder->backend.vfs.pVFS == NULL) {
ma_default_vfs_close(NULL, pDecoder->backend.vfs.file);
} else {
ma_vfs_close(pDecoder->backend.vfs.pVFS, pDecoder->backend.vfs.file);
}
}
ma_data_converter_uninit(&pDecoder->converter);
return MA_SUCCESS;
}
MA_API ma_uint64 ma_decoder_get_length_in_pcm_frames(ma_decoder* pDecoder)
{
if (pDecoder == NULL) {
return 0;
}
if (pDecoder->onGetLengthInPCMFrames) {
ma_uint64 nativeLengthInPCMFrames = pDecoder->onGetLengthInPCMFrames(pDecoder);
if (pDecoder->internalSampleRate == pDecoder->outputSampleRate) {
return nativeLengthInPCMFrames;
} else {
return ma_calculate_frame_count_after_resampling(pDecoder->outputSampleRate, pDecoder->internalSampleRate, nativeLengthInPCMFrames);
}
}
return 0;
}
MA_API ma_uint64 ma_decoder_read_pcm_frames(ma_decoder* pDecoder, void* pFramesOut, ma_uint64 frameCount)
{
ma_result result;
ma_uint64 totalFramesReadOut;
ma_uint64 totalFramesReadIn;
void* pRunningFramesOut;
if (pDecoder == NULL) {
return 0;
}
if (pDecoder->onReadPCMFrames == NULL) {
return 0;
}
/* Fast path. */
if (pDecoder->converter.isPassthrough) {
return pDecoder->onReadPCMFrames(pDecoder, pFramesOut, frameCount);
}
/*
Getting here means we need to do data conversion. If we're seeking forward and are _not_ doing resampling we can run this in a fast path. If we're doing resampling we
need to run through each sample because we need to ensure it's internal cache is updated.
*/
if (pFramesOut == NULL && pDecoder->converter.hasResampler == MA_FALSE) {
return pDecoder->onReadPCMFrames(pDecoder, NULL, frameCount); /* All decoder backends must support passing in NULL for the output buffer. */
}
/* Slow path. Need to run everything through the data converter. */
totalFramesReadOut = 0;
totalFramesReadIn = 0;
pRunningFramesOut = pFramesOut;
while (totalFramesReadOut < frameCount) {
ma_uint8 pIntermediaryBuffer[MA_DATA_CONVERTER_STACK_BUFFER_SIZE]; /* In internal format. */
ma_uint64 intermediaryBufferCap = sizeof(pIntermediaryBuffer) / ma_get_bytes_per_frame(pDecoder->internalFormat, pDecoder->internalChannels);
ma_uint64 framesToReadThisIterationIn;
ma_uint64 framesReadThisIterationIn;
ma_uint64 framesToReadThisIterationOut;
ma_uint64 framesReadThisIterationOut;
ma_uint64 requiredInputFrameCount;
framesToReadThisIterationOut = (frameCount - totalFramesReadOut);
framesToReadThisIterationIn = framesToReadThisIterationOut;
if (framesToReadThisIterationIn > intermediaryBufferCap) {
framesToReadThisIterationIn = intermediaryBufferCap;
}
requiredInputFrameCount = ma_data_converter_get_required_input_frame_count(&pDecoder->converter, framesToReadThisIterationOut);
if (framesToReadThisIterationIn > requiredInputFrameCount) {
framesToReadThisIterationIn = requiredInputFrameCount;
}
if (requiredInputFrameCount > 0) {
framesReadThisIterationIn = pDecoder->onReadPCMFrames(pDecoder, pIntermediaryBuffer, framesToReadThisIterationIn);
totalFramesReadIn += framesReadThisIterationIn;
}
/*
At this point we have our decoded data in input format and now we need to convert to output format. Note that even if we didn't read any
input frames, we still want to try processing frames because there may some output frames generated from cached input data.
*/
framesReadThisIterationOut = framesToReadThisIterationOut;
result = ma_data_converter_process_pcm_frames(&pDecoder->converter, pIntermediaryBuffer, &framesReadThisIterationIn, pRunningFramesOut, &framesReadThisIterationOut);
if (result != MA_SUCCESS) {
break;
}
totalFramesReadOut += framesReadThisIterationOut;
if (pRunningFramesOut != NULL) {
pRunningFramesOut = ma_offset_ptr(pRunningFramesOut, framesReadThisIterationOut * ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels));
}
if (framesReadThisIterationIn == 0 && framesReadThisIterationOut == 0) {
break; /* We're done. */
}
}
return totalFramesReadOut;
}
MA_API ma_result ma_decoder_seek_to_pcm_frame(ma_decoder* pDecoder, ma_uint64 frameIndex)
{
if (pDecoder == NULL) {
return MA_INVALID_ARGS;
}
if (pDecoder->onSeekToPCMFrame) {
ma_uint64 internalFrameIndex;
if (pDecoder->internalSampleRate == pDecoder->outputSampleRate) {
internalFrameIndex = frameIndex;
} else {
internalFrameIndex = ma_calculate_frame_count_after_resampling(pDecoder->internalSampleRate, pDecoder->outputSampleRate, frameIndex);
}
return pDecoder->onSeekToPCMFrame(pDecoder, internalFrameIndex);
}
/* Should never get here, but if we do it means onSeekToPCMFrame was not set by the backend. */
return MA_INVALID_ARGS;
}
static ma_result ma_decoder__full_decode_and_uninit(ma_decoder* pDecoder, ma_decoder_config* pConfigOut, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
{
ma_uint64 totalFrameCount;
ma_uint64 bpf;
ma_uint64 dataCapInFrames;
void* pPCMFramesOut;
MA_ASSERT(pDecoder != NULL);
totalFrameCount = 0;
bpf = ma_get_bytes_per_frame(pDecoder->outputFormat, pDecoder->outputChannels);
/* The frame count is unknown until we try reading. Thus, we just run in a loop. */
dataCapInFrames = 0;
pPCMFramesOut = NULL;
for (;;) {
ma_uint64 frameCountToTryReading;
ma_uint64 framesJustRead;
/* Make room if there's not enough. */
if (totalFrameCount == dataCapInFrames) {
void* pNewPCMFramesOut;
ma_uint64 oldDataCapInFrames = dataCapInFrames;
ma_uint64 newDataCapInFrames = dataCapInFrames*2;
if (newDataCapInFrames == 0) {
newDataCapInFrames = 4096;
}
if ((newDataCapInFrames * bpf) > MA_SIZE_MAX) {
ma__free_from_callbacks(pPCMFramesOut, &pDecoder->allocationCallbacks);
return MA_TOO_BIG;
}
pNewPCMFramesOut = (void*)ma__realloc_from_callbacks(pPCMFramesOut, (size_t)(newDataCapInFrames * bpf), (size_t)(oldDataCapInFrames * bpf), &pDecoder->allocationCallbacks);
if (pNewPCMFramesOut == NULL) {
ma__free_from_callbacks(pPCMFramesOut, &pDecoder->allocationCallbacks);
return MA_OUT_OF_MEMORY;
}
dataCapInFrames = newDataCapInFrames;
pPCMFramesOut = pNewPCMFramesOut;
}
frameCountToTryReading = dataCapInFrames - totalFrameCount;
MA_ASSERT(frameCountToTryReading > 0);
framesJustRead = ma_decoder_read_pcm_frames(pDecoder, (ma_uint8*)pPCMFramesOut + (totalFrameCount * bpf), frameCountToTryReading);
totalFrameCount += framesJustRead;
if (framesJustRead < frameCountToTryReading) {
break;
}
}
if (pConfigOut != NULL) {
pConfigOut->format = pDecoder->outputFormat;
pConfigOut->channels = pDecoder->outputChannels;
pConfigOut->sampleRate = pDecoder->outputSampleRate;
ma_channel_map_copy(pConfigOut->channelMap, pDecoder->outputChannelMap, pDecoder->outputChannels);
}
if (ppPCMFramesOut != NULL) {
*ppPCMFramesOut = pPCMFramesOut;
} else {
ma__free_from_callbacks(pPCMFramesOut, &pDecoder->allocationCallbacks);
}
if (pFrameCountOut != NULL) {
*pFrameCountOut = totalFrameCount;
}
ma_decoder_uninit(pDecoder);
return MA_SUCCESS;
}
MA_API ma_result ma_decode_from_vfs(ma_vfs* pVFS, const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
{
ma_result result;
ma_decoder_config config;
ma_decoder decoder;
if (pFrameCountOut != NULL) {
*pFrameCountOut = 0;
}
if (ppPCMFramesOut != NULL) {
*ppPCMFramesOut = NULL;
}
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder_init_vfs(pVFS, pFilePath, &config, &decoder);
if (result != MA_SUCCESS) {
return result;
}
result = ma_decoder__full_decode_and_uninit(&decoder, pConfig, pFrameCountOut, ppPCMFramesOut);
return result;
}
MA_API ma_result ma_decode_file(const char* pFilePath, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
{
return ma_decode_from_vfs(NULL, pFilePath, pConfig, pFrameCountOut, ppPCMFramesOut);
}
MA_API ma_result ma_decode_memory(const void* pData, size_t dataSize, ma_decoder_config* pConfig, ma_uint64* pFrameCountOut, void** ppPCMFramesOut)
{
ma_decoder_config config;
ma_decoder decoder;
ma_result result;
if (pFrameCountOut != NULL) {
*pFrameCountOut = 0;
}
if (ppPCMFramesOut != NULL) {
*ppPCMFramesOut = NULL;
}
if (pData == NULL || dataSize == 0) {
return MA_INVALID_ARGS;
}
config = ma_decoder_config_init_copy(pConfig);
result = ma_decoder_init_memory(pData, dataSize, &config, &decoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_decoder__full_decode_and_uninit(&decoder, pConfig, pFrameCountOut, ppPCMFramesOut);
}
#endif /* MA_NO_DECODING */
#ifndef MA_NO_ENCODING
#if defined(MA_HAS_WAV)
static size_t ma_encoder__internal_on_write_wav(void* pUserData, const void* pData, size_t bytesToWrite)
{
ma_encoder* pEncoder = (ma_encoder*)pUserData;
MA_ASSERT(pEncoder != NULL);
return pEncoder->onWrite(pEncoder, pData, bytesToWrite);
}
static drwav_bool32 ma_encoder__internal_on_seek_wav(void* pUserData, int offset, drwav_seek_origin origin)
{
ma_encoder* pEncoder = (ma_encoder*)pUserData;
MA_ASSERT(pEncoder != NULL);
return pEncoder->onSeek(pEncoder, offset, (origin == drwav_seek_origin_start) ? ma_seek_origin_start : ma_seek_origin_current);
}
static ma_result ma_encoder__on_init_wav(ma_encoder* pEncoder)
{
drwav_data_format wavFormat;
drwav_allocation_callbacks allocationCallbacks;
drwav* pWav;
MA_ASSERT(pEncoder != NULL);
pWav = (drwav*)ma__malloc_from_callbacks(sizeof(*pWav), &pEncoder->config.allocationCallbacks);
if (pWav == NULL) {
return MA_OUT_OF_MEMORY;
}
wavFormat.container = drwav_container_riff;
wavFormat.channels = pEncoder->config.channels;
wavFormat.sampleRate = pEncoder->config.sampleRate;
wavFormat.bitsPerSample = ma_get_bytes_per_sample(pEncoder->config.format) * 8;
if (pEncoder->config.format == ma_format_f32) {
wavFormat.format = DR_WAVE_FORMAT_IEEE_FLOAT;
} else {
wavFormat.format = DR_WAVE_FORMAT_PCM;
}
allocationCallbacks.pUserData = pEncoder->config.allocationCallbacks.pUserData;
allocationCallbacks.onMalloc = pEncoder->config.allocationCallbacks.onMalloc;
allocationCallbacks.onRealloc = pEncoder->config.allocationCallbacks.onRealloc;
allocationCallbacks.onFree = pEncoder->config.allocationCallbacks.onFree;
if (!drwav_init_write(pWav, &wavFormat, ma_encoder__internal_on_write_wav, ma_encoder__internal_on_seek_wav, pEncoder, &allocationCallbacks)) {
return MA_ERROR;
}
pEncoder->pInternalEncoder = pWav;
return MA_SUCCESS;
}
static void ma_encoder__on_uninit_wav(ma_encoder* pEncoder)
{
drwav* pWav;
MA_ASSERT(pEncoder != NULL);
pWav = (drwav*)pEncoder->pInternalEncoder;
MA_ASSERT(pWav != NULL);
drwav_uninit(pWav);
ma__free_from_callbacks(pWav, &pEncoder->config.allocationCallbacks);
}
static ma_uint64 ma_encoder__on_write_pcm_frames_wav(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount)
{
drwav* pWav;
MA_ASSERT(pEncoder != NULL);
pWav = (drwav*)pEncoder->pInternalEncoder;
MA_ASSERT(pWav != NULL);
return drwav_write_pcm_frames(pWav, frameCount, pFramesIn);
}
#endif
MA_API ma_encoder_config ma_encoder_config_init(ma_resource_format resourceFormat, ma_format format, ma_uint32 channels, ma_uint32 sampleRate)
{
ma_encoder_config config;
MA_ZERO_OBJECT(&config);
config.resourceFormat = resourceFormat;
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
return config;
}
MA_API ma_result ma_encoder_preinit(const ma_encoder_config* pConfig, ma_encoder* pEncoder)
{
ma_result result;
if (pEncoder == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pEncoder);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
if (pConfig->format == ma_format_unknown || pConfig->channels == 0 || pConfig->sampleRate == 0) {
return MA_INVALID_ARGS;
}
pEncoder->config = *pConfig;
result = ma_allocation_callbacks_init_copy(&pEncoder->config.allocationCallbacks, &pConfig->allocationCallbacks);
if (result != MA_SUCCESS) {
return result;
}
return MA_SUCCESS;
}
MA_API ma_result ma_encoder_init__internal(ma_encoder_write_proc onWrite, ma_encoder_seek_proc onSeek, void* pUserData, ma_encoder* pEncoder)
{
ma_result result = MA_SUCCESS;
/* This assumes ma_encoder_preinit() has been called prior. */
MA_ASSERT(pEncoder != NULL);
if (onWrite == NULL || onSeek == NULL) {
return MA_INVALID_ARGS;
}
pEncoder->onWrite = onWrite;
pEncoder->onSeek = onSeek;
pEncoder->pUserData = pUserData;
switch (pEncoder->config.resourceFormat)
{
case ma_resource_format_wav:
{
#if defined(MA_HAS_WAV)
pEncoder->onInit = ma_encoder__on_init_wav;
pEncoder->onUninit = ma_encoder__on_uninit_wav;
pEncoder->onWritePCMFrames = ma_encoder__on_write_pcm_frames_wav;
#else
result = MA_NO_BACKEND;
#endif
} break;
default:
{
result = MA_INVALID_ARGS;
} break;
}
/* Getting here means we should have our backend callbacks set up. */
if (result == MA_SUCCESS) {
result = pEncoder->onInit(pEncoder);
if (result != MA_SUCCESS) {
return result;
}
}
return MA_SUCCESS;
}
MA_API size_t ma_encoder__on_write_stdio(ma_encoder* pEncoder, const void* pBufferIn, size_t bytesToWrite)
{
return fwrite(pBufferIn, 1, bytesToWrite, (FILE*)pEncoder->pFile);
}
MA_API ma_bool32 ma_encoder__on_seek_stdio(ma_encoder* pEncoder, int byteOffset, ma_seek_origin origin)
{
return fseek((FILE*)pEncoder->pFile, byteOffset, (origin == ma_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
}
MA_API ma_result ma_encoder_init_file(const char* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder)
{
ma_result result;
FILE* pFile;
result = ma_encoder_preinit(pConfig, pEncoder);
if (result != MA_SUCCESS) {
return result;
}
/* Now open the file. If this fails we don't need to uninitialize the encoder. */
result = ma_fopen(&pFile, pFilePath, "wb");
if (pFile == NULL) {
return result;
}
pEncoder->pFile = pFile;
return ma_encoder_init__internal(ma_encoder__on_write_stdio, ma_encoder__on_seek_stdio, NULL, pEncoder);
}
MA_API ma_result ma_encoder_init_file_w(const wchar_t* pFilePath, const ma_encoder_config* pConfig, ma_encoder* pEncoder)
{
ma_result result;
FILE* pFile;
result = ma_encoder_preinit(pConfig, pEncoder);
if (result != MA_SUCCESS) {
return result;
}
/* Now open the file. If this fails we don't need to uninitialize the encoder. */
result = ma_wfopen(&pFile, pFilePath, L"wb", &pEncoder->config.allocationCallbacks);
if (pFile != NULL) {
return result;
}
pEncoder->pFile = pFile;
return ma_encoder_init__internal(ma_encoder__on_write_stdio, ma_encoder__on_seek_stdio, NULL, pEncoder);
}
MA_API ma_result ma_encoder_init(ma_encoder_write_proc onWrite, ma_encoder_seek_proc onSeek, void* pUserData, const ma_encoder_config* pConfig, ma_encoder* pEncoder)
{
ma_result result;
result = ma_encoder_preinit(pConfig, pEncoder);
if (result != MA_SUCCESS) {
return result;
}
return ma_encoder_init__internal(onWrite, onSeek, pUserData, pEncoder);
}
MA_API void ma_encoder_uninit(ma_encoder* pEncoder)
{
if (pEncoder == NULL) {
return;
}
if (pEncoder->onUninit) {
pEncoder->onUninit(pEncoder);
}
/* If we have a file handle, close it. */
if (pEncoder->onWrite == ma_encoder__on_write_stdio) {
fclose((FILE*)pEncoder->pFile);
}
}
MA_API ma_uint64 ma_encoder_write_pcm_frames(ma_encoder* pEncoder, const void* pFramesIn, ma_uint64 frameCount)
{
if (pEncoder == NULL || pFramesIn == NULL) {
return 0;
}
return pEncoder->onWritePCMFrames(pEncoder, pFramesIn, frameCount);
}
#endif /* MA_NO_ENCODING */
/**************************************************************************************************************************************************************
Generation
**************************************************************************************************************************************************************/
#ifndef MA_NO_GENERATION
MA_API ma_waveform_config ma_waveform_config_init(ma_format format, ma_uint32 channels, ma_uint32 sampleRate, ma_waveform_type type, double amplitude, double frequency)
{
ma_waveform_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.sampleRate = sampleRate;
config.type = type;
config.amplitude = amplitude;
config.frequency = frequency;
return config;
}
static ma_result ma_waveform__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead)
{
ma_uint64 framesRead = ma_waveform_read_pcm_frames((ma_waveform*)pDataSource, pFramesOut, frameCount);
if (pFramesRead != NULL) {
*pFramesRead = framesRead;
}
if (framesRead < frameCount) {
return MA_AT_END;
}
return MA_SUCCESS;
}
static ma_result ma_waveform__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex)
{
return ma_waveform_seek_to_pcm_frame((ma_waveform*)pDataSource, frameIndex);
}
static ma_result ma_waveform__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
{
ma_waveform* pWaveform = (ma_waveform*)pDataSource;
*pFormat = pWaveform->config.format;
*pChannels = pWaveform->config.channels;
return MA_SUCCESS;
}
MA_API ma_result ma_waveform_init(const ma_waveform_config* pConfig, ma_waveform* pWaveform)
{
if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pWaveform);
pWaveform->ds.onRead = ma_waveform__data_source_on_read;
pWaveform->ds.onSeek = ma_waveform__data_source_on_seek;
pWaveform->ds.onGetDataFormat = ma_waveform__data_source_on_get_data_format;
pWaveform->config = *pConfig;
pWaveform->advance = 1.0 / pWaveform->config.sampleRate;
pWaveform->time = 0;
return MA_SUCCESS;
}
MA_API ma_result ma_waveform_set_amplitude(ma_waveform* pWaveform, double amplitude)
{
if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
pWaveform->config.amplitude = amplitude;
return MA_SUCCESS;
}
MA_API ma_result ma_waveform_set_frequency(ma_waveform* pWaveform, double frequency)
{
if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
pWaveform->config.frequency = frequency;
return MA_SUCCESS;
}
MA_API ma_result ma_waveform_set_sample_rate(ma_waveform* pWaveform, ma_uint32 sampleRate)
{
if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
pWaveform->advance = 1.0 / sampleRate;
return MA_SUCCESS;
}
static float ma_waveform_sine_f32(double time, double frequency, double amplitude)
{
return (float)(ma_sin(MA_TAU_D * time * frequency) * amplitude);
}
static ma_int16 ma_waveform_sine_s16(double time, double frequency, double amplitude)
{
return ma_pcm_sample_f32_to_s16(ma_waveform_sine_f32(time, frequency, amplitude));
}
static float ma_waveform_square_f32(double time, double frequency, double amplitude)
{
double t = time * frequency;
double f = t - (ma_int64)t;
double r;
if (f < 0.5) {
r = amplitude;
} else {
r = -amplitude;
}
return (float)r;
}
static ma_int16 ma_waveform_square_s16(double time, double frequency, double amplitude)
{
return ma_pcm_sample_f32_to_s16(ma_waveform_square_f32(time, frequency, amplitude));
}
static float ma_waveform_triangle_f32(double time, double frequency, double amplitude)
{
double t = time * frequency;
double f = t - (ma_int64)t;
double r;
r = 2 * ma_abs(2 * (f - 0.5)) - 1;
return (float)(r * amplitude);
}
static ma_int16 ma_waveform_triangle_s16(double time, double frequency, double amplitude)
{
return ma_pcm_sample_f32_to_s16(ma_waveform_triangle_f32(time, frequency, amplitude));
}
static float ma_waveform_sawtooth_f32(double time, double frequency, double amplitude)
{
double t = time * frequency;
double f = t - (ma_int64)t;
double r;
r = 2 * (f - 0.5);
return (float)(r * amplitude);
}
static ma_int16 ma_waveform_sawtooth_s16(double time, double frequency, double amplitude)
{
return ma_pcm_sample_f32_to_s16(ma_waveform_sawtooth_f32(time, frequency, amplitude));
}
static void ma_waveform_read_pcm_frames__sine(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint64 iChannel;
ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format);
ma_uint32 bpf = bps * pWaveform->config.channels;
MA_ASSERT(pWaveform != NULL);
MA_ASSERT(pFramesOut != NULL);
if (pWaveform->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s;
}
}
} else if (pWaveform->config.format == ma_format_s16) {
ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_waveform_sine_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_waveform_sine_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
}
}
static void ma_waveform_read_pcm_frames__square(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint64 iChannel;
ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format);
ma_uint32 bpf = bps * pWaveform->config.channels;
MA_ASSERT(pWaveform != NULL);
MA_ASSERT(pFramesOut != NULL);
if (pWaveform->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s;
}
}
} else if (pWaveform->config.format == ma_format_s16) {
ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_waveform_square_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_waveform_square_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
}
}
static void ma_waveform_read_pcm_frames__triangle(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint64 iChannel;
ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format);
ma_uint32 bpf = bps * pWaveform->config.channels;
MA_ASSERT(pWaveform != NULL);
MA_ASSERT(pFramesOut != NULL);
if (pWaveform->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s;
}
}
} else if (pWaveform->config.format == ma_format_s16) {
ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_waveform_triangle_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_waveform_triangle_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
}
}
static void ma_waveform_read_pcm_frames__sawtooth(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint64 iChannel;
ma_uint32 bps = ma_get_bytes_per_sample(pWaveform->config.format);
ma_uint32 bpf = bps * pWaveform->config.channels;
MA_ASSERT(pWaveform != NULL);
MA_ASSERT(pFramesOut != NULL);
if (pWaveform->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pWaveform->config.channels + iChannel] = s;
}
}
} else if (pWaveform->config.format == ma_format_s16) {
ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_waveform_sawtooth_s16(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pWaveform->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_waveform_sawtooth_f32(pWaveform->time, pWaveform->config.frequency, pWaveform->config.amplitude);
pWaveform->time += pWaveform->advance;
for (iChannel = 0; iChannel < pWaveform->config.channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pWaveform->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
}
}
MA_API ma_uint64 ma_waveform_read_pcm_frames(ma_waveform* pWaveform, void* pFramesOut, ma_uint64 frameCount)
{
if (pWaveform == NULL) {
return 0;
}
if (pFramesOut != NULL) {
switch (pWaveform->config.type)
{
case ma_waveform_type_sine:
{
ma_waveform_read_pcm_frames__sine(pWaveform, pFramesOut, frameCount);
} break;
case ma_waveform_type_square:
{
ma_waveform_read_pcm_frames__square(pWaveform, pFramesOut, frameCount);
} break;
case ma_waveform_type_triangle:
{
ma_waveform_read_pcm_frames__triangle(pWaveform, pFramesOut, frameCount);
} break;
case ma_waveform_type_sawtooth:
{
ma_waveform_read_pcm_frames__sawtooth(pWaveform, pFramesOut, frameCount);
} break;
default: return 0;
}
} else {
pWaveform->time += pWaveform->advance * (ma_int64)frameCount; /* Cast to int64 required for VC6. Won't affect anything in practice. */
}
return frameCount;
}
MA_API ma_result ma_waveform_seek_to_pcm_frame(ma_waveform* pWaveform, ma_uint64 frameIndex)
{
if (pWaveform == NULL) {
return MA_INVALID_ARGS;
}
pWaveform->time = pWaveform->advance * (ma_int64)frameIndex; /* Casting for VC6. Won't be an issue in practice. */
return MA_SUCCESS;
}
MA_API ma_noise_config ma_noise_config_init(ma_format format, ma_uint32 channels, ma_noise_type type, ma_int32 seed, double amplitude)
{
ma_noise_config config;
MA_ZERO_OBJECT(&config);
config.format = format;
config.channels = channels;
config.type = type;
config.seed = seed;
config.amplitude = amplitude;
if (config.seed == 0) {
config.seed = MA_DEFAULT_LCG_SEED;
}
return config;
}
static ma_result ma_noise__data_source_on_read(ma_data_source* pDataSource, void* pFramesOut, ma_uint64 frameCount, ma_uint64* pFramesRead)
{
ma_uint64 framesRead = ma_noise_read_pcm_frames((ma_noise*)pDataSource, pFramesOut, frameCount);
if (pFramesRead != NULL) {
*pFramesRead = framesRead;
}
if (framesRead < frameCount) {
return MA_AT_END;
}
return MA_SUCCESS;
}
static ma_result ma_noise__data_source_on_seek(ma_data_source* pDataSource, ma_uint64 frameIndex)
{
/* No-op. Just pretend to be successful. */
(void)pDataSource;
(void)frameIndex;
return MA_SUCCESS;
}
static ma_result ma_noise__data_source_on_get_data_format(ma_data_source* pDataSource, ma_format* pFormat, ma_uint32* pChannels)
{
ma_noise* pNoise = (ma_noise*)pDataSource;
*pFormat = pNoise->config.format;
*pChannels = pNoise->config.channels;
return MA_SUCCESS;
}
MA_API ma_result ma_noise_init(const ma_noise_config* pConfig, ma_noise* pNoise)
{
if (pNoise == NULL) {
return MA_INVALID_ARGS;
}
MA_ZERO_OBJECT(pNoise);
if (pConfig == NULL) {
return MA_INVALID_ARGS;
}
pNoise->ds.onRead = ma_noise__data_source_on_read;
pNoise->ds.onSeek = ma_noise__data_source_on_seek; /* <-- No-op for noise. */
pNoise->ds.onGetDataFormat = ma_noise__data_source_on_get_data_format;
pNoise->config = *pConfig;
ma_lcg_seed(&pNoise->lcg, pConfig->seed);
if (pNoise->config.type == ma_noise_type_pink) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pConfig->channels; iChannel += 1) {
pNoise->state.pink.accumulation[iChannel] = 0;
pNoise->state.pink.counter[iChannel] = 1;
}
}
if (pNoise->config.type == ma_noise_type_brownian) {
ma_uint32 iChannel;
for (iChannel = 0; iChannel < pConfig->channels; iChannel += 1) {
pNoise->state.brownian.accumulation[iChannel] = 0;
}
}
return MA_SUCCESS;
}
static MA_INLINE float ma_noise_f32_white(ma_noise* pNoise)
{
return (float)(ma_lcg_rand_f64(&pNoise->lcg) * pNoise->config.amplitude);
}
static MA_INLINE ma_int16 ma_noise_s16_white(ma_noise* pNoise)
{
return ma_pcm_sample_f32_to_s16(ma_noise_f32_white(pNoise));
}
static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__white(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint32 iChannel;
if (pNoise->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_white(pNoise);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = ma_noise_f32_white(pNoise);
}
}
}
} else if (pNoise->config.format == ma_format_s16) {
ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_noise_s16_white(pNoise);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = ma_noise_s16_white(pNoise);
}
}
}
} else {
ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
ma_uint32 bpf = bps * pNoise->config.channels;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_white(pNoise);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
float s = ma_noise_f32_white(pNoise);
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
}
}
return frameCount;
}
static MA_INLINE unsigned int ma_tzcnt32(unsigned int x)
{
unsigned int n;
/* Special case for odd numbers since they should happen about half the time. */
if (x & 0x1) {
return 0;
}
if (x == 0) {
return sizeof(x) << 3;
}
n = 1;
if ((x & 0x0000FFFF) == 0) { x >>= 16; n += 16; }
if ((x & 0x000000FF) == 0) { x >>= 8; n += 8; }
if ((x & 0x0000000F) == 0) { x >>= 4; n += 4; }
if ((x & 0x00000003) == 0) { x >>= 2; n += 2; }
n -= x & 0x00000001;
return n;
}
/*
Pink noise generation based on Tonic (public domain) with modifications. https://github.com/TonicAudio/Tonic/blob/master/src/Tonic/Noise.h
This is basically _the_ reference for pink noise from what I've found: http://www.firstpr.com.au/dsp/pink-noise/
*/
static MA_INLINE float ma_noise_f32_pink(ma_noise* pNoise, ma_uint32 iChannel)
{
double result;
double binPrev;
double binNext;
unsigned int ibin;
ibin = ma_tzcnt32(pNoise->state.pink.counter[iChannel]) & (ma_countof(pNoise->state.pink.bin[0]) - 1);
binPrev = pNoise->state.pink.bin[iChannel][ibin];
binNext = ma_lcg_rand_f64(&pNoise->lcg);
pNoise->state.pink.bin[iChannel][ibin] = binNext;
pNoise->state.pink.accumulation[iChannel] += (binNext - binPrev);
pNoise->state.pink.counter[iChannel] += 1;
result = (ma_lcg_rand_f64(&pNoise->lcg) + pNoise->state.pink.accumulation[iChannel]);
result /= 10;
return (float)(result * pNoise->config.amplitude);
}
static MA_INLINE ma_int16 ma_noise_s16_pink(ma_noise* pNoise, ma_uint32 iChannel)
{
return ma_pcm_sample_f32_to_s16(ma_noise_f32_pink(pNoise, iChannel));
}
static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__pink(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint32 iChannel;
if (pNoise->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_pink(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = ma_noise_f32_pink(pNoise, iChannel);
}
}
}
} else if (pNoise->config.format == ma_format_s16) {
ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_noise_s16_pink(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = ma_noise_s16_pink(pNoise, iChannel);
}
}
}
} else {
ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
ma_uint32 bpf = bps * pNoise->config.channels;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_pink(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
float s = ma_noise_f32_pink(pNoise, iChannel);
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
}
}
return frameCount;
}
static MA_INLINE float ma_noise_f32_brownian(ma_noise* pNoise, ma_uint32 iChannel)
{
double result;
result = (ma_lcg_rand_f64(&pNoise->lcg) + pNoise->state.brownian.accumulation[iChannel]);
result /= 1.005; /* Don't escape the -1..1 range on average. */
pNoise->state.brownian.accumulation[iChannel] = result;
result /= 20;
return (float)(result * pNoise->config.amplitude);
}
static MA_INLINE ma_int16 ma_noise_s16_brownian(ma_noise* pNoise, ma_uint32 iChannel)
{
return ma_pcm_sample_f32_to_s16(ma_noise_f32_brownian(pNoise, iChannel));
}
static MA_INLINE ma_uint64 ma_noise_read_pcm_frames__brownian(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount)
{
ma_uint64 iFrame;
ma_uint32 iChannel;
if (pNoise->config.format == ma_format_f32) {
float* pFramesOutF32 = (float*)pFramesOut;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_brownian(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutF32[iFrame*pNoise->config.channels + iChannel] = ma_noise_f32_brownian(pNoise, iChannel);
}
}
}
} else if (pNoise->config.format == ma_format_s16) {
ma_int16* pFramesOutS16 = (ma_int16*)pFramesOut;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
ma_int16 s = ma_noise_s16_brownian(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = s;
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
pFramesOutS16[iFrame*pNoise->config.channels + iChannel] = ma_noise_s16_brownian(pNoise, iChannel);
}
}
}
} else {
ma_uint32 bps = ma_get_bytes_per_sample(pNoise->config.format);
ma_uint32 bpf = bps * pNoise->config.channels;
if (pNoise->config.duplicateChannels) {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
float s = ma_noise_f32_brownian(pNoise, 0);
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
} else {
for (iFrame = 0; iFrame < frameCount; iFrame += 1) {
for (iChannel = 0; iChannel < pNoise->config.channels; iChannel += 1) {
float s = ma_noise_f32_brownian(pNoise, iChannel);
ma_pcm_convert(ma_offset_ptr(pFramesOut, iFrame*bpf + iChannel*bps), pNoise->config.format, &s, ma_format_f32, 1, ma_dither_mode_none);
}
}
}
}
return frameCount;
}
MA_API ma_uint64 ma_noise_read_pcm_frames(ma_noise* pNoise, void* pFramesOut, ma_uint64 frameCount)
{
if (pNoise == NULL) {
return 0;
}
/* The output buffer is allowed to be NULL. Since we aren't tracking cursors or anything we can just do nothing and pretend to be successful. */
if (pFramesOut == NULL) {
return frameCount;
}
if (pNoise->config.type == ma_noise_type_white) {
return ma_noise_read_pcm_frames__white(pNoise, pFramesOut, frameCount);
}
if (pNoise->config.type == ma_noise_type_pink) {
return ma_noise_read_pcm_frames__pink(pNoise, pFramesOut, frameCount);
}
if (pNoise->config.type == ma_noise_type_brownian) {
return ma_noise_read_pcm_frames__brownian(pNoise, pFramesOut, frameCount);
}
/* Should never get here. */
MA_ASSERT(MA_FALSE);
return 0;
}
#endif /* MA_NO_GENERATION */
/**************************************************************************************************************************************************************
***************************************************************************************************************************************************************
Auto Generated
==============
All code below is auto-generated from a tool. This mostly consists of decoding backend implementations such as dr_wav, dr_flac, etc. If you find a bug in the
code below please report the bug to the respective repository for the relevant project (probably dr_libs).
***************************************************************************************************************************************************************
**************************************************************************************************************************************************************/
#ifndef MA_NO_WAV
#if !defined(DR_WAV_IMPLEMENTATION) && !defined(DRWAV_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */
/* dr_wav_c begin */
#ifndef dr_wav_c
#define dr_wav_c
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#ifndef DR_WAV_NO_STDIO
#include <stdio.h>
#include <wchar.h>
#endif
#ifndef DRWAV_ASSERT
#include <assert.h>
#define DRWAV_ASSERT(expression) assert(expression)
#endif
#ifndef DRWAV_MALLOC
#define DRWAV_MALLOC(sz) malloc((sz))
#endif
#ifndef DRWAV_REALLOC
#define DRWAV_REALLOC(p, sz) realloc((p), (sz))
#endif
#ifndef DRWAV_FREE
#define DRWAV_FREE(p) free((p))
#endif
#ifndef DRWAV_COPY_MEMORY
#define DRWAV_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
#endif
#ifndef DRWAV_ZERO_MEMORY
#define DRWAV_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
#endif
#ifndef DRWAV_ZERO_OBJECT
#define DRWAV_ZERO_OBJECT(p) DRWAV_ZERO_MEMORY((p), sizeof(*p))
#endif
#define drwav_countof(x) (sizeof(x) / sizeof(x[0]))
#define drwav_align(x, a) ((((x) + (a) - 1) / (a)) * (a))
#define drwav_min(a, b) (((a) < (b)) ? (a) : (b))
#define drwav_max(a, b) (((a) > (b)) ? (a) : (b))
#define drwav_clamp(x, lo, hi) (drwav_max((lo), drwav_min((hi), (x))))
#define DRWAV_MAX_SIMD_VECTOR_SIZE 64
#if defined(__x86_64__) || defined(_M_X64)
#define DRWAV_X64
#elif defined(__i386) || defined(_M_IX86)
#define DRWAV_X86
#elif defined(__arm__) || defined(_M_ARM)
#define DRWAV_ARM
#endif
#ifdef _MSC_VER
#define DRWAV_INLINE __forceinline
#elif defined(__GNUC__)
#if defined(__STRICT_ANSI__)
#define DRWAV_INLINE __inline__ __attribute__((always_inline))
#else
#define DRWAV_INLINE inline __attribute__((always_inline))
#endif
#else
#define DRWAV_INLINE
#endif
#if defined(SIZE_MAX)
#define DRWAV_SIZE_MAX SIZE_MAX
#else
#if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
#define DRWAV_SIZE_MAX ((drwav_uint64)0xFFFFFFFFFFFFFFFF)
#else
#define DRWAV_SIZE_MAX 0xFFFFFFFF
#endif
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1400
#define DRWAV_HAS_BYTESWAP16_INTRINSIC
#define DRWAV_HAS_BYTESWAP32_INTRINSIC
#define DRWAV_HAS_BYTESWAP64_INTRINSIC
#elif defined(__clang__)
#if defined(__has_builtin)
#if __has_builtin(__builtin_bswap16)
#define DRWAV_HAS_BYTESWAP16_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap32)
#define DRWAV_HAS_BYTESWAP32_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap64)
#define DRWAV_HAS_BYTESWAP64_INTRINSIC
#endif
#endif
#elif defined(__GNUC__)
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
#define DRWAV_HAS_BYTESWAP32_INTRINSIC
#define DRWAV_HAS_BYTESWAP64_INTRINSIC
#endif
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
#define DRWAV_HAS_BYTESWAP16_INTRINSIC
#endif
#endif
DRWAV_API void drwav_version(drwav_uint32* pMajor, drwav_uint32* pMinor, drwav_uint32* pRevision)
{
if (pMajor) {
*pMajor = DRWAV_VERSION_MAJOR;
}
if (pMinor) {
*pMinor = DRWAV_VERSION_MINOR;
}
if (pRevision) {
*pRevision = DRWAV_VERSION_REVISION;
}
}
DRWAV_API const char* drwav_version_string()
{
return DRWAV_VERSION_STRING;
}
#ifndef DRWAV_MAX_SAMPLE_RATE
#define DRWAV_MAX_SAMPLE_RATE 384000
#endif
#ifndef DRWAV_MAX_CHANNELS
#define DRWAV_MAX_CHANNELS 256
#endif
#ifndef DRWAV_MAX_BITS_PER_SAMPLE
#define DRWAV_MAX_BITS_PER_SAMPLE 64
#endif
static const drwav_uint8 drwavGUID_W64_RIFF[16] = {0x72,0x69,0x66,0x66, 0x2E,0x91, 0xCF,0x11, 0xA5,0xD6, 0x28,0xDB,0x04,0xC1,0x00,0x00};
static const drwav_uint8 drwavGUID_W64_WAVE[16] = {0x77,0x61,0x76,0x65, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
static const drwav_uint8 drwavGUID_W64_JUNK[16] = {0x6A,0x75,0x6E,0x6B, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
static const drwav_uint8 drwavGUID_W64_FMT [16] = {0x66,0x6D,0x74,0x20, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
static const drwav_uint8 drwavGUID_W64_FACT[16] = {0x66,0x61,0x63,0x74, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
static const drwav_uint8 drwavGUID_W64_DATA[16] = {0x64,0x61,0x74,0x61, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
static const drwav_uint8 drwavGUID_W64_SMPL[16] = {0x73,0x6D,0x70,0x6C, 0xF3,0xAC, 0xD3,0x11, 0x8C,0xD1, 0x00,0xC0,0x4F,0x8E,0xDB,0x8A};
static DRWAV_INLINE drwav_bool32 drwav__guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
{
int i;
for (i = 0; i < 16; i += 1) {
if (a[i] != b[i]) {
return DRWAV_FALSE;
}
}
return DRWAV_TRUE;
}
static DRWAV_INLINE drwav_bool32 drwav__fourcc_equal(const drwav_uint8* a, const char* b)
{
return
a[0] == b[0] &&
a[1] == b[1] &&
a[2] == b[2] &&
a[3] == b[3];
}
static DRWAV_INLINE int drwav__is_little_endian(void)
{
#if defined(DRWAV_X86) || defined(DRWAV_X64)
return DRWAV_TRUE;
#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN
return DRWAV_TRUE;
#else
int n = 1;
return (*(char*)&n) == 1;
#endif
}
static DRWAV_INLINE drwav_uint16 drwav__bytes_to_u16(const drwav_uint8* data)
{
return (data[0] << 0) | (data[1] << 8);
}
static DRWAV_INLINE drwav_int16 drwav__bytes_to_s16(const drwav_uint8* data)
{
return (short)drwav__bytes_to_u16(data);
}
static DRWAV_INLINE drwav_uint32 drwav__bytes_to_u32(const drwav_uint8* data)
{
return (data[0] << 0) | (data[1] << 8) | (data[2] << 16) | (data[3] << 24);
}
static DRWAV_INLINE drwav_int32 drwav__bytes_to_s32(const drwav_uint8* data)
{
return (drwav_int32)drwav__bytes_to_u32(data);
}
static DRWAV_INLINE drwav_uint64 drwav__bytes_to_u64(const drwav_uint8* data)
{
return
((drwav_uint64)data[0] << 0) | ((drwav_uint64)data[1] << 8) | ((drwav_uint64)data[2] << 16) | ((drwav_uint64)data[3] << 24) |
((drwav_uint64)data[4] << 32) | ((drwav_uint64)data[5] << 40) | ((drwav_uint64)data[6] << 48) | ((drwav_uint64)data[7] << 56);
}
static DRWAV_INLINE drwav_int64 drwav__bytes_to_s64(const drwav_uint8* data)
{
return (drwav_int64)drwav__bytes_to_u64(data);
}
static DRWAV_INLINE void drwav__bytes_to_guid(const drwav_uint8* data, drwav_uint8* guid)
{
int i;
for (i = 0; i < 16; ++i) {
guid[i] = data[i];
}
}
static DRWAV_INLINE drwav_uint16 drwav__bswap16(drwav_uint16 n)
{
#ifdef DRWAV_HAS_BYTESWAP16_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_ushort(n);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_bswap16(n);
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
return ((n & 0xFF00) >> 8) |
((n & 0x00FF) << 8);
#endif
}
static DRWAV_INLINE drwav_uint32 drwav__bswap32(drwav_uint32 n)
{
#ifdef DRWAV_HAS_BYTESWAP32_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_ulong(n);
#elif defined(__GNUC__) || defined(__clang__)
#if defined(DRWAV_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRWAV_64BIT)
drwav_uint32 r;
__asm__ __volatile__ (
#if defined(DRWAV_64BIT)
"rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n)
#else
"rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
#endif
);
return r;
#else
return __builtin_bswap32(n);
#endif
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
return ((n & 0xFF000000) >> 24) |
((n & 0x00FF0000) >> 8) |
((n & 0x0000FF00) << 8) |
((n & 0x000000FF) << 24);
#endif
}
static DRWAV_INLINE drwav_uint64 drwav__bswap64(drwav_uint64 n)
{
#ifdef DRWAV_HAS_BYTESWAP64_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_uint64(n);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_bswap64(n);
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
return ((n & (drwav_uint64)0xFF00000000000000) >> 56) |
((n & (drwav_uint64)0x00FF000000000000) >> 40) |
((n & (drwav_uint64)0x0000FF0000000000) >> 24) |
((n & (drwav_uint64)0x000000FF00000000) >> 8) |
((n & (drwav_uint64)0x00000000FF000000) << 8) |
((n & (drwav_uint64)0x0000000000FF0000) << 24) |
((n & (drwav_uint64)0x000000000000FF00) << 40) |
((n & (drwav_uint64)0x00000000000000FF) << 56);
#endif
}
static DRWAV_INLINE drwav_int16 drwav__bswap_s16(drwav_int16 n)
{
return (drwav_int16)drwav__bswap16((drwav_uint16)n);
}
static DRWAV_INLINE void drwav__bswap_samples_s16(drwav_int16* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamples[iSample] = drwav__bswap_s16(pSamples[iSample]);
}
}
static DRWAV_INLINE void drwav__bswap_s24(drwav_uint8* p)
{
drwav_uint8 t;
t = p[0];
p[0] = p[2];
p[2] = t;
}
static DRWAV_INLINE void drwav__bswap_samples_s24(drwav_uint8* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
drwav_uint8* pSample = pSamples + (iSample*3);
drwav__bswap_s24(pSample);
}
}
static DRWAV_INLINE drwav_int32 drwav__bswap_s32(drwav_int32 n)
{
return (drwav_int32)drwav__bswap32((drwav_uint32)n);
}
static DRWAV_INLINE void drwav__bswap_samples_s32(drwav_int32* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamples[iSample] = drwav__bswap_s32(pSamples[iSample]);
}
}
static DRWAV_INLINE float drwav__bswap_f32(float n)
{
union {
drwav_uint32 i;
float f;
} x;
x.f = n;
x.i = drwav__bswap32(x.i);
return x.f;
}
static DRWAV_INLINE void drwav__bswap_samples_f32(float* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamples[iSample] = drwav__bswap_f32(pSamples[iSample]);
}
}
static DRWAV_INLINE double drwav__bswap_f64(double n)
{
union {
drwav_uint64 i;
double f;
} x;
x.f = n;
x.i = drwav__bswap64(x.i);
return x.f;
}
static DRWAV_INLINE void drwav__bswap_samples_f64(double* pSamples, drwav_uint64 sampleCount)
{
drwav_uint64 iSample;
for (iSample = 0; iSample < sampleCount; iSample += 1) {
pSamples[iSample] = drwav__bswap_f64(pSamples[iSample]);
}
}
static DRWAV_INLINE void drwav__bswap_samples_pcm(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample)
{
switch (bytesPerSample)
{
case 2:
{
drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount);
} break;
case 3:
{
drwav__bswap_samples_s24((drwav_uint8*)pSamples, sampleCount);
} break;
case 4:
{
drwav__bswap_samples_s32((drwav_int32*)pSamples, sampleCount);
} break;
default:
{
DRWAV_ASSERT(DRWAV_FALSE);
} break;
}
}
static DRWAV_INLINE void drwav__bswap_samples_ieee(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample)
{
switch (bytesPerSample)
{
#if 0
case 2:
{
drwav__bswap_samples_f16((drwav_float16*)pSamples, sampleCount);
} break;
#endif
case 4:
{
drwav__bswap_samples_f32((float*)pSamples, sampleCount);
} break;
case 8:
{
drwav__bswap_samples_f64((double*)pSamples, sampleCount);
} break;
default:
{
DRWAV_ASSERT(DRWAV_FALSE);
} break;
}
}
static DRWAV_INLINE void drwav__bswap_samples(void* pSamples, drwav_uint64 sampleCount, drwav_uint32 bytesPerSample, drwav_uint16 format)
{
switch (format)
{
case DR_WAVE_FORMAT_PCM:
{
drwav__bswap_samples_pcm(pSamples, sampleCount, bytesPerSample);
} break;
case DR_WAVE_FORMAT_IEEE_FLOAT:
{
drwav__bswap_samples_ieee(pSamples, sampleCount, bytesPerSample);
} break;
case DR_WAVE_FORMAT_ALAW:
case DR_WAVE_FORMAT_MULAW:
{
drwav__bswap_samples_s16((drwav_int16*)pSamples, sampleCount);
} break;
case DR_WAVE_FORMAT_ADPCM:
case DR_WAVE_FORMAT_DVI_ADPCM:
default:
{
DRWAV_ASSERT(DRWAV_FALSE);
} break;
}
}
static void* drwav__malloc_default(size_t sz, void* pUserData)
{
(void)pUserData;
return DRWAV_MALLOC(sz);
}
static void* drwav__realloc_default(void* p, size_t sz, void* pUserData)
{
(void)pUserData;
return DRWAV_REALLOC(p, sz);
}
static void drwav__free_default(void* p, void* pUserData)
{
(void)pUserData;
DRWAV_FREE(p);
}
static void* drwav__malloc_from_callbacks(size_t sz, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onMalloc != NULL) {
return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
}
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
}
return NULL;
}
static void* drwav__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
}
if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
void* p2;
p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
if (p2 == NULL) {
return NULL;
}
if (p != NULL) {
DRWAV_COPY_MEMORY(p2, p, szOld);
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
return p2;
}
return NULL;
}
static void drwav__free_from_callbacks(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (p == NULL || pAllocationCallbacks == NULL) {
return;
}
if (pAllocationCallbacks->onFree != NULL) {
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
}
static drwav_allocation_callbacks drwav_copy_allocation_callbacks_or_defaults(const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
return *pAllocationCallbacks;
} else {
drwav_allocation_callbacks allocationCallbacks;
allocationCallbacks.pUserData = NULL;
allocationCallbacks.onMalloc = drwav__malloc_default;
allocationCallbacks.onRealloc = drwav__realloc_default;
allocationCallbacks.onFree = drwav__free_default;
return allocationCallbacks;
}
}
static DRWAV_INLINE drwav_bool32 drwav__is_compressed_format_tag(drwav_uint16 formatTag)
{
return
formatTag == DR_WAVE_FORMAT_ADPCM ||
formatTag == DR_WAVE_FORMAT_DVI_ADPCM;
}
static unsigned int drwav__chunk_padding_size_riff(drwav_uint64 chunkSize)
{
return (unsigned int)(chunkSize % 2);
}
static unsigned int drwav__chunk_padding_size_w64(drwav_uint64 chunkSize)
{
return (unsigned int)(chunkSize % 8);
}
static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 samplesToRead, drwav_int16* pBufferOut);
static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount);
static drwav_result drwav__read_chunk_header(drwav_read_proc onRead, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_chunk_header* pHeaderOut)
{
if (container == drwav_container_riff) {
drwav_uint8 sizeInBytes[4];
if (onRead(pUserData, pHeaderOut->id.fourcc, 4) != 4) {
return DRWAV_AT_END;
}
if (onRead(pUserData, sizeInBytes, 4) != 4) {
return DRWAV_INVALID_FILE;
}
pHeaderOut->sizeInBytes = drwav__bytes_to_u32(sizeInBytes);
pHeaderOut->paddingSize = drwav__chunk_padding_size_riff(pHeaderOut->sizeInBytes);
*pRunningBytesReadOut += 8;
} else {
drwav_uint8 sizeInBytes[8];
if (onRead(pUserData, pHeaderOut->id.guid, 16) != 16) {
return DRWAV_AT_END;
}
if (onRead(pUserData, sizeInBytes, 8) != 8) {
return DRWAV_INVALID_FILE;
}
pHeaderOut->sizeInBytes = drwav__bytes_to_u64(sizeInBytes) - 24;
pHeaderOut->paddingSize = drwav__chunk_padding_size_w64(pHeaderOut->sizeInBytes);
*pRunningBytesReadOut += 24;
}
return DRWAV_SUCCESS;
}
static drwav_bool32 drwav__seek_forward(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
{
drwav_uint64 bytesRemainingToSeek = offset;
while (bytesRemainingToSeek > 0) {
if (bytesRemainingToSeek > 0x7FFFFFFF) {
if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
bytesRemainingToSeek -= 0x7FFFFFFF;
} else {
if (!onSeek(pUserData, (int)bytesRemainingToSeek, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
bytesRemainingToSeek = 0;
}
}
return DRWAV_TRUE;
}
static drwav_bool32 drwav__seek_from_start(drwav_seek_proc onSeek, drwav_uint64 offset, void* pUserData)
{
if (offset <= 0x7FFFFFFF) {
return onSeek(pUserData, (int)offset, drwav_seek_origin_start);
}
if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_start)) {
return DRWAV_FALSE;
}
offset -= 0x7FFFFFFF;
for (;;) {
if (offset <= 0x7FFFFFFF) {
return onSeek(pUserData, (int)offset, drwav_seek_origin_current);
}
if (!onSeek(pUserData, 0x7FFFFFFF, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
offset -= 0x7FFFFFFF;
}
}
static drwav_bool32 drwav__read_fmt(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, drwav_container container, drwav_uint64* pRunningBytesReadOut, drwav_fmt* fmtOut)
{
drwav_chunk_header header;
drwav_uint8 fmt[16];
if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
while ((container == drwav_container_riff && !drwav__fourcc_equal(header.id.fourcc, "fmt ")) || (container == drwav_container_w64 && !drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT))) {
if (!drwav__seek_forward(onSeek, header.sizeInBytes + header.paddingSize, pUserData)) {
return DRWAV_FALSE;
}
*pRunningBytesReadOut += header.sizeInBytes + header.paddingSize;
if (drwav__read_chunk_header(onRead, pUserData, container, pRunningBytesReadOut, &header) != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
}
if (container == drwav_container_riff) {
if (!drwav__fourcc_equal(header.id.fourcc, "fmt ")) {
return DRWAV_FALSE;
}
} else {
if (!drwav__guid_equal(header.id.guid, drwavGUID_W64_FMT)) {
return DRWAV_FALSE;
}
}
if (onRead(pUserData, fmt, sizeof(fmt)) != sizeof(fmt)) {
return DRWAV_FALSE;
}
*pRunningBytesReadOut += sizeof(fmt);
fmtOut->formatTag = drwav__bytes_to_u16(fmt + 0);
fmtOut->channels = drwav__bytes_to_u16(fmt + 2);
fmtOut->sampleRate = drwav__bytes_to_u32(fmt + 4);
fmtOut->avgBytesPerSec = drwav__bytes_to_u32(fmt + 8);
fmtOut->blockAlign = drwav__bytes_to_u16(fmt + 12);
fmtOut->bitsPerSample = drwav__bytes_to_u16(fmt + 14);
fmtOut->extendedSize = 0;
fmtOut->validBitsPerSample = 0;
fmtOut->channelMask = 0;
memset(fmtOut->subFormat, 0, sizeof(fmtOut->subFormat));
if (header.sizeInBytes > 16) {
drwav_uint8 fmt_cbSize[2];
int bytesReadSoFar = 0;
if (onRead(pUserData, fmt_cbSize, sizeof(fmt_cbSize)) != sizeof(fmt_cbSize)) {
return DRWAV_FALSE;
}
*pRunningBytesReadOut += sizeof(fmt_cbSize);
bytesReadSoFar = 18;
fmtOut->extendedSize = drwav__bytes_to_u16(fmt_cbSize);
if (fmtOut->extendedSize > 0) {
if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
if (fmtOut->extendedSize != 22) {
return DRWAV_FALSE;
}
}
if (fmtOut->formatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
drwav_uint8 fmtext[22];
if (onRead(pUserData, fmtext, fmtOut->extendedSize) != fmtOut->extendedSize) {
return DRWAV_FALSE;
}
fmtOut->validBitsPerSample = drwav__bytes_to_u16(fmtext + 0);
fmtOut->channelMask = drwav__bytes_to_u32(fmtext + 2);
drwav__bytes_to_guid(fmtext + 6, fmtOut->subFormat);
} else {
if (!onSeek(pUserData, fmtOut->extendedSize, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
}
*pRunningBytesReadOut += fmtOut->extendedSize;
bytesReadSoFar += fmtOut->extendedSize;
}
if (!onSeek(pUserData, (int)(header.sizeInBytes - bytesReadSoFar), drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
*pRunningBytesReadOut += (header.sizeInBytes - bytesReadSoFar);
}
if (header.paddingSize > 0) {
if (!onSeek(pUserData, header.paddingSize, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
*pRunningBytesReadOut += header.paddingSize;
}
return DRWAV_TRUE;
}
static size_t drwav__on_read(drwav_read_proc onRead, void* pUserData, void* pBufferOut, size_t bytesToRead, drwav_uint64* pCursor)
{
size_t bytesRead;
DRWAV_ASSERT(onRead != NULL);
DRWAV_ASSERT(pCursor != NULL);
bytesRead = onRead(pUserData, pBufferOut, bytesToRead);
*pCursor += bytesRead;
return bytesRead;
}
#if 0
static drwav_bool32 drwav__on_seek(drwav_seek_proc onSeek, void* pUserData, int offset, drwav_seek_origin origin, drwav_uint64* pCursor)
{
DRWAV_ASSERT(onSeek != NULL);
DRWAV_ASSERT(pCursor != NULL);
if (!onSeek(pUserData, offset, origin)) {
return DRWAV_FALSE;
}
if (origin == drwav_seek_origin_start) {
*pCursor = offset;
} else {
*pCursor += offset;
}
return DRWAV_TRUE;
}
#endif
static drwav_uint32 drwav_get_bytes_per_pcm_frame(drwav* pWav)
{
if ((pWav->bitsPerSample & 0x7) == 0) {
return (pWav->bitsPerSample * pWav->fmt.channels) >> 3;
} else {
return pWav->fmt.blockAlign;
}
}
DRWAV_API drwav_uint16 drwav_fmt_get_format(const drwav_fmt* pFMT)
{
if (pFMT == NULL) {
return 0;
}
if (pFMT->formatTag != DR_WAVE_FORMAT_EXTENSIBLE) {
return pFMT->formatTag;
} else {
return drwav__bytes_to_u16(pFMT->subFormat);
}
}
static drwav_bool32 drwav_preinit(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pReadSeekUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pWav == NULL || onRead == NULL || onSeek == NULL) {
return DRWAV_FALSE;
}
DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
pWav->onRead = onRead;
pWav->onSeek = onSeek;
pWav->pUserData = pReadSeekUserData;
pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
return DRWAV_FALSE;
}
return DRWAV_TRUE;
}
static drwav_bool32 drwav_init__internal(drwav* pWav, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags)
{
drwav_uint64 cursor;
drwav_bool32 sequential;
drwav_uint8 riff[4];
drwav_fmt fmt;
unsigned short translatedFormatTag;
drwav_uint64 sampleCountFromFactChunk;
drwav_bool32 foundDataChunk;
drwav_uint64 dataChunkSize;
drwav_uint64 chunkSize;
cursor = 0;
sequential = (flags & DRWAV_SEQUENTIAL) != 0;
if (drwav__on_read(pWav->onRead, pWav->pUserData, riff, sizeof(riff), &cursor) != sizeof(riff)) {
return DRWAV_FALSE;
}
if (drwav__fourcc_equal(riff, "RIFF")) {
pWav->container = drwav_container_riff;
} else if (drwav__fourcc_equal(riff, "riff")) {
int i;
drwav_uint8 riff2[12];
pWav->container = drwav_container_w64;
if (drwav__on_read(pWav->onRead, pWav->pUserData, riff2, sizeof(riff2), &cursor) != sizeof(riff2)) {
return DRWAV_FALSE;
}
for (i = 0; i < 12; ++i) {
if (riff2[i] != drwavGUID_W64_RIFF[i+4]) {
return DRWAV_FALSE;
}
}
} else {
return DRWAV_FALSE;
}
if (pWav->container == drwav_container_riff) {
drwav_uint8 chunkSizeBytes[4];
drwav_uint8 wave[4];
if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
return DRWAV_FALSE;
}
if (drwav__bytes_to_u32(chunkSizeBytes) < 36) {
return DRWAV_FALSE;
}
if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
return DRWAV_FALSE;
}
if (!drwav__fourcc_equal(wave, "WAVE")) {
return DRWAV_FALSE;
}
} else {
drwav_uint8 chunkSizeBytes[8];
drwav_uint8 wave[16];
if (drwav__on_read(pWav->onRead, pWav->pUserData, chunkSizeBytes, sizeof(chunkSizeBytes), &cursor) != sizeof(chunkSizeBytes)) {
return DRWAV_FALSE;
}
if (drwav__bytes_to_u64(chunkSizeBytes) < 80) {
return DRWAV_FALSE;
}
if (drwav__on_read(pWav->onRead, pWav->pUserData, wave, sizeof(wave), &cursor) != sizeof(wave)) {
return DRWAV_FALSE;
}
if (!drwav__guid_equal(wave, drwavGUID_W64_WAVE)) {
return DRWAV_FALSE;
}
}
if (!drwav__read_fmt(pWav->onRead, pWav->onSeek, pWav->pUserData, pWav->container, &cursor, &fmt)) {
return DRWAV_FALSE;
}
if ((fmt.sampleRate == 0 || fmt.sampleRate > DRWAV_MAX_SAMPLE_RATE) ||
(fmt.channels == 0 || fmt.channels > DRWAV_MAX_CHANNELS) ||
(fmt.bitsPerSample == 0 || fmt.bitsPerSample > DRWAV_MAX_BITS_PER_SAMPLE) ||
fmt.blockAlign == 0) {
return DRWAV_FALSE;
}
translatedFormatTag = fmt.formatTag;
if (translatedFormatTag == DR_WAVE_FORMAT_EXTENSIBLE) {
translatedFormatTag = drwav__bytes_to_u16(fmt.subFormat + 0);
}
sampleCountFromFactChunk = 0;
foundDataChunk = DRWAV_FALSE;
dataChunkSize = 0;
for (;;)
{
drwav_chunk_header header;
drwav_result result = drwav__read_chunk_header(pWav->onRead, pWav->pUserData, pWav->container, &cursor, &header);
if (result != DRWAV_SUCCESS) {
if (!foundDataChunk) {
return DRWAV_FALSE;
} else {
break;
}
}
if (!sequential && onChunk != NULL) {
drwav_uint64 callbackBytesRead = onChunk(pChunkUserData, pWav->onRead, pWav->onSeek, pWav->pUserData, &header, pWav->container, &fmt);
if (callbackBytesRead > 0) {
if (!drwav__seek_from_start(pWav->onSeek, cursor, pWav->pUserData)) {
return DRWAV_FALSE;
}
}
}
if (!foundDataChunk) {
pWav->dataChunkDataPos = cursor;
}
chunkSize = header.sizeInBytes;
if (pWav->container == drwav_container_riff) {
if (drwav__fourcc_equal(header.id.fourcc, "data")) {
foundDataChunk = DRWAV_TRUE;
dataChunkSize = chunkSize;
}
} else {
if (drwav__guid_equal(header.id.guid, drwavGUID_W64_DATA)) {
foundDataChunk = DRWAV_TRUE;
dataChunkSize = chunkSize;
}
}
if (foundDataChunk && sequential) {
break;
}
if (pWav->container == drwav_container_riff) {
if (drwav__fourcc_equal(header.id.fourcc, "fact")) {
drwav_uint32 sampleCount;
if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCount, 4, &cursor) != 4) {
return DRWAV_FALSE;
}
chunkSize -= 4;
if (!foundDataChunk) {
pWav->dataChunkDataPos = cursor;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
sampleCountFromFactChunk = sampleCount;
} else {
sampleCountFromFactChunk = 0;
}
}
} else {
if (drwav__guid_equal(header.id.guid, drwavGUID_W64_FACT)) {
if (drwav__on_read(pWav->onRead, pWav->pUserData, &sampleCountFromFactChunk, 8, &cursor) != 8) {
return DRWAV_FALSE;
}
chunkSize -= 8;
if (!foundDataChunk) {
pWav->dataChunkDataPos = cursor;
}
}
}
if (pWav->container == drwav_container_riff) {
if (drwav__fourcc_equal(header.id.fourcc, "smpl")) {
drwav_uint8 smplHeaderData[36];
if (chunkSize >= sizeof(smplHeaderData)) {
drwav_uint64 bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplHeaderData, sizeof(smplHeaderData), &cursor);
chunkSize -= bytesJustRead;
if (bytesJustRead == sizeof(smplHeaderData)) {
drwav_uint32 iLoop;
pWav->smpl.manufacturer = drwav__bytes_to_u32(smplHeaderData+0);
pWav->smpl.product = drwav__bytes_to_u32(smplHeaderData+4);
pWav->smpl.samplePeriod = drwav__bytes_to_u32(smplHeaderData+8);
pWav->smpl.midiUnityNotes = drwav__bytes_to_u32(smplHeaderData+12);
pWav->smpl.midiPitchFraction = drwav__bytes_to_u32(smplHeaderData+16);
pWav->smpl.smpteFormat = drwav__bytes_to_u32(smplHeaderData+20);
pWav->smpl.smpteOffset = drwav__bytes_to_u32(smplHeaderData+24);
pWav->smpl.numSampleLoops = drwav__bytes_to_u32(smplHeaderData+28);
pWav->smpl.samplerData = drwav__bytes_to_u32(smplHeaderData+32);
for (iLoop = 0; iLoop < pWav->smpl.numSampleLoops && iLoop < drwav_countof(pWav->smpl.loops); ++iLoop) {
drwav_uint8 smplLoopData[24];
bytesJustRead = drwav__on_read(pWav->onRead, pWav->pUserData, smplLoopData, sizeof(smplLoopData), &cursor);
chunkSize -= bytesJustRead;
if (bytesJustRead == sizeof(smplLoopData)) {
pWav->smpl.loops[iLoop].cuePointId = drwav__bytes_to_u32(smplLoopData+0);
pWav->smpl.loops[iLoop].type = drwav__bytes_to_u32(smplLoopData+4);
pWav->smpl.loops[iLoop].start = drwav__bytes_to_u32(smplLoopData+8);
pWav->smpl.loops[iLoop].end = drwav__bytes_to_u32(smplLoopData+12);
pWav->smpl.loops[iLoop].fraction = drwav__bytes_to_u32(smplLoopData+16);
pWav->smpl.loops[iLoop].playCount = drwav__bytes_to_u32(smplLoopData+20);
} else {
break;
}
}
}
} else {
}
}
} else {
if (drwav__guid_equal(header.id.guid, drwavGUID_W64_SMPL)) {
}
}
chunkSize += header.paddingSize;
if (!drwav__seek_forward(pWav->onSeek, chunkSize, pWav->pUserData)) {
break;
}
cursor += chunkSize;
if (!foundDataChunk) {
pWav->dataChunkDataPos = cursor;
}
}
if (!foundDataChunk) {
return DRWAV_FALSE;
}
if (!sequential) {
if (!drwav__seek_from_start(pWav->onSeek, pWav->dataChunkDataPos, pWav->pUserData)) {
return DRWAV_FALSE;
}
cursor = pWav->dataChunkDataPos;
}
pWav->fmt = fmt;
pWav->sampleRate = fmt.sampleRate;
pWav->channels = fmt.channels;
pWav->bitsPerSample = fmt.bitsPerSample;
pWav->bytesRemaining = dataChunkSize;
pWav->translatedFormatTag = translatedFormatTag;
pWav->dataChunkDataSize = dataChunkSize;
if (sampleCountFromFactChunk != 0) {
pWav->totalPCMFrameCount = sampleCountFromFactChunk;
} else {
pWav->totalPCMFrameCount = dataChunkSize / drwav_get_bytes_per_pcm_frame(pWav);
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
drwav_uint64 totalBlockHeaderSizeInBytes;
drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
if ((blockCount * fmt.blockAlign) < dataChunkSize) {
blockCount += 1;
}
totalBlockHeaderSizeInBytes = blockCount * (6*fmt.channels);
pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
drwav_uint64 totalBlockHeaderSizeInBytes;
drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
if ((blockCount * fmt.blockAlign) < dataChunkSize) {
blockCount += 1;
}
totalBlockHeaderSizeInBytes = blockCount * (4*fmt.channels);
pWav->totalPCMFrameCount = ((dataChunkSize - totalBlockHeaderSizeInBytes) * 2) / fmt.channels;
pWav->totalPCMFrameCount += blockCount;
}
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM || pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
if (pWav->channels > 2) {
return DRWAV_FALSE;
}
}
#ifdef DR_WAV_LIBSNDFILE_COMPAT
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (6*pWav->channels))) * 2)) / fmt.channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
drwav_uint64 blockCount = dataChunkSize / fmt.blockAlign;
pWav->totalPCMFrameCount = (((blockCount * (fmt.blockAlign - (4*pWav->channels))) * 2) + (blockCount * pWav->channels)) / fmt.channels;
}
#endif
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_init(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_ex(pWav, onRead, onSeek, NULL, pUserData, NULL, 0, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_ex(drwav* pWav, drwav_read_proc onRead, drwav_seek_proc onSeek, drwav_chunk_proc onChunk, void* pReadSeekUserData, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (!drwav_preinit(pWav, onRead, onSeek, pReadSeekUserData, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
}
static drwav_uint32 drwav__riff_chunk_size_riff(drwav_uint64 dataChunkSize)
{
drwav_uint32 dataSubchunkPaddingSize = drwav__chunk_padding_size_riff(dataChunkSize);
if (dataChunkSize <= (0xFFFFFFFFUL - 36 - dataSubchunkPaddingSize)) {
return 36 + (drwav_uint32)(dataChunkSize + dataSubchunkPaddingSize);
} else {
return 0xFFFFFFFF;
}
}
static drwav_uint32 drwav__data_chunk_size_riff(drwav_uint64 dataChunkSize)
{
if (dataChunkSize <= 0xFFFFFFFFUL) {
return (drwav_uint32)dataChunkSize;
} else {
return 0xFFFFFFFFUL;
}
}
static drwav_uint64 drwav__riff_chunk_size_w64(drwav_uint64 dataChunkSize)
{
drwav_uint64 dataSubchunkPaddingSize = drwav__chunk_padding_size_w64(dataChunkSize);
return 80 + 24 + dataChunkSize + dataSubchunkPaddingSize;
}
static drwav_uint64 drwav__data_chunk_size_w64(drwav_uint64 dataChunkSize)
{
return 24 + dataChunkSize;
}
static drwav_bool32 drwav_preinit_write(drwav* pWav, const drwav_data_format* pFormat, drwav_bool32 isSequential, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pWav == NULL || onWrite == NULL) {
return DRWAV_FALSE;
}
if (!isSequential && onSeek == NULL) {
return DRWAV_FALSE;
}
if (pFormat->format == DR_WAVE_FORMAT_EXTENSIBLE) {
return DRWAV_FALSE;
}
if (pFormat->format == DR_WAVE_FORMAT_ADPCM || pFormat->format == DR_WAVE_FORMAT_DVI_ADPCM) {
return DRWAV_FALSE;
}
DRWAV_ZERO_MEMORY(pWav, sizeof(*pWav));
pWav->onWrite = onWrite;
pWav->onSeek = onSeek;
pWav->pUserData = pUserData;
pWav->allocationCallbacks = drwav_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
if (pWav->allocationCallbacks.onFree == NULL || (pWav->allocationCallbacks.onMalloc == NULL && pWav->allocationCallbacks.onRealloc == NULL)) {
return DRWAV_FALSE;
}
pWav->fmt.formatTag = (drwav_uint16)pFormat->format;
pWav->fmt.channels = (drwav_uint16)pFormat->channels;
pWav->fmt.sampleRate = pFormat->sampleRate;
pWav->fmt.avgBytesPerSec = (drwav_uint32)((pFormat->bitsPerSample * pFormat->sampleRate * pFormat->channels) / 8);
pWav->fmt.blockAlign = (drwav_uint16)((pFormat->channels * pFormat->bitsPerSample) / 8);
pWav->fmt.bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
pWav->fmt.extendedSize = 0;
pWav->isSequentialWrite = isSequential;
return DRWAV_TRUE;
}
static drwav_bool32 drwav_init_write__internal(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
{
size_t runningPos = 0;
drwav_uint64 initialDataChunkSize = 0;
drwav_uint64 chunkSizeFMT;
if (pWav->isSequentialWrite) {
initialDataChunkSize = (totalSampleCount * pWav->fmt.bitsPerSample) / 8;
if (pFormat->container == drwav_container_riff) {
if (initialDataChunkSize > (0xFFFFFFFFUL - 36)) {
return DRWAV_FALSE;
}
}
}
pWav->dataChunkDataSizeTargetWrite = initialDataChunkSize;
if (pFormat->container == drwav_container_riff) {
drwav_uint32 chunkSizeRIFF = 36 + (drwav_uint32)initialDataChunkSize;
runningPos += pWav->onWrite(pWav->pUserData, "RIFF", 4);
runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeRIFF, 4);
runningPos += pWav->onWrite(pWav->pUserData, "WAVE", 4);
} else {
drwav_uint64 chunkSizeRIFF = 80 + 24 + initialDataChunkSize;
runningPos += pWav->onWrite(pWav->pUserData, drwavGUID_W64_RIFF, 16);
runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeRIFF, 8);
runningPos += pWav->onWrite(pWav->pUserData, drwavGUID_W64_WAVE, 16);
}
if (pFormat->container == drwav_container_riff) {
chunkSizeFMT = 16;
runningPos += pWav->onWrite(pWav->pUserData, "fmt ", 4);
runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeFMT, 4);
} else {
chunkSizeFMT = 40;
runningPos += pWav->onWrite(pWav->pUserData, drwavGUID_W64_FMT, 16);
runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeFMT, 8);
}
runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.formatTag, 2);
runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.channels, 2);
runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.sampleRate, 4);
runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.avgBytesPerSec, 4);
runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.blockAlign, 2);
runningPos += pWav->onWrite(pWav->pUserData, &pWav->fmt.bitsPerSample, 2);
pWav->dataChunkDataPos = runningPos;
if (pFormat->container == drwav_container_riff) {
drwav_uint32 chunkSizeDATA = (drwav_uint32)initialDataChunkSize;
runningPos += pWav->onWrite(pWav->pUserData, "data", 4);
runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeDATA, 4);
} else {
drwav_uint64 chunkSizeDATA = 24 + initialDataChunkSize;
runningPos += pWav->onWrite(pWav->pUserData, drwavGUID_W64_DATA, 16);
runningPos += pWav->onWrite(pWav->pUserData, &chunkSizeDATA, 8);
}
if (pFormat->container == drwav_container_riff) {
if (runningPos != 20 + chunkSizeFMT + 8) {
return DRWAV_FALSE;
}
} else {
if (runningPos != 40 + chunkSizeFMT + 24) {
return DRWAV_FALSE;
}
}
pWav->container = pFormat->container;
pWav->channels = (drwav_uint16)pFormat->channels;
pWav->sampleRate = pFormat->sampleRate;
pWav->bitsPerSample = (drwav_uint16)pFormat->bitsPerSample;
pWav->translatedFormatTag = (drwav_uint16)pFormat->format;
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_init_write(drwav* pWav, const drwav_data_format* pFormat, drwav_write_proc onWrite, drwav_seek_proc onSeek, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (!drwav_preinit_write(pWav, pFormat, DRWAV_FALSE, onWrite, onSeek, pUserData, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
return drwav_init_write__internal(pWav, pFormat, 0);
}
DRWAV_API drwav_bool32 drwav_init_write_sequential(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (!drwav_preinit_write(pWav, pFormat, DRWAV_TRUE, onWrite, NULL, pUserData, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
return drwav_init_write__internal(pWav, pFormat, totalSampleCount);
}
DRWAV_API drwav_bool32 drwav_init_write_sequential_pcm_frames(drwav* pWav, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, drwav_write_proc onWrite, void* pUserData, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pFormat == NULL) {
return DRWAV_FALSE;
}
return drwav_init_write_sequential(pWav, pFormat, totalPCMFrameCount*pFormat->channels, onWrite, pUserData, pAllocationCallbacks);
}
DRWAV_API drwav_uint64 drwav_target_write_size_bytes(const drwav_data_format* pFormat, drwav_uint64 totalSampleCount)
{
drwav_uint64 targetDataSizeBytes = (drwav_uint64)((drwav_int64)totalSampleCount * pFormat->channels * pFormat->bitsPerSample/8.0);
drwav_uint64 riffChunkSizeBytes;
drwav_uint64 fileSizeBytes;
if (pFormat->container == drwav_container_riff) {
riffChunkSizeBytes = drwav__riff_chunk_size_riff(targetDataSizeBytes);
fileSizeBytes = (8 + riffChunkSizeBytes);
} else {
riffChunkSizeBytes = drwav__riff_chunk_size_w64(targetDataSizeBytes);
fileSizeBytes = riffChunkSizeBytes;
}
return fileSizeBytes;
}
#ifndef DR_WAV_NO_STDIO
#include <errno.h>
static drwav_result drwav_result_from_errno(int e)
{
switch (e)
{
case 0: return DRWAV_SUCCESS;
#ifdef EPERM
case EPERM: return DRWAV_INVALID_OPERATION;
#endif
#ifdef ENOENT
case ENOENT: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef ESRCH
case ESRCH: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef EINTR
case EINTR: return DRWAV_INTERRUPT;
#endif
#ifdef EIO
case EIO: return DRWAV_IO_ERROR;
#endif
#ifdef ENXIO
case ENXIO: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef E2BIG
case E2BIG: return DRWAV_INVALID_ARGS;
#endif
#ifdef ENOEXEC
case ENOEXEC: return DRWAV_INVALID_FILE;
#endif
#ifdef EBADF
case EBADF: return DRWAV_INVALID_FILE;
#endif
#ifdef ECHILD
case ECHILD: return DRWAV_ERROR;
#endif
#ifdef EAGAIN
case EAGAIN: return DRWAV_UNAVAILABLE;
#endif
#ifdef ENOMEM
case ENOMEM: return DRWAV_OUT_OF_MEMORY;
#endif
#ifdef EACCES
case EACCES: return DRWAV_ACCESS_DENIED;
#endif
#ifdef EFAULT
case EFAULT: return DRWAV_BAD_ADDRESS;
#endif
#ifdef ENOTBLK
case ENOTBLK: return DRWAV_ERROR;
#endif
#ifdef EBUSY
case EBUSY: return DRWAV_BUSY;
#endif
#ifdef EEXIST
case EEXIST: return DRWAV_ALREADY_EXISTS;
#endif
#ifdef EXDEV
case EXDEV: return DRWAV_ERROR;
#endif
#ifdef ENODEV
case ENODEV: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef ENOTDIR
case ENOTDIR: return DRWAV_NOT_DIRECTORY;
#endif
#ifdef EISDIR
case EISDIR: return DRWAV_IS_DIRECTORY;
#endif
#ifdef EINVAL
case EINVAL: return DRWAV_INVALID_ARGS;
#endif
#ifdef ENFILE
case ENFILE: return DRWAV_TOO_MANY_OPEN_FILES;
#endif
#ifdef EMFILE
case EMFILE: return DRWAV_TOO_MANY_OPEN_FILES;
#endif
#ifdef ENOTTY
case ENOTTY: return DRWAV_INVALID_OPERATION;
#endif
#ifdef ETXTBSY
case ETXTBSY: return DRWAV_BUSY;
#endif
#ifdef EFBIG
case EFBIG: return DRWAV_TOO_BIG;
#endif
#ifdef ENOSPC
case ENOSPC: return DRWAV_NO_SPACE;
#endif
#ifdef ESPIPE
case ESPIPE: return DRWAV_BAD_SEEK;
#endif
#ifdef EROFS
case EROFS: return DRWAV_ACCESS_DENIED;
#endif
#ifdef EMLINK
case EMLINK: return DRWAV_TOO_MANY_LINKS;
#endif
#ifdef EPIPE
case EPIPE: return DRWAV_BAD_PIPE;
#endif
#ifdef EDOM
case EDOM: return DRWAV_OUT_OF_RANGE;
#endif
#ifdef ERANGE
case ERANGE: return DRWAV_OUT_OF_RANGE;
#endif
#ifdef EDEADLK
case EDEADLK: return DRWAV_DEADLOCK;
#endif
#ifdef ENAMETOOLONG
case ENAMETOOLONG: return DRWAV_PATH_TOO_LONG;
#endif
#ifdef ENOLCK
case ENOLCK: return DRWAV_ERROR;
#endif
#ifdef ENOSYS
case ENOSYS: return DRWAV_NOT_IMPLEMENTED;
#endif
#ifdef ENOTEMPTY
case ENOTEMPTY: return DRWAV_DIRECTORY_NOT_EMPTY;
#endif
#ifdef ELOOP
case ELOOP: return DRWAV_TOO_MANY_LINKS;
#endif
#ifdef ENOMSG
case ENOMSG: return DRWAV_NO_MESSAGE;
#endif
#ifdef EIDRM
case EIDRM: return DRWAV_ERROR;
#endif
#ifdef ECHRNG
case ECHRNG: return DRWAV_ERROR;
#endif
#ifdef EL2NSYNC
case EL2NSYNC: return DRWAV_ERROR;
#endif
#ifdef EL3HLT
case EL3HLT: return DRWAV_ERROR;
#endif
#ifdef EL3RST
case EL3RST: return DRWAV_ERROR;
#endif
#ifdef ELNRNG
case ELNRNG: return DRWAV_OUT_OF_RANGE;
#endif
#ifdef EUNATCH
case EUNATCH: return DRWAV_ERROR;
#endif
#ifdef ENOCSI
case ENOCSI: return DRWAV_ERROR;
#endif
#ifdef EL2HLT
case EL2HLT: return DRWAV_ERROR;
#endif
#ifdef EBADE
case EBADE: return DRWAV_ERROR;
#endif
#ifdef EBADR
case EBADR: return DRWAV_ERROR;
#endif
#ifdef EXFULL
case EXFULL: return DRWAV_ERROR;
#endif
#ifdef ENOANO
case ENOANO: return DRWAV_ERROR;
#endif
#ifdef EBADRQC
case EBADRQC: return DRWAV_ERROR;
#endif
#ifdef EBADSLT
case EBADSLT: return DRWAV_ERROR;
#endif
#ifdef EBFONT
case EBFONT: return DRWAV_INVALID_FILE;
#endif
#ifdef ENOSTR
case ENOSTR: return DRWAV_ERROR;
#endif
#ifdef ENODATA
case ENODATA: return DRWAV_NO_DATA_AVAILABLE;
#endif
#ifdef ETIME
case ETIME: return DRWAV_TIMEOUT;
#endif
#ifdef ENOSR
case ENOSR: return DRWAV_NO_DATA_AVAILABLE;
#endif
#ifdef ENONET
case ENONET: return DRWAV_NO_NETWORK;
#endif
#ifdef ENOPKG
case ENOPKG: return DRWAV_ERROR;
#endif
#ifdef EREMOTE
case EREMOTE: return DRWAV_ERROR;
#endif
#ifdef ENOLINK
case ENOLINK: return DRWAV_ERROR;
#endif
#ifdef EADV
case EADV: return DRWAV_ERROR;
#endif
#ifdef ESRMNT
case ESRMNT: return DRWAV_ERROR;
#endif
#ifdef ECOMM
case ECOMM: return DRWAV_ERROR;
#endif
#ifdef EPROTO
case EPROTO: return DRWAV_ERROR;
#endif
#ifdef EMULTIHOP
case EMULTIHOP: return DRWAV_ERROR;
#endif
#ifdef EDOTDOT
case EDOTDOT: return DRWAV_ERROR;
#endif
#ifdef EBADMSG
case EBADMSG: return DRWAV_BAD_MESSAGE;
#endif
#ifdef EOVERFLOW
case EOVERFLOW: return DRWAV_TOO_BIG;
#endif
#ifdef ENOTUNIQ
case ENOTUNIQ: return DRWAV_NOT_UNIQUE;
#endif
#ifdef EBADFD
case EBADFD: return DRWAV_ERROR;
#endif
#ifdef EREMCHG
case EREMCHG: return DRWAV_ERROR;
#endif
#ifdef ELIBACC
case ELIBACC: return DRWAV_ACCESS_DENIED;
#endif
#ifdef ELIBBAD
case ELIBBAD: return DRWAV_INVALID_FILE;
#endif
#ifdef ELIBSCN
case ELIBSCN: return DRWAV_INVALID_FILE;
#endif
#ifdef ELIBMAX
case ELIBMAX: return DRWAV_ERROR;
#endif
#ifdef ELIBEXEC
case ELIBEXEC: return DRWAV_ERROR;
#endif
#ifdef EILSEQ
case EILSEQ: return DRWAV_INVALID_DATA;
#endif
#ifdef ERESTART
case ERESTART: return DRWAV_ERROR;
#endif
#ifdef ESTRPIPE
case ESTRPIPE: return DRWAV_ERROR;
#endif
#ifdef EUSERS
case EUSERS: return DRWAV_ERROR;
#endif
#ifdef ENOTSOCK
case ENOTSOCK: return DRWAV_NOT_SOCKET;
#endif
#ifdef EDESTADDRREQ
case EDESTADDRREQ: return DRWAV_NO_ADDRESS;
#endif
#ifdef EMSGSIZE
case EMSGSIZE: return DRWAV_TOO_BIG;
#endif
#ifdef EPROTOTYPE
case EPROTOTYPE: return DRWAV_BAD_PROTOCOL;
#endif
#ifdef ENOPROTOOPT
case ENOPROTOOPT: return DRWAV_PROTOCOL_UNAVAILABLE;
#endif
#ifdef EPROTONOSUPPORT
case EPROTONOSUPPORT: return DRWAV_PROTOCOL_NOT_SUPPORTED;
#endif
#ifdef ESOCKTNOSUPPORT
case ESOCKTNOSUPPORT: return DRWAV_SOCKET_NOT_SUPPORTED;
#endif
#ifdef EOPNOTSUPP
case EOPNOTSUPP: return DRWAV_INVALID_OPERATION;
#endif
#ifdef EPFNOSUPPORT
case EPFNOSUPPORT: return DRWAV_PROTOCOL_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EAFNOSUPPORT
case EAFNOSUPPORT: return DRWAV_ADDRESS_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EADDRINUSE
case EADDRINUSE: return DRWAV_ALREADY_IN_USE;
#endif
#ifdef EADDRNOTAVAIL
case EADDRNOTAVAIL: return DRWAV_ERROR;
#endif
#ifdef ENETDOWN
case ENETDOWN: return DRWAV_NO_NETWORK;
#endif
#ifdef ENETUNREACH
case ENETUNREACH: return DRWAV_NO_NETWORK;
#endif
#ifdef ENETRESET
case ENETRESET: return DRWAV_NO_NETWORK;
#endif
#ifdef ECONNABORTED
case ECONNABORTED: return DRWAV_NO_NETWORK;
#endif
#ifdef ECONNRESET
case ECONNRESET: return DRWAV_CONNECTION_RESET;
#endif
#ifdef ENOBUFS
case ENOBUFS: return DRWAV_NO_SPACE;
#endif
#ifdef EISCONN
case EISCONN: return DRWAV_ALREADY_CONNECTED;
#endif
#ifdef ENOTCONN
case ENOTCONN: return DRWAV_NOT_CONNECTED;
#endif
#ifdef ESHUTDOWN
case ESHUTDOWN: return DRWAV_ERROR;
#endif
#ifdef ETOOMANYREFS
case ETOOMANYREFS: return DRWAV_ERROR;
#endif
#ifdef ETIMEDOUT
case ETIMEDOUT: return DRWAV_TIMEOUT;
#endif
#ifdef ECONNREFUSED
case ECONNREFUSED: return DRWAV_CONNECTION_REFUSED;
#endif
#ifdef EHOSTDOWN
case EHOSTDOWN: return DRWAV_NO_HOST;
#endif
#ifdef EHOSTUNREACH
case EHOSTUNREACH: return DRWAV_NO_HOST;
#endif
#ifdef EALREADY
case EALREADY: return DRWAV_IN_PROGRESS;
#endif
#ifdef EINPROGRESS
case EINPROGRESS: return DRWAV_IN_PROGRESS;
#endif
#ifdef ESTALE
case ESTALE: return DRWAV_INVALID_FILE;
#endif
#ifdef EUCLEAN
case EUCLEAN: return DRWAV_ERROR;
#endif
#ifdef ENOTNAM
case ENOTNAM: return DRWAV_ERROR;
#endif
#ifdef ENAVAIL
case ENAVAIL: return DRWAV_ERROR;
#endif
#ifdef EISNAM
case EISNAM: return DRWAV_ERROR;
#endif
#ifdef EREMOTEIO
case EREMOTEIO: return DRWAV_IO_ERROR;
#endif
#ifdef EDQUOT
case EDQUOT: return DRWAV_NO_SPACE;
#endif
#ifdef ENOMEDIUM
case ENOMEDIUM: return DRWAV_DOES_NOT_EXIST;
#endif
#ifdef EMEDIUMTYPE
case EMEDIUMTYPE: return DRWAV_ERROR;
#endif
#ifdef ECANCELED
case ECANCELED: return DRWAV_CANCELLED;
#endif
#ifdef ENOKEY
case ENOKEY: return DRWAV_ERROR;
#endif
#ifdef EKEYEXPIRED
case EKEYEXPIRED: return DRWAV_ERROR;
#endif
#ifdef EKEYREVOKED
case EKEYREVOKED: return DRWAV_ERROR;
#endif
#ifdef EKEYREJECTED
case EKEYREJECTED: return DRWAV_ERROR;
#endif
#ifdef EOWNERDEAD
case EOWNERDEAD: return DRWAV_ERROR;
#endif
#ifdef ENOTRECOVERABLE
case ENOTRECOVERABLE: return DRWAV_ERROR;
#endif
#ifdef ERFKILL
case ERFKILL: return DRWAV_ERROR;
#endif
#ifdef EHWPOISON
case EHWPOISON: return DRWAV_ERROR;
#endif
default: return DRWAV_ERROR;
}
}
static drwav_result drwav_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
{
#if _MSC_VER && _MSC_VER >= 1400
errno_t err;
#endif
if (ppFile != NULL) {
*ppFile = NULL;
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return DRWAV_INVALID_ARGS;
}
#if _MSC_VER && _MSC_VER >= 1400
err = fopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return drwav_result_from_errno(err);
}
#else
#if defined(_WIN32) || defined(__APPLE__)
*ppFile = fopen(pFilePath, pOpenMode);
#else
#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
*ppFile = fopen64(pFilePath, pOpenMode);
#else
*ppFile = fopen(pFilePath, pOpenMode);
#endif
#endif
if (*ppFile == NULL) {
drwav_result result = drwav_result_from_errno(errno);
if (result == DRWAV_SUCCESS) {
result = DRWAV_ERROR;
}
return result;
}
#endif
return DRWAV_SUCCESS;
}
#if defined(_WIN32)
#if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
#define DRWAV_HAS_WFOPEN
#endif
#endif
static drwav_result drwav_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (ppFile != NULL) {
*ppFile = NULL;
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return DRWAV_INVALID_ARGS;
}
#if defined(DRWAV_HAS_WFOPEN)
{
#if defined(_MSC_VER) && _MSC_VER >= 1400
errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return drwav_result_from_errno(err);
}
#else
*ppFile = _wfopen(pFilePath, pOpenMode);
if (*ppFile == NULL) {
return drwav_result_from_errno(errno);
}
#endif
(void)pAllocationCallbacks;
}
#else
{
mbstate_t mbs;
size_t lenMB;
const wchar_t* pFilePathTemp = pFilePath;
char* pFilePathMB = NULL;
char pOpenModeMB[32] = {0};
DRWAV_ZERO_OBJECT(&mbs);
lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
if (lenMB == (size_t)-1) {
return drwav_result_from_errno(errno);
}
pFilePathMB = (char*)drwav__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
if (pFilePathMB == NULL) {
return DRWAV_OUT_OF_MEMORY;
}
pFilePathTemp = pFilePath;
DRWAV_ZERO_OBJECT(&mbs);
wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
{
size_t i = 0;
for (;;) {
if (pOpenMode[i] == 0) {
pOpenModeMB[i] = '\0';
break;
}
pOpenModeMB[i] = (char)pOpenMode[i];
i += 1;
}
}
*ppFile = fopen(pFilePathMB, pOpenModeMB);
drwav__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
}
if (*ppFile == NULL) {
return DRWAV_ERROR;
}
#endif
return DRWAV_SUCCESS;
}
static size_t drwav__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData);
}
static size_t drwav__on_write_stdio(void* pUserData, const void* pData, size_t bytesToWrite)
{
return fwrite(pData, 1, bytesToWrite, (FILE*)pUserData);
}
static drwav_bool32 drwav__on_seek_stdio(void* pUserData, int offset, drwav_seek_origin origin)
{
return fseek((FILE*)pUserData, offset, (origin == drwav_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
}
DRWAV_API drwav_bool32 drwav_init_file(drwav* pWav, const char* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_ex(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
}
static drwav_bool32 drwav_init_file__internal_FILE(drwav* pWav, FILE* pFile, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav_bool32 result;
result = drwav_preinit(pWav, drwav__on_read_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
if (result != DRWAV_TRUE) {
fclose(pFile);
return result;
}
result = drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
if (result != DRWAV_TRUE) {
fclose(pFile);
return result;
}
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_init_file_ex(drwav* pWav, const char* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_fopen(&pFile, filename, "rb") != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_w(drwav* pWav, const wchar_t* filename, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_ex_w(pWav, filename, NULL, NULL, 0, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_ex_w(drwav* pWav, const wchar_t* filename, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_wfopen(&pFile, filename, L"rb", pAllocationCallbacks) != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
return drwav_init_file__internal_FILE(pWav, pFile, onChunk, pChunkUserData, flags, pAllocationCallbacks);
}
static drwav_bool32 drwav_init_file_write__internal_FILE(drwav* pWav, FILE* pFile, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav_bool32 result;
result = drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_stdio, drwav__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
if (result != DRWAV_TRUE) {
fclose(pFile);
return result;
}
result = drwav_init_write__internal(pWav, pFormat, totalSampleCount);
if (result != DRWAV_TRUE) {
fclose(pFile);
return result;
}
return DRWAV_TRUE;
}
static drwav_bool32 drwav_init_file_write__internal(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_fopen(&pFile, filename, "wb") != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
}
static drwav_bool32 drwav_init_file_write_w__internal(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drwav_wfopen(&pFile, filename, L"wb", pAllocationCallbacks) != DRWAV_SUCCESS) {
return DRWAV_FALSE;
}
return drwav_init_file_write__internal_FILE(pWav, pFile, pFormat, totalSampleCount, isSequential, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write(drwav* pWav, const char* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_write__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write_sequential(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_write__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames(drwav* pWav, const char* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pFormat == NULL) {
return DRWAV_FALSE;
}
return drwav_init_file_write_sequential(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_write_w__internal(pWav, filename, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_file_write_w__internal(pWav, filename, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_file_write_sequential_pcm_frames_w(drwav* pWav, const wchar_t* filename, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pFormat == NULL) {
return DRWAV_FALSE;
}
return drwav_init_file_write_sequential_w(pWav, filename, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
}
#endif
static size_t drwav__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
drwav* pWav = (drwav*)pUserData;
size_t bytesRemaining;
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->memoryStream.dataSize >= pWav->memoryStream.currentReadPos);
bytesRemaining = pWav->memoryStream.dataSize - pWav->memoryStream.currentReadPos;
if (bytesToRead > bytesRemaining) {
bytesToRead = bytesRemaining;
}
if (bytesToRead > 0) {
DRWAV_COPY_MEMORY(pBufferOut, pWav->memoryStream.data + pWav->memoryStream.currentReadPos, bytesToRead);
pWav->memoryStream.currentReadPos += bytesToRead;
}
return bytesToRead;
}
static drwav_bool32 drwav__on_seek_memory(void* pUserData, int offset, drwav_seek_origin origin)
{
drwav* pWav = (drwav*)pUserData;
DRWAV_ASSERT(pWav != NULL);
if (origin == drwav_seek_origin_current) {
if (offset > 0) {
if (pWav->memoryStream.currentReadPos + offset > pWav->memoryStream.dataSize) {
return DRWAV_FALSE;
}
} else {
if (pWav->memoryStream.currentReadPos < (size_t)-offset) {
return DRWAV_FALSE;
}
}
pWav->memoryStream.currentReadPos += offset;
} else {
if ((drwav_uint32)offset <= pWav->memoryStream.dataSize) {
pWav->memoryStream.currentReadPos = offset;
} else {
return DRWAV_FALSE;
}
}
return DRWAV_TRUE;
}
static size_t drwav__on_write_memory(void* pUserData, const void* pDataIn, size_t bytesToWrite)
{
drwav* pWav = (drwav*)pUserData;
size_t bytesRemaining;
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(pWav->memoryStreamWrite.dataCapacity >= pWav->memoryStreamWrite.currentWritePos);
bytesRemaining = pWav->memoryStreamWrite.dataCapacity - pWav->memoryStreamWrite.currentWritePos;
if (bytesRemaining < bytesToWrite) {
void* pNewData;
size_t newDataCapacity = (pWav->memoryStreamWrite.dataCapacity == 0) ? 256 : pWav->memoryStreamWrite.dataCapacity * 2;
if ((newDataCapacity - pWav->memoryStreamWrite.currentWritePos) < bytesToWrite) {
newDataCapacity = pWav->memoryStreamWrite.currentWritePos + bytesToWrite;
}
pNewData = drwav__realloc_from_callbacks(*pWav->memoryStreamWrite.ppData, newDataCapacity, pWav->memoryStreamWrite.dataCapacity, &pWav->allocationCallbacks);
if (pNewData == NULL) {
return 0;
}
*pWav->memoryStreamWrite.ppData = pNewData;
pWav->memoryStreamWrite.dataCapacity = newDataCapacity;
}
DRWAV_COPY_MEMORY(((drwav_uint8*)(*pWav->memoryStreamWrite.ppData)) + pWav->memoryStreamWrite.currentWritePos, pDataIn, bytesToWrite);
pWav->memoryStreamWrite.currentWritePos += bytesToWrite;
if (pWav->memoryStreamWrite.dataSize < pWav->memoryStreamWrite.currentWritePos) {
pWav->memoryStreamWrite.dataSize = pWav->memoryStreamWrite.currentWritePos;
}
*pWav->memoryStreamWrite.pDataSize = pWav->memoryStreamWrite.dataSize;
return bytesToWrite;
}
static drwav_bool32 drwav__on_seek_memory_write(void* pUserData, int offset, drwav_seek_origin origin)
{
drwav* pWav = (drwav*)pUserData;
DRWAV_ASSERT(pWav != NULL);
if (origin == drwav_seek_origin_current) {
if (offset > 0) {
if (pWav->memoryStreamWrite.currentWritePos + offset > pWav->memoryStreamWrite.dataSize) {
offset = (int)(pWav->memoryStreamWrite.dataSize - pWav->memoryStreamWrite.currentWritePos);
}
} else {
if (pWav->memoryStreamWrite.currentWritePos < (size_t)-offset) {
offset = -(int)pWav->memoryStreamWrite.currentWritePos;
}
}
pWav->memoryStreamWrite.currentWritePos += offset;
} else {
if ((drwav_uint32)offset <= pWav->memoryStreamWrite.dataSize) {
pWav->memoryStreamWrite.currentWritePos = offset;
} else {
pWav->memoryStreamWrite.currentWritePos = pWav->memoryStreamWrite.dataSize;
}
}
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_init_memory(drwav* pWav, const void* data, size_t dataSize, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_memory_ex(pWav, data, dataSize, NULL, NULL, 0, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_memory_ex(drwav* pWav, const void* data, size_t dataSize, drwav_chunk_proc onChunk, void* pChunkUserData, drwav_uint32 flags, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (data == NULL || dataSize == 0) {
return DRWAV_FALSE;
}
if (!drwav_preinit(pWav, drwav__on_read_memory, drwav__on_seek_memory, pWav, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
pWav->memoryStream.data = (const drwav_uint8*)data;
pWav->memoryStream.dataSize = dataSize;
pWav->memoryStream.currentReadPos = 0;
return drwav_init__internal(pWav, onChunk, pChunkUserData, flags);
}
static drwav_bool32 drwav_init_memory_write__internal(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, drwav_bool32 isSequential, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (ppData == NULL || pDataSize == NULL) {
return DRWAV_FALSE;
}
*ppData = NULL;
*pDataSize = 0;
if (!drwav_preinit_write(pWav, pFormat, isSequential, drwav__on_write_memory, drwav__on_seek_memory_write, pWav, pAllocationCallbacks)) {
return DRWAV_FALSE;
}
pWav->memoryStreamWrite.ppData = ppData;
pWav->memoryStreamWrite.pDataSize = pDataSize;
pWav->memoryStreamWrite.dataSize = 0;
pWav->memoryStreamWrite.dataCapacity = 0;
pWav->memoryStreamWrite.currentWritePos = 0;
return drwav_init_write__internal(pWav, pFormat, totalSampleCount);
}
DRWAV_API drwav_bool32 drwav_init_memory_write(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, 0, DRWAV_FALSE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_memory_write_sequential(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalSampleCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
return drwav_init_memory_write__internal(pWav, ppData, pDataSize, pFormat, totalSampleCount, DRWAV_TRUE, pAllocationCallbacks);
}
DRWAV_API drwav_bool32 drwav_init_memory_write_sequential_pcm_frames(drwav* pWav, void** ppData, size_t* pDataSize, const drwav_data_format* pFormat, drwav_uint64 totalPCMFrameCount, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pFormat == NULL) {
return DRWAV_FALSE;
}
return drwav_init_memory_write_sequential(pWav, ppData, pDataSize, pFormat, totalPCMFrameCount*pFormat->channels, pAllocationCallbacks);
}
DRWAV_API drwav_result drwav_uninit(drwav* pWav)
{
drwav_result result = DRWAV_SUCCESS;
if (pWav == NULL) {
return DRWAV_INVALID_ARGS;
}
if (pWav->onWrite != NULL) {
drwav_uint32 paddingSize = 0;
if (pWav->container == drwav_container_riff) {
paddingSize = drwav__chunk_padding_size_riff(pWav->dataChunkDataSize);
} else {
paddingSize = drwav__chunk_padding_size_w64(pWav->dataChunkDataSize);
}
if (paddingSize > 0) {
drwav_uint64 paddingData = 0;
pWav->onWrite(pWav->pUserData, &paddingData, paddingSize);
}
if (pWav->onSeek && !pWav->isSequentialWrite) {
if (pWav->container == drwav_container_riff) {
if (pWav->onSeek(pWav->pUserData, 4, drwav_seek_origin_start)) {
drwav_uint32 riffChunkSize = drwav__riff_chunk_size_riff(pWav->dataChunkDataSize);
pWav->onWrite(pWav->pUserData, &riffChunkSize, 4);
}
if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 4, drwav_seek_origin_start)) {
drwav_uint32 dataChunkSize = drwav__data_chunk_size_riff(pWav->dataChunkDataSize);
pWav->onWrite(pWav->pUserData, &dataChunkSize, 4);
}
} else {
if (pWav->onSeek(pWav->pUserData, 16, drwav_seek_origin_start)) {
drwav_uint64 riffChunkSize = drwav__riff_chunk_size_w64(pWav->dataChunkDataSize);
pWav->onWrite(pWav->pUserData, &riffChunkSize, 8);
}
if (pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos + 16, drwav_seek_origin_start)) {
drwav_uint64 dataChunkSize = drwav__data_chunk_size_w64(pWav->dataChunkDataSize);
pWav->onWrite(pWav->pUserData, &dataChunkSize, 8);
}
}
}
if (pWav->isSequentialWrite) {
if (pWav->dataChunkDataSize != pWav->dataChunkDataSizeTargetWrite) {
result = DRWAV_INVALID_FILE;
}
}
}
#ifndef DR_WAV_NO_STDIO
if (pWav->onRead == drwav__on_read_stdio || pWav->onWrite == drwav__on_write_stdio) {
fclose((FILE*)pWav->pUserData);
}
#endif
return result;
}
DRWAV_API size_t drwav_read_raw(drwav* pWav, size_t bytesToRead, void* pBufferOut)
{
size_t bytesRead;
if (pWav == NULL || bytesToRead == 0) {
return 0;
}
if (bytesToRead > pWav->bytesRemaining) {
bytesToRead = (size_t)pWav->bytesRemaining;
}
if (pBufferOut != NULL) {
bytesRead = pWav->onRead(pWav->pUserData, pBufferOut, bytesToRead);
} else {
bytesRead = 0;
while (bytesRead < bytesToRead) {
size_t bytesToSeek = (bytesToRead - bytesRead);
if (bytesToSeek > 0x7FFFFFFF) {
bytesToSeek = 0x7FFFFFFF;
}
if (pWav->onSeek(pWav->pUserData, (int)bytesToSeek, drwav_seek_origin_current) == DRWAV_FALSE) {
break;
}
bytesRead += bytesToSeek;
}
while (bytesRead < bytesToRead) {
drwav_uint8 buffer[4096];
size_t bytesSeeked;
size_t bytesToSeek = (bytesToRead - bytesRead);
if (bytesToSeek > sizeof(buffer)) {
bytesToSeek = sizeof(buffer);
}
bytesSeeked = pWav->onRead(pWav->pUserData, buffer, bytesToSeek);
bytesRead += bytesSeeked;
if (bytesSeeked < bytesToSeek) {
break;
}
}
}
pWav->bytesRemaining -= bytesRead;
return bytesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_le(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
{
drwav_uint32 bytesPerFrame;
if (pWav == NULL || framesToRead == 0) {
return 0;
}
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
return 0;
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
if (framesToRead * bytesPerFrame > DRWAV_SIZE_MAX) {
framesToRead = DRWAV_SIZE_MAX / bytesPerFrame;
}
return drwav_read_raw(pWav, (size_t)(framesToRead * bytesPerFrame), pBufferOut) / bytesPerFrame;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_be(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL) {
drwav__bswap_samples(pBufferOut, framesRead*pWav->channels, drwav_get_bytes_per_pcm_frame(pWav)/pWav->channels, pWav->translatedFormatTag);
}
return framesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames(drwav* pWav, drwav_uint64 framesToRead, void* pBufferOut)
{
if (drwav__is_little_endian()) {
return drwav_read_pcm_frames_le(pWav, framesToRead, pBufferOut);
} else {
return drwav_read_pcm_frames_be(pWav, framesToRead, pBufferOut);
}
}
DRWAV_API drwav_bool32 drwav_seek_to_first_pcm_frame(drwav* pWav)
{
if (pWav->onWrite != NULL) {
return DRWAV_FALSE;
}
if (!pWav->onSeek(pWav->pUserData, (int)pWav->dataChunkDataPos, drwav_seek_origin_start)) {
return DRWAV_FALSE;
}
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
pWav->compressed.iCurrentPCMFrame = 0;
}
pWav->bytesRemaining = pWav->dataChunkDataSize;
return DRWAV_TRUE;
}
DRWAV_API drwav_bool32 drwav_seek_to_pcm_frame(drwav* pWav, drwav_uint64 targetFrameIndex)
{
if (pWav == NULL || pWav->onSeek == NULL) {
return DRWAV_FALSE;
}
if (pWav->onWrite != NULL) {
return DRWAV_FALSE;
}
if (pWav->totalPCMFrameCount == 0) {
return DRWAV_TRUE;
}
if (targetFrameIndex >= pWav->totalPCMFrameCount) {
targetFrameIndex = pWav->totalPCMFrameCount - 1;
}
if (drwav__is_compressed_format_tag(pWav->translatedFormatTag)) {
if (targetFrameIndex < pWav->compressed.iCurrentPCMFrame) {
if (!drwav_seek_to_first_pcm_frame(pWav)) {
return DRWAV_FALSE;
}
}
if (targetFrameIndex > pWav->compressed.iCurrentPCMFrame) {
drwav_uint64 offsetInFrames = targetFrameIndex - pWav->compressed.iCurrentPCMFrame;
drwav_int16 devnull[2048];
while (offsetInFrames > 0) {
drwav_uint64 framesRead = 0;
drwav_uint64 framesToRead = offsetInFrames;
if (framesToRead > drwav_countof(devnull)/pWav->channels) {
framesToRead = drwav_countof(devnull)/pWav->channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
framesRead = drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, devnull);
} else if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
framesRead = drwav_read_pcm_frames_s16__ima(pWav, framesToRead, devnull);
} else {
DRWAV_ASSERT(DRWAV_FALSE);
}
if (framesRead != framesToRead) {
return DRWAV_FALSE;
}
offsetInFrames -= framesRead;
}
}
} else {
drwav_uint64 totalSizeInBytes;
drwav_uint64 currentBytePos;
drwav_uint64 targetBytePos;
drwav_uint64 offset;
totalSizeInBytes = pWav->totalPCMFrameCount * drwav_get_bytes_per_pcm_frame(pWav);
DRWAV_ASSERT(totalSizeInBytes >= pWav->bytesRemaining);
currentBytePos = totalSizeInBytes - pWav->bytesRemaining;
targetBytePos = targetFrameIndex * drwav_get_bytes_per_pcm_frame(pWav);
if (currentBytePos < targetBytePos) {
offset = (targetBytePos - currentBytePos);
} else {
if (!drwav_seek_to_first_pcm_frame(pWav)) {
return DRWAV_FALSE;
}
offset = targetBytePos;
}
while (offset > 0) {
int offset32 = ((offset > INT_MAX) ? INT_MAX : (int)offset);
if (!pWav->onSeek(pWav->pUserData, offset32, drwav_seek_origin_current)) {
return DRWAV_FALSE;
}
pWav->bytesRemaining -= offset32;
offset -= offset32;
}
}
return DRWAV_TRUE;
}
DRWAV_API size_t drwav_write_raw(drwav* pWav, size_t bytesToWrite, const void* pData)
{
size_t bytesWritten;
if (pWav == NULL || bytesToWrite == 0 || pData == NULL) {
return 0;
}
bytesWritten = pWav->onWrite(pWav->pUserData, pData, bytesToWrite);
pWav->dataChunkDataSize += bytesWritten;
return bytesWritten;
}
DRWAV_API drwav_uint64 drwav_write_pcm_frames_le(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
{
drwav_uint64 bytesToWrite;
drwav_uint64 bytesWritten;
const drwav_uint8* pRunningData;
if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
return 0;
}
bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
if (bytesToWrite > DRWAV_SIZE_MAX) {
return 0;
}
bytesWritten = 0;
pRunningData = (const drwav_uint8*)pData;
while (bytesToWrite > 0) {
size_t bytesJustWritten;
drwav_uint64 bytesToWriteThisIteration;
bytesToWriteThisIteration = bytesToWrite;
DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX);
bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, pRunningData);
if (bytesJustWritten == 0) {
break;
}
bytesToWrite -= bytesJustWritten;
bytesWritten += bytesJustWritten;
pRunningData += bytesJustWritten;
}
return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
}
DRWAV_API drwav_uint64 drwav_write_pcm_frames_be(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
{
drwav_uint64 bytesToWrite;
drwav_uint64 bytesWritten;
drwav_uint32 bytesPerSample;
const drwav_uint8* pRunningData;
if (pWav == NULL || framesToWrite == 0 || pData == NULL) {
return 0;
}
bytesToWrite = ((framesToWrite * pWav->channels * pWav->bitsPerSample) / 8);
if (bytesToWrite > DRWAV_SIZE_MAX) {
return 0;
}
bytesWritten = 0;
pRunningData = (const drwav_uint8*)pData;
bytesPerSample = drwav_get_bytes_per_pcm_frame(pWav) / pWav->channels;
while (bytesToWrite > 0) {
drwav_uint8 temp[4096];
drwav_uint32 sampleCount;
size_t bytesJustWritten;
drwav_uint64 bytesToWriteThisIteration;
bytesToWriteThisIteration = bytesToWrite;
DRWAV_ASSERT(bytesToWriteThisIteration <= DRWAV_SIZE_MAX);
sampleCount = sizeof(temp)/bytesPerSample;
if (bytesToWriteThisIteration > ((drwav_uint64)sampleCount)*bytesPerSample) {
bytesToWriteThisIteration = ((drwav_uint64)sampleCount)*bytesPerSample;
}
DRWAV_COPY_MEMORY(temp, pRunningData, (size_t)bytesToWriteThisIteration);
drwav__bswap_samples(temp, sampleCount, bytesPerSample, pWav->translatedFormatTag);
bytesJustWritten = drwav_write_raw(pWav, (size_t)bytesToWriteThisIteration, temp);
if (bytesJustWritten == 0) {
break;
}
bytesToWrite -= bytesJustWritten;
bytesWritten += bytesJustWritten;
pRunningData += bytesJustWritten;
}
return (bytesWritten * 8) / pWav->bitsPerSample / pWav->channels;
}
DRWAV_API drwav_uint64 drwav_write_pcm_frames(drwav* pWav, drwav_uint64 framesToWrite, const void* pData)
{
if (drwav__is_little_endian()) {
return drwav_write_pcm_frames_le(pWav, framesToWrite, pData);
} else {
return drwav_write_pcm_frames_be(pWav, framesToWrite, pData);
}
}
static drwav_uint64 drwav_read_pcm_frames_s16__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead = 0;
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(framesToRead > 0);
while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
if (pWav->msadpcm.cachedFrameCount == 0 && pWav->msadpcm.bytesRemainingInBlock == 0) {
if (pWav->channels == 1) {
drwav_uint8 header[7];
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
return totalFramesRead;
}
pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
pWav->msadpcm.predictor[0] = header[0];
pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 1);
pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 3);
pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 5);
pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][0];
pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.cachedFrameCount = 2;
} else {
drwav_uint8 header[14];
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
return totalFramesRead;
}
pWav->msadpcm.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
pWav->msadpcm.predictor[0] = header[0];
pWav->msadpcm.predictor[1] = header[1];
pWav->msadpcm.delta[0] = drwav__bytes_to_s16(header + 2);
pWav->msadpcm.delta[1] = drwav__bytes_to_s16(header + 4);
pWav->msadpcm.prevFrames[0][1] = (drwav_int32)drwav__bytes_to_s16(header + 6);
pWav->msadpcm.prevFrames[1][1] = (drwav_int32)drwav__bytes_to_s16(header + 8);
pWav->msadpcm.prevFrames[0][0] = (drwav_int32)drwav__bytes_to_s16(header + 10);
pWav->msadpcm.prevFrames[1][0] = (drwav_int32)drwav__bytes_to_s16(header + 12);
pWav->msadpcm.cachedFrames[0] = pWav->msadpcm.prevFrames[0][0];
pWav->msadpcm.cachedFrames[1] = pWav->msadpcm.prevFrames[1][0];
pWav->msadpcm.cachedFrames[2] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.cachedFrames[3] = pWav->msadpcm.prevFrames[1][1];
pWav->msadpcm.cachedFrameCount = 2;
}
}
while (framesToRead > 0 && pWav->msadpcm.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
if (pBufferOut != NULL) {
drwav_uint32 iSample = 0;
for (iSample = 0; iSample < pWav->channels; iSample += 1) {
pBufferOut[iSample] = (drwav_int16)pWav->msadpcm.cachedFrames[(drwav_countof(pWav->msadpcm.cachedFrames) - (pWav->msadpcm.cachedFrameCount*pWav->channels)) + iSample];
}
pBufferOut += pWav->channels;
}
framesToRead -= 1;
totalFramesRead += 1;
pWav->compressed.iCurrentPCMFrame += 1;
pWav->msadpcm.cachedFrameCount -= 1;
}
if (framesToRead == 0) {
return totalFramesRead;
}
if (pWav->msadpcm.cachedFrameCount == 0) {
if (pWav->msadpcm.bytesRemainingInBlock == 0) {
continue;
} else {
static drwav_int32 adaptationTable[] = {
230, 230, 230, 230, 307, 409, 512, 614,
768, 614, 512, 409, 307, 230, 230, 230
};
static drwav_int32 coeff1Table[] = { 256, 512, 0, 192, 240, 460, 392 };
static drwav_int32 coeff2Table[] = { 0, -256, 0, 64, 0, -208, -232 };
drwav_uint8 nibbles;
drwav_int32 nibble0;
drwav_int32 nibble1;
if (pWav->onRead(pWav->pUserData, &nibbles, 1) != 1) {
return totalFramesRead;
}
pWav->msadpcm.bytesRemainingInBlock -= 1;
nibble0 = ((nibbles & 0xF0) >> 4); if ((nibbles & 0x80)) { nibble0 |= 0xFFFFFFF0UL; }
nibble1 = ((nibbles & 0x0F) >> 0); if ((nibbles & 0x08)) { nibble1 |= 0xFFFFFFF0UL; }
if (pWav->channels == 1) {
drwav_int32 newSample0;
drwav_int32 newSample1;
newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
newSample0 += nibble0 * pWav->msadpcm.delta[0];
newSample0 = drwav_clamp(newSample0, -32768, 32767);
pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
if (pWav->msadpcm.delta[0] < 16) {
pWav->msadpcm.delta[0] = 16;
}
pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.prevFrames[0][1] = newSample0;
newSample1 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
newSample1 += nibble1 * pWav->msadpcm.delta[0];
newSample1 = drwav_clamp(newSample1, -32768, 32767);
pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[0]) >> 8;
if (pWav->msadpcm.delta[0] < 16) {
pWav->msadpcm.delta[0] = 16;
}
pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.prevFrames[0][1] = newSample1;
pWav->msadpcm.cachedFrames[2] = newSample0;
pWav->msadpcm.cachedFrames[3] = newSample1;
pWav->msadpcm.cachedFrameCount = 2;
} else {
drwav_int32 newSample0;
drwav_int32 newSample1;
newSample0 = ((pWav->msadpcm.prevFrames[0][1] * coeff1Table[pWav->msadpcm.predictor[0]]) + (pWav->msadpcm.prevFrames[0][0] * coeff2Table[pWav->msadpcm.predictor[0]])) >> 8;
newSample0 += nibble0 * pWav->msadpcm.delta[0];
newSample0 = drwav_clamp(newSample0, -32768, 32767);
pWav->msadpcm.delta[0] = (adaptationTable[((nibbles & 0xF0) >> 4)] * pWav->msadpcm.delta[0]) >> 8;
if (pWav->msadpcm.delta[0] < 16) {
pWav->msadpcm.delta[0] = 16;
}
pWav->msadpcm.prevFrames[0][0] = pWav->msadpcm.prevFrames[0][1];
pWav->msadpcm.prevFrames[0][1] = newSample0;
newSample1 = ((pWav->msadpcm.prevFrames[1][1] * coeff1Table[pWav->msadpcm.predictor[1]]) + (pWav->msadpcm.prevFrames[1][0] * coeff2Table[pWav->msadpcm.predictor[1]])) >> 8;
newSample1 += nibble1 * pWav->msadpcm.delta[1];
newSample1 = drwav_clamp(newSample1, -32768, 32767);
pWav->msadpcm.delta[1] = (adaptationTable[((nibbles & 0x0F) >> 0)] * pWav->msadpcm.delta[1]) >> 8;
if (pWav->msadpcm.delta[1] < 16) {
pWav->msadpcm.delta[1] = 16;
}
pWav->msadpcm.prevFrames[1][0] = pWav->msadpcm.prevFrames[1][1];
pWav->msadpcm.prevFrames[1][1] = newSample1;
pWav->msadpcm.cachedFrames[2] = newSample0;
pWav->msadpcm.cachedFrames[3] = newSample1;
pWav->msadpcm.cachedFrameCount = 1;
}
}
}
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_s16__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead = 0;
drwav_uint32 iChannel;
static drwav_int32 indexTable[16] = {
-1, -1, -1, -1, 2, 4, 6, 8,
-1, -1, -1, -1, 2, 4, 6, 8
};
static drwav_int32 stepTable[89] = {
7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
};
DRWAV_ASSERT(pWav != NULL);
DRWAV_ASSERT(framesToRead > 0);
while (framesToRead > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
if (pWav->ima.cachedFrameCount == 0 && pWav->ima.bytesRemainingInBlock == 0) {
if (pWav->channels == 1) {
drwav_uint8 header[4];
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
return totalFramesRead;
}
pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
if (header[2] >= drwav_countof(stepTable)) {
pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
pWav->ima.bytesRemainingInBlock = 0;
return totalFramesRead;
}
pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
pWav->ima.stepIndex[0] = header[2];
pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[0];
pWav->ima.cachedFrameCount = 1;
} else {
drwav_uint8 header[8];
if (pWav->onRead(pWav->pUserData, header, sizeof(header)) != sizeof(header)) {
return totalFramesRead;
}
pWav->ima.bytesRemainingInBlock = pWav->fmt.blockAlign - sizeof(header);
if (header[2] >= drwav_countof(stepTable) || header[6] >= drwav_countof(stepTable)) {
pWav->onSeek(pWav->pUserData, pWav->ima.bytesRemainingInBlock, drwav_seek_origin_current);
pWav->ima.bytesRemainingInBlock = 0;
return totalFramesRead;
}
pWav->ima.predictor[0] = drwav__bytes_to_s16(header + 0);
pWav->ima.stepIndex[0] = header[2];
pWav->ima.predictor[1] = drwav__bytes_to_s16(header + 4);
pWav->ima.stepIndex[1] = header[6];
pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 2] = pWav->ima.predictor[0];
pWav->ima.cachedFrames[drwav_countof(pWav->ima.cachedFrames) - 1] = pWav->ima.predictor[1];
pWav->ima.cachedFrameCount = 1;
}
}
while (framesToRead > 0 && pWav->ima.cachedFrameCount > 0 && pWav->compressed.iCurrentPCMFrame < pWav->totalPCMFrameCount) {
if (pBufferOut != NULL) {
drwav_uint32 iSample;
for (iSample = 0; iSample < pWav->channels; iSample += 1) {
pBufferOut[iSample] = (drwav_int16)pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + iSample];
}
pBufferOut += pWav->channels;
}
framesToRead -= 1;
totalFramesRead += 1;
pWav->compressed.iCurrentPCMFrame += 1;
pWav->ima.cachedFrameCount -= 1;
}
if (framesToRead == 0) {
return totalFramesRead;
}
if (pWav->ima.cachedFrameCount == 0) {
if (pWav->ima.bytesRemainingInBlock == 0) {
continue;
} else {
pWav->ima.cachedFrameCount = 8;
for (iChannel = 0; iChannel < pWav->channels; ++iChannel) {
drwav_uint32 iByte;
drwav_uint8 nibbles[4];
if (pWav->onRead(pWav->pUserData, &nibbles, 4) != 4) {
pWav->ima.cachedFrameCount = 0;
return totalFramesRead;
}
pWav->ima.bytesRemainingInBlock -= 4;
for (iByte = 0; iByte < 4; ++iByte) {
drwav_uint8 nibble0 = ((nibbles[iByte] & 0x0F) >> 0);
drwav_uint8 nibble1 = ((nibbles[iByte] & 0xF0) >> 4);
drwav_int32 step = stepTable[pWav->ima.stepIndex[iChannel]];
drwav_int32 predictor = pWav->ima.predictor[iChannel];
drwav_int32 diff = step >> 3;
if (nibble0 & 1) diff += step >> 2;
if (nibble0 & 2) diff += step >> 1;
if (nibble0 & 4) diff += step;
if (nibble0 & 8) diff = -diff;
predictor = drwav_clamp(predictor + diff, -32768, 32767);
pWav->ima.predictor[iChannel] = predictor;
pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble0], 0, (drwav_int32)drwav_countof(stepTable)-1);
pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+0)*pWav->channels + iChannel] = predictor;
step = stepTable[pWav->ima.stepIndex[iChannel]];
predictor = pWav->ima.predictor[iChannel];
diff = step >> 3;
if (nibble1 & 1) diff += step >> 2;
if (nibble1 & 2) diff += step >> 1;
if (nibble1 & 4) diff += step;
if (nibble1 & 8) diff = -diff;
predictor = drwav_clamp(predictor + diff, -32768, 32767);
pWav->ima.predictor[iChannel] = predictor;
pWav->ima.stepIndex[iChannel] = drwav_clamp(pWav->ima.stepIndex[iChannel] + indexTable[nibble1], 0, (drwav_int32)drwav_countof(stepTable)-1);
pWav->ima.cachedFrames[(drwav_countof(pWav->ima.cachedFrames) - (pWav->ima.cachedFrameCount*pWav->channels)) + (iByte*2+1)*pWav->channels + iChannel] = predictor;
}
}
}
}
}
return totalFramesRead;
}
#ifndef DR_WAV_NO_CONVERSION_API
static unsigned short g_drwavAlawTable[256] = {
0xEA80, 0xEB80, 0xE880, 0xE980, 0xEE80, 0xEF80, 0xEC80, 0xED80, 0xE280, 0xE380, 0xE080, 0xE180, 0xE680, 0xE780, 0xE480, 0xE580,
0xF540, 0xF5C0, 0xF440, 0xF4C0, 0xF740, 0xF7C0, 0xF640, 0xF6C0, 0xF140, 0xF1C0, 0xF040, 0xF0C0, 0xF340, 0xF3C0, 0xF240, 0xF2C0,
0xAA00, 0xAE00, 0xA200, 0xA600, 0xBA00, 0xBE00, 0xB200, 0xB600, 0x8A00, 0x8E00, 0x8200, 0x8600, 0x9A00, 0x9E00, 0x9200, 0x9600,
0xD500, 0xD700, 0xD100, 0xD300, 0xDD00, 0xDF00, 0xD900, 0xDB00, 0xC500, 0xC700, 0xC100, 0xC300, 0xCD00, 0xCF00, 0xC900, 0xCB00,
0xFEA8, 0xFEB8, 0xFE88, 0xFE98, 0xFEE8, 0xFEF8, 0xFEC8, 0xFED8, 0xFE28, 0xFE38, 0xFE08, 0xFE18, 0xFE68, 0xFE78, 0xFE48, 0xFE58,
0xFFA8, 0xFFB8, 0xFF88, 0xFF98, 0xFFE8, 0xFFF8, 0xFFC8, 0xFFD8, 0xFF28, 0xFF38, 0xFF08, 0xFF18, 0xFF68, 0xFF78, 0xFF48, 0xFF58,
0xFAA0, 0xFAE0, 0xFA20, 0xFA60, 0xFBA0, 0xFBE0, 0xFB20, 0xFB60, 0xF8A0, 0xF8E0, 0xF820, 0xF860, 0xF9A0, 0xF9E0, 0xF920, 0xF960,
0xFD50, 0xFD70, 0xFD10, 0xFD30, 0xFDD0, 0xFDF0, 0xFD90, 0xFDB0, 0xFC50, 0xFC70, 0xFC10, 0xFC30, 0xFCD0, 0xFCF0, 0xFC90, 0xFCB0,
0x1580, 0x1480, 0x1780, 0x1680, 0x1180, 0x1080, 0x1380, 0x1280, 0x1D80, 0x1C80, 0x1F80, 0x1E80, 0x1980, 0x1880, 0x1B80, 0x1A80,
0x0AC0, 0x0A40, 0x0BC0, 0x0B40, 0x08C0, 0x0840, 0x09C0, 0x0940, 0x0EC0, 0x0E40, 0x0FC0, 0x0F40, 0x0CC0, 0x0C40, 0x0DC0, 0x0D40,
0x5600, 0x5200, 0x5E00, 0x5A00, 0x4600, 0x4200, 0x4E00, 0x4A00, 0x7600, 0x7200, 0x7E00, 0x7A00, 0x6600, 0x6200, 0x6E00, 0x6A00,
0x2B00, 0x2900, 0x2F00, 0x2D00, 0x2300, 0x2100, 0x2700, 0x2500, 0x3B00, 0x3900, 0x3F00, 0x3D00, 0x3300, 0x3100, 0x3700, 0x3500,
0x0158, 0x0148, 0x0178, 0x0168, 0x0118, 0x0108, 0x0138, 0x0128, 0x01D8, 0x01C8, 0x01F8, 0x01E8, 0x0198, 0x0188, 0x01B8, 0x01A8,
0x0058, 0x0048, 0x0078, 0x0068, 0x0018, 0x0008, 0x0038, 0x0028, 0x00D8, 0x00C8, 0x00F8, 0x00E8, 0x0098, 0x0088, 0x00B8, 0x00A8,
0x0560, 0x0520, 0x05E0, 0x05A0, 0x0460, 0x0420, 0x04E0, 0x04A0, 0x0760, 0x0720, 0x07E0, 0x07A0, 0x0660, 0x0620, 0x06E0, 0x06A0,
0x02B0, 0x0290, 0x02F0, 0x02D0, 0x0230, 0x0210, 0x0270, 0x0250, 0x03B0, 0x0390, 0x03F0, 0x03D0, 0x0330, 0x0310, 0x0370, 0x0350
};
static unsigned short g_drwavMulawTable[256] = {
0x8284, 0x8684, 0x8A84, 0x8E84, 0x9284, 0x9684, 0x9A84, 0x9E84, 0xA284, 0xA684, 0xAA84, 0xAE84, 0xB284, 0xB684, 0xBA84, 0xBE84,
0xC184, 0xC384, 0xC584, 0xC784, 0xC984, 0xCB84, 0xCD84, 0xCF84, 0xD184, 0xD384, 0xD584, 0xD784, 0xD984, 0xDB84, 0xDD84, 0xDF84,
0xE104, 0xE204, 0xE304, 0xE404, 0xE504, 0xE604, 0xE704, 0xE804, 0xE904, 0xEA04, 0xEB04, 0xEC04, 0xED04, 0xEE04, 0xEF04, 0xF004,
0xF0C4, 0xF144, 0xF1C4, 0xF244, 0xF2C4, 0xF344, 0xF3C4, 0xF444, 0xF4C4, 0xF544, 0xF5C4, 0xF644, 0xF6C4, 0xF744, 0xF7C4, 0xF844,
0xF8A4, 0xF8E4, 0xF924, 0xF964, 0xF9A4, 0xF9E4, 0xFA24, 0xFA64, 0xFAA4, 0xFAE4, 0xFB24, 0xFB64, 0xFBA4, 0xFBE4, 0xFC24, 0xFC64,
0xFC94, 0xFCB4, 0xFCD4, 0xFCF4, 0xFD14, 0xFD34, 0xFD54, 0xFD74, 0xFD94, 0xFDB4, 0xFDD4, 0xFDF4, 0xFE14, 0xFE34, 0xFE54, 0xFE74,
0xFE8C, 0xFE9C, 0xFEAC, 0xFEBC, 0xFECC, 0xFEDC, 0xFEEC, 0xFEFC, 0xFF0C, 0xFF1C, 0xFF2C, 0xFF3C, 0xFF4C, 0xFF5C, 0xFF6C, 0xFF7C,
0xFF88, 0xFF90, 0xFF98, 0xFFA0, 0xFFA8, 0xFFB0, 0xFFB8, 0xFFC0, 0xFFC8, 0xFFD0, 0xFFD8, 0xFFE0, 0xFFE8, 0xFFF0, 0xFFF8, 0x0000,
0x7D7C, 0x797C, 0x757C, 0x717C, 0x6D7C, 0x697C, 0x657C, 0x617C, 0x5D7C, 0x597C, 0x557C, 0x517C, 0x4D7C, 0x497C, 0x457C, 0x417C,
0x3E7C, 0x3C7C, 0x3A7C, 0x387C, 0x367C, 0x347C, 0x327C, 0x307C, 0x2E7C, 0x2C7C, 0x2A7C, 0x287C, 0x267C, 0x247C, 0x227C, 0x207C,
0x1EFC, 0x1DFC, 0x1CFC, 0x1BFC, 0x1AFC, 0x19FC, 0x18FC, 0x17FC, 0x16FC, 0x15FC, 0x14FC, 0x13FC, 0x12FC, 0x11FC, 0x10FC, 0x0FFC,
0x0F3C, 0x0EBC, 0x0E3C, 0x0DBC, 0x0D3C, 0x0CBC, 0x0C3C, 0x0BBC, 0x0B3C, 0x0ABC, 0x0A3C, 0x09BC, 0x093C, 0x08BC, 0x083C, 0x07BC,
0x075C, 0x071C, 0x06DC, 0x069C, 0x065C, 0x061C, 0x05DC, 0x059C, 0x055C, 0x051C, 0x04DC, 0x049C, 0x045C, 0x041C, 0x03DC, 0x039C,
0x036C, 0x034C, 0x032C, 0x030C, 0x02EC, 0x02CC, 0x02AC, 0x028C, 0x026C, 0x024C, 0x022C, 0x020C, 0x01EC, 0x01CC, 0x01AC, 0x018C,
0x0174, 0x0164, 0x0154, 0x0144, 0x0134, 0x0124, 0x0114, 0x0104, 0x00F4, 0x00E4, 0x00D4, 0x00C4, 0x00B4, 0x00A4, 0x0094, 0x0084,
0x0078, 0x0070, 0x0068, 0x0060, 0x0058, 0x0050, 0x0048, 0x0040, 0x0038, 0x0030, 0x0028, 0x0020, 0x0018, 0x0010, 0x0008, 0x0000
};
static DRWAV_INLINE drwav_int16 drwav__alaw_to_s16(drwav_uint8 sampleIn)
{
return (short)g_drwavAlawTable[sampleIn];
}
static DRWAV_INLINE drwav_int16 drwav__mulaw_to_s16(drwav_uint8 sampleIn)
{
return (short)g_drwavMulawTable[sampleIn];
}
static void drwav__pcm_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
{
unsigned int i;
if (bytesPerSample == 1) {
drwav_u8_to_s16(pOut, pIn, totalSampleCount);
return;
}
if (bytesPerSample == 2) {
for (i = 0; i < totalSampleCount; ++i) {
*pOut++ = ((const drwav_int16*)pIn)[i];
}
return;
}
if (bytesPerSample == 3) {
drwav_s24_to_s16(pOut, pIn, totalSampleCount);
return;
}
if (bytesPerSample == 4) {
drwav_s32_to_s16(pOut, (const drwav_int32*)pIn, totalSampleCount);
return;
}
if (bytesPerSample > 8) {
DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
return;
}
for (i = 0; i < totalSampleCount; ++i) {
drwav_uint64 sample = 0;
unsigned int shift = (8 - bytesPerSample) * 8;
unsigned int j;
for (j = 0; j < bytesPerSample; j += 1) {
DRWAV_ASSERT(j < 8);
sample |= (drwav_uint64)(pIn[j]) << shift;
shift += 8;
}
pIn += j;
*pOut++ = (drwav_int16)((drwav_int64)sample >> 48);
}
}
static void drwav__ieee_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
{
if (bytesPerSample == 4) {
drwav_f32_to_s16(pOut, (const float*)pIn, totalSampleCount);
return;
} else if (bytesPerSample == 8) {
drwav_f64_to_s16(pOut, (const double*)pIn, totalSampleCount);
return;
} else {
DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
return;
}
}
static drwav_uint64 drwav_read_pcm_frames_s16__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint32 bytesPerFrame;
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
if ((pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 16) || pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav__pcm_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_s16__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame;
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav__ieee_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_s16__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame;
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav_alaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_s16__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame;
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav_mulaw_to_s16(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
if (pWav == NULL || framesToRead == 0) {
return 0;
}
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
if (framesToRead * pWav->channels * sizeof(drwav_int16) > DRWAV_SIZE_MAX) {
framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int16) / pWav->channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
return drwav_read_pcm_frames_s16__pcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
return drwav_read_pcm_frames_s16__ieee(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
return drwav_read_pcm_frames_s16__alaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
return drwav_read_pcm_frames_s16__mulaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
return drwav_read_pcm_frames_s16__msadpcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
return drwav_read_pcm_frames_s16__ima(pWav, framesToRead, pBufferOut);
}
return 0;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16le(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s16be(drwav* pWav, drwav_uint64 framesToRead, drwav_int16* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
drwav__bswap_samples_s16(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API void drwav_u8_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
int x = pIn[i];
r = x << 8;
r = r - 32768;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_s24_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
int x = ((int)(((unsigned int)(((const drwav_uint8*)pIn)[i*3+0]) << 8) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+1]) << 16) | ((unsigned int)(((const drwav_uint8*)pIn)[i*3+2])) << 24)) >> 8;
r = x >> 8;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_s32_to_s16(drwav_int16* pOut, const drwav_int32* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
int x = pIn[i];
r = x >> 16;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_f32_to_s16(drwav_int16* pOut, const float* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
float x = pIn[i];
float c;
c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
c = c + 1;
r = (int)(c * 32767.5f);
r = r - 32768;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_f64_to_s16(drwav_int16* pOut, const double* pIn, size_t sampleCount)
{
int r;
size_t i;
for (i = 0; i < sampleCount; ++i) {
double x = pIn[i];
double c;
c = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
c = c + 1;
r = (int)(c * 32767.5);
r = r - 32768;
pOut[i] = (short)r;
}
}
DRWAV_API void drwav_alaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
for (i = 0; i < sampleCount; ++i) {
pOut[i] = drwav__alaw_to_s16(pIn[i]);
}
}
DRWAV_API void drwav_mulaw_to_s16(drwav_int16* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
for (i = 0; i < sampleCount; ++i) {
pOut[i] = drwav__mulaw_to_s16(pIn[i]);
}
}
static void drwav__pcm_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
{
unsigned int i;
if (bytesPerSample == 1) {
drwav_u8_to_f32(pOut, pIn, sampleCount);
return;
}
if (bytesPerSample == 2) {
drwav_s16_to_f32(pOut, (const drwav_int16*)pIn, sampleCount);
return;
}
if (bytesPerSample == 3) {
drwav_s24_to_f32(pOut, pIn, sampleCount);
return;
}
if (bytesPerSample == 4) {
drwav_s32_to_f32(pOut, (const drwav_int32*)pIn, sampleCount);
return;
}
if (bytesPerSample > 8) {
DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
return;
}
for (i = 0; i < sampleCount; ++i) {
drwav_uint64 sample = 0;
unsigned int shift = (8 - bytesPerSample) * 8;
unsigned int j;
for (j = 0; j < bytesPerSample; j += 1) {
DRWAV_ASSERT(j < 8);
sample |= (drwav_uint64)(pIn[j]) << shift;
shift += 8;
}
pIn += j;
*pOut++ = (float)((drwav_int64)sample / 9223372036854775807.0);
}
}
static void drwav__ieee_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount, unsigned int bytesPerSample)
{
if (bytesPerSample == 4) {
unsigned int i;
for (i = 0; i < sampleCount; ++i) {
*pOut++ = ((const float*)pIn)[i];
}
return;
} else if (bytesPerSample == 8) {
drwav_f64_to_f32(pOut, (const double*)pIn, sampleCount);
return;
} else {
DRWAV_ZERO_MEMORY(pOut, sampleCount * sizeof(*pOut));
return;
}
}
static drwav_uint64 drwav_read_pcm_frames_f32__pcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav__pcm_to_f32(pBufferOut, sampleData, (size_t)framesRead*pWav->channels, bytesPerFrame/pWav->channels);
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_f32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead = 0;
drwav_int16 samples16[2048];
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
if (framesRead == 0) {
break;
}
drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_f32__ima(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead = 0;
drwav_int16 samples16[2048];
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
if (framesRead == 0) {
break;
}
drwav_s16_to_f32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_f32__ieee(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame;
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT && pWav->bitsPerSample == 32) {
return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav__ieee_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_f32__alaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav_alaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_f32__mulaw(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav_mulaw_to_f32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
if (pWav == NULL || framesToRead == 0) {
return 0;
}
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
if (framesToRead * pWav->channels * sizeof(float) > DRWAV_SIZE_MAX) {
framesToRead = DRWAV_SIZE_MAX / sizeof(float) / pWav->channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
return drwav_read_pcm_frames_f32__pcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
return drwav_read_pcm_frames_f32__msadpcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
return drwav_read_pcm_frames_f32__ieee(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
return drwav_read_pcm_frames_f32__alaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
return drwav_read_pcm_frames_f32__mulaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
return drwav_read_pcm_frames_f32__ima(pWav, framesToRead, pBufferOut);
}
return 0;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32le(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_f32be(drwav* pWav, drwav_uint64 framesToRead, float* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_f32(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
drwav__bswap_samples_f32(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API void drwav_u8_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
#ifdef DR_WAV_LIBSNDFILE_COMPAT
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (pIn[i] / 256.0f) * 2 - 1;
}
#else
for (i = 0; i < sampleCount; ++i) {
float x = pIn[i];
x = x * 0.00784313725490196078f;
x = x - 1;
*pOut++ = x;
}
#endif
}
DRWAV_API void drwav_s16_to_f32(float* pOut, const drwav_int16* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = pIn[i] * 0.000030517578125f;
}
}
DRWAV_API void drwav_s24_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
double x = (double)(((drwav_int32)(((drwav_uint32)(pIn[i*3+0]) << 8) | ((drwav_uint32)(pIn[i*3+1]) << 16) | ((drwav_uint32)(pIn[i*3+2])) << 24)) >> 8);
*pOut++ = (float)(x * 0.00000011920928955078125);
}
}
DRWAV_API void drwav_s32_to_f32(float* pOut, const drwav_int32* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (float)(pIn[i] / 2147483648.0);
}
}
DRWAV_API void drwav_f64_to_f32(float* pOut, const double* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (float)pIn[i];
}
}
DRWAV_API void drwav_alaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = drwav__alaw_to_s16(pIn[i]) / 32768.0f;
}
}
DRWAV_API void drwav_mulaw_to_f32(float* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = drwav__mulaw_to_s16(pIn[i]) / 32768.0f;
}
}
static void drwav__pcm_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
{
unsigned int i;
if (bytesPerSample == 1) {
drwav_u8_to_s32(pOut, pIn, totalSampleCount);
return;
}
if (bytesPerSample == 2) {
drwav_s16_to_s32(pOut, (const drwav_int16*)pIn, totalSampleCount);
return;
}
if (bytesPerSample == 3) {
drwav_s24_to_s32(pOut, pIn, totalSampleCount);
return;
}
if (bytesPerSample == 4) {
for (i = 0; i < totalSampleCount; ++i) {
*pOut++ = ((const drwav_int32*)pIn)[i];
}
return;
}
if (bytesPerSample > 8) {
DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
return;
}
for (i = 0; i < totalSampleCount; ++i) {
drwav_uint64 sample = 0;
unsigned int shift = (8 - bytesPerSample) * 8;
unsigned int j;
for (j = 0; j < bytesPerSample; j += 1) {
DRWAV_ASSERT(j < 8);
sample |= (drwav_uint64)(pIn[j]) << shift;
shift += 8;
}
pIn += j;
*pOut++ = (drwav_int32)((drwav_int64)sample >> 32);
}
}
static void drwav__ieee_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t totalSampleCount, unsigned int bytesPerSample)
{
if (bytesPerSample == 4) {
drwav_f32_to_s32(pOut, (const float*)pIn, totalSampleCount);
return;
} else if (bytesPerSample == 8) {
drwav_f64_to_s32(pOut, (const double*)pIn, totalSampleCount);
return;
} else {
DRWAV_ZERO_MEMORY(pOut, totalSampleCount * sizeof(*pOut));
return;
}
}
static drwav_uint64 drwav_read_pcm_frames_s32__pcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame;
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM && pWav->bitsPerSample == 32) {
return drwav_read_pcm_frames(pWav, framesToRead, pBufferOut);
}
bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav__pcm_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_s32__msadpcm(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead = 0;
drwav_int16 samples16[2048];
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
if (framesRead == 0) {
break;
}
drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_s32__ima(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead = 0;
drwav_int16 samples16[2048];
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames_s16(pWav, drwav_min(framesToRead, drwav_countof(samples16)/pWav->channels), samples16);
if (framesRead == 0) {
break;
}
drwav_s16_to_s32(pBufferOut, samples16, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_s32__ieee(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav__ieee_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels), bytesPerFrame/pWav->channels);
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_s32__alaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav_alaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
static drwav_uint64 drwav_read_pcm_frames_s32__mulaw(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 totalFramesRead;
drwav_uint8 sampleData[4096];
drwav_uint32 bytesPerFrame = drwav_get_bytes_per_pcm_frame(pWav);
if (bytesPerFrame == 0) {
return 0;
}
totalFramesRead = 0;
while (framesToRead > 0) {
drwav_uint64 framesRead = drwav_read_pcm_frames(pWav, drwav_min(framesToRead, sizeof(sampleData)/bytesPerFrame), sampleData);
if (framesRead == 0) {
break;
}
drwav_mulaw_to_s32(pBufferOut, sampleData, (size_t)(framesRead*pWav->channels));
pBufferOut += framesRead*pWav->channels;
framesToRead -= framesRead;
totalFramesRead += framesRead;
}
return totalFramesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
if (pWav == NULL || framesToRead == 0) {
return 0;
}
if (pBufferOut == NULL) {
return drwav_read_pcm_frames(pWav, framesToRead, NULL);
}
if (framesToRead * pWav->channels * sizeof(drwav_int32) > DRWAV_SIZE_MAX) {
framesToRead = DRWAV_SIZE_MAX / sizeof(drwav_int32) / pWav->channels;
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_PCM) {
return drwav_read_pcm_frames_s32__pcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ADPCM) {
return drwav_read_pcm_frames_s32__msadpcm(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_IEEE_FLOAT) {
return drwav_read_pcm_frames_s32__ieee(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_ALAW) {
return drwav_read_pcm_frames_s32__alaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_MULAW) {
return drwav_read_pcm_frames_s32__mulaw(pWav, framesToRead, pBufferOut);
}
if (pWav->translatedFormatTag == DR_WAVE_FORMAT_DVI_ADPCM) {
return drwav_read_pcm_frames_s32__ima(pWav, framesToRead, pBufferOut);
}
return 0;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32le(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_FALSE) {
drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API drwav_uint64 drwav_read_pcm_frames_s32be(drwav* pWav, drwav_uint64 framesToRead, drwav_int32* pBufferOut)
{
drwav_uint64 framesRead = drwav_read_pcm_frames_s32(pWav, framesToRead, pBufferOut);
if (pBufferOut != NULL && drwav__is_little_endian() == DRWAV_TRUE) {
drwav__bswap_samples_s32(pBufferOut, framesRead*pWav->channels);
}
return framesRead;
}
DRWAV_API void drwav_u8_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = ((int)pIn[i] - 128) << 24;
}
}
DRWAV_API void drwav_s16_to_s32(drwav_int32* pOut, const drwav_int16* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = pIn[i] << 16;
}
}
DRWAV_API void drwav_s24_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
unsigned int s0 = pIn[i*3 + 0];
unsigned int s1 = pIn[i*3 + 1];
unsigned int s2 = pIn[i*3 + 2];
drwav_int32 sample32 = (drwav_int32)((s0 << 8) | (s1 << 16) | (s2 << 24));
*pOut++ = sample32;
}
}
DRWAV_API void drwav_f32_to_s32(drwav_int32* pOut, const float* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
}
}
DRWAV_API void drwav_f64_to_s32(drwav_int32* pOut, const double* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = (drwav_int32)(2147483648.0 * pIn[i]);
}
}
DRWAV_API void drwav_alaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i = 0; i < sampleCount; ++i) {
*pOut++ = ((drwav_int32)drwav__alaw_to_s16(pIn[i])) << 16;
}
}
DRWAV_API void drwav_mulaw_to_s32(drwav_int32* pOut, const drwav_uint8* pIn, size_t sampleCount)
{
size_t i;
if (pOut == NULL || pIn == NULL) {
return;
}
for (i= 0; i < sampleCount; ++i) {
*pOut++ = ((drwav_int32)drwav__mulaw_to_s16(pIn[i])) << 16;
}
}
static drwav_int16* drwav__read_pcm_frames_and_close_s16(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
{
drwav_uint64 sampleDataSize;
drwav_int16* pSampleData;
drwav_uint64 framesRead;
DRWAV_ASSERT(pWav != NULL);
sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int16);
if (sampleDataSize > DRWAV_SIZE_MAX) {
drwav_uninit(pWav);
return NULL;
}
pSampleData = (drwav_int16*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks);
if (pSampleData == NULL) {
drwav_uninit(pWav);
return NULL;
}
framesRead = drwav_read_pcm_frames_s16(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
if (framesRead != pWav->totalPCMFrameCount) {
drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
drwav_uninit(pWav);
return NULL;
}
drwav_uninit(pWav);
if (sampleRate) {
*sampleRate = pWav->sampleRate;
}
if (channels) {
*channels = pWav->channels;
}
if (totalFrameCount) {
*totalFrameCount = pWav->totalPCMFrameCount;
}
return pSampleData;
}
static float* drwav__read_pcm_frames_and_close_f32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
{
drwav_uint64 sampleDataSize;
float* pSampleData;
drwav_uint64 framesRead;
DRWAV_ASSERT(pWav != NULL);
sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(float);
if (sampleDataSize > DRWAV_SIZE_MAX) {
drwav_uninit(pWav);
return NULL;
}
pSampleData = (float*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks);
if (pSampleData == NULL) {
drwav_uninit(pWav);
return NULL;
}
framesRead = drwav_read_pcm_frames_f32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
if (framesRead != pWav->totalPCMFrameCount) {
drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
drwav_uninit(pWav);
return NULL;
}
drwav_uninit(pWav);
if (sampleRate) {
*sampleRate = pWav->sampleRate;
}
if (channels) {
*channels = pWav->channels;
}
if (totalFrameCount) {
*totalFrameCount = pWav->totalPCMFrameCount;
}
return pSampleData;
}
static drwav_int32* drwav__read_pcm_frames_and_close_s32(drwav* pWav, unsigned int* channels, unsigned int* sampleRate, drwav_uint64* totalFrameCount)
{
drwav_uint64 sampleDataSize;
drwav_int32* pSampleData;
drwav_uint64 framesRead;
DRWAV_ASSERT(pWav != NULL);
sampleDataSize = pWav->totalPCMFrameCount * pWav->channels * sizeof(drwav_int32);
if (sampleDataSize > DRWAV_SIZE_MAX) {
drwav_uninit(pWav);
return NULL;
}
pSampleData = (drwav_int32*)drwav__malloc_from_callbacks((size_t)sampleDataSize, &pWav->allocationCallbacks);
if (pSampleData == NULL) {
drwav_uninit(pWav);
return NULL;
}
framesRead = drwav_read_pcm_frames_s32(pWav, (size_t)pWav->totalPCMFrameCount, pSampleData);
if (framesRead != pWav->totalPCMFrameCount) {
drwav__free_from_callbacks(pSampleData, &pWav->allocationCallbacks);
drwav_uninit(pWav);
return NULL;
}
drwav_uninit(pWav);
if (sampleRate) {
*sampleRate = pWav->sampleRate;
}
if (channels) {
*channels = pWav->channels;
}
if (totalFrameCount) {
*totalFrameCount = pWav->totalPCMFrameCount;
}
return pSampleData;
}
DRWAV_API drwav_int16* drwav_open_and_read_pcm_frames_s16(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API float* drwav_open_and_read_pcm_frames_f32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API drwav_int32* drwav_open_and_read_pcm_frames_s32(drwav_read_proc onRead, drwav_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init(&wav, onRead, onSeek, pUserData, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
#ifndef DR_WAV_NO_STDIO
DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API drwav_int16* drwav_open_file_and_read_pcm_frames_s16_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (channelsOut) {
*channelsOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API float* drwav_open_file_and_read_pcm_frames_f32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (channelsOut) {
*channelsOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API drwav_int32* drwav_open_file_and_read_pcm_frames_s32_w(const wchar_t* filename, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (channelsOut) {
*channelsOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_file_w(&wav, filename, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
#endif
DRWAV_API drwav_int16* drwav_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s16(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API float* drwav_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_f32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
DRWAV_API drwav_int32* drwav_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channelsOut, unsigned int* sampleRateOut, drwav_uint64* totalFrameCountOut, const drwav_allocation_callbacks* pAllocationCallbacks)
{
drwav wav;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalFrameCountOut) {
*totalFrameCountOut = 0;
}
if (!drwav_init_memory(&wav, data, dataSize, pAllocationCallbacks)) {
return NULL;
}
return drwav__read_pcm_frames_and_close_s32(&wav, channelsOut, sampleRateOut, totalFrameCountOut);
}
#endif
DRWAV_API void drwav_free(void* p, const drwav_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
drwav__free_from_callbacks(p, pAllocationCallbacks);
} else {
drwav__free_default(p, NULL);
}
}
DRWAV_API drwav_uint16 drwav_bytes_to_u16(const drwav_uint8* data)
{
return drwav__bytes_to_u16(data);
}
DRWAV_API drwav_int16 drwav_bytes_to_s16(const drwav_uint8* data)
{
return drwav__bytes_to_s16(data);
}
DRWAV_API drwav_uint32 drwav_bytes_to_u32(const drwav_uint8* data)
{
return drwav__bytes_to_u32(data);
}
DRWAV_API drwav_int32 drwav_bytes_to_s32(const drwav_uint8* data)
{
return drwav__bytes_to_s32(data);
}
DRWAV_API drwav_uint64 drwav_bytes_to_u64(const drwav_uint8* data)
{
return drwav__bytes_to_u64(data);
}
DRWAV_API drwav_int64 drwav_bytes_to_s64(const drwav_uint8* data)
{
return drwav__bytes_to_s64(data);
}
DRWAV_API drwav_bool32 drwav_guid_equal(const drwav_uint8 a[16], const drwav_uint8 b[16])
{
return drwav__guid_equal(a, b);
}
DRWAV_API drwav_bool32 drwav_fourcc_equal(const drwav_uint8* a, const char* b)
{
return drwav__fourcc_equal(a, b);
}
#endif
/* dr_wav_c end */
#endif /* DRWAV_IMPLEMENTATION */
#endif /* MA_NO_WAV */
#ifndef MA_NO_FLAC
#if !defined(DR_FLAC_IMPLEMENTATION) && !defined(DRFLAC_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */
/* dr_flac_c begin */
#ifndef dr_flac_c
#define dr_flac_c
#if defined(__GNUC__)
#pragma GCC diagnostic push
#if __GNUC__ >= 7
#pragma GCC diagnostic ignored "-Wimplicit-fallthrough"
#endif
#endif
#ifdef __linux__
#ifndef _BSD_SOURCE
#define _BSD_SOURCE
#endif
#ifndef __USE_BSD
#define __USE_BSD
#endif
#include <endian.h>
#endif
#include <stdlib.h>
#include <string.h>
#ifdef _MSC_VER
#define DRFLAC_INLINE __forceinline
#elif defined(__GNUC__)
#if defined(__STRICT_ANSI__)
#define DRFLAC_INLINE __inline__ __attribute__((always_inline))
#else
#define DRFLAC_INLINE inline __attribute__((always_inline))
#endif
#else
#define DRFLAC_INLINE
#endif
#if defined(__x86_64__) || defined(_M_X64)
#define DRFLAC_X64
#elif defined(__i386) || defined(_M_IX86)
#define DRFLAC_X86
#elif defined(__arm__) || defined(_M_ARM)
#define DRFLAC_ARM
#endif
#if !defined(DR_FLAC_NO_SIMD)
#if defined(DRFLAC_X64) || defined(DRFLAC_X86)
#if defined(_MSC_VER) && !defined(__clang__)
#if _MSC_VER >= 1400 && !defined(DRFLAC_NO_SSE2)
#define DRFLAC_SUPPORT_SSE2
#endif
#if _MSC_VER >= 1600 && !defined(DRFLAC_NO_SSE41)
#define DRFLAC_SUPPORT_SSE41
#endif
#else
#if defined(__SSE2__) && !defined(DRFLAC_NO_SSE2)
#define DRFLAC_SUPPORT_SSE2
#endif
#if defined(__SSE4_1__) && !defined(DRFLAC_NO_SSE41)
#define DRFLAC_SUPPORT_SSE41
#endif
#endif
#if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include)
#if !defined(DRFLAC_SUPPORT_SSE2) && !defined(DRFLAC_NO_SSE2) && __has_include(<emmintrin.h>)
#define DRFLAC_SUPPORT_SSE2
#endif
#if !defined(DRFLAC_SUPPORT_SSE41) && !defined(DRFLAC_NO_SSE41) && __has_include(<smmintrin.h>)
#define DRFLAC_SUPPORT_SSE41
#endif
#endif
#if defined(DRFLAC_SUPPORT_SSE41)
#include <smmintrin.h>
#elif defined(DRFLAC_SUPPORT_SSE2)
#include <emmintrin.h>
#endif
#endif
#if defined(DRFLAC_ARM)
#if !defined(DRFLAC_NO_NEON) && (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64))
#define DRFLAC_SUPPORT_NEON
#endif
#if !defined(__GNUC__) && !defined(__clang__) && defined(__has_include)
#if !defined(DRFLAC_SUPPORT_NEON) && !defined(DRFLAC_NO_NEON) && __has_include(<arm_neon.h>)
#define DRFLAC_SUPPORT_NEON
#endif
#endif
#if defined(DRFLAC_SUPPORT_NEON)
#include <arm_neon.h>
#endif
#endif
#endif
#if !defined(DR_FLAC_NO_SIMD) && (defined(DRFLAC_X86) || defined(DRFLAC_X64))
#if defined(_MSC_VER) && !defined(__clang__)
#if _MSC_VER >= 1400
#include <intrin.h>
static void drflac__cpuid(int info[4], int fid)
{
__cpuid(info, fid);
}
#else
#define DRFLAC_NO_CPUID
#endif
#else
#if defined(__GNUC__) || defined(__clang__)
static void drflac__cpuid(int info[4], int fid)
{
#if defined(DRFLAC_X86) && defined(__PIC__)
__asm__ __volatile__ (
"xchg{l} {%%}ebx, %k1;"
"cpuid;"
"xchg{l} {%%}ebx, %k1;"
: "=a"(info[0]), "=&r"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0)
);
#else
__asm__ __volatile__ (
"cpuid" : "=a"(info[0]), "=b"(info[1]), "=c"(info[2]), "=d"(info[3]) : "a"(fid), "c"(0)
);
#endif
}
#else
#define DRFLAC_NO_CPUID
#endif
#endif
#else
#define DRFLAC_NO_CPUID
#endif
static DRFLAC_INLINE drflac_bool32 drflac_has_sse2(void)
{
#if defined(DRFLAC_SUPPORT_SSE2)
#if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE2)
#if defined(DRFLAC_X64)
return DRFLAC_TRUE;
#elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE2__)
return DRFLAC_TRUE;
#else
#if defined(DRFLAC_NO_CPUID)
return DRFLAC_FALSE;
#else
int info[4];
drflac__cpuid(info, 1);
return (info[3] & (1 << 26)) != 0;
#endif
#endif
#else
return DRFLAC_FALSE;
#endif
#else
return DRFLAC_FALSE;
#endif
}
static DRFLAC_INLINE drflac_bool32 drflac_has_sse41(void)
{
#if defined(DRFLAC_SUPPORT_SSE41)
#if (defined(DRFLAC_X64) || defined(DRFLAC_X86)) && !defined(DRFLAC_NO_SSE41)
#if defined(DRFLAC_X64)
return DRFLAC_TRUE;
#elif (defined(_M_IX86_FP) && _M_IX86_FP == 2) || defined(__SSE4_1__)
return DRFLAC_TRUE;
#else
#if defined(DRFLAC_NO_CPUID)
return DRFLAC_FALSE;
#else
int info[4];
drflac__cpuid(info, 1);
return (info[2] & (1 << 19)) != 0;
#endif
#endif
#else
return DRFLAC_FALSE;
#endif
#else
return DRFLAC_FALSE;
#endif
}
#if defined(_MSC_VER) && _MSC_VER >= 1500 && (defined(DRFLAC_X86) || defined(DRFLAC_X64))
#define DRFLAC_HAS_LZCNT_INTRINSIC
#elif (defined(__GNUC__) && ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 7)))
#define DRFLAC_HAS_LZCNT_INTRINSIC
#elif defined(__clang__)
#if defined(__has_builtin)
#if __has_builtin(__builtin_clzll) || __has_builtin(__builtin_clzl)
#define DRFLAC_HAS_LZCNT_INTRINSIC
#endif
#endif
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1400
#define DRFLAC_HAS_BYTESWAP16_INTRINSIC
#define DRFLAC_HAS_BYTESWAP32_INTRINSIC
#define DRFLAC_HAS_BYTESWAP64_INTRINSIC
#elif defined(__clang__)
#if defined(__has_builtin)
#if __has_builtin(__builtin_bswap16)
#define DRFLAC_HAS_BYTESWAP16_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap32)
#define DRFLAC_HAS_BYTESWAP32_INTRINSIC
#endif
#if __has_builtin(__builtin_bswap64)
#define DRFLAC_HAS_BYTESWAP64_INTRINSIC
#endif
#endif
#elif defined(__GNUC__)
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 3))
#define DRFLAC_HAS_BYTESWAP32_INTRINSIC
#define DRFLAC_HAS_BYTESWAP64_INTRINSIC
#endif
#if ((__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8))
#define DRFLAC_HAS_BYTESWAP16_INTRINSIC
#endif
#endif
#ifndef DRFLAC_ASSERT
#include <assert.h>
#define DRFLAC_ASSERT(expression) assert(expression)
#endif
#ifndef DRFLAC_MALLOC
#define DRFLAC_MALLOC(sz) malloc((sz))
#endif
#ifndef DRFLAC_REALLOC
#define DRFLAC_REALLOC(p, sz) realloc((p), (sz))
#endif
#ifndef DRFLAC_FREE
#define DRFLAC_FREE(p) free((p))
#endif
#ifndef DRFLAC_COPY_MEMORY
#define DRFLAC_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
#endif
#ifndef DRFLAC_ZERO_MEMORY
#define DRFLAC_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
#endif
#ifndef DRFLAC_ZERO_OBJECT
#define DRFLAC_ZERO_OBJECT(p) DRFLAC_ZERO_MEMORY((p), sizeof(*(p)))
#endif
#define DRFLAC_MAX_SIMD_VECTOR_SIZE 64
typedef drflac_int32 drflac_result;
#define DRFLAC_SUCCESS 0
#define DRFLAC_ERROR -1
#define DRFLAC_INVALID_ARGS -2
#define DRFLAC_INVALID_OPERATION -3
#define DRFLAC_OUT_OF_MEMORY -4
#define DRFLAC_OUT_OF_RANGE -5
#define DRFLAC_ACCESS_DENIED -6
#define DRFLAC_DOES_NOT_EXIST -7
#define DRFLAC_ALREADY_EXISTS -8
#define DRFLAC_TOO_MANY_OPEN_FILES -9
#define DRFLAC_INVALID_FILE -10
#define DRFLAC_TOO_BIG -11
#define DRFLAC_PATH_TOO_LONG -12
#define DRFLAC_NAME_TOO_LONG -13
#define DRFLAC_NOT_DIRECTORY -14
#define DRFLAC_IS_DIRECTORY -15
#define DRFLAC_DIRECTORY_NOT_EMPTY -16
#define DRFLAC_END_OF_FILE -17
#define DRFLAC_NO_SPACE -18
#define DRFLAC_BUSY -19
#define DRFLAC_IO_ERROR -20
#define DRFLAC_INTERRUPT -21
#define DRFLAC_UNAVAILABLE -22
#define DRFLAC_ALREADY_IN_USE -23
#define DRFLAC_BAD_ADDRESS -24
#define DRFLAC_BAD_SEEK -25
#define DRFLAC_BAD_PIPE -26
#define DRFLAC_DEADLOCK -27
#define DRFLAC_TOO_MANY_LINKS -28
#define DRFLAC_NOT_IMPLEMENTED -29
#define DRFLAC_NO_MESSAGE -30
#define DRFLAC_BAD_MESSAGE -31
#define DRFLAC_NO_DATA_AVAILABLE -32
#define DRFLAC_INVALID_DATA -33
#define DRFLAC_TIMEOUT -34
#define DRFLAC_NO_NETWORK -35
#define DRFLAC_NOT_UNIQUE -36
#define DRFLAC_NOT_SOCKET -37
#define DRFLAC_NO_ADDRESS -38
#define DRFLAC_BAD_PROTOCOL -39
#define DRFLAC_PROTOCOL_UNAVAILABLE -40
#define DRFLAC_PROTOCOL_NOT_SUPPORTED -41
#define DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED -42
#define DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED -43
#define DRFLAC_SOCKET_NOT_SUPPORTED -44
#define DRFLAC_CONNECTION_RESET -45
#define DRFLAC_ALREADY_CONNECTED -46
#define DRFLAC_NOT_CONNECTED -47
#define DRFLAC_CONNECTION_REFUSED -48
#define DRFLAC_NO_HOST -49
#define DRFLAC_IN_PROGRESS -50
#define DRFLAC_CANCELLED -51
#define DRFLAC_MEMORY_ALREADY_MAPPED -52
#define DRFLAC_AT_END -53
#define DRFLAC_CRC_MISMATCH -128
#define DRFLAC_SUBFRAME_CONSTANT 0
#define DRFLAC_SUBFRAME_VERBATIM 1
#define DRFLAC_SUBFRAME_FIXED 8
#define DRFLAC_SUBFRAME_LPC 32
#define DRFLAC_SUBFRAME_RESERVED 255
#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE 0
#define DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2 1
#define DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT 0
#define DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE 8
#define DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE 9
#define DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE 10
#define drflac_align(x, a) ((((x) + (a) - 1) / (a)) * (a))
DRFLAC_API void drflac_version(drflac_uint32* pMajor, drflac_uint32* pMinor, drflac_uint32* pRevision)
{
if (pMajor) {
*pMajor = DRFLAC_VERSION_MAJOR;
}
if (pMinor) {
*pMinor = DRFLAC_VERSION_MINOR;
}
if (pRevision) {
*pRevision = DRFLAC_VERSION_REVISION;
}
}
DRFLAC_API const char* drflac_version_string()
{
return DRFLAC_VERSION_STRING;
}
#if defined(__has_feature)
#if __has_feature(thread_sanitizer)
#define DRFLAC_NO_THREAD_SANITIZE __attribute__((no_sanitize("thread")))
#else
#define DRFLAC_NO_THREAD_SANITIZE
#endif
#else
#define DRFLAC_NO_THREAD_SANITIZE
#endif
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC)
static drflac_bool32 drflac__gIsLZCNTSupported = DRFLAC_FALSE;
#endif
#ifndef DRFLAC_NO_CPUID
static drflac_bool32 drflac__gIsSSE2Supported = DRFLAC_FALSE;
static drflac_bool32 drflac__gIsSSE41Supported = DRFLAC_FALSE;
DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void)
{
static drflac_bool32 isCPUCapsInitialized = DRFLAC_FALSE;
if (!isCPUCapsInitialized) {
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC)
int info[4] = {0};
drflac__cpuid(info, 0x80000001);
drflac__gIsLZCNTSupported = (info[2] & (1 << 5)) != 0;
#endif
drflac__gIsSSE2Supported = drflac_has_sse2();
drflac__gIsSSE41Supported = drflac_has_sse41();
isCPUCapsInitialized = DRFLAC_TRUE;
}
}
#else
static drflac_bool32 drflac__gIsNEONSupported = DRFLAC_FALSE;
static DRFLAC_INLINE drflac_bool32 drflac__has_neon(void)
{
#if defined(DRFLAC_SUPPORT_NEON)
#if defined(DRFLAC_ARM) && !defined(DRFLAC_NO_NEON)
#if (defined(__ARM_NEON) || defined(__aarch64__) || defined(_M_ARM64))
return DRFLAC_TRUE;
#else
return DRFLAC_FALSE;
#endif
#else
return DRFLAC_FALSE;
#endif
#else
return DRFLAC_FALSE;
#endif
}
DRFLAC_NO_THREAD_SANITIZE static void drflac__init_cpu_caps(void)
{
drflac__gIsNEONSupported = drflac__has_neon();
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5)
drflac__gIsLZCNTSupported = DRFLAC_TRUE;
#endif
}
#endif
static DRFLAC_INLINE drflac_bool32 drflac__is_little_endian(void)
{
#if defined(DRFLAC_X86) || defined(DRFLAC_X64)
return DRFLAC_TRUE;
#elif defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN
return DRFLAC_TRUE;
#else
int n = 1;
return (*(char*)&n) == 1;
#endif
}
static DRFLAC_INLINE drflac_uint16 drflac__swap_endian_uint16(drflac_uint16 n)
{
#ifdef DRFLAC_HAS_BYTESWAP16_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_ushort(n);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_bswap16(n);
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
return ((n & 0xFF00) >> 8) |
((n & 0x00FF) << 8);
#endif
}
static DRFLAC_INLINE drflac_uint32 drflac__swap_endian_uint32(drflac_uint32 n)
{
#ifdef DRFLAC_HAS_BYTESWAP32_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_ulong(n);
#elif defined(__GNUC__) || defined(__clang__)
#if defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 6) && !defined(DRFLAC_64BIT)
drflac_uint32 r;
__asm__ __volatile__ (
#if defined(DRFLAC_64BIT)
"rev %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(n)
#else
"rev %[out], %[in]" : [out]"=r"(r) : [in]"r"(n)
#endif
);
return r;
#else
return __builtin_bswap32(n);
#endif
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
return ((n & 0xFF000000) >> 24) |
((n & 0x00FF0000) >> 8) |
((n & 0x0000FF00) << 8) |
((n & 0x000000FF) << 24);
#endif
}
static DRFLAC_INLINE drflac_uint64 drflac__swap_endian_uint64(drflac_uint64 n)
{
#ifdef DRFLAC_HAS_BYTESWAP64_INTRINSIC
#if defined(_MSC_VER)
return _byteswap_uint64(n);
#elif defined(__GNUC__) || defined(__clang__)
return __builtin_bswap64(n);
#else
#error "This compiler does not support the byte swap intrinsic."
#endif
#else
return ((n & (drflac_uint64)0xFF00000000000000) >> 56) |
((n & (drflac_uint64)0x00FF000000000000) >> 40) |
((n & (drflac_uint64)0x0000FF0000000000) >> 24) |
((n & (drflac_uint64)0x000000FF00000000) >> 8) |
((n & (drflac_uint64)0x00000000FF000000) << 8) |
((n & (drflac_uint64)0x0000000000FF0000) << 24) |
((n & (drflac_uint64)0x000000000000FF00) << 40) |
((n & (drflac_uint64)0x00000000000000FF) << 56);
#endif
}
static DRFLAC_INLINE drflac_uint16 drflac__be2host_16(drflac_uint16 n)
{
if (drflac__is_little_endian()) {
return drflac__swap_endian_uint16(n);
}
return n;
}
static DRFLAC_INLINE drflac_uint32 drflac__be2host_32(drflac_uint32 n)
{
if (drflac__is_little_endian()) {
return drflac__swap_endian_uint32(n);
}
return n;
}
static DRFLAC_INLINE drflac_uint64 drflac__be2host_64(drflac_uint64 n)
{
if (drflac__is_little_endian()) {
return drflac__swap_endian_uint64(n);
}
return n;
}
static DRFLAC_INLINE drflac_uint32 drflac__le2host_32(drflac_uint32 n)
{
if (!drflac__is_little_endian()) {
return drflac__swap_endian_uint32(n);
}
return n;
}
static DRFLAC_INLINE drflac_uint32 drflac__unsynchsafe_32(drflac_uint32 n)
{
drflac_uint32 result = 0;
result |= (n & 0x7F000000) >> 3;
result |= (n & 0x007F0000) >> 2;
result |= (n & 0x00007F00) >> 1;
result |= (n & 0x0000007F) >> 0;
return result;
}
static drflac_uint8 drflac__crc8_table[] = {
0x00, 0x07, 0x0E, 0x09, 0x1C, 0x1B, 0x12, 0x15, 0x38, 0x3F, 0x36, 0x31, 0x24, 0x23, 0x2A, 0x2D,
0x70, 0x77, 0x7E, 0x79, 0x6C, 0x6B, 0x62, 0x65, 0x48, 0x4F, 0x46, 0x41, 0x54, 0x53, 0x5A, 0x5D,
0xE0, 0xE7, 0xEE, 0xE9, 0xFC, 0xFB, 0xF2, 0xF5, 0xD8, 0xDF, 0xD6, 0xD1, 0xC4, 0xC3, 0xCA, 0xCD,
0x90, 0x97, 0x9E, 0x99, 0x8C, 0x8B, 0x82, 0x85, 0xA8, 0xAF, 0xA6, 0xA1, 0xB4, 0xB3, 0xBA, 0xBD,
0xC7, 0xC0, 0xC9, 0xCE, 0xDB, 0xDC, 0xD5, 0xD2, 0xFF, 0xF8, 0xF1, 0xF6, 0xE3, 0xE4, 0xED, 0xEA,
0xB7, 0xB0, 0xB9, 0xBE, 0xAB, 0xAC, 0xA5, 0xA2, 0x8F, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9D, 0x9A,
0x27, 0x20, 0x29, 0x2E, 0x3B, 0x3C, 0x35, 0x32, 0x1F, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0D, 0x0A,
0x57, 0x50, 0x59, 0x5E, 0x4B, 0x4C, 0x45, 0x42, 0x6F, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7D, 0x7A,
0x89, 0x8E, 0x87, 0x80, 0x95, 0x92, 0x9B, 0x9C, 0xB1, 0xB6, 0xBF, 0xB8, 0xAD, 0xAA, 0xA3, 0xA4,
0xF9, 0xFE, 0xF7, 0xF0, 0xE5, 0xE2, 0xEB, 0xEC, 0xC1, 0xC6, 0xCF, 0xC8, 0xDD, 0xDA, 0xD3, 0xD4,
0x69, 0x6E, 0x67, 0x60, 0x75, 0x72, 0x7B, 0x7C, 0x51, 0x56, 0x5F, 0x58, 0x4D, 0x4A, 0x43, 0x44,
0x19, 0x1E, 0x17, 0x10, 0x05, 0x02, 0x0B, 0x0C, 0x21, 0x26, 0x2F, 0x28, 0x3D, 0x3A, 0x33, 0x34,
0x4E, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5C, 0x5B, 0x76, 0x71, 0x78, 0x7F, 0x6A, 0x6D, 0x64, 0x63,
0x3E, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2C, 0x2B, 0x06, 0x01, 0x08, 0x0F, 0x1A, 0x1D, 0x14, 0x13,
0xAE, 0xA9, 0xA0, 0xA7, 0xB2, 0xB5, 0xBC, 0xBB, 0x96, 0x91, 0x98, 0x9F, 0x8A, 0x8D, 0x84, 0x83,
0xDE, 0xD9, 0xD0, 0xD7, 0xC2, 0xC5, 0xCC, 0xCB, 0xE6, 0xE1, 0xE8, 0xEF, 0xFA, 0xFD, 0xF4, 0xF3
};
static drflac_uint16 drflac__crc16_table[] = {
0x0000, 0x8005, 0x800F, 0x000A, 0x801B, 0x001E, 0x0014, 0x8011,
0x8033, 0x0036, 0x003C, 0x8039, 0x0028, 0x802D, 0x8027, 0x0022,
0x8063, 0x0066, 0x006C, 0x8069, 0x0078, 0x807D, 0x8077, 0x0072,
0x0050, 0x8055, 0x805F, 0x005A, 0x804B, 0x004E, 0x0044, 0x8041,
0x80C3, 0x00C6, 0x00CC, 0x80C9, 0x00D8, 0x80DD, 0x80D7, 0x00D2,
0x00F0, 0x80F5, 0x80FF, 0x00FA, 0x80EB, 0x00EE, 0x00E4, 0x80E1,
0x00A0, 0x80A5, 0x80AF, 0x00AA, 0x80BB, 0x00BE, 0x00B4, 0x80B1,
0x8093, 0x0096, 0x009C, 0x8099, 0x0088, 0x808D, 0x8087, 0x0082,
0x8183, 0x0186, 0x018C, 0x8189, 0x0198, 0x819D, 0x8197, 0x0192,
0x01B0, 0x81B5, 0x81BF, 0x01BA, 0x81AB, 0x01AE, 0x01A4, 0x81A1,
0x01E0, 0x81E5, 0x81EF, 0x01EA, 0x81FB, 0x01FE, 0x01F4, 0x81F1,
0x81D3, 0x01D6, 0x01DC, 0x81D9, 0x01C8, 0x81CD, 0x81C7, 0x01C2,
0x0140, 0x8145, 0x814F, 0x014A, 0x815B, 0x015E, 0x0154, 0x8151,
0x8173, 0x0176, 0x017C, 0x8179, 0x0168, 0x816D, 0x8167, 0x0162,
0x8123, 0x0126, 0x012C, 0x8129, 0x0138, 0x813D, 0x8137, 0x0132,
0x0110, 0x8115, 0x811F, 0x011A, 0x810B, 0x010E, 0x0104, 0x8101,
0x8303, 0x0306, 0x030C, 0x8309, 0x0318, 0x831D, 0x8317, 0x0312,
0x0330, 0x8335, 0x833F, 0x033A, 0x832B, 0x032E, 0x0324, 0x8321,
0x0360, 0x8365, 0x836F, 0x036A, 0x837B, 0x037E, 0x0374, 0x8371,
0x8353, 0x0356, 0x035C, 0x8359, 0x0348, 0x834D, 0x8347, 0x0342,
0x03C0, 0x83C5, 0x83CF, 0x03CA, 0x83DB, 0x03DE, 0x03D4, 0x83D1,
0x83F3, 0x03F6, 0x03FC, 0x83F9, 0x03E8, 0x83ED, 0x83E7, 0x03E2,
0x83A3, 0x03A6, 0x03AC, 0x83A9, 0x03B8, 0x83BD, 0x83B7, 0x03B2,
0x0390, 0x8395, 0x839F, 0x039A, 0x838B, 0x038E, 0x0384, 0x8381,
0x0280, 0x8285, 0x828F, 0x028A, 0x829B, 0x029E, 0x0294, 0x8291,
0x82B3, 0x02B6, 0x02BC, 0x82B9, 0x02A8, 0x82AD, 0x82A7, 0x02A2,
0x82E3, 0x02E6, 0x02EC, 0x82E9, 0x02F8, 0x82FD, 0x82F7, 0x02F2,
0x02D0, 0x82D5, 0x82DF, 0x02DA, 0x82CB, 0x02CE, 0x02C4, 0x82C1,
0x8243, 0x0246, 0x024C, 0x8249, 0x0258, 0x825D, 0x8257, 0x0252,
0x0270, 0x8275, 0x827F, 0x027A, 0x826B, 0x026E, 0x0264, 0x8261,
0x0220, 0x8225, 0x822F, 0x022A, 0x823B, 0x023E, 0x0234, 0x8231,
0x8213, 0x0216, 0x021C, 0x8219, 0x0208, 0x820D, 0x8207, 0x0202
};
static DRFLAC_INLINE drflac_uint8 drflac_crc8_byte(drflac_uint8 crc, drflac_uint8 data)
{
return drflac__crc8_table[crc ^ data];
}
static DRFLAC_INLINE drflac_uint8 drflac_crc8(drflac_uint8 crc, drflac_uint32 data, drflac_uint32 count)
{
#ifdef DR_FLAC_NO_CRC
(void)crc;
(void)data;
(void)count;
return 0;
#else
#if 0
drflac_uint8 p = 0x07;
for (int i = count-1; i >= 0; --i) {
drflac_uint8 bit = (data & (1 << i)) >> i;
if (crc & 0x80) {
crc = ((crc << 1) | bit) ^ p;
} else {
crc = ((crc << 1) | bit);
}
}
return crc;
#else
drflac_uint32 wholeBytes;
drflac_uint32 leftoverBits;
drflac_uint64 leftoverDataMask;
static drflac_uint64 leftoverDataMaskTable[8] = {
0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F
};
DRFLAC_ASSERT(count <= 32);
wholeBytes = count >> 3;
leftoverBits = count - (wholeBytes*8);
leftoverDataMask = leftoverDataMaskTable[leftoverBits];
switch (wholeBytes) {
case 4: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits)));
case 3: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits)));
case 2: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits)));
case 1: crc = drflac_crc8_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits)));
case 0: if (leftoverBits > 0) crc = (drflac_uint8)((crc << leftoverBits) ^ drflac__crc8_table[(crc >> (8 - leftoverBits)) ^ (data & leftoverDataMask)]);
}
return crc;
#endif
#endif
}
static DRFLAC_INLINE drflac_uint16 drflac_crc16_byte(drflac_uint16 crc, drflac_uint8 data)
{
return (crc << 8) ^ drflac__crc16_table[(drflac_uint8)(crc >> 8) ^ data];
}
static DRFLAC_INLINE drflac_uint16 drflac_crc16_cache(drflac_uint16 crc, drflac_cache_t data)
{
#ifdef DRFLAC_64BIT
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF));
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF));
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF));
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF));
#endif
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF));
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF));
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF));
crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF));
return crc;
}
static DRFLAC_INLINE drflac_uint16 drflac_crc16_bytes(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 byteCount)
{
switch (byteCount)
{
#ifdef DRFLAC_64BIT
case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 56) & 0xFF));
case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 48) & 0xFF));
case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 40) & 0xFF));
case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 32) & 0xFF));
#endif
case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 24) & 0xFF));
case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 16) & 0xFF));
case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 8) & 0xFF));
case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data >> 0) & 0xFF));
}
return crc;
}
#if 0
static DRFLAC_INLINE drflac_uint16 drflac_crc16__32bit(drflac_uint16 crc, drflac_uint32 data, drflac_uint32 count)
{
#ifdef DR_FLAC_NO_CRC
(void)crc;
(void)data;
(void)count;
return 0;
#else
#if 0
drflac_uint16 p = 0x8005;
for (int i = count-1; i >= 0; --i) {
drflac_uint16 bit = (data & (1ULL << i)) >> i;
if (r & 0x8000) {
r = ((r << 1) | bit) ^ p;
} else {
r = ((r << 1) | bit);
}
}
return crc;
#else
drflac_uint32 wholeBytes;
drflac_uint32 leftoverBits;
drflac_uint64 leftoverDataMask;
static drflac_uint64 leftoverDataMaskTable[8] = {
0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F
};
DRFLAC_ASSERT(count <= 64);
wholeBytes = count >> 3;
leftoverBits = count & 7;
leftoverDataMask = leftoverDataMaskTable[leftoverBits];
switch (wholeBytes) {
default:
case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0xFF000000UL << leftoverBits)) >> (24 + leftoverBits)));
case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x00FF0000UL << leftoverBits)) >> (16 + leftoverBits)));
case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x0000FF00UL << leftoverBits)) >> ( 8 + leftoverBits)));
case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (0x000000FFUL << leftoverBits)) >> ( 0 + leftoverBits)));
case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)];
}
return crc;
#endif
#endif
}
static DRFLAC_INLINE drflac_uint16 drflac_crc16__64bit(drflac_uint16 crc, drflac_uint64 data, drflac_uint32 count)
{
#ifdef DR_FLAC_NO_CRC
(void)crc;
(void)data;
(void)count;
return 0;
#else
drflac_uint32 wholeBytes;
drflac_uint32 leftoverBits;
drflac_uint64 leftoverDataMask;
static drflac_uint64 leftoverDataMaskTable[8] = {
0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F
};
DRFLAC_ASSERT(count <= 64);
wholeBytes = count >> 3;
leftoverBits = count & 7;
leftoverDataMask = leftoverDataMaskTable[leftoverBits];
switch (wholeBytes) {
default:
case 8: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 << 32) << leftoverBits)) >> (56 + leftoverBits)));
case 7: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 << 32) << leftoverBits)) >> (48 + leftoverBits)));
case 6: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 << 32) << leftoverBits)) >> (40 + leftoverBits)));
case 5: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF << 32) << leftoverBits)) >> (32 + leftoverBits)));
case 4: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0xFF000000 ) << leftoverBits)) >> (24 + leftoverBits)));
case 3: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x00FF0000 ) << leftoverBits)) >> (16 + leftoverBits)));
case 2: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x0000FF00 ) << leftoverBits)) >> ( 8 + leftoverBits)));
case 1: crc = drflac_crc16_byte(crc, (drflac_uint8)((data & (((drflac_uint64)0x000000FF ) << leftoverBits)) >> ( 0 + leftoverBits)));
case 0: if (leftoverBits > 0) crc = (crc << leftoverBits) ^ drflac__crc16_table[(crc >> (16 - leftoverBits)) ^ (data & leftoverDataMask)];
}
return crc;
#endif
}
static DRFLAC_INLINE drflac_uint16 drflac_crc16(drflac_uint16 crc, drflac_cache_t data, drflac_uint32 count)
{
#ifdef DRFLAC_64BIT
return drflac_crc16__64bit(crc, data, count);
#else
return drflac_crc16__32bit(crc, data, count);
#endif
}
#endif
#ifdef DRFLAC_64BIT
#define drflac__be2host__cache_line drflac__be2host_64
#else
#define drflac__be2host__cache_line drflac__be2host_32
#endif
#define DRFLAC_CACHE_L1_SIZE_BYTES(bs) (sizeof((bs)->cache))
#define DRFLAC_CACHE_L1_SIZE_BITS(bs) (sizeof((bs)->cache)*8)
#define DRFLAC_CACHE_L1_BITS_REMAINING(bs) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (bs)->consumedBits)
#define DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount) (~((~(drflac_cache_t)0) >> (_bitCount)))
#define DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SIZE_BITS(bs) - (_bitCount))
#define DRFLAC_CACHE_L1_SELECT(bs, _bitCount) (((bs)->cache) & DRFLAC_CACHE_L1_SELECTION_MASK(_bitCount))
#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, _bitCount) (DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)))
#define DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, _bitCount)(DRFLAC_CACHE_L1_SELECT((bs), (_bitCount)) >> (DRFLAC_CACHE_L1_SELECTION_SHIFT((bs), (_bitCount)) & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1)))
#define DRFLAC_CACHE_L2_SIZE_BYTES(bs) (sizeof((bs)->cacheL2))
#define DRFLAC_CACHE_L2_LINE_COUNT(bs) (DRFLAC_CACHE_L2_SIZE_BYTES(bs) / sizeof((bs)->cacheL2[0]))
#define DRFLAC_CACHE_L2_LINES_REMAINING(bs) (DRFLAC_CACHE_L2_LINE_COUNT(bs) - (bs)->nextL2Line)
#ifndef DR_FLAC_NO_CRC
static DRFLAC_INLINE void drflac__reset_crc16(drflac_bs* bs)
{
bs->crc16 = 0;
bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3;
}
static DRFLAC_INLINE void drflac__update_crc16(drflac_bs* bs)
{
if (bs->crc16CacheIgnoredBytes == 0) {
bs->crc16 = drflac_crc16_cache(bs->crc16, bs->crc16Cache);
} else {
bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache, DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bs->crc16CacheIgnoredBytes);
bs->crc16CacheIgnoredBytes = 0;
}
}
static DRFLAC_INLINE drflac_uint16 drflac__flush_crc16(drflac_bs* bs)
{
DRFLAC_ASSERT((DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7) == 0);
if (DRFLAC_CACHE_L1_BITS_REMAINING(bs) == 0) {
drflac__update_crc16(bs);
} else {
bs->crc16 = drflac_crc16_bytes(bs->crc16, bs->crc16Cache >> DRFLAC_CACHE_L1_BITS_REMAINING(bs), (bs->consumedBits >> 3) - bs->crc16CacheIgnoredBytes);
bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3;
}
return bs->crc16;
}
#endif
static DRFLAC_INLINE drflac_bool32 drflac__reload_l1_cache_from_l2(drflac_bs* bs)
{
size_t bytesRead;
size_t alignedL1LineCount;
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
bs->cache = bs->cacheL2[bs->nextL2Line++];
return DRFLAC_TRUE;
}
if (bs->unalignedByteCount > 0) {
return DRFLAC_FALSE;
}
bytesRead = bs->onRead(bs->pUserData, bs->cacheL2, DRFLAC_CACHE_L2_SIZE_BYTES(bs));
bs->nextL2Line = 0;
if (bytesRead == DRFLAC_CACHE_L2_SIZE_BYTES(bs)) {
bs->cache = bs->cacheL2[bs->nextL2Line++];
return DRFLAC_TRUE;
}
alignedL1LineCount = bytesRead / DRFLAC_CACHE_L1_SIZE_BYTES(bs);
bs->unalignedByteCount = bytesRead - (alignedL1LineCount * DRFLAC_CACHE_L1_SIZE_BYTES(bs));
if (bs->unalignedByteCount > 0) {
bs->unalignedCache = bs->cacheL2[alignedL1LineCount];
}
if (alignedL1LineCount > 0) {
size_t offset = DRFLAC_CACHE_L2_LINE_COUNT(bs) - alignedL1LineCount;
size_t i;
for (i = alignedL1LineCount; i > 0; --i) {
bs->cacheL2[i-1 + offset] = bs->cacheL2[i-1];
}
bs->nextL2Line = (drflac_uint32)offset;
bs->cache = bs->cacheL2[bs->nextL2Line++];
return DRFLAC_TRUE;
} else {
bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs);
return DRFLAC_FALSE;
}
}
static drflac_bool32 drflac__reload_cache(drflac_bs* bs)
{
size_t bytesRead;
#ifndef DR_FLAC_NO_CRC
drflac__update_crc16(bs);
#endif
if (drflac__reload_l1_cache_from_l2(bs)) {
bs->cache = drflac__be2host__cache_line(bs->cache);
bs->consumedBits = 0;
#ifndef DR_FLAC_NO_CRC
bs->crc16Cache = bs->cache;
#endif
return DRFLAC_TRUE;
}
bytesRead = bs->unalignedByteCount;
if (bytesRead == 0) {
bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs);
return DRFLAC_FALSE;
}
DRFLAC_ASSERT(bytesRead < DRFLAC_CACHE_L1_SIZE_BYTES(bs));
bs->consumedBits = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BYTES(bs) - bytesRead) * 8;
bs->cache = drflac__be2host__cache_line(bs->unalignedCache);
bs->cache &= DRFLAC_CACHE_L1_SELECTION_MASK(DRFLAC_CACHE_L1_BITS_REMAINING(bs));
bs->unalignedByteCount = 0;
#ifndef DR_FLAC_NO_CRC
bs->crc16Cache = bs->cache >> bs->consumedBits;
bs->crc16CacheIgnoredBytes = bs->consumedBits >> 3;
#endif
return DRFLAC_TRUE;
}
static void drflac__reset_cache(drflac_bs* bs)
{
bs->nextL2Line = DRFLAC_CACHE_L2_LINE_COUNT(bs);
bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs);
bs->cache = 0;
bs->unalignedByteCount = 0;
bs->unalignedCache = 0;
#ifndef DR_FLAC_NO_CRC
bs->crc16Cache = 0;
bs->crc16CacheIgnoredBytes = 0;
#endif
}
static DRFLAC_INLINE drflac_bool32 drflac__read_uint32(drflac_bs* bs, unsigned int bitCount, drflac_uint32* pResultOut)
{
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(pResultOut != NULL);
DRFLAC_ASSERT(bitCount > 0);
DRFLAC_ASSERT(bitCount <= 32);
if (bs->consumedBits == DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
if (!drflac__reload_cache(bs)) {
return DRFLAC_FALSE;
}
}
if (bitCount <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) {
#ifdef DRFLAC_64BIT
*pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount);
bs->consumedBits += bitCount;
bs->cache <<= bitCount;
#else
if (bitCount < DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
*pResultOut = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCount);
bs->consumedBits += bitCount;
bs->cache <<= bitCount;
} else {
*pResultOut = (drflac_uint32)bs->cache;
bs->consumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs);
bs->cache = 0;
}
#endif
return DRFLAC_TRUE;
} else {
drflac_uint32 bitCountHi = DRFLAC_CACHE_L1_BITS_REMAINING(bs);
drflac_uint32 bitCountLo = bitCount - bitCountHi;
drflac_uint32 resultHi;
DRFLAC_ASSERT(bitCountHi > 0);
DRFLAC_ASSERT(bitCountHi < 32);
resultHi = (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountHi);
if (!drflac__reload_cache(bs)) {
return DRFLAC_FALSE;
}
*pResultOut = (resultHi << bitCountLo) | (drflac_uint32)DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, bitCountLo);
bs->consumedBits += bitCountLo;
bs->cache <<= bitCountLo;
return DRFLAC_TRUE;
}
}
static drflac_bool32 drflac__read_int32(drflac_bs* bs, unsigned int bitCount, drflac_int32* pResult)
{
drflac_uint32 result;
drflac_uint32 signbit;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(pResult != NULL);
DRFLAC_ASSERT(bitCount > 0);
DRFLAC_ASSERT(bitCount <= 32);
if (!drflac__read_uint32(bs, bitCount, &result)) {
return DRFLAC_FALSE;
}
signbit = ((result >> (bitCount-1)) & 0x01);
result |= (~signbit + 1) << bitCount;
*pResult = (drflac_int32)result;
return DRFLAC_TRUE;
}
#ifdef DRFLAC_64BIT
static drflac_bool32 drflac__read_uint64(drflac_bs* bs, unsigned int bitCount, drflac_uint64* pResultOut)
{
drflac_uint32 resultHi;
drflac_uint32 resultLo;
DRFLAC_ASSERT(bitCount <= 64);
DRFLAC_ASSERT(bitCount > 32);
if (!drflac__read_uint32(bs, bitCount - 32, &resultHi)) {
return DRFLAC_FALSE;
}
if (!drflac__read_uint32(bs, 32, &resultLo)) {
return DRFLAC_FALSE;
}
*pResultOut = (((drflac_uint64)resultHi) << 32) | ((drflac_uint64)resultLo);
return DRFLAC_TRUE;
}
#endif
#if 0
static drflac_bool32 drflac__read_int64(drflac_bs* bs, unsigned int bitCount, drflac_int64* pResultOut)
{
drflac_uint64 result;
drflac_uint64 signbit;
DRFLAC_ASSERT(bitCount <= 64);
if (!drflac__read_uint64(bs, bitCount, &result)) {
return DRFLAC_FALSE;
}
signbit = ((result >> (bitCount-1)) & 0x01);
result |= (~signbit + 1) << bitCount;
*pResultOut = (drflac_int64)result;
return DRFLAC_TRUE;
}
#endif
static drflac_bool32 drflac__read_uint16(drflac_bs* bs, unsigned int bitCount, drflac_uint16* pResult)
{
drflac_uint32 result;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(pResult != NULL);
DRFLAC_ASSERT(bitCount > 0);
DRFLAC_ASSERT(bitCount <= 16);
if (!drflac__read_uint32(bs, bitCount, &result)) {
return DRFLAC_FALSE;
}
*pResult = (drflac_uint16)result;
return DRFLAC_TRUE;
}
#if 0
static drflac_bool32 drflac__read_int16(drflac_bs* bs, unsigned int bitCount, drflac_int16* pResult)
{
drflac_int32 result;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(pResult != NULL);
DRFLAC_ASSERT(bitCount > 0);
DRFLAC_ASSERT(bitCount <= 16);
if (!drflac__read_int32(bs, bitCount, &result)) {
return DRFLAC_FALSE;
}
*pResult = (drflac_int16)result;
return DRFLAC_TRUE;
}
#endif
static drflac_bool32 drflac__read_uint8(drflac_bs* bs, unsigned int bitCount, drflac_uint8* pResult)
{
drflac_uint32 result;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(pResult != NULL);
DRFLAC_ASSERT(bitCount > 0);
DRFLAC_ASSERT(bitCount <= 8);
if (!drflac__read_uint32(bs, bitCount, &result)) {
return DRFLAC_FALSE;
}
*pResult = (drflac_uint8)result;
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__read_int8(drflac_bs* bs, unsigned int bitCount, drflac_int8* pResult)
{
drflac_int32 result;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(pResult != NULL);
DRFLAC_ASSERT(bitCount > 0);
DRFLAC_ASSERT(bitCount <= 8);
if (!drflac__read_int32(bs, bitCount, &result)) {
return DRFLAC_FALSE;
}
*pResult = (drflac_int8)result;
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__seek_bits(drflac_bs* bs, size_t bitsToSeek)
{
if (bitsToSeek <= DRFLAC_CACHE_L1_BITS_REMAINING(bs)) {
bs->consumedBits += (drflac_uint32)bitsToSeek;
bs->cache <<= bitsToSeek;
return DRFLAC_TRUE;
} else {
bitsToSeek -= DRFLAC_CACHE_L1_BITS_REMAINING(bs);
bs->consumedBits += DRFLAC_CACHE_L1_BITS_REMAINING(bs);
bs->cache = 0;
#ifdef DRFLAC_64BIT
while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
drflac_uint64 bin;
if (!drflac__read_uint64(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) {
return DRFLAC_FALSE;
}
bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs);
}
#else
while (bitsToSeek >= DRFLAC_CACHE_L1_SIZE_BITS(bs)) {
drflac_uint32 bin;
if (!drflac__read_uint32(bs, DRFLAC_CACHE_L1_SIZE_BITS(bs), &bin)) {
return DRFLAC_FALSE;
}
bitsToSeek -= DRFLAC_CACHE_L1_SIZE_BITS(bs);
}
#endif
while (bitsToSeek >= 8) {
drflac_uint8 bin;
if (!drflac__read_uint8(bs, 8, &bin)) {
return DRFLAC_FALSE;
}
bitsToSeek -= 8;
}
if (bitsToSeek > 0) {
drflac_uint8 bin;
if (!drflac__read_uint8(bs, (drflac_uint32)bitsToSeek, &bin)) {
return DRFLAC_FALSE;
}
bitsToSeek = 0;
}
DRFLAC_ASSERT(bitsToSeek == 0);
return DRFLAC_TRUE;
}
}
static drflac_bool32 drflac__find_and_seek_to_next_sync_code(drflac_bs* bs)
{
DRFLAC_ASSERT(bs != NULL);
if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) {
return DRFLAC_FALSE;
}
for (;;) {
drflac_uint8 hi;
#ifndef DR_FLAC_NO_CRC
drflac__reset_crc16(bs);
#endif
if (!drflac__read_uint8(bs, 8, &hi)) {
return DRFLAC_FALSE;
}
if (hi == 0xFF) {
drflac_uint8 lo;
if (!drflac__read_uint8(bs, 6, &lo)) {
return DRFLAC_FALSE;
}
if (lo == 0x3E) {
return DRFLAC_TRUE;
} else {
if (!drflac__seek_bits(bs, DRFLAC_CACHE_L1_BITS_REMAINING(bs) & 7)) {
return DRFLAC_FALSE;
}
}
}
}
}
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC)
#define DRFLAC_IMPLEMENT_CLZ_LZCNT
#endif
#if defined(_MSC_VER) && _MSC_VER >= 1400 && (defined(DRFLAC_X64) || defined(DRFLAC_X86))
#define DRFLAC_IMPLEMENT_CLZ_MSVC
#endif
static DRFLAC_INLINE drflac_uint32 drflac__clz_software(drflac_cache_t x)
{
drflac_uint32 n;
static drflac_uint32 clz_table_4[] = {
0,
4,
3, 3,
2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1
};
if (x == 0) {
return sizeof(x)*8;
}
n = clz_table_4[x >> (sizeof(x)*8 - 4)];
if (n == 0) {
#ifdef DRFLAC_64BIT
if ((x & ((drflac_uint64)0xFFFFFFFF << 32)) == 0) { n = 32; x <<= 32; }
if ((x & ((drflac_uint64)0xFFFF0000 << 32)) == 0) { n += 16; x <<= 16; }
if ((x & ((drflac_uint64)0xFF000000 << 32)) == 0) { n += 8; x <<= 8; }
if ((x & ((drflac_uint64)0xF0000000 << 32)) == 0) { n += 4; x <<= 4; }
#else
if ((x & 0xFFFF0000) == 0) { n = 16; x <<= 16; }
if ((x & 0xFF000000) == 0) { n += 8; x <<= 8; }
if ((x & 0xF0000000) == 0) { n += 4; x <<= 4; }
#endif
n += clz_table_4[x >> (sizeof(x)*8 - 4)];
}
return n - 1;
}
#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT
static DRFLAC_INLINE drflac_bool32 drflac__is_lzcnt_supported(void)
{
#if defined(DRFLAC_HAS_LZCNT_INTRINSIC) && defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5)
return DRFLAC_TRUE;
#else
#ifdef DRFLAC_HAS_LZCNT_INTRINSIC
return drflac__gIsLZCNTSupported;
#else
return DRFLAC_FALSE;
#endif
#endif
}
static DRFLAC_INLINE drflac_uint32 drflac__clz_lzcnt(drflac_cache_t x)
{
#if defined(_MSC_VER) && !defined(__clang__)
#ifdef DRFLAC_64BIT
return (drflac_uint32)__lzcnt64(x);
#else
return (drflac_uint32)__lzcnt(x);
#endif
#else
#if defined(__GNUC__) || defined(__clang__)
#if defined(DRFLAC_X64)
{
drflac_uint64 r;
__asm__ __volatile__ (
"lzcnt{ %1, %0| %0, %1}" : "=r"(r) : "r"(x)
);
return (drflac_uint32)r;
}
#elif defined(DRFLAC_X86)
{
drflac_uint32 r;
__asm__ __volatile__ (
"lzcnt{l %1, %0| %0, %1}" : "=r"(r) : "r"(x)
);
return r;
}
#elif defined(DRFLAC_ARM) && (defined(__ARM_ARCH) && __ARM_ARCH >= 5) && !defined(DRFLAC_64BIT)
{
unsigned int r;
__asm__ __volatile__ (
#if defined(DRFLAC_64BIT)
"clz %w[out], %w[in]" : [out]"=r"(r) : [in]"r"(x)
#else
"clz %[out], %[in]" : [out]"=r"(r) : [in]"r"(x)
#endif
);
return r;
}
#else
if (x == 0) {
return sizeof(x)*8;
}
#ifdef DRFLAC_64BIT
return (drflac_uint32)__builtin_clzll((drflac_uint64)x);
#else
return (drflac_uint32)__builtin_clzl((drflac_uint32)x);
#endif
#endif
#else
#error "This compiler does not support the lzcnt intrinsic."
#endif
#endif
}
#endif
#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC
#include <intrin.h>
static DRFLAC_INLINE drflac_uint32 drflac__clz_msvc(drflac_cache_t x)
{
drflac_uint32 n;
if (x == 0) {
return sizeof(x)*8;
}
#ifdef DRFLAC_64BIT
_BitScanReverse64((unsigned long*)&n, x);
#else
_BitScanReverse((unsigned long*)&n, x);
#endif
return sizeof(x)*8 - n - 1;
}
#endif
static DRFLAC_INLINE drflac_uint32 drflac__clz(drflac_cache_t x)
{
#ifdef DRFLAC_IMPLEMENT_CLZ_LZCNT
if (drflac__is_lzcnt_supported()) {
return drflac__clz_lzcnt(x);
} else
#endif
{
#ifdef DRFLAC_IMPLEMENT_CLZ_MSVC
return drflac__clz_msvc(x);
#else
return drflac__clz_software(x);
#endif
}
}
static DRFLAC_INLINE drflac_bool32 drflac__seek_past_next_set_bit(drflac_bs* bs, unsigned int* pOffsetOut)
{
drflac_uint32 zeroCounter = 0;
drflac_uint32 setBitOffsetPlus1;
while (bs->cache == 0) {
zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs);
if (!drflac__reload_cache(bs)) {
return DRFLAC_FALSE;
}
}
setBitOffsetPlus1 = drflac__clz(bs->cache);
setBitOffsetPlus1 += 1;
bs->consumedBits += setBitOffsetPlus1;
bs->cache <<= setBitOffsetPlus1;
*pOffsetOut = zeroCounter + setBitOffsetPlus1 - 1;
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__seek_to_byte(drflac_bs* bs, drflac_uint64 offsetFromStart)
{
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(offsetFromStart > 0);
if (offsetFromStart > 0x7FFFFFFF) {
drflac_uint64 bytesRemaining = offsetFromStart;
if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) {
return DRFLAC_FALSE;
}
bytesRemaining -= 0x7FFFFFFF;
while (bytesRemaining > 0x7FFFFFFF) {
if (!bs->onSeek(bs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
bytesRemaining -= 0x7FFFFFFF;
}
if (bytesRemaining > 0) {
if (!bs->onSeek(bs->pUserData, (int)bytesRemaining, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
}
} else {
if (!bs->onSeek(bs->pUserData, (int)offsetFromStart, drflac_seek_origin_start)) {
return DRFLAC_FALSE;
}
}
drflac__reset_cache(bs);
return DRFLAC_TRUE;
}
static drflac_result drflac__read_utf8_coded_number(drflac_bs* bs, drflac_uint64* pNumberOut, drflac_uint8* pCRCOut)
{
drflac_uint8 crc;
drflac_uint64 result;
drflac_uint8 utf8[7] = {0};
int byteCount;
int i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(pNumberOut != NULL);
DRFLAC_ASSERT(pCRCOut != NULL);
crc = *pCRCOut;
if (!drflac__read_uint8(bs, 8, utf8)) {
*pNumberOut = 0;
return DRFLAC_AT_END;
}
crc = drflac_crc8(crc, utf8[0], 8);
if ((utf8[0] & 0x80) == 0) {
*pNumberOut = utf8[0];
*pCRCOut = crc;
return DRFLAC_SUCCESS;
}
if ((utf8[0] & 0xE0) == 0xC0) {
byteCount = 2;
} else if ((utf8[0] & 0xF0) == 0xE0) {
byteCount = 3;
} else if ((utf8[0] & 0xF8) == 0xF0) {
byteCount = 4;
} else if ((utf8[0] & 0xFC) == 0xF8) {
byteCount = 5;
} else if ((utf8[0] & 0xFE) == 0xFC) {
byteCount = 6;
} else if ((utf8[0] & 0xFF) == 0xFE) {
byteCount = 7;
} else {
*pNumberOut = 0;
return DRFLAC_CRC_MISMATCH;
}
DRFLAC_ASSERT(byteCount > 1);
result = (drflac_uint64)(utf8[0] & (0xFF >> (byteCount + 1)));
for (i = 1; i < byteCount; ++i) {
if (!drflac__read_uint8(bs, 8, utf8 + i)) {
*pNumberOut = 0;
return DRFLAC_AT_END;
}
crc = drflac_crc8(crc, utf8[i], 8);
result = (result << 6) | (utf8[i] & 0x3F);
}
*pNumberOut = result;
*pCRCOut = crc;
return DRFLAC_SUCCESS;
}
static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_32(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples)
{
drflac_int32 prediction = 0;
DRFLAC_ASSERT(order <= 32);
switch (order)
{
case 32: prediction += coefficients[31] * pDecodedSamples[-32];
case 31: prediction += coefficients[30] * pDecodedSamples[-31];
case 30: prediction += coefficients[29] * pDecodedSamples[-30];
case 29: prediction += coefficients[28] * pDecodedSamples[-29];
case 28: prediction += coefficients[27] * pDecodedSamples[-28];
case 27: prediction += coefficients[26] * pDecodedSamples[-27];
case 26: prediction += coefficients[25] * pDecodedSamples[-26];
case 25: prediction += coefficients[24] * pDecodedSamples[-25];
case 24: prediction += coefficients[23] * pDecodedSamples[-24];
case 23: prediction += coefficients[22] * pDecodedSamples[-23];
case 22: prediction += coefficients[21] * pDecodedSamples[-22];
case 21: prediction += coefficients[20] * pDecodedSamples[-21];
case 20: prediction += coefficients[19] * pDecodedSamples[-20];
case 19: prediction += coefficients[18] * pDecodedSamples[-19];
case 18: prediction += coefficients[17] * pDecodedSamples[-18];
case 17: prediction += coefficients[16] * pDecodedSamples[-17];
case 16: prediction += coefficients[15] * pDecodedSamples[-16];
case 15: prediction += coefficients[14] * pDecodedSamples[-15];
case 14: prediction += coefficients[13] * pDecodedSamples[-14];
case 13: prediction += coefficients[12] * pDecodedSamples[-13];
case 12: prediction += coefficients[11] * pDecodedSamples[-12];
case 11: prediction += coefficients[10] * pDecodedSamples[-11];
case 10: prediction += coefficients[ 9] * pDecodedSamples[-10];
case 9: prediction += coefficients[ 8] * pDecodedSamples[- 9];
case 8: prediction += coefficients[ 7] * pDecodedSamples[- 8];
case 7: prediction += coefficients[ 6] * pDecodedSamples[- 7];
case 6: prediction += coefficients[ 5] * pDecodedSamples[- 6];
case 5: prediction += coefficients[ 4] * pDecodedSamples[- 5];
case 4: prediction += coefficients[ 3] * pDecodedSamples[- 4];
case 3: prediction += coefficients[ 2] * pDecodedSamples[- 3];
case 2: prediction += coefficients[ 1] * pDecodedSamples[- 2];
case 1: prediction += coefficients[ 0] * pDecodedSamples[- 1];
}
return (drflac_int32)(prediction >> shift);
}
static DRFLAC_INLINE drflac_int32 drflac__calculate_prediction_64(drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples)
{
drflac_int64 prediction;
DRFLAC_ASSERT(order <= 32);
#ifndef DRFLAC_64BIT
if (order == 8)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
}
else if (order == 7)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
}
else if (order == 3)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
}
else if (order == 6)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
}
else if (order == 5)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
}
else if (order == 4)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
}
else if (order == 12)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10];
prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11];
prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12];
}
else if (order == 2)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
}
else if (order == 1)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
}
else if (order == 10)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10];
}
else if (order == 9)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
}
else if (order == 11)
{
prediction = coefficients[0] * (drflac_int64)pDecodedSamples[-1];
prediction += coefficients[1] * (drflac_int64)pDecodedSamples[-2];
prediction += coefficients[2] * (drflac_int64)pDecodedSamples[-3];
prediction += coefficients[3] * (drflac_int64)pDecodedSamples[-4];
prediction += coefficients[4] * (drflac_int64)pDecodedSamples[-5];
prediction += coefficients[5] * (drflac_int64)pDecodedSamples[-6];
prediction += coefficients[6] * (drflac_int64)pDecodedSamples[-7];
prediction += coefficients[7] * (drflac_int64)pDecodedSamples[-8];
prediction += coefficients[8] * (drflac_int64)pDecodedSamples[-9];
prediction += coefficients[9] * (drflac_int64)pDecodedSamples[-10];
prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11];
}
else
{
int j;
prediction = 0;
for (j = 0; j < (int)order; ++j) {
prediction += coefficients[j] * (drflac_int64)pDecodedSamples[-j-1];
}
}
#endif
#ifdef DRFLAC_64BIT
prediction = 0;
switch (order)
{
case 32: prediction += coefficients[31] * (drflac_int64)pDecodedSamples[-32];
case 31: prediction += coefficients[30] * (drflac_int64)pDecodedSamples[-31];
case 30: prediction += coefficients[29] * (drflac_int64)pDecodedSamples[-30];
case 29: prediction += coefficients[28] * (drflac_int64)pDecodedSamples[-29];
case 28: prediction += coefficients[27] * (drflac_int64)pDecodedSamples[-28];
case 27: prediction += coefficients[26] * (drflac_int64)pDecodedSamples[-27];
case 26: prediction += coefficients[25] * (drflac_int64)pDecodedSamples[-26];
case 25: prediction += coefficients[24] * (drflac_int64)pDecodedSamples[-25];
case 24: prediction += coefficients[23] * (drflac_int64)pDecodedSamples[-24];
case 23: prediction += coefficients[22] * (drflac_int64)pDecodedSamples[-23];
case 22: prediction += coefficients[21] * (drflac_int64)pDecodedSamples[-22];
case 21: prediction += coefficients[20] * (drflac_int64)pDecodedSamples[-21];
case 20: prediction += coefficients[19] * (drflac_int64)pDecodedSamples[-20];
case 19: prediction += coefficients[18] * (drflac_int64)pDecodedSamples[-19];
case 18: prediction += coefficients[17] * (drflac_int64)pDecodedSamples[-18];
case 17: prediction += coefficients[16] * (drflac_int64)pDecodedSamples[-17];
case 16: prediction += coefficients[15] * (drflac_int64)pDecodedSamples[-16];
case 15: prediction += coefficients[14] * (drflac_int64)pDecodedSamples[-15];
case 14: prediction += coefficients[13] * (drflac_int64)pDecodedSamples[-14];
case 13: prediction += coefficients[12] * (drflac_int64)pDecodedSamples[-13];
case 12: prediction += coefficients[11] * (drflac_int64)pDecodedSamples[-12];
case 11: prediction += coefficients[10] * (drflac_int64)pDecodedSamples[-11];
case 10: prediction += coefficients[ 9] * (drflac_int64)pDecodedSamples[-10];
case 9: prediction += coefficients[ 8] * (drflac_int64)pDecodedSamples[- 9];
case 8: prediction += coefficients[ 7] * (drflac_int64)pDecodedSamples[- 8];
case 7: prediction += coefficients[ 6] * (drflac_int64)pDecodedSamples[- 7];
case 6: prediction += coefficients[ 5] * (drflac_int64)pDecodedSamples[- 6];
case 5: prediction += coefficients[ 4] * (drflac_int64)pDecodedSamples[- 5];
case 4: prediction += coefficients[ 3] * (drflac_int64)pDecodedSamples[- 4];
case 3: prediction += coefficients[ 2] * (drflac_int64)pDecodedSamples[- 3];
case 2: prediction += coefficients[ 1] * (drflac_int64)pDecodedSamples[- 2];
case 1: prediction += coefficients[ 0] * (drflac_int64)pDecodedSamples[- 1];
}
#endif
return (drflac_int32)(prediction >> shift);
}
#if 0
static drflac_bool32 drflac__decode_samples_with_residual__rice__reference(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
for (i = 0; i < count; ++i) {
drflac_uint32 zeroCounter = 0;
for (;;) {
drflac_uint8 bit;
if (!drflac__read_uint8(bs, 1, &bit)) {
return DRFLAC_FALSE;
}
if (bit == 0) {
zeroCounter += 1;
} else {
break;
}
}
drflac_uint32 decodedRice;
if (riceParam > 0) {
if (!drflac__read_uint32(bs, riceParam, &decodedRice)) {
return DRFLAC_FALSE;
}
} else {
decodedRice = 0;
}
decodedRice |= (zeroCounter << riceParam);
if ((decodedRice & 0x01)) {
decodedRice = ~(decodedRice >> 1);
} else {
decodedRice = (decodedRice >> 1);
}
if (bitsPerSample+shift >= 32) {
pSamplesOut[i] = decodedRice + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i);
} else {
pSamplesOut[i] = decodedRice + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i);
}
}
return DRFLAC_TRUE;
}
#endif
#if 0
static drflac_bool32 drflac__read_rice_parts__reference(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut)
{
drflac_uint32 zeroCounter = 0;
drflac_uint32 decodedRice;
for (;;) {
drflac_uint8 bit;
if (!drflac__read_uint8(bs, 1, &bit)) {
return DRFLAC_FALSE;
}
if (bit == 0) {
zeroCounter += 1;
} else {
break;
}
}
if (riceParam > 0) {
if (!drflac__read_uint32(bs, riceParam, &decodedRice)) {
return DRFLAC_FALSE;
}
} else {
decodedRice = 0;
}
*pZeroCounterOut = zeroCounter;
*pRiceParamPartOut = decodedRice;
return DRFLAC_TRUE;
}
#endif
#if 0
static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut)
{
drflac_cache_t riceParamMask;
drflac_uint32 zeroCounter;
drflac_uint32 setBitOffsetPlus1;
drflac_uint32 riceParamPart;
drflac_uint32 riceLength;
DRFLAC_ASSERT(riceParam > 0);
riceParamMask = DRFLAC_CACHE_L1_SELECTION_MASK(riceParam);
zeroCounter = 0;
while (bs->cache == 0) {
zeroCounter += (drflac_uint32)DRFLAC_CACHE_L1_BITS_REMAINING(bs);
if (!drflac__reload_cache(bs)) {
return DRFLAC_FALSE;
}
}
setBitOffsetPlus1 = drflac__clz(bs->cache);
zeroCounter += setBitOffsetPlus1;
setBitOffsetPlus1 += 1;
riceLength = setBitOffsetPlus1 + riceParam;
if (riceLength < DRFLAC_CACHE_L1_BITS_REMAINING(bs)) {
riceParamPart = (drflac_uint32)((bs->cache & (riceParamMask >> setBitOffsetPlus1)) >> DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceLength));
bs->consumedBits += riceLength;
bs->cache <<= riceLength;
} else {
drflac_uint32 bitCountLo;
drflac_cache_t resultHi;
bs->consumedBits += riceLength;
bs->cache <<= setBitOffsetPlus1 & (DRFLAC_CACHE_L1_SIZE_BITS(bs)-1);
bitCountLo = bs->consumedBits - DRFLAC_CACHE_L1_SIZE_BITS(bs);
resultHi = DRFLAC_CACHE_L1_SELECT_AND_SHIFT(bs, riceParam);
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
#ifndef DR_FLAC_NO_CRC
drflac__update_crc16(bs);
#endif
bs->cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
bs->consumedBits = 0;
#ifndef DR_FLAC_NO_CRC
bs->crc16Cache = bs->cache;
#endif
} else {
if (!drflac__reload_cache(bs)) {
return DRFLAC_FALSE;
}
}
riceParamPart = (drflac_uint32)(resultHi | DRFLAC_CACHE_L1_SELECT_AND_SHIFT_SAFE(bs, bitCountLo));
bs->consumedBits += bitCountLo;
bs->cache <<= bitCountLo;
}
pZeroCounterOut[0] = zeroCounter;
pRiceParamPartOut[0] = riceParamPart;
return DRFLAC_TRUE;
}
#endif
static DRFLAC_INLINE drflac_bool32 drflac__read_rice_parts_x1(drflac_bs* bs, drflac_uint8 riceParam, drflac_uint32* pZeroCounterOut, drflac_uint32* pRiceParamPartOut)
{
drflac_uint32 riceParamPlus1 = riceParam + 1;
drflac_uint32 riceParamPlus1Shift = DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPlus1);
drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1;
drflac_cache_t bs_cache = bs->cache;
drflac_uint32 bs_consumedBits = bs->consumedBits;
drflac_uint32 lzcount = drflac__clz(bs_cache);
if (lzcount < sizeof(bs_cache)*8) {
pZeroCounterOut[0] = lzcount;
extract_rice_param_part:
bs_cache <<= lzcount;
bs_consumedBits += lzcount;
if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) {
pRiceParamPartOut[0] = (drflac_uint32)(bs_cache >> riceParamPlus1Shift);
bs_cache <<= riceParamPlus1;
bs_consumedBits += riceParamPlus1;
} else {
drflac_uint32 riceParamPartHi;
drflac_uint32 riceParamPartLo;
drflac_uint32 riceParamPartLoBitCount;
riceParamPartHi = (drflac_uint32)(bs_cache >> riceParamPlus1Shift);
riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits;
DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32);
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
#ifndef DR_FLAC_NO_CRC
drflac__update_crc16(bs);
#endif
bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
bs_consumedBits = riceParamPartLoBitCount;
#ifndef DR_FLAC_NO_CRC
bs->crc16Cache = bs_cache;
#endif
} else {
if (!drflac__reload_cache(bs)) {
return DRFLAC_FALSE;
}
bs_cache = bs->cache;
bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount;
}
riceParamPartLo = (drflac_uint32)(bs_cache >> (DRFLAC_CACHE_L1_SELECTION_SHIFT(bs, riceParamPartLoBitCount)));
pRiceParamPartOut[0] = riceParamPartHi | riceParamPartLo;
bs_cache <<= riceParamPartLoBitCount;
}
} else {
drflac_uint32 zeroCounter = (drflac_uint32)(DRFLAC_CACHE_L1_SIZE_BITS(bs) - bs_consumedBits);
for (;;) {
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
#ifndef DR_FLAC_NO_CRC
drflac__update_crc16(bs);
#endif
bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
bs_consumedBits = 0;
#ifndef DR_FLAC_NO_CRC
bs->crc16Cache = bs_cache;
#endif
} else {
if (!drflac__reload_cache(bs)) {
return DRFLAC_FALSE;
}
bs_cache = bs->cache;
bs_consumedBits = bs->consumedBits;
}
lzcount = drflac__clz(bs_cache);
zeroCounter += lzcount;
if (lzcount < sizeof(bs_cache)*8) {
break;
}
}
pZeroCounterOut[0] = zeroCounter;
goto extract_rice_param_part;
}
bs->cache = bs_cache;
bs->consumedBits = bs_consumedBits;
return DRFLAC_TRUE;
}
static DRFLAC_INLINE drflac_bool32 drflac__seek_rice_parts(drflac_bs* bs, drflac_uint8 riceParam)
{
drflac_uint32 riceParamPlus1 = riceParam + 1;
drflac_uint32 riceParamPlus1MaxConsumedBits = DRFLAC_CACHE_L1_SIZE_BITS(bs) - riceParamPlus1;
drflac_cache_t bs_cache = bs->cache;
drflac_uint32 bs_consumedBits = bs->consumedBits;
drflac_uint32 lzcount = drflac__clz(bs_cache);
if (lzcount < sizeof(bs_cache)*8) {
extract_rice_param_part:
bs_cache <<= lzcount;
bs_consumedBits += lzcount;
if (bs_consumedBits <= riceParamPlus1MaxConsumedBits) {
bs_cache <<= riceParamPlus1;
bs_consumedBits += riceParamPlus1;
} else {
drflac_uint32 riceParamPartLoBitCount = bs_consumedBits - riceParamPlus1MaxConsumedBits;
DRFLAC_ASSERT(riceParamPartLoBitCount > 0 && riceParamPartLoBitCount < 32);
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
#ifndef DR_FLAC_NO_CRC
drflac__update_crc16(bs);
#endif
bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
bs_consumedBits = riceParamPartLoBitCount;
#ifndef DR_FLAC_NO_CRC
bs->crc16Cache = bs_cache;
#endif
} else {
if (!drflac__reload_cache(bs)) {
return DRFLAC_FALSE;
}
bs_cache = bs->cache;
bs_consumedBits = bs->consumedBits + riceParamPartLoBitCount;
}
bs_cache <<= riceParamPartLoBitCount;
}
} else {
for (;;) {
if (bs->nextL2Line < DRFLAC_CACHE_L2_LINE_COUNT(bs)) {
#ifndef DR_FLAC_NO_CRC
drflac__update_crc16(bs);
#endif
bs_cache = drflac__be2host__cache_line(bs->cacheL2[bs->nextL2Line++]);
bs_consumedBits = 0;
#ifndef DR_FLAC_NO_CRC
bs->crc16Cache = bs_cache;
#endif
} else {
if (!drflac__reload_cache(bs)) {
return DRFLAC_FALSE;
}
bs_cache = bs->cache;
bs_consumedBits = bs->consumedBits;
}
lzcount = drflac__clz(bs_cache);
if (lzcount < sizeof(bs_cache)*8) {
break;
}
}
goto extract_rice_param_part;
}
bs->cache = bs_cache;
bs->consumedBits = bs_consumedBits;
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar_zeroorder(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
drflac_uint32 zeroCountPart0;
drflac_uint32 riceParamPart0;
drflac_uint32 riceParamMask;
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
(void)bitsPerSample;
(void)order;
(void)shift;
(void)coefficients;
riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
i = 0;
while (i < count) {
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) {
return DRFLAC_FALSE;
}
riceParamPart0 &= riceParamMask;
riceParamPart0 |= (zeroCountPart0 << riceParam);
riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
pSamplesOut[i] = riceParamPart0;
i += 1;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples_with_residual__rice__scalar(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
drflac_uint32 zeroCountPart0 = 0;
drflac_uint32 zeroCountPart1 = 0;
drflac_uint32 zeroCountPart2 = 0;
drflac_uint32 zeroCountPart3 = 0;
drflac_uint32 riceParamPart0 = 0;
drflac_uint32 riceParamPart1 = 0;
drflac_uint32 riceParamPart2 = 0;
drflac_uint32 riceParamPart3 = 0;
drflac_uint32 riceParamMask;
const drflac_int32* pSamplesOutEnd;
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
if (order == 0) {
return drflac__decode_samples_with_residual__rice__scalar_zeroorder(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
}
riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
pSamplesOutEnd = pSamplesOut + (count & ~3);
if (bitsPerSample+shift > 32) {
while (pSamplesOut < pSamplesOutEnd) {
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) {
return DRFLAC_FALSE;
}
riceParamPart0 &= riceParamMask;
riceParamPart1 &= riceParamMask;
riceParamPart2 &= riceParamMask;
riceParamPart3 &= riceParamMask;
riceParamPart0 |= (zeroCountPart0 << riceParam);
riceParamPart1 |= (zeroCountPart1 << riceParam);
riceParamPart2 |= (zeroCountPart2 << riceParam);
riceParamPart3 |= (zeroCountPart3 << riceParam);
riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01];
riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01];
riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01];
pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0);
pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 1);
pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 2);
pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 3);
pSamplesOut += 4;
}
} else {
while (pSamplesOut < pSamplesOutEnd) {
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart1, &riceParamPart1) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart2, &riceParamPart2) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart3, &riceParamPart3)) {
return DRFLAC_FALSE;
}
riceParamPart0 &= riceParamMask;
riceParamPart1 &= riceParamMask;
riceParamPart2 &= riceParamMask;
riceParamPart3 &= riceParamMask;
riceParamPart0 |= (zeroCountPart0 << riceParam);
riceParamPart1 |= (zeroCountPart1 << riceParam);
riceParamPart2 |= (zeroCountPart2 << riceParam);
riceParamPart3 |= (zeroCountPart3 << riceParam);
riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
riceParamPart1 = (riceParamPart1 >> 1) ^ t[riceParamPart1 & 0x01];
riceParamPart2 = (riceParamPart2 >> 1) ^ t[riceParamPart2 & 0x01];
riceParamPart3 = (riceParamPart3 >> 1) ^ t[riceParamPart3 & 0x01];
pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0);
pSamplesOut[1] = riceParamPart1 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 1);
pSamplesOut[2] = riceParamPart2 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 2);
pSamplesOut[3] = riceParamPart3 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 3);
pSamplesOut += 4;
}
}
i = (count & ~3);
while (i < count) {
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountPart0, &riceParamPart0)) {
return DRFLAC_FALSE;
}
riceParamPart0 &= riceParamMask;
riceParamPart0 |= (zeroCountPart0 << riceParam);
riceParamPart0 = (riceParamPart0 >> 1) ^ t[riceParamPart0 & 0x01];
if (bitsPerSample+shift > 32) {
pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + 0);
} else {
pSamplesOut[0] = riceParamPart0 + drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + 0);
}
i += 1;
pSamplesOut += 1;
}
return DRFLAC_TRUE;
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE __m128i drflac__mm_packs_interleaved_epi32(__m128i a, __m128i b)
{
__m128i r;
r = _mm_packs_epi32(a, b);
r = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 1, 2, 0));
r = _mm_shufflehi_epi16(r, _MM_SHUFFLE(3, 1, 2, 0));
r = _mm_shufflelo_epi16(r, _MM_SHUFFLE(3, 1, 2, 0));
return r;
}
#endif
#if defined(DRFLAC_SUPPORT_SSE41)
static DRFLAC_INLINE __m128i drflac__mm_not_si128(__m128i a)
{
return _mm_xor_si128(a, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
}
static DRFLAC_INLINE __m128i drflac__mm_hadd_epi32(__m128i x)
{
__m128i x64 = _mm_add_epi32(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2)));
__m128i x32 = _mm_shufflelo_epi16(x64, _MM_SHUFFLE(1, 0, 3, 2));
return _mm_add_epi32(x64, x32);
}
static DRFLAC_INLINE __m128i drflac__mm_hadd_epi64(__m128i x)
{
return _mm_add_epi64(x, _mm_shuffle_epi32(x, _MM_SHUFFLE(1, 0, 3, 2)));
}
static DRFLAC_INLINE __m128i drflac__mm_srai_epi64(__m128i x, int count)
{
__m128i lo = _mm_srli_epi64(x, count);
__m128i hi = _mm_srai_epi32(x, count);
hi = _mm_and_si128(hi, _mm_set_epi32(0xFFFFFFFF, 0, 0xFFFFFFFF, 0));
return _mm_or_si128(lo, hi);
}
static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
int i;
drflac_uint32 riceParamMask;
drflac_int32* pDecodedSamples = pSamplesOut;
drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
drflac_uint32 zeroCountParts0 = 0;
drflac_uint32 zeroCountParts1 = 0;
drflac_uint32 zeroCountParts2 = 0;
drflac_uint32 zeroCountParts3 = 0;
drflac_uint32 riceParamParts0 = 0;
drflac_uint32 riceParamParts1 = 0;
drflac_uint32 riceParamParts2 = 0;
drflac_uint32 riceParamParts3 = 0;
__m128i coefficients128_0;
__m128i coefficients128_4;
__m128i coefficients128_8;
__m128i samples128_0;
__m128i samples128_4;
__m128i samples128_8;
__m128i riceParamMask128;
const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
riceParamMask128 = _mm_set1_epi32(riceParamMask);
coefficients128_0 = _mm_setzero_si128();
coefficients128_4 = _mm_setzero_si128();
coefficients128_8 = _mm_setzero_si128();
samples128_0 = _mm_setzero_si128();
samples128_4 = _mm_setzero_si128();
samples128_8 = _mm_setzero_si128();
#if 1
{
int runningOrder = order;
if (runningOrder >= 4) {
coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0));
samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4));
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break;
case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break;
case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break;
}
runningOrder = 0;
}
if (runningOrder >= 4) {
coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4));
samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8));
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break;
case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break;
case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break;
}
runningOrder = 0;
}
if (runningOrder == 4) {
coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8));
samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12));
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break;
case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break;
case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break;
}
runningOrder = 0;
}
coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3));
coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3));
coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3));
}
#else
switch (order)
{
case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12];
case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11];
case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10];
case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9];
case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8];
case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7];
case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6];
case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5];
case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4];
case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3];
case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2];
case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1];
}
#endif
while (pDecodedSamples < pDecodedSamplesEnd) {
__m128i prediction128;
__m128i zeroCountPart128;
__m128i riceParamPart128;
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) {
return DRFLAC_FALSE;
}
zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0);
riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0);
riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128);
riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam));
riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(0x01))), _mm_set1_epi32(0x01)));
if (order <= 4) {
for (i = 0; i < 4; i += 1) {
prediction128 = _mm_mullo_epi32(coefficients128_0, samples128_0);
prediction128 = drflac__mm_hadd_epi32(prediction128);
prediction128 = _mm_srai_epi32(prediction128, shift);
prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
}
} else if (order <= 8) {
for (i = 0; i < 4; i += 1) {
prediction128 = _mm_mullo_epi32(coefficients128_4, samples128_4);
prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0));
prediction128 = drflac__mm_hadd_epi32(prediction128);
prediction128 = _mm_srai_epi32(prediction128, shift);
prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4);
samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
}
} else {
for (i = 0; i < 4; i += 1) {
prediction128 = _mm_mullo_epi32(coefficients128_8, samples128_8);
prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_4, samples128_4));
prediction128 = _mm_add_epi32(prediction128, _mm_mullo_epi32(coefficients128_0, samples128_0));
prediction128 = drflac__mm_hadd_epi32(prediction128);
prediction128 = _mm_srai_epi32(prediction128, shift);
prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4);
samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4);
samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
}
}
_mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0);
pDecodedSamples += 4;
}
i = (count & ~3);
while (i < (int)count) {
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) {
return DRFLAC_FALSE;
}
riceParamParts0 &= riceParamMask;
riceParamParts0 |= (zeroCountParts0 << riceParam);
riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01];
pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples);
i += 1;
pDecodedSamples += 1;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
int i;
drflac_uint32 riceParamMask;
drflac_int32* pDecodedSamples = pSamplesOut;
drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
drflac_uint32 zeroCountParts0 = 0;
drflac_uint32 zeroCountParts1 = 0;
drflac_uint32 zeroCountParts2 = 0;
drflac_uint32 zeroCountParts3 = 0;
drflac_uint32 riceParamParts0 = 0;
drflac_uint32 riceParamParts1 = 0;
drflac_uint32 riceParamParts2 = 0;
drflac_uint32 riceParamParts3 = 0;
__m128i coefficients128_0;
__m128i coefficients128_4;
__m128i coefficients128_8;
__m128i samples128_0;
__m128i samples128_4;
__m128i samples128_8;
__m128i prediction128;
__m128i riceParamMask128;
const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
DRFLAC_ASSERT(order <= 12);
riceParamMask = (drflac_uint32)~((~0UL) << riceParam);
riceParamMask128 = _mm_set1_epi32(riceParamMask);
prediction128 = _mm_setzero_si128();
coefficients128_0 = _mm_setzero_si128();
coefficients128_4 = _mm_setzero_si128();
coefficients128_8 = _mm_setzero_si128();
samples128_0 = _mm_setzero_si128();
samples128_4 = _mm_setzero_si128();
samples128_8 = _mm_setzero_si128();
#if 1
{
int runningOrder = order;
if (runningOrder >= 4) {
coefficients128_0 = _mm_loadu_si128((const __m128i*)(coefficients + 0));
samples128_0 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 4));
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: coefficients128_0 = _mm_set_epi32(0, coefficients[2], coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], pSamplesOut[-3], 0); break;
case 2: coefficients128_0 = _mm_set_epi32(0, 0, coefficients[1], coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], pSamplesOut[-2], 0, 0); break;
case 1: coefficients128_0 = _mm_set_epi32(0, 0, 0, coefficients[0]); samples128_0 = _mm_set_epi32(pSamplesOut[-1], 0, 0, 0); break;
}
runningOrder = 0;
}
if (runningOrder >= 4) {
coefficients128_4 = _mm_loadu_si128((const __m128i*)(coefficients + 4));
samples128_4 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 8));
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: coefficients128_4 = _mm_set_epi32(0, coefficients[6], coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], pSamplesOut[-7], 0); break;
case 2: coefficients128_4 = _mm_set_epi32(0, 0, coefficients[5], coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], pSamplesOut[-6], 0, 0); break;
case 1: coefficients128_4 = _mm_set_epi32(0, 0, 0, coefficients[4]); samples128_4 = _mm_set_epi32(pSamplesOut[-5], 0, 0, 0); break;
}
runningOrder = 0;
}
if (runningOrder == 4) {
coefficients128_8 = _mm_loadu_si128((const __m128i*)(coefficients + 8));
samples128_8 = _mm_loadu_si128((const __m128i*)(pSamplesOut - 12));
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: coefficients128_8 = _mm_set_epi32(0, coefficients[10], coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], pSamplesOut[-11], 0); break;
case 2: coefficients128_8 = _mm_set_epi32(0, 0, coefficients[9], coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], pSamplesOut[-10], 0, 0); break;
case 1: coefficients128_8 = _mm_set_epi32(0, 0, 0, coefficients[8]); samples128_8 = _mm_set_epi32(pSamplesOut[-9], 0, 0, 0); break;
}
runningOrder = 0;
}
coefficients128_0 = _mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(0, 1, 2, 3));
coefficients128_4 = _mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(0, 1, 2, 3));
coefficients128_8 = _mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(0, 1, 2, 3));
}
#else
switch (order)
{
case 12: ((drflac_int32*)&coefficients128_8)[0] = coefficients[11]; ((drflac_int32*)&samples128_8)[0] = pDecodedSamples[-12];
case 11: ((drflac_int32*)&coefficients128_8)[1] = coefficients[10]; ((drflac_int32*)&samples128_8)[1] = pDecodedSamples[-11];
case 10: ((drflac_int32*)&coefficients128_8)[2] = coefficients[ 9]; ((drflac_int32*)&samples128_8)[2] = pDecodedSamples[-10];
case 9: ((drflac_int32*)&coefficients128_8)[3] = coefficients[ 8]; ((drflac_int32*)&samples128_8)[3] = pDecodedSamples[- 9];
case 8: ((drflac_int32*)&coefficients128_4)[0] = coefficients[ 7]; ((drflac_int32*)&samples128_4)[0] = pDecodedSamples[- 8];
case 7: ((drflac_int32*)&coefficients128_4)[1] = coefficients[ 6]; ((drflac_int32*)&samples128_4)[1] = pDecodedSamples[- 7];
case 6: ((drflac_int32*)&coefficients128_4)[2] = coefficients[ 5]; ((drflac_int32*)&samples128_4)[2] = pDecodedSamples[- 6];
case 5: ((drflac_int32*)&coefficients128_4)[3] = coefficients[ 4]; ((drflac_int32*)&samples128_4)[3] = pDecodedSamples[- 5];
case 4: ((drflac_int32*)&coefficients128_0)[0] = coefficients[ 3]; ((drflac_int32*)&samples128_0)[0] = pDecodedSamples[- 4];
case 3: ((drflac_int32*)&coefficients128_0)[1] = coefficients[ 2]; ((drflac_int32*)&samples128_0)[1] = pDecodedSamples[- 3];
case 2: ((drflac_int32*)&coefficients128_0)[2] = coefficients[ 1]; ((drflac_int32*)&samples128_0)[2] = pDecodedSamples[- 2];
case 1: ((drflac_int32*)&coefficients128_0)[3] = coefficients[ 0]; ((drflac_int32*)&samples128_0)[3] = pDecodedSamples[- 1];
}
#endif
while (pDecodedSamples < pDecodedSamplesEnd) {
__m128i zeroCountPart128;
__m128i riceParamPart128;
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts1, &riceParamParts1) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts2, &riceParamParts2) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts3, &riceParamParts3)) {
return DRFLAC_FALSE;
}
zeroCountPart128 = _mm_set_epi32(zeroCountParts3, zeroCountParts2, zeroCountParts1, zeroCountParts0);
riceParamPart128 = _mm_set_epi32(riceParamParts3, riceParamParts2, riceParamParts1, riceParamParts0);
riceParamPart128 = _mm_and_si128(riceParamPart128, riceParamMask128);
riceParamPart128 = _mm_or_si128(riceParamPart128, _mm_slli_epi32(zeroCountPart128, riceParam));
riceParamPart128 = _mm_xor_si128(_mm_srli_epi32(riceParamPart128, 1), _mm_add_epi32(drflac__mm_not_si128(_mm_and_si128(riceParamPart128, _mm_set1_epi32(1))), _mm_set1_epi32(1)));
for (i = 0; i < 4; i += 1) {
prediction128 = _mm_xor_si128(prediction128, prediction128);
switch (order)
{
case 12:
case 11: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(1, 1, 0, 0))));
case 10:
case 9: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_8, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_8, _MM_SHUFFLE(3, 3, 2, 2))));
case 8:
case 7: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(1, 1, 0, 0))));
case 6:
case 5: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_4, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_4, _MM_SHUFFLE(3, 3, 2, 2))));
case 4:
case 3: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(1, 1, 0, 0)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(1, 1, 0, 0))));
case 2:
case 1: prediction128 = _mm_add_epi64(prediction128, _mm_mul_epi32(_mm_shuffle_epi32(coefficients128_0, _MM_SHUFFLE(3, 3, 2, 2)), _mm_shuffle_epi32(samples128_0, _MM_SHUFFLE(3, 3, 2, 2))));
}
prediction128 = drflac__mm_hadd_epi64(prediction128);
prediction128 = drflac__mm_srai_epi64(prediction128, shift);
prediction128 = _mm_add_epi32(riceParamPart128, prediction128);
samples128_8 = _mm_alignr_epi8(samples128_4, samples128_8, 4);
samples128_4 = _mm_alignr_epi8(samples128_0, samples128_4, 4);
samples128_0 = _mm_alignr_epi8(prediction128, samples128_0, 4);
riceParamPart128 = _mm_alignr_epi8(_mm_setzero_si128(), riceParamPart128, 4);
}
_mm_storeu_si128((__m128i*)pDecodedSamples, samples128_0);
pDecodedSamples += 4;
}
i = (count & ~3);
while (i < (int)count) {
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts0, &riceParamParts0)) {
return DRFLAC_FALSE;
}
riceParamParts0 &= riceParamMask;
riceParamParts0 |= (zeroCountParts0 << riceParam);
riceParamParts0 = (riceParamParts0 >> 1) ^ t[riceParamParts0 & 0x01];
pDecodedSamples[0] = riceParamParts0 + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples);
i += 1;
pDecodedSamples += 1;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples_with_residual__rice__sse41(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
if (order > 0 && order <= 12) {
if (bitsPerSample+shift > 32) {
return drflac__decode_samples_with_residual__rice__sse41_64(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
} else {
return drflac__decode_samples_with_residual__rice__sse41_32(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
}
} else {
return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac__vst2q_s32(drflac_int32* p, int32x4x2_t x)
{
vst1q_s32(p+0, x.val[0]);
vst1q_s32(p+4, x.val[1]);
}
static DRFLAC_INLINE void drflac__vst2q_u32(drflac_uint32* p, uint32x4x2_t x)
{
vst1q_u32(p+0, x.val[0]);
vst1q_u32(p+4, x.val[1]);
}
static DRFLAC_INLINE void drflac__vst2q_f32(float* p, float32x4x2_t x)
{
vst1q_f32(p+0, x.val[0]);
vst1q_f32(p+4, x.val[1]);
}
static DRFLAC_INLINE void drflac__vst2q_s16(drflac_int16* p, int16x4x2_t x)
{
vst1q_s16(p, vcombine_s16(x.val[0], x.val[1]));
}
static DRFLAC_INLINE void drflac__vst2q_u16(drflac_uint16* p, uint16x4x2_t x)
{
vst1q_u16(p, vcombine_u16(x.val[0], x.val[1]));
}
static DRFLAC_INLINE int32x4_t drflac__vdupq_n_s32x4(drflac_int32 x3, drflac_int32 x2, drflac_int32 x1, drflac_int32 x0)
{
drflac_int32 x[4];
x[3] = x3;
x[2] = x2;
x[1] = x1;
x[0] = x0;
return vld1q_s32(x);
}
static DRFLAC_INLINE int32x4_t drflac__valignrq_s32_1(int32x4_t a, int32x4_t b)
{
return vextq_s32(b, a, 1);
}
static DRFLAC_INLINE uint32x4_t drflac__valignrq_u32_1(uint32x4_t a, uint32x4_t b)
{
return vextq_u32(b, a, 1);
}
static DRFLAC_INLINE int32x2_t drflac__vhaddq_s32(int32x4_t x)
{
int32x2_t r = vadd_s32(vget_high_s32(x), vget_low_s32(x));
return vpadd_s32(r, r);
}
static DRFLAC_INLINE int64x1_t drflac__vhaddq_s64(int64x2_t x)
{
return vadd_s64(vget_high_s64(x), vget_low_s64(x));
}
static DRFLAC_INLINE int32x4_t drflac__vrevq_s32(int32x4_t x)
{
return vrev64q_s32(vcombine_s32(vget_high_s32(x), vget_low_s32(x)));
}
static DRFLAC_INLINE int32x4_t drflac__vnotq_s32(int32x4_t x)
{
return veorq_s32(x, vdupq_n_s32(0xFFFFFFFF));
}
static DRFLAC_INLINE uint32x4_t drflac__vnotq_u32(uint32x4_t x)
{
return veorq_u32(x, vdupq_n_u32(0xFFFFFFFF));
}
static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_32(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
int i;
drflac_uint32 riceParamMask;
drflac_int32* pDecodedSamples = pSamplesOut;
drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
drflac_uint32 zeroCountParts[4];
drflac_uint32 riceParamParts[4];
int32x4_t coefficients128_0;
int32x4_t coefficients128_4;
int32x4_t coefficients128_8;
int32x4_t samples128_0;
int32x4_t samples128_4;
int32x4_t samples128_8;
uint32x4_t riceParamMask128;
int32x4_t riceParam128;
int32x2_t shift64;
uint32x4_t one128;
const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
riceParamMask = ~((~0UL) << riceParam);
riceParamMask128 = vdupq_n_u32(riceParamMask);
riceParam128 = vdupq_n_s32(riceParam);
shift64 = vdup_n_s32(-shift);
one128 = vdupq_n_u32(1);
{
int runningOrder = order;
drflac_int32 tempC[4] = {0, 0, 0, 0};
drflac_int32 tempS[4] = {0, 0, 0, 0};
if (runningOrder >= 4) {
coefficients128_0 = vld1q_s32(coefficients + 0);
samples128_0 = vld1q_s32(pSamplesOut - 4);
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3];
case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2];
case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1];
}
coefficients128_0 = vld1q_s32(tempC);
samples128_0 = vld1q_s32(tempS);
runningOrder = 0;
}
if (runningOrder >= 4) {
coefficients128_4 = vld1q_s32(coefficients + 4);
samples128_4 = vld1q_s32(pSamplesOut - 8);
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7];
case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6];
case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5];
}
coefficients128_4 = vld1q_s32(tempC);
samples128_4 = vld1q_s32(tempS);
runningOrder = 0;
}
if (runningOrder == 4) {
coefficients128_8 = vld1q_s32(coefficients + 8);
samples128_8 = vld1q_s32(pSamplesOut - 12);
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11];
case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10];
case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9];
}
coefficients128_8 = vld1q_s32(tempC);
samples128_8 = vld1q_s32(tempS);
runningOrder = 0;
}
coefficients128_0 = drflac__vrevq_s32(coefficients128_0);
coefficients128_4 = drflac__vrevq_s32(coefficients128_4);
coefficients128_8 = drflac__vrevq_s32(coefficients128_8);
}
while (pDecodedSamples < pDecodedSamplesEnd) {
int32x4_t prediction128;
int32x2_t prediction64;
uint32x4_t zeroCountPart128;
uint32x4_t riceParamPart128;
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) {
return DRFLAC_FALSE;
}
zeroCountPart128 = vld1q_u32(zeroCountParts);
riceParamPart128 = vld1q_u32(riceParamParts);
riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128);
riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128));
riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128));
if (order <= 4) {
for (i = 0; i < 4; i += 1) {
prediction128 = vmulq_s32(coefficients128_0, samples128_0);
prediction64 = drflac__vhaddq_s32(prediction128);
prediction64 = vshl_s32(prediction64, shift64);
prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128)));
samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0);
riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
}
} else if (order <= 8) {
for (i = 0; i < 4; i += 1) {
prediction128 = vmulq_s32(coefficients128_4, samples128_4);
prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0);
prediction64 = drflac__vhaddq_s32(prediction128);
prediction64 = vshl_s32(prediction64, shift64);
prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128)));
samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4);
samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0);
riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
}
} else {
for (i = 0; i < 4; i += 1) {
prediction128 = vmulq_s32(coefficients128_8, samples128_8);
prediction128 = vmlaq_s32(prediction128, coefficients128_4, samples128_4);
prediction128 = vmlaq_s32(prediction128, coefficients128_0, samples128_0);
prediction64 = drflac__vhaddq_s32(prediction128);
prediction64 = vshl_s32(prediction64, shift64);
prediction64 = vadd_s32(prediction64, vget_low_s32(vreinterpretq_s32_u32(riceParamPart128)));
samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8);
samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4);
samples128_0 = drflac__valignrq_s32_1(vcombine_s32(prediction64, vdup_n_s32(0)), samples128_0);
riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
}
}
vst1q_s32(pDecodedSamples, samples128_0);
pDecodedSamples += 4;
}
i = (count & ~3);
while (i < (int)count) {
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) {
return DRFLAC_FALSE;
}
riceParamParts[0] &= riceParamMask;
riceParamParts[0] |= (zeroCountParts[0] << riceParam);
riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01];
pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_32(order, shift, coefficients, pDecodedSamples);
i += 1;
pDecodedSamples += 1;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples_with_residual__rice__neon_64(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
int i;
drflac_uint32 riceParamMask;
drflac_int32* pDecodedSamples = pSamplesOut;
drflac_int32* pDecodedSamplesEnd = pSamplesOut + (count & ~3);
drflac_uint32 zeroCountParts[4];
drflac_uint32 riceParamParts[4];
int32x4_t coefficients128_0;
int32x4_t coefficients128_4;
int32x4_t coefficients128_8;
int32x4_t samples128_0;
int32x4_t samples128_4;
int32x4_t samples128_8;
uint32x4_t riceParamMask128;
int32x4_t riceParam128;
int64x1_t shift64;
uint32x4_t one128;
const drflac_uint32 t[2] = {0x00000000, 0xFFFFFFFF};
riceParamMask = ~((~0UL) << riceParam);
riceParamMask128 = vdupq_n_u32(riceParamMask);
riceParam128 = vdupq_n_s32(riceParam);
shift64 = vdup_n_s64(-shift);
one128 = vdupq_n_u32(1);
{
int runningOrder = order;
drflac_int32 tempC[4] = {0, 0, 0, 0};
drflac_int32 tempS[4] = {0, 0, 0, 0};
if (runningOrder >= 4) {
coefficients128_0 = vld1q_s32(coefficients + 0);
samples128_0 = vld1q_s32(pSamplesOut - 4);
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: tempC[2] = coefficients[2]; tempS[1] = pSamplesOut[-3];
case 2: tempC[1] = coefficients[1]; tempS[2] = pSamplesOut[-2];
case 1: tempC[0] = coefficients[0]; tempS[3] = pSamplesOut[-1];
}
coefficients128_0 = vld1q_s32(tempC);
samples128_0 = vld1q_s32(tempS);
runningOrder = 0;
}
if (runningOrder >= 4) {
coefficients128_4 = vld1q_s32(coefficients + 4);
samples128_4 = vld1q_s32(pSamplesOut - 8);
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: tempC[2] = coefficients[6]; tempS[1] = pSamplesOut[-7];
case 2: tempC[1] = coefficients[5]; tempS[2] = pSamplesOut[-6];
case 1: tempC[0] = coefficients[4]; tempS[3] = pSamplesOut[-5];
}
coefficients128_4 = vld1q_s32(tempC);
samples128_4 = vld1q_s32(tempS);
runningOrder = 0;
}
if (runningOrder == 4) {
coefficients128_8 = vld1q_s32(coefficients + 8);
samples128_8 = vld1q_s32(pSamplesOut - 12);
runningOrder -= 4;
} else {
switch (runningOrder) {
case 3: tempC[2] = coefficients[10]; tempS[1] = pSamplesOut[-11];
case 2: tempC[1] = coefficients[ 9]; tempS[2] = pSamplesOut[-10];
case 1: tempC[0] = coefficients[ 8]; tempS[3] = pSamplesOut[- 9];
}
coefficients128_8 = vld1q_s32(tempC);
samples128_8 = vld1q_s32(tempS);
runningOrder = 0;
}
coefficients128_0 = drflac__vrevq_s32(coefficients128_0);
coefficients128_4 = drflac__vrevq_s32(coefficients128_4);
coefficients128_8 = drflac__vrevq_s32(coefficients128_8);
}
while (pDecodedSamples < pDecodedSamplesEnd) {
int64x2_t prediction128;
uint32x4_t zeroCountPart128;
uint32x4_t riceParamPart128;
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0]) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[1], &riceParamParts[1]) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[2], &riceParamParts[2]) ||
!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[3], &riceParamParts[3])) {
return DRFLAC_FALSE;
}
zeroCountPart128 = vld1q_u32(zeroCountParts);
riceParamPart128 = vld1q_u32(riceParamParts);
riceParamPart128 = vandq_u32(riceParamPart128, riceParamMask128);
riceParamPart128 = vorrq_u32(riceParamPart128, vshlq_u32(zeroCountPart128, riceParam128));
riceParamPart128 = veorq_u32(vshrq_n_u32(riceParamPart128, 1), vaddq_u32(drflac__vnotq_u32(vandq_u32(riceParamPart128, one128)), one128));
for (i = 0; i < 4; i += 1) {
int64x1_t prediction64;
prediction128 = veorq_s64(prediction128, prediction128);
switch (order)
{
case 12:
case 11: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_8), vget_low_s32(samples128_8)));
case 10:
case 9: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_8), vget_high_s32(samples128_8)));
case 8:
case 7: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_4), vget_low_s32(samples128_4)));
case 6:
case 5: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_4), vget_high_s32(samples128_4)));
case 4:
case 3: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_low_s32(coefficients128_0), vget_low_s32(samples128_0)));
case 2:
case 1: prediction128 = vaddq_s64(prediction128, vmull_s32(vget_high_s32(coefficients128_0), vget_high_s32(samples128_0)));
}
prediction64 = drflac__vhaddq_s64(prediction128);
prediction64 = vshl_s64(prediction64, shift64);
prediction64 = vadd_s64(prediction64, vdup_n_s64(vgetq_lane_u32(riceParamPart128, 0)));
samples128_8 = drflac__valignrq_s32_1(samples128_4, samples128_8);
samples128_4 = drflac__valignrq_s32_1(samples128_0, samples128_4);
samples128_0 = drflac__valignrq_s32_1(vcombine_s32(vreinterpret_s32_s64(prediction64), vdup_n_s32(0)), samples128_0);
riceParamPart128 = drflac__valignrq_u32_1(vdupq_n_u32(0), riceParamPart128);
}
vst1q_s32(pDecodedSamples, samples128_0);
pDecodedSamples += 4;
}
i = (count & ~3);
while (i < (int)count) {
if (!drflac__read_rice_parts_x1(bs, riceParam, &zeroCountParts[0], &riceParamParts[0])) {
return DRFLAC_FALSE;
}
riceParamParts[0] &= riceParamMask;
riceParamParts[0] |= (zeroCountParts[0] << riceParam);
riceParamParts[0] = (riceParamParts[0] >> 1) ^ t[riceParamParts[0] & 0x01];
pDecodedSamples[0] = riceParamParts[0] + drflac__calculate_prediction_64(order, shift, coefficients, pDecodedSamples);
i += 1;
pDecodedSamples += 1;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples_with_residual__rice__neon(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(pSamplesOut != NULL);
if (order > 0 && order <= 12) {
if (bitsPerSample+shift > 32) {
return drflac__decode_samples_with_residual__rice__neon_64(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
} else {
return drflac__decode_samples_with_residual__rice__neon_32(bs, count, riceParam, order, shift, coefficients, pSamplesOut);
}
} else {
return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
}
}
#endif
static drflac_bool32 drflac__decode_samples_with_residual__rice(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 riceParam, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
#if defined(DRFLAC_SUPPORT_SSE41)
if (drflac__gIsSSE41Supported) {
return drflac__decode_samples_with_residual__rice__sse41(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported) {
return drflac__decode_samples_with_residual__rice__neon(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
} else
#endif
{
#if 0
return drflac__decode_samples_with_residual__rice__reference(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
#else
return drflac__decode_samples_with_residual__rice__scalar(bs, bitsPerSample, count, riceParam, order, shift, coefficients, pSamplesOut);
#endif
}
}
static drflac_bool32 drflac__read_and_seek_residual__rice(drflac_bs* bs, drflac_uint32 count, drflac_uint8 riceParam)
{
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
for (i = 0; i < count; ++i) {
if (!drflac__seek_rice_parts(bs, riceParam)) {
return DRFLAC_FALSE;
}
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples_with_residual__unencoded(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 count, drflac_uint8 unencodedBitsPerSample, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pSamplesOut)
{
drflac_uint32 i;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(count > 0);
DRFLAC_ASSERT(unencodedBitsPerSample <= 31);
DRFLAC_ASSERT(pSamplesOut != NULL);
for (i = 0; i < count; ++i) {
if (unencodedBitsPerSample > 0) {
if (!drflac__read_int32(bs, unencodedBitsPerSample, pSamplesOut + i)) {
return DRFLAC_FALSE;
}
} else {
pSamplesOut[i] = 0;
}
if (bitsPerSample >= 24) {
pSamplesOut[i] += drflac__calculate_prediction_64(order, shift, coefficients, pSamplesOut + i);
} else {
pSamplesOut[i] += drflac__calculate_prediction_32(order, shift, coefficients, pSamplesOut + i);
}
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples_with_residual(drflac_bs* bs, drflac_uint32 bitsPerSample, drflac_uint32 blockSize, drflac_uint32 order, drflac_int32 shift, const drflac_int32* coefficients, drflac_int32* pDecodedSamples)
{
drflac_uint8 residualMethod;
drflac_uint8 partitionOrder;
drflac_uint32 samplesInPartition;
drflac_uint32 partitionsRemaining;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(blockSize != 0);
DRFLAC_ASSERT(pDecodedSamples != NULL);
if (!drflac__read_uint8(bs, 2, &residualMethod)) {
return DRFLAC_FALSE;
}
if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
return DRFLAC_FALSE;
}
pDecodedSamples += order;
if (!drflac__read_uint8(bs, 4, &partitionOrder)) {
return DRFLAC_FALSE;
}
if (partitionOrder > 8) {
return DRFLAC_FALSE;
}
if ((blockSize / (1 << partitionOrder)) <= order) {
return DRFLAC_FALSE;
}
samplesInPartition = (blockSize / (1 << partitionOrder)) - order;
partitionsRemaining = (1 << partitionOrder);
for (;;) {
drflac_uint8 riceParam = 0;
if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) {
if (!drflac__read_uint8(bs, 4, &riceParam)) {
return DRFLAC_FALSE;
}
if (riceParam == 15) {
riceParam = 0xFF;
}
} else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
if (!drflac__read_uint8(bs, 5, &riceParam)) {
return DRFLAC_FALSE;
}
if (riceParam == 31) {
riceParam = 0xFF;
}
}
if (riceParam != 0xFF) {
if (!drflac__decode_samples_with_residual__rice(bs, bitsPerSample, samplesInPartition, riceParam, order, shift, coefficients, pDecodedSamples)) {
return DRFLAC_FALSE;
}
} else {
drflac_uint8 unencodedBitsPerSample = 0;
if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) {
return DRFLAC_FALSE;
}
if (!drflac__decode_samples_with_residual__unencoded(bs, bitsPerSample, samplesInPartition, unencodedBitsPerSample, order, shift, coefficients, pDecodedSamples)) {
return DRFLAC_FALSE;
}
}
pDecodedSamples += samplesInPartition;
if (partitionsRemaining == 1) {
break;
}
partitionsRemaining -= 1;
if (partitionOrder != 0) {
samplesInPartition = blockSize / (1 << partitionOrder);
}
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__read_and_seek_residual(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 order)
{
drflac_uint8 residualMethod;
drflac_uint8 partitionOrder;
drflac_uint32 samplesInPartition;
drflac_uint32 partitionsRemaining;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(blockSize != 0);
if (!drflac__read_uint8(bs, 2, &residualMethod)) {
return DRFLAC_FALSE;
}
if (residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE && residualMethod != DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
return DRFLAC_FALSE;
}
if (!drflac__read_uint8(bs, 4, &partitionOrder)) {
return DRFLAC_FALSE;
}
if (partitionOrder > 8) {
return DRFLAC_FALSE;
}
if ((blockSize / (1 << partitionOrder)) <= order) {
return DRFLAC_FALSE;
}
samplesInPartition = (blockSize / (1 << partitionOrder)) - order;
partitionsRemaining = (1 << partitionOrder);
for (;;)
{
drflac_uint8 riceParam = 0;
if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE) {
if (!drflac__read_uint8(bs, 4, &riceParam)) {
return DRFLAC_FALSE;
}
if (riceParam == 15) {
riceParam = 0xFF;
}
} else if (residualMethod == DRFLAC_RESIDUAL_CODING_METHOD_PARTITIONED_RICE2) {
if (!drflac__read_uint8(bs, 5, &riceParam)) {
return DRFLAC_FALSE;
}
if (riceParam == 31) {
riceParam = 0xFF;
}
}
if (riceParam != 0xFF) {
if (!drflac__read_and_seek_residual__rice(bs, samplesInPartition, riceParam)) {
return DRFLAC_FALSE;
}
} else {
drflac_uint8 unencodedBitsPerSample = 0;
if (!drflac__read_uint8(bs, 5, &unencodedBitsPerSample)) {
return DRFLAC_FALSE;
}
if (!drflac__seek_bits(bs, unencodedBitsPerSample * samplesInPartition)) {
return DRFLAC_FALSE;
}
}
if (partitionsRemaining == 1) {
break;
}
partitionsRemaining -= 1;
samplesInPartition = blockSize / (1 << partitionOrder);
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples__constant(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples)
{
drflac_uint32 i;
drflac_int32 sample;
if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) {
return DRFLAC_FALSE;
}
for (i = 0; i < blockSize; ++i) {
pDecodedSamples[i] = sample;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples__verbatim(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_int32* pDecodedSamples)
{
drflac_uint32 i;
for (i = 0; i < blockSize; ++i) {
drflac_int32 sample;
if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) {
return DRFLAC_FALSE;
}
pDecodedSamples[i] = sample;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples__fixed(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 subframeBitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples)
{
drflac_uint32 i;
static drflac_int32 lpcCoefficientsTable[5][4] = {
{0, 0, 0, 0},
{1, 0, 0, 0},
{2, -1, 0, 0},
{3, -3, 1, 0},
{4, -6, 4, -1}
};
for (i = 0; i < lpcOrder; ++i) {
drflac_int32 sample;
if (!drflac__read_int32(bs, subframeBitsPerSample, &sample)) {
return DRFLAC_FALSE;
}
pDecodedSamples[i] = sample;
}
if (!drflac__decode_samples_with_residual(bs, subframeBitsPerSample, blockSize, lpcOrder, 0, lpcCoefficientsTable[lpcOrder], pDecodedSamples)) {
return DRFLAC_FALSE;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_samples__lpc(drflac_bs* bs, drflac_uint32 blockSize, drflac_uint32 bitsPerSample, drflac_uint8 lpcOrder, drflac_int32* pDecodedSamples)
{
drflac_uint8 i;
drflac_uint8 lpcPrecision;
drflac_int8 lpcShift;
drflac_int32 coefficients[32];
for (i = 0; i < lpcOrder; ++i) {
drflac_int32 sample;
if (!drflac__read_int32(bs, bitsPerSample, &sample)) {
return DRFLAC_FALSE;
}
pDecodedSamples[i] = sample;
}
if (!drflac__read_uint8(bs, 4, &lpcPrecision)) {
return DRFLAC_FALSE;
}
if (lpcPrecision == 15) {
return DRFLAC_FALSE;
}
lpcPrecision += 1;
if (!drflac__read_int8(bs, 5, &lpcShift)) {
return DRFLAC_FALSE;
}
DRFLAC_ZERO_MEMORY(coefficients, sizeof(coefficients));
for (i = 0; i < lpcOrder; ++i) {
if (!drflac__read_int32(bs, lpcPrecision, coefficients + i)) {
return DRFLAC_FALSE;
}
}
if (!drflac__decode_samples_with_residual(bs, bitsPerSample, blockSize, lpcOrder, lpcShift, coefficients, pDecodedSamples)) {
return DRFLAC_FALSE;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__read_next_flac_frame_header(drflac_bs* bs, drflac_uint8 streaminfoBitsPerSample, drflac_frame_header* header)
{
const drflac_uint32 sampleRateTable[12] = {0, 88200, 176400, 192000, 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000};
const drflac_uint8 bitsPerSampleTable[8] = {0, 8, 12, (drflac_uint8)-1, 16, 20, 24, (drflac_uint8)-1};
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(header != NULL);
for (;;) {
drflac_uint8 crc8 = 0xCE;
drflac_uint8 reserved = 0;
drflac_uint8 blockingStrategy = 0;
drflac_uint8 blockSize = 0;
drflac_uint8 sampleRate = 0;
drflac_uint8 channelAssignment = 0;
drflac_uint8 bitsPerSample = 0;
drflac_bool32 isVariableBlockSize;
if (!drflac__find_and_seek_to_next_sync_code(bs)) {
return DRFLAC_FALSE;
}
if (!drflac__read_uint8(bs, 1, &reserved)) {
return DRFLAC_FALSE;
}
if (reserved == 1) {
continue;
}
crc8 = drflac_crc8(crc8, reserved, 1);
if (!drflac__read_uint8(bs, 1, &blockingStrategy)) {
return DRFLAC_FALSE;
}
crc8 = drflac_crc8(crc8, blockingStrategy, 1);
if (!drflac__read_uint8(bs, 4, &blockSize)) {
return DRFLAC_FALSE;
}
if (blockSize == 0) {
continue;
}
crc8 = drflac_crc8(crc8, blockSize, 4);
if (!drflac__read_uint8(bs, 4, &sampleRate)) {
return DRFLAC_FALSE;
}
crc8 = drflac_crc8(crc8, sampleRate, 4);
if (!drflac__read_uint8(bs, 4, &channelAssignment)) {
return DRFLAC_FALSE;
}
if (channelAssignment > 10) {
continue;
}
crc8 = drflac_crc8(crc8, channelAssignment, 4);
if (!drflac__read_uint8(bs, 3, &bitsPerSample)) {
return DRFLAC_FALSE;
}
if (bitsPerSample == 3 || bitsPerSample == 7) {
continue;
}
crc8 = drflac_crc8(crc8, bitsPerSample, 3);
if (!drflac__read_uint8(bs, 1, &reserved)) {
return DRFLAC_FALSE;
}
if (reserved == 1) {
continue;
}
crc8 = drflac_crc8(crc8, reserved, 1);
isVariableBlockSize = blockingStrategy == 1;
if (isVariableBlockSize) {
drflac_uint64 pcmFrameNumber;
drflac_result result = drflac__read_utf8_coded_number(bs, &pcmFrameNumber, &crc8);
if (result != DRFLAC_SUCCESS) {
if (result == DRFLAC_AT_END) {
return DRFLAC_FALSE;
} else {
continue;
}
}
header->flacFrameNumber = 0;
header->pcmFrameNumber = pcmFrameNumber;
} else {
drflac_uint64 flacFrameNumber = 0;
drflac_result result = drflac__read_utf8_coded_number(bs, &flacFrameNumber, &crc8);
if (result != DRFLAC_SUCCESS) {
if (result == DRFLAC_AT_END) {
return DRFLAC_FALSE;
} else {
continue;
}
}
header->flacFrameNumber = (drflac_uint32)flacFrameNumber;
header->pcmFrameNumber = 0;
}
DRFLAC_ASSERT(blockSize > 0);
if (blockSize == 1) {
header->blockSizeInPCMFrames = 192;
} else if (blockSize >= 2 && blockSize <= 5) {
header->blockSizeInPCMFrames = 576 * (1 << (blockSize - 2));
} else if (blockSize == 6) {
if (!drflac__read_uint16(bs, 8, &header->blockSizeInPCMFrames)) {
return DRFLAC_FALSE;
}
crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 8);
header->blockSizeInPCMFrames += 1;
} else if (blockSize == 7) {
if (!drflac__read_uint16(bs, 16, &header->blockSizeInPCMFrames)) {
return DRFLAC_FALSE;
}
crc8 = drflac_crc8(crc8, header->blockSizeInPCMFrames, 16);
header->blockSizeInPCMFrames += 1;
} else {
DRFLAC_ASSERT(blockSize >= 8);
header->blockSizeInPCMFrames = 256 * (1 << (blockSize - 8));
}
if (sampleRate <= 11) {
header->sampleRate = sampleRateTable[sampleRate];
} else if (sampleRate == 12) {
if (!drflac__read_uint32(bs, 8, &header->sampleRate)) {
return DRFLAC_FALSE;
}
crc8 = drflac_crc8(crc8, header->sampleRate, 8);
header->sampleRate *= 1000;
} else if (sampleRate == 13) {
if (!drflac__read_uint32(bs, 16, &header->sampleRate)) {
return DRFLAC_FALSE;
}
crc8 = drflac_crc8(crc8, header->sampleRate, 16);
} else if (sampleRate == 14) {
if (!drflac__read_uint32(bs, 16, &header->sampleRate)) {
return DRFLAC_FALSE;
}
crc8 = drflac_crc8(crc8, header->sampleRate, 16);
header->sampleRate *= 10;
} else {
continue;
}
header->channelAssignment = channelAssignment;
header->bitsPerSample = bitsPerSampleTable[bitsPerSample];
if (header->bitsPerSample == 0) {
header->bitsPerSample = streaminfoBitsPerSample;
}
if (!drflac__read_uint8(bs, 8, &header->crc8)) {
return DRFLAC_FALSE;
}
#ifndef DR_FLAC_NO_CRC
if (header->crc8 != crc8) {
continue;
}
#endif
return DRFLAC_TRUE;
}
}
static drflac_bool32 drflac__read_subframe_header(drflac_bs* bs, drflac_subframe* pSubframe)
{
drflac_uint8 header;
int type;
if (!drflac__read_uint8(bs, 8, &header)) {
return DRFLAC_FALSE;
}
if ((header & 0x80) != 0) {
return DRFLAC_FALSE;
}
type = (header & 0x7E) >> 1;
if (type == 0) {
pSubframe->subframeType = DRFLAC_SUBFRAME_CONSTANT;
} else if (type == 1) {
pSubframe->subframeType = DRFLAC_SUBFRAME_VERBATIM;
} else {
if ((type & 0x20) != 0) {
pSubframe->subframeType = DRFLAC_SUBFRAME_LPC;
pSubframe->lpcOrder = (drflac_uint8)(type & 0x1F) + 1;
} else if ((type & 0x08) != 0) {
pSubframe->subframeType = DRFLAC_SUBFRAME_FIXED;
pSubframe->lpcOrder = (drflac_uint8)(type & 0x07);
if (pSubframe->lpcOrder > 4) {
pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED;
pSubframe->lpcOrder = 0;
}
} else {
pSubframe->subframeType = DRFLAC_SUBFRAME_RESERVED;
}
}
if (pSubframe->subframeType == DRFLAC_SUBFRAME_RESERVED) {
return DRFLAC_FALSE;
}
pSubframe->wastedBitsPerSample = 0;
if ((header & 0x01) == 1) {
unsigned int wastedBitsPerSample;
if (!drflac__seek_past_next_set_bit(bs, &wastedBitsPerSample)) {
return DRFLAC_FALSE;
}
pSubframe->wastedBitsPerSample = (drflac_uint8)wastedBitsPerSample + 1;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex, drflac_int32* pDecodedSamplesOut)
{
drflac_subframe* pSubframe;
drflac_uint32 subframeBitsPerSample;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(frame != NULL);
pSubframe = frame->subframes + subframeIndex;
if (!drflac__read_subframe_header(bs, pSubframe)) {
return DRFLAC_FALSE;
}
subframeBitsPerSample = frame->header.bitsPerSample;
if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) {
subframeBitsPerSample += 1;
} else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) {
subframeBitsPerSample += 1;
}
if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) {
return DRFLAC_FALSE;
}
subframeBitsPerSample -= pSubframe->wastedBitsPerSample;
pSubframe->pSamplesS32 = pDecodedSamplesOut;
switch (pSubframe->subframeType)
{
case DRFLAC_SUBFRAME_CONSTANT:
{
drflac__decode_samples__constant(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32);
} break;
case DRFLAC_SUBFRAME_VERBATIM:
{
drflac__decode_samples__verbatim(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->pSamplesS32);
} break;
case DRFLAC_SUBFRAME_FIXED:
{
drflac__decode_samples__fixed(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32);
} break;
case DRFLAC_SUBFRAME_LPC:
{
drflac__decode_samples__lpc(bs, frame->header.blockSizeInPCMFrames, subframeBitsPerSample, pSubframe->lpcOrder, pSubframe->pSamplesS32);
} break;
default: return DRFLAC_FALSE;
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__seek_subframe(drflac_bs* bs, drflac_frame* frame, int subframeIndex)
{
drflac_subframe* pSubframe;
drflac_uint32 subframeBitsPerSample;
DRFLAC_ASSERT(bs != NULL);
DRFLAC_ASSERT(frame != NULL);
pSubframe = frame->subframes + subframeIndex;
if (!drflac__read_subframe_header(bs, pSubframe)) {
return DRFLAC_FALSE;
}
subframeBitsPerSample = frame->header.bitsPerSample;
if ((frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE || frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE) && subframeIndex == 1) {
subframeBitsPerSample += 1;
} else if (frame->header.channelAssignment == DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE && subframeIndex == 0) {
subframeBitsPerSample += 1;
}
if (pSubframe->wastedBitsPerSample >= subframeBitsPerSample) {
return DRFLAC_FALSE;
}
subframeBitsPerSample -= pSubframe->wastedBitsPerSample;
pSubframe->pSamplesS32 = NULL;
switch (pSubframe->subframeType)
{
case DRFLAC_SUBFRAME_CONSTANT:
{
if (!drflac__seek_bits(bs, subframeBitsPerSample)) {
return DRFLAC_FALSE;
}
} break;
case DRFLAC_SUBFRAME_VERBATIM:
{
unsigned int bitsToSeek = frame->header.blockSizeInPCMFrames * subframeBitsPerSample;
if (!drflac__seek_bits(bs, bitsToSeek)) {
return DRFLAC_FALSE;
}
} break;
case DRFLAC_SUBFRAME_FIXED:
{
unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample;
if (!drflac__seek_bits(bs, bitsToSeek)) {
return DRFLAC_FALSE;
}
if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) {
return DRFLAC_FALSE;
}
} break;
case DRFLAC_SUBFRAME_LPC:
{
drflac_uint8 lpcPrecision;
unsigned int bitsToSeek = pSubframe->lpcOrder * subframeBitsPerSample;
if (!drflac__seek_bits(bs, bitsToSeek)) {
return DRFLAC_FALSE;
}
if (!drflac__read_uint8(bs, 4, &lpcPrecision)) {
return DRFLAC_FALSE;
}
if (lpcPrecision == 15) {
return DRFLAC_FALSE;
}
lpcPrecision += 1;
bitsToSeek = (pSubframe->lpcOrder * lpcPrecision) + 5;
if (!drflac__seek_bits(bs, bitsToSeek)) {
return DRFLAC_FALSE;
}
if (!drflac__read_and_seek_residual(bs, frame->header.blockSizeInPCMFrames, pSubframe->lpcOrder)) {
return DRFLAC_FALSE;
}
} break;
default: return DRFLAC_FALSE;
}
return DRFLAC_TRUE;
}
static DRFLAC_INLINE drflac_uint8 drflac__get_channel_count_from_channel_assignment(drflac_int8 channelAssignment)
{
drflac_uint8 lookup[] = {1, 2, 3, 4, 5, 6, 7, 8, 2, 2, 2};
DRFLAC_ASSERT(channelAssignment <= 10);
return lookup[channelAssignment];
}
static drflac_result drflac__decode_flac_frame(drflac* pFlac)
{
int channelCount;
int i;
drflac_uint8 paddingSizeInBits;
drflac_uint16 desiredCRC16;
#ifndef DR_FLAC_NO_CRC
drflac_uint16 actualCRC16;
#endif
DRFLAC_ZERO_MEMORY(pFlac->currentFLACFrame.subframes, sizeof(pFlac->currentFLACFrame.subframes));
if (pFlac->currentFLACFrame.header.blockSizeInPCMFrames > pFlac->maxBlockSizeInPCMFrames) {
return DRFLAC_ERROR;
}
channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
if (channelCount != (int)pFlac->channels) {
return DRFLAC_ERROR;
}
for (i = 0; i < channelCount; ++i) {
if (!drflac__decode_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i, pFlac->pDecodedSamples + (pFlac->currentFLACFrame.header.blockSizeInPCMFrames * i))) {
return DRFLAC_ERROR;
}
}
paddingSizeInBits = (drflac_uint8)(DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7);
if (paddingSizeInBits > 0) {
drflac_uint8 padding = 0;
if (!drflac__read_uint8(&pFlac->bs, paddingSizeInBits, &padding)) {
return DRFLAC_AT_END;
}
}
#ifndef DR_FLAC_NO_CRC
actualCRC16 = drflac__flush_crc16(&pFlac->bs);
#endif
if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) {
return DRFLAC_AT_END;
}
#ifndef DR_FLAC_NO_CRC
if (actualCRC16 != desiredCRC16) {
return DRFLAC_CRC_MISMATCH;
}
#endif
pFlac->currentFLACFrame.pcmFramesRemaining = pFlac->currentFLACFrame.header.blockSizeInPCMFrames;
return DRFLAC_SUCCESS;
}
static drflac_result drflac__seek_flac_frame(drflac* pFlac)
{
int channelCount;
int i;
drflac_uint16 desiredCRC16;
#ifndef DR_FLAC_NO_CRC
drflac_uint16 actualCRC16;
#endif
channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
for (i = 0; i < channelCount; ++i) {
if (!drflac__seek_subframe(&pFlac->bs, &pFlac->currentFLACFrame, i)) {
return DRFLAC_ERROR;
}
}
if (!drflac__seek_bits(&pFlac->bs, DRFLAC_CACHE_L1_BITS_REMAINING(&pFlac->bs) & 7)) {
return DRFLAC_ERROR;
}
#ifndef DR_FLAC_NO_CRC
actualCRC16 = drflac__flush_crc16(&pFlac->bs);
#endif
if (!drflac__read_uint16(&pFlac->bs, 16, &desiredCRC16)) {
return DRFLAC_AT_END;
}
#ifndef DR_FLAC_NO_CRC
if (actualCRC16 != desiredCRC16) {
return DRFLAC_CRC_MISMATCH;
}
#endif
return DRFLAC_SUCCESS;
}
static drflac_bool32 drflac__read_and_decode_next_flac_frame(drflac* pFlac)
{
DRFLAC_ASSERT(pFlac != NULL);
for (;;) {
drflac_result result;
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
return DRFLAC_FALSE;
}
result = drflac__decode_flac_frame(pFlac);
if (result != DRFLAC_SUCCESS) {
if (result == DRFLAC_CRC_MISMATCH) {
continue;
} else {
return DRFLAC_FALSE;
}
}
return DRFLAC_TRUE;
}
}
static void drflac__get_pcm_frame_range_of_current_flac_frame(drflac* pFlac, drflac_uint64* pFirstPCMFrame, drflac_uint64* pLastPCMFrame)
{
drflac_uint64 firstPCMFrame;
drflac_uint64 lastPCMFrame;
DRFLAC_ASSERT(pFlac != NULL);
firstPCMFrame = pFlac->currentFLACFrame.header.pcmFrameNumber;
if (firstPCMFrame == 0) {
firstPCMFrame = ((drflac_uint64)pFlac->currentFLACFrame.header.flacFrameNumber) * pFlac->maxBlockSizeInPCMFrames;
}
lastPCMFrame = firstPCMFrame + pFlac->currentFLACFrame.header.blockSizeInPCMFrames;
if (lastPCMFrame > 0) {
lastPCMFrame -= 1;
}
if (pFirstPCMFrame) {
*pFirstPCMFrame = firstPCMFrame;
}
if (pLastPCMFrame) {
*pLastPCMFrame = lastPCMFrame;
}
}
static drflac_bool32 drflac__seek_to_first_frame(drflac* pFlac)
{
drflac_bool32 result;
DRFLAC_ASSERT(pFlac != NULL);
result = drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes);
DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame));
pFlac->currentPCMFrame = 0;
return result;
}
static DRFLAC_INLINE drflac_result drflac__seek_to_next_flac_frame(drflac* pFlac)
{
DRFLAC_ASSERT(pFlac != NULL);
return drflac__seek_flac_frame(pFlac);
}
static drflac_uint64 drflac__seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 pcmFramesToSeek)
{
drflac_uint64 pcmFramesRead = 0;
while (pcmFramesToSeek > 0) {
if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
break;
}
} else {
if (pFlac->currentFLACFrame.pcmFramesRemaining > pcmFramesToSeek) {
pcmFramesRead += pcmFramesToSeek;
pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)pcmFramesToSeek;
pcmFramesToSeek = 0;
} else {
pcmFramesRead += pFlac->currentFLACFrame.pcmFramesRemaining;
pcmFramesToSeek -= pFlac->currentFLACFrame.pcmFramesRemaining;
pFlac->currentFLACFrame.pcmFramesRemaining = 0;
}
}
}
pFlac->currentPCMFrame += pcmFramesRead;
return pcmFramesRead;
}
static drflac_bool32 drflac__seek_to_pcm_frame__brute_force(drflac* pFlac, drflac_uint64 pcmFrameIndex)
{
drflac_bool32 isMidFrame = DRFLAC_FALSE;
drflac_uint64 runningPCMFrameCount;
DRFLAC_ASSERT(pFlac != NULL);
if (pcmFrameIndex >= pFlac->currentPCMFrame) {
runningPCMFrameCount = pFlac->currentPCMFrame;
if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
return DRFLAC_FALSE;
}
} else {
isMidFrame = DRFLAC_TRUE;
}
} else {
runningPCMFrameCount = 0;
if (!drflac__seek_to_first_frame(pFlac)) {
return DRFLAC_FALSE;
}
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
return DRFLAC_FALSE;
}
}
for (;;) {
drflac_uint64 pcmFrameCountInThisFLACFrame;
drflac_uint64 firstPCMFrameInFLACFrame = 0;
drflac_uint64 lastPCMFrameInFLACFrame = 0;
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame);
pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1;
if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) {
drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount;
if (!isMidFrame) {
drflac_result result = drflac__decode_flac_frame(pFlac);
if (result == DRFLAC_SUCCESS) {
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
} else {
if (result == DRFLAC_CRC_MISMATCH) {
goto next_iteration;
} else {
return DRFLAC_FALSE;
}
}
} else {
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
}
} else {
if (!isMidFrame) {
drflac_result result = drflac__seek_to_next_flac_frame(pFlac);
if (result == DRFLAC_SUCCESS) {
runningPCMFrameCount += pcmFrameCountInThisFLACFrame;
} else {
if (result == DRFLAC_CRC_MISMATCH) {
goto next_iteration;
} else {
return DRFLAC_FALSE;
}
}
} else {
runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining;
pFlac->currentFLACFrame.pcmFramesRemaining = 0;
isMidFrame = DRFLAC_FALSE;
}
if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) {
return DRFLAC_TRUE;
}
}
next_iteration:
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
return DRFLAC_FALSE;
}
}
}
#if !defined(DR_FLAC_NO_CRC)
#define DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO 0.6f
static drflac_bool32 drflac__seek_to_approximate_flac_frame_to_byte(drflac* pFlac, drflac_uint64 targetByte, drflac_uint64 rangeLo, drflac_uint64 rangeHi, drflac_uint64* pLastSuccessfulSeekOffset)
{
DRFLAC_ASSERT(pFlac != NULL);
DRFLAC_ASSERT(pLastSuccessfulSeekOffset != NULL);
DRFLAC_ASSERT(targetByte >= rangeLo);
DRFLAC_ASSERT(targetByte <= rangeHi);
*pLastSuccessfulSeekOffset = pFlac->firstFLACFramePosInBytes;
for (;;) {
if (!drflac__seek_to_byte(&pFlac->bs, targetByte)) {
if (targetByte == 0) {
drflac__seek_to_first_frame(pFlac);
return DRFLAC_FALSE;
}
targetByte = rangeLo + ((rangeHi - rangeLo)/2);
rangeHi = targetByte;
} else {
DRFLAC_ZERO_MEMORY(&pFlac->currentFLACFrame, sizeof(pFlac->currentFLACFrame));
#if 1
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
targetByte = rangeLo + ((rangeHi - rangeLo)/2);
rangeHi = targetByte;
} else {
break;
}
#else
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
targetByte = rangeLo + ((rangeHi - rangeLo)/2);
rangeHi = targetByte;
} else {
break;
}
#endif
}
}
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL);
DRFLAC_ASSERT(targetByte <= rangeHi);
*pLastSuccessfulSeekOffset = targetByte;
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(drflac* pFlac, drflac_uint64 offset)
{
#if 0
if (drflac__decode_flac_frame(pFlac) != DRFLAC_SUCCESS) {
if (drflac__read_and_decode_next_flac_frame(pFlac) == DRFLAC_FALSE) {
return DRFLAC_FALSE;
}
}
#endif
return drflac__seek_forward_by_pcm_frames(pFlac, offset) == offset;
}
static drflac_bool32 drflac__seek_to_pcm_frame__binary_search_internal(drflac* pFlac, drflac_uint64 pcmFrameIndex, drflac_uint64 byteRangeLo, drflac_uint64 byteRangeHi)
{
drflac_uint64 targetByte;
drflac_uint64 pcmRangeLo = pFlac->totalPCMFrameCount;
drflac_uint64 pcmRangeHi = 0;
drflac_uint64 lastSuccessfulSeekOffset = (drflac_uint64)-1;
drflac_uint64 closestSeekOffsetBeforeTargetPCMFrame = byteRangeLo;
drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096;
targetByte = byteRangeLo + (drflac_uint64)(((drflac_int64)((pcmFrameIndex - pFlac->currentPCMFrame) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * DRFLAC_BINARY_SEARCH_APPROX_COMPRESSION_RATIO);
if (targetByte > byteRangeHi) {
targetByte = byteRangeHi;
}
for (;;) {
if (drflac__seek_to_approximate_flac_frame_to_byte(pFlac, targetByte, byteRangeLo, byteRangeHi, &lastSuccessfulSeekOffset)) {
drflac_uint64 newPCMRangeLo;
drflac_uint64 newPCMRangeHi;
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &newPCMRangeLo, &newPCMRangeHi);
if (pcmRangeLo == newPCMRangeLo) {
if (!drflac__seek_to_approximate_flac_frame_to_byte(pFlac, closestSeekOffsetBeforeTargetPCMFrame, closestSeekOffsetBeforeTargetPCMFrame, byteRangeHi, &lastSuccessfulSeekOffset)) {
break;
}
if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) {
return DRFLAC_TRUE;
} else {
break;
}
}
pcmRangeLo = newPCMRangeLo;
pcmRangeHi = newPCMRangeHi;
if (pcmRangeLo <= pcmFrameIndex && pcmRangeHi >= pcmFrameIndex) {
if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame) ) {
return DRFLAC_TRUE;
} else {
break;
}
} else {
const float approxCompressionRatio = (drflac_int64)(lastSuccessfulSeekOffset - pFlac->firstFLACFramePosInBytes) / ((drflac_int64)(pcmRangeLo * pFlac->channels * pFlac->bitsPerSample)/8.0f);
if (pcmRangeLo > pcmFrameIndex) {
byteRangeHi = lastSuccessfulSeekOffset;
if (byteRangeLo > byteRangeHi) {
byteRangeLo = byteRangeHi;
}
targetByte = byteRangeLo + ((byteRangeHi - byteRangeLo) / 2);
if (targetByte < byteRangeLo) {
targetByte = byteRangeLo;
}
} else {
if ((pcmFrameIndex - pcmRangeLo) < seekForwardThreshold) {
if (drflac__decode_flac_frame_and_seek_forward_by_pcm_frames(pFlac, pcmFrameIndex - pFlac->currentPCMFrame)) {
return DRFLAC_TRUE;
} else {
break;
}
} else {
byteRangeLo = lastSuccessfulSeekOffset;
if (byteRangeHi < byteRangeLo) {
byteRangeHi = byteRangeLo;
}
targetByte = lastSuccessfulSeekOffset + (drflac_uint64)(((drflac_int64)((pcmFrameIndex-pcmRangeLo) * pFlac->channels * pFlac->bitsPerSample)/8.0f) * approxCompressionRatio);
if (targetByte > byteRangeHi) {
targetByte = byteRangeHi;
}
if (closestSeekOffsetBeforeTargetPCMFrame < lastSuccessfulSeekOffset) {
closestSeekOffsetBeforeTargetPCMFrame = lastSuccessfulSeekOffset;
}
}
}
}
} else {
break;
}
}
drflac__seek_to_first_frame(pFlac);
return DRFLAC_FALSE;
}
static drflac_bool32 drflac__seek_to_pcm_frame__binary_search(drflac* pFlac, drflac_uint64 pcmFrameIndex)
{
drflac_uint64 byteRangeLo;
drflac_uint64 byteRangeHi;
drflac_uint32 seekForwardThreshold = (pFlac->maxBlockSizeInPCMFrames != 0) ? pFlac->maxBlockSizeInPCMFrames*2 : 4096;
if (drflac__seek_to_first_frame(pFlac) == DRFLAC_FALSE) {
return DRFLAC_FALSE;
}
if (pcmFrameIndex < seekForwardThreshold) {
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFrameIndex) == pcmFrameIndex;
}
byteRangeLo = pFlac->firstFLACFramePosInBytes;
byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f);
return drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi);
}
#endif
static drflac_bool32 drflac__seek_to_pcm_frame__seek_table(drflac* pFlac, drflac_uint64 pcmFrameIndex)
{
drflac_uint32 iClosestSeekpoint = 0;
drflac_bool32 isMidFrame = DRFLAC_FALSE;
drflac_uint64 runningPCMFrameCount;
drflac_uint32 iSeekpoint;
DRFLAC_ASSERT(pFlac != NULL);
if (pFlac->pSeekpoints == NULL || pFlac->seekpointCount == 0) {
return DRFLAC_FALSE;
}
for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) {
if (pFlac->pSeekpoints[iSeekpoint].firstPCMFrame >= pcmFrameIndex) {
break;
}
iClosestSeekpoint = iSeekpoint;
}
if (pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount == 0 || pFlac->pSeekpoints[iClosestSeekpoint].pcmFrameCount > pFlac->maxBlockSizeInPCMFrames) {
return DRFLAC_FALSE;
}
if (pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame > pFlac->totalPCMFrameCount && pFlac->totalPCMFrameCount > 0) {
return DRFLAC_FALSE;
}
#if !defined(DR_FLAC_NO_CRC)
if (pFlac->totalPCMFrameCount > 0) {
drflac_uint64 byteRangeLo;
drflac_uint64 byteRangeHi;
byteRangeHi = pFlac->firstFLACFramePosInBytes + (drflac_uint64)((drflac_int64)(pFlac->totalPCMFrameCount * pFlac->channels * pFlac->bitsPerSample)/8.0f);
byteRangeLo = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset;
if (iClosestSeekpoint < pFlac->seekpointCount-1) {
drflac_uint32 iNextSeekpoint = iClosestSeekpoint + 1;
if (pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset >= pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset || pFlac->pSeekpoints[iNextSeekpoint].pcmFrameCount == 0) {
return DRFLAC_FALSE;
}
if (pFlac->pSeekpoints[iNextSeekpoint].firstPCMFrame != (((drflac_uint64)0xFFFFFFFF << 32) | 0xFFFFFFFF)) {
byteRangeHi = pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iNextSeekpoint].flacFrameOffset - 1;
}
}
if (drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) {
if (drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &pFlac->currentPCMFrame, NULL);
if (drflac__seek_to_pcm_frame__binary_search_internal(pFlac, pcmFrameIndex, byteRangeLo, byteRangeHi)) {
return DRFLAC_TRUE;
}
}
}
}
#endif
if (pcmFrameIndex >= pFlac->currentPCMFrame && pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame <= pFlac->currentPCMFrame) {
runningPCMFrameCount = pFlac->currentPCMFrame;
if (pFlac->currentPCMFrame == 0 && pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
return DRFLAC_FALSE;
}
} else {
isMidFrame = DRFLAC_TRUE;
}
} else {
runningPCMFrameCount = pFlac->pSeekpoints[iClosestSeekpoint].firstPCMFrame;
if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes + pFlac->pSeekpoints[iClosestSeekpoint].flacFrameOffset)) {
return DRFLAC_FALSE;
}
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
return DRFLAC_FALSE;
}
}
for (;;) {
drflac_uint64 pcmFrameCountInThisFLACFrame;
drflac_uint64 firstPCMFrameInFLACFrame = 0;
drflac_uint64 lastPCMFrameInFLACFrame = 0;
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame);
pcmFrameCountInThisFLACFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1;
if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFLACFrame)) {
drflac_uint64 pcmFramesToDecode = pcmFrameIndex - runningPCMFrameCount;
if (!isMidFrame) {
drflac_result result = drflac__decode_flac_frame(pFlac);
if (result == DRFLAC_SUCCESS) {
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
} else {
if (result == DRFLAC_CRC_MISMATCH) {
goto next_iteration;
} else {
return DRFLAC_FALSE;
}
}
} else {
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
}
} else {
if (!isMidFrame) {
drflac_result result = drflac__seek_to_next_flac_frame(pFlac);
if (result == DRFLAC_SUCCESS) {
runningPCMFrameCount += pcmFrameCountInThisFLACFrame;
} else {
if (result == DRFLAC_CRC_MISMATCH) {
goto next_iteration;
} else {
return DRFLAC_FALSE;
}
}
} else {
runningPCMFrameCount += pFlac->currentFLACFrame.pcmFramesRemaining;
pFlac->currentFLACFrame.pcmFramesRemaining = 0;
isMidFrame = DRFLAC_FALSE;
}
if (pcmFrameIndex == pFlac->totalPCMFrameCount && runningPCMFrameCount == pFlac->totalPCMFrameCount) {
return DRFLAC_TRUE;
}
}
next_iteration:
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
return DRFLAC_FALSE;
}
}
}
#ifndef DR_FLAC_NO_OGG
typedef struct
{
drflac_uint8 capturePattern[4];
drflac_uint8 structureVersion;
drflac_uint8 headerType;
drflac_uint64 granulePosition;
drflac_uint32 serialNumber;
drflac_uint32 sequenceNumber;
drflac_uint32 checksum;
drflac_uint8 segmentCount;
drflac_uint8 segmentTable[255];
} drflac_ogg_page_header;
#endif
typedef struct
{
drflac_read_proc onRead;
drflac_seek_proc onSeek;
drflac_meta_proc onMeta;
drflac_container container;
void* pUserData;
void* pUserDataMD;
drflac_uint32 sampleRate;
drflac_uint8 channels;
drflac_uint8 bitsPerSample;
drflac_uint64 totalPCMFrameCount;
drflac_uint16 maxBlockSizeInPCMFrames;
drflac_uint64 runningFilePos;
drflac_bool32 hasStreamInfoBlock;
drflac_bool32 hasMetadataBlocks;
drflac_bs bs;
drflac_frame_header firstFrameHeader;
#ifndef DR_FLAC_NO_OGG
drflac_uint32 oggSerial;
drflac_uint64 oggFirstBytePos;
drflac_ogg_page_header oggBosHeader;
#endif
} drflac_init_info;
static DRFLAC_INLINE void drflac__decode_block_header(drflac_uint32 blockHeader, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize)
{
blockHeader = drflac__be2host_32(blockHeader);
*isLastBlock = (drflac_uint8)((blockHeader & 0x80000000UL) >> 31);
*blockType = (drflac_uint8)((blockHeader & 0x7F000000UL) >> 24);
*blockSize = (blockHeader & 0x00FFFFFFUL);
}
static DRFLAC_INLINE drflac_bool32 drflac__read_and_decode_block_header(drflac_read_proc onRead, void* pUserData, drflac_uint8* isLastBlock, drflac_uint8* blockType, drflac_uint32* blockSize)
{
drflac_uint32 blockHeader;
*blockSize = 0;
if (onRead(pUserData, &blockHeader, 4) != 4) {
return DRFLAC_FALSE;
}
drflac__decode_block_header(blockHeader, isLastBlock, blockType, blockSize);
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__read_streaminfo(drflac_read_proc onRead, void* pUserData, drflac_streaminfo* pStreamInfo)
{
drflac_uint32 blockSizes;
drflac_uint64 frameSizes = 0;
drflac_uint64 importantProps;
drflac_uint8 md5[16];
if (onRead(pUserData, &blockSizes, 4) != 4) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, &frameSizes, 6) != 6) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, &importantProps, 8) != 8) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, md5, sizeof(md5)) != sizeof(md5)) {
return DRFLAC_FALSE;
}
blockSizes = drflac__be2host_32(blockSizes);
frameSizes = drflac__be2host_64(frameSizes);
importantProps = drflac__be2host_64(importantProps);
pStreamInfo->minBlockSizeInPCMFrames = (drflac_uint16)((blockSizes & 0xFFFF0000) >> 16);
pStreamInfo->maxBlockSizeInPCMFrames = (drflac_uint16) (blockSizes & 0x0000FFFF);
pStreamInfo->minFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 24)) >> 40);
pStreamInfo->maxFrameSizeInPCMFrames = (drflac_uint32)((frameSizes & (((drflac_uint64)0x00FFFFFF << 16) << 0)) >> 16);
pStreamInfo->sampleRate = (drflac_uint32)((importantProps & (((drflac_uint64)0x000FFFFF << 16) << 28)) >> 44);
pStreamInfo->channels = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000000E << 16) << 24)) >> 41) + 1;
pStreamInfo->bitsPerSample = (drflac_uint8 )((importantProps & (((drflac_uint64)0x0000001F << 16) << 20)) >> 36) + 1;
pStreamInfo->totalPCMFrameCount = ((importantProps & ((((drflac_uint64)0x0000000F << 16) << 16) | 0xFFFFFFFF)));
DRFLAC_COPY_MEMORY(pStreamInfo->md5, md5, sizeof(md5));
return DRFLAC_TRUE;
}
static void* drflac__malloc_default(size_t sz, void* pUserData)
{
(void)pUserData;
return DRFLAC_MALLOC(sz);
}
static void* drflac__realloc_default(void* p, size_t sz, void* pUserData)
{
(void)pUserData;
return DRFLAC_REALLOC(p, sz);
}
static void drflac__free_default(void* p, void* pUserData)
{
(void)pUserData;
DRFLAC_FREE(p);
}
static void* drflac__malloc_from_callbacks(size_t sz, const drflac_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onMalloc != NULL) {
return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
}
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
}
return NULL;
}
static void* drflac__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drflac_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
}
if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
void* p2;
p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
if (p2 == NULL) {
return NULL;
}
if (p != NULL) {
DRFLAC_COPY_MEMORY(p2, p, szOld);
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
return p2;
}
return NULL;
}
static void drflac__free_from_callbacks(void* p, const drflac_allocation_callbacks* pAllocationCallbacks)
{
if (p == NULL || pAllocationCallbacks == NULL) {
return;
}
if (pAllocationCallbacks->onFree != NULL) {
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
}
static drflac_bool32 drflac__read_and_decode_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_uint64* pFirstFramePos, drflac_uint64* pSeektablePos, drflac_uint32* pSeektableSize, drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac_uint64 runningFilePos = 42;
drflac_uint64 seektablePos = 0;
drflac_uint32 seektableSize = 0;
for (;;) {
drflac_metadata metadata;
drflac_uint8 isLastBlock = 0;
drflac_uint8 blockType;
drflac_uint32 blockSize;
if (drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize) == DRFLAC_FALSE) {
return DRFLAC_FALSE;
}
runningFilePos += 4;
metadata.type = blockType;
metadata.pRawData = NULL;
metadata.rawDataSize = 0;
switch (blockType)
{
case DRFLAC_METADATA_BLOCK_TYPE_APPLICATION:
{
if (blockSize < 4) {
return DRFLAC_FALSE;
}
if (onMeta) {
void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
if (pRawData == NULL) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.pRawData = pRawData;
metadata.rawDataSize = blockSize;
metadata.data.application.id = drflac__be2host_32(*(drflac_uint32*)pRawData);
metadata.data.application.pData = (const void*)((drflac_uint8*)pRawData + sizeof(drflac_uint32));
metadata.data.application.dataSize = blockSize - sizeof(drflac_uint32);
onMeta(pUserDataMD, &metadata);
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
}
} break;
case DRFLAC_METADATA_BLOCK_TYPE_SEEKTABLE:
{
seektablePos = runningFilePos;
seektableSize = blockSize;
if (onMeta) {
drflac_uint32 iSeekpoint;
void* pRawData;
pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
if (pRawData == NULL) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.pRawData = pRawData;
metadata.rawDataSize = blockSize;
metadata.data.seektable.seekpointCount = blockSize/sizeof(drflac_seekpoint);
metadata.data.seektable.pSeekpoints = (const drflac_seekpoint*)pRawData;
for (iSeekpoint = 0; iSeekpoint < metadata.data.seektable.seekpointCount; ++iSeekpoint) {
drflac_seekpoint* pSeekpoint = (drflac_seekpoint*)pRawData + iSeekpoint;
pSeekpoint->firstPCMFrame = drflac__be2host_64(pSeekpoint->firstPCMFrame);
pSeekpoint->flacFrameOffset = drflac__be2host_64(pSeekpoint->flacFrameOffset);
pSeekpoint->pcmFrameCount = drflac__be2host_16(pSeekpoint->pcmFrameCount);
}
onMeta(pUserDataMD, &metadata);
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
}
} break;
case DRFLAC_METADATA_BLOCK_TYPE_VORBIS_COMMENT:
{
if (blockSize < 8) {
return DRFLAC_FALSE;
}
if (onMeta) {
void* pRawData;
const char* pRunningData;
const char* pRunningDataEnd;
drflac_uint32 i;
pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
if (pRawData == NULL) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.pRawData = pRawData;
metadata.rawDataSize = blockSize;
pRunningData = (const char*)pRawData;
pRunningDataEnd = (const char*)pRawData + blockSize;
metadata.data.vorbis_comment.vendorLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
if ((pRunningDataEnd - pRunningData) - 4 < (drflac_int64)metadata.data.vorbis_comment.vendorLength) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.data.vorbis_comment.vendor = pRunningData; pRunningData += metadata.data.vorbis_comment.vendorLength;
metadata.data.vorbis_comment.commentCount = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
if ((pRunningDataEnd - pRunningData) / sizeof(drflac_uint32) < metadata.data.vorbis_comment.commentCount) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.data.vorbis_comment.pComments = pRunningData;
for (i = 0; i < metadata.data.vorbis_comment.commentCount; ++i) {
drflac_uint32 commentLength;
if (pRunningDataEnd - pRunningData < 4) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
commentLength = drflac__le2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
if (pRunningDataEnd - pRunningData < (drflac_int64)commentLength) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
pRunningData += commentLength;
}
onMeta(pUserDataMD, &metadata);
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
}
} break;
case DRFLAC_METADATA_BLOCK_TYPE_CUESHEET:
{
if (blockSize < 396) {
return DRFLAC_FALSE;
}
if (onMeta) {
void* pRawData;
const char* pRunningData;
const char* pRunningDataEnd;
drflac_uint8 iTrack;
drflac_uint8 iIndex;
pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
if (pRawData == NULL) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.pRawData = pRawData;
metadata.rawDataSize = blockSize;
pRunningData = (const char*)pRawData;
pRunningDataEnd = (const char*)pRawData + blockSize;
DRFLAC_COPY_MEMORY(metadata.data.cuesheet.catalog, pRunningData, 128); pRunningData += 128;
metadata.data.cuesheet.leadInSampleCount = drflac__be2host_64(*(const drflac_uint64*)pRunningData); pRunningData += 8;
metadata.data.cuesheet.isCD = (pRunningData[0] & 0x80) != 0; pRunningData += 259;
metadata.data.cuesheet.trackCount = pRunningData[0]; pRunningData += 1;
metadata.data.cuesheet.pTrackData = pRunningData;
for (iTrack = 0; iTrack < metadata.data.cuesheet.trackCount; ++iTrack) {
drflac_uint8 indexCount;
drflac_uint32 indexPointSize;
if (pRunningDataEnd - pRunningData < 36) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
pRunningData += 35;
indexCount = pRunningData[0]; pRunningData += 1;
indexPointSize = indexCount * sizeof(drflac_cuesheet_track_index);
if (pRunningDataEnd - pRunningData < (drflac_int64)indexPointSize) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
for (iIndex = 0; iIndex < indexCount; ++iIndex) {
drflac_cuesheet_track_index* pTrack = (drflac_cuesheet_track_index*)pRunningData;
pRunningData += sizeof(drflac_cuesheet_track_index);
pTrack->offset = drflac__be2host_64(pTrack->offset);
}
}
onMeta(pUserDataMD, &metadata);
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
}
} break;
case DRFLAC_METADATA_BLOCK_TYPE_PICTURE:
{
if (blockSize < 32) {
return DRFLAC_FALSE;
}
if (onMeta) {
void* pRawData;
const char* pRunningData;
const char* pRunningDataEnd;
pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
if (pRawData == NULL) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.pRawData = pRawData;
metadata.rawDataSize = blockSize;
pRunningData = (const char*)pRawData;
pRunningDataEnd = (const char*)pRawData + blockSize;
metadata.data.picture.type = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
metadata.data.picture.mimeLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
if ((pRunningDataEnd - pRunningData) - 24 < (drflac_int64)metadata.data.picture.mimeLength) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.data.picture.mime = pRunningData; pRunningData += metadata.data.picture.mimeLength;
metadata.data.picture.descriptionLength = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
if ((pRunningDataEnd - pRunningData) - 20 < (drflac_int64)metadata.data.picture.descriptionLength) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.data.picture.description = pRunningData; pRunningData += metadata.data.picture.descriptionLength;
metadata.data.picture.width = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
metadata.data.picture.height = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
metadata.data.picture.colorDepth = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
metadata.data.picture.indexColorCount = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
metadata.data.picture.pictureDataSize = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
metadata.data.picture.pPictureData = (const drflac_uint8*)pRunningData;
if (pRunningDataEnd - pRunningData < (drflac_int64)metadata.data.picture.pictureDataSize) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
onMeta(pUserDataMD, &metadata);
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
}
} break;
case DRFLAC_METADATA_BLOCK_TYPE_PADDING:
{
if (onMeta) {
metadata.data.padding.unused = 0;
if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) {
isLastBlock = DRFLAC_TRUE;
} else {
onMeta(pUserDataMD, &metadata);
}
}
} break;
case DRFLAC_METADATA_BLOCK_TYPE_INVALID:
{
if (onMeta) {
if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) {
isLastBlock = DRFLAC_TRUE;
}
}
} break;
default:
{
if (onMeta) {
void* pRawData = drflac__malloc_from_callbacks(blockSize, pAllocationCallbacks);
if (pRawData == NULL) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, pRawData, blockSize) != blockSize) {
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
return DRFLAC_FALSE;
}
metadata.pRawData = pRawData;
metadata.rawDataSize = blockSize;
onMeta(pUserDataMD, &metadata);
drflac__free_from_callbacks(pRawData, pAllocationCallbacks);
}
} break;
}
if (onMeta == NULL && blockSize > 0) {
if (!onSeek(pUserData, blockSize, drflac_seek_origin_current)) {
isLastBlock = DRFLAC_TRUE;
}
}
runningFilePos += blockSize;
if (isLastBlock) {
break;
}
}
*pSeektablePos = seektablePos;
*pSeektableSize = seektableSize;
*pFirstFramePos = runningFilePos;
return DRFLAC_TRUE;
}
static drflac_bool32 drflac__init_private__native(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed)
{
drflac_uint8 isLastBlock;
drflac_uint8 blockType;
drflac_uint32 blockSize;
(void)onSeek;
pInit->container = drflac_container_native;
if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) {
return DRFLAC_FALSE;
}
if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) {
if (!relaxed) {
return DRFLAC_FALSE;
} else {
pInit->hasStreamInfoBlock = DRFLAC_FALSE;
pInit->hasMetadataBlocks = DRFLAC_FALSE;
if (!drflac__read_next_flac_frame_header(&pInit->bs, 0, &pInit->firstFrameHeader)) {
return DRFLAC_FALSE;
}
if (pInit->firstFrameHeader.bitsPerSample == 0) {
return DRFLAC_FALSE;
}
pInit->sampleRate = pInit->firstFrameHeader.sampleRate;
pInit->channels = drflac__get_channel_count_from_channel_assignment(pInit->firstFrameHeader.channelAssignment);
pInit->bitsPerSample = pInit->firstFrameHeader.bitsPerSample;
pInit->maxBlockSizeInPCMFrames = 65535;
return DRFLAC_TRUE;
}
} else {
drflac_streaminfo streaminfo;
if (!drflac__read_streaminfo(onRead, pUserData, &streaminfo)) {
return DRFLAC_FALSE;
}
pInit->hasStreamInfoBlock = DRFLAC_TRUE;
pInit->sampleRate = streaminfo.sampleRate;
pInit->channels = streaminfo.channels;
pInit->bitsPerSample = streaminfo.bitsPerSample;
pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount;
pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames;
pInit->hasMetadataBlocks = !isLastBlock;
if (onMeta) {
drflac_metadata metadata;
metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO;
metadata.pRawData = NULL;
metadata.rawDataSize = 0;
metadata.data.streaminfo = streaminfo;
onMeta(pUserDataMD, &metadata);
}
return DRFLAC_TRUE;
}
}
#ifndef DR_FLAC_NO_OGG
#define DRFLAC_OGG_MAX_PAGE_SIZE 65307
#define DRFLAC_OGG_CAPTURE_PATTERN_CRC32 1605413199
typedef enum
{
drflac_ogg_recover_on_crc_mismatch,
drflac_ogg_fail_on_crc_mismatch
} drflac_ogg_crc_mismatch_recovery;
#ifndef DR_FLAC_NO_CRC
static drflac_uint32 drflac__crc32_table[] = {
0x00000000L, 0x04C11DB7L, 0x09823B6EL, 0x0D4326D9L,
0x130476DCL, 0x17C56B6BL, 0x1A864DB2L, 0x1E475005L,
0x2608EDB8L, 0x22C9F00FL, 0x2F8AD6D6L, 0x2B4BCB61L,
0x350C9B64L, 0x31CD86D3L, 0x3C8EA00AL, 0x384FBDBDL,
0x4C11DB70L, 0x48D0C6C7L, 0x4593E01EL, 0x4152FDA9L,
0x5F15ADACL, 0x5BD4B01BL, 0x569796C2L, 0x52568B75L,
0x6A1936C8L, 0x6ED82B7FL, 0x639B0DA6L, 0x675A1011L,
0x791D4014L, 0x7DDC5DA3L, 0x709F7B7AL, 0x745E66CDL,
0x9823B6E0L, 0x9CE2AB57L, 0x91A18D8EL, 0x95609039L,
0x8B27C03CL, 0x8FE6DD8BL, 0x82A5FB52L, 0x8664E6E5L,
0xBE2B5B58L, 0xBAEA46EFL, 0xB7A96036L, 0xB3687D81L,
0xAD2F2D84L, 0xA9EE3033L, 0xA4AD16EAL, 0xA06C0B5DL,
0xD4326D90L, 0xD0F37027L, 0xDDB056FEL, 0xD9714B49L,
0xC7361B4CL, 0xC3F706FBL, 0xCEB42022L, 0xCA753D95L,
0xF23A8028L, 0xF6FB9D9FL, 0xFBB8BB46L, 0xFF79A6F1L,
0xE13EF6F4L, 0xE5FFEB43L, 0xE8BCCD9AL, 0xEC7DD02DL,
0x34867077L, 0x30476DC0L, 0x3D044B19L, 0x39C556AEL,
0x278206ABL, 0x23431B1CL, 0x2E003DC5L, 0x2AC12072L,
0x128E9DCFL, 0x164F8078L, 0x1B0CA6A1L, 0x1FCDBB16L,
0x018AEB13L, 0x054BF6A4L, 0x0808D07DL, 0x0CC9CDCAL,
0x7897AB07L, 0x7C56B6B0L, 0x71159069L, 0x75D48DDEL,
0x6B93DDDBL, 0x6F52C06CL, 0x6211E6B5L, 0x66D0FB02L,
0x5E9F46BFL, 0x5A5E5B08L, 0x571D7DD1L, 0x53DC6066L,
0x4D9B3063L, 0x495A2DD4L, 0x44190B0DL, 0x40D816BAL,
0xACA5C697L, 0xA864DB20L, 0xA527FDF9L, 0xA1E6E04EL,
0xBFA1B04BL, 0xBB60ADFCL, 0xB6238B25L, 0xB2E29692L,
0x8AAD2B2FL, 0x8E6C3698L, 0x832F1041L, 0x87EE0DF6L,
0x99A95DF3L, 0x9D684044L, 0x902B669DL, 0x94EA7B2AL,
0xE0B41DE7L, 0xE4750050L, 0xE9362689L, 0xEDF73B3EL,
0xF3B06B3BL, 0xF771768CL, 0xFA325055L, 0xFEF34DE2L,
0xC6BCF05FL, 0xC27DEDE8L, 0xCF3ECB31L, 0xCBFFD686L,
0xD5B88683L, 0xD1799B34L, 0xDC3ABDEDL, 0xD8FBA05AL,
0x690CE0EEL, 0x6DCDFD59L, 0x608EDB80L, 0x644FC637L,
0x7A089632L, 0x7EC98B85L, 0x738AAD5CL, 0x774BB0EBL,
0x4F040D56L, 0x4BC510E1L, 0x46863638L, 0x42472B8FL,
0x5C007B8AL, 0x58C1663DL, 0x558240E4L, 0x51435D53L,
0x251D3B9EL, 0x21DC2629L, 0x2C9F00F0L, 0x285E1D47L,
0x36194D42L, 0x32D850F5L, 0x3F9B762CL, 0x3B5A6B9BL,
0x0315D626L, 0x07D4CB91L, 0x0A97ED48L, 0x0E56F0FFL,
0x1011A0FAL, 0x14D0BD4DL, 0x19939B94L, 0x1D528623L,
0xF12F560EL, 0xF5EE4BB9L, 0xF8AD6D60L, 0xFC6C70D7L,
0xE22B20D2L, 0xE6EA3D65L, 0xEBA91BBCL, 0xEF68060BL,
0xD727BBB6L, 0xD3E6A601L, 0xDEA580D8L, 0xDA649D6FL,
0xC423CD6AL, 0xC0E2D0DDL, 0xCDA1F604L, 0xC960EBB3L,
0xBD3E8D7EL, 0xB9FF90C9L, 0xB4BCB610L, 0xB07DABA7L,
0xAE3AFBA2L, 0xAAFBE615L, 0xA7B8C0CCL, 0xA379DD7BL,
0x9B3660C6L, 0x9FF77D71L, 0x92B45BA8L, 0x9675461FL,
0x8832161AL, 0x8CF30BADL, 0x81B02D74L, 0x857130C3L,
0x5D8A9099L, 0x594B8D2EL, 0x5408ABF7L, 0x50C9B640L,
0x4E8EE645L, 0x4A4FFBF2L, 0x470CDD2BL, 0x43CDC09CL,
0x7B827D21L, 0x7F436096L, 0x7200464FL, 0x76C15BF8L,
0x68860BFDL, 0x6C47164AL, 0x61043093L, 0x65C52D24L,
0x119B4BE9L, 0x155A565EL, 0x18197087L, 0x1CD86D30L,
0x029F3D35L, 0x065E2082L, 0x0B1D065BL, 0x0FDC1BECL,
0x3793A651L, 0x3352BBE6L, 0x3E119D3FL, 0x3AD08088L,
0x2497D08DL, 0x2056CD3AL, 0x2D15EBE3L, 0x29D4F654L,
0xC5A92679L, 0xC1683BCEL, 0xCC2B1D17L, 0xC8EA00A0L,
0xD6AD50A5L, 0xD26C4D12L, 0xDF2F6BCBL, 0xDBEE767CL,
0xE3A1CBC1L, 0xE760D676L, 0xEA23F0AFL, 0xEEE2ED18L,
0xF0A5BD1DL, 0xF464A0AAL, 0xF9278673L, 0xFDE69BC4L,
0x89B8FD09L, 0x8D79E0BEL, 0x803AC667L, 0x84FBDBD0L,
0x9ABC8BD5L, 0x9E7D9662L, 0x933EB0BBL, 0x97FFAD0CL,
0xAFB010B1L, 0xAB710D06L, 0xA6322BDFL, 0xA2F33668L,
0xBCB4666DL, 0xB8757BDAL, 0xB5365D03L, 0xB1F740B4L
};
#endif
static DRFLAC_INLINE drflac_uint32 drflac_crc32_byte(drflac_uint32 crc32, drflac_uint8 data)
{
#ifndef DR_FLAC_NO_CRC
return (crc32 << 8) ^ drflac__crc32_table[(drflac_uint8)((crc32 >> 24) & 0xFF) ^ data];
#else
(void)data;
return crc32;
#endif
}
#if 0
static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint32(drflac_uint32 crc32, drflac_uint32 data)
{
crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 24) & 0xFF));
crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 16) & 0xFF));
crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 8) & 0xFF));
crc32 = drflac_crc32_byte(crc32, (drflac_uint8)((data >> 0) & 0xFF));
return crc32;
}
static DRFLAC_INLINE drflac_uint32 drflac_crc32_uint64(drflac_uint32 crc32, drflac_uint64 data)
{
crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 32) & 0xFFFFFFFF));
crc32 = drflac_crc32_uint32(crc32, (drflac_uint32)((data >> 0) & 0xFFFFFFFF));
return crc32;
}
#endif
static DRFLAC_INLINE drflac_uint32 drflac_crc32_buffer(drflac_uint32 crc32, drflac_uint8* pData, drflac_uint32 dataSize)
{
drflac_uint32 i;
for (i = 0; i < dataSize; ++i) {
crc32 = drflac_crc32_byte(crc32, pData[i]);
}
return crc32;
}
static DRFLAC_INLINE drflac_bool32 drflac_ogg__is_capture_pattern(drflac_uint8 pattern[4])
{
return pattern[0] == 'O' && pattern[1] == 'g' && pattern[2] == 'g' && pattern[3] == 'S';
}
static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_header_size(drflac_ogg_page_header* pHeader)
{
return 27 + pHeader->segmentCount;
}
static DRFLAC_INLINE drflac_uint32 drflac_ogg__get_page_body_size(drflac_ogg_page_header* pHeader)
{
drflac_uint32 pageBodySize = 0;
int i;
for (i = 0; i < pHeader->segmentCount; ++i) {
pageBodySize += pHeader->segmentTable[i];
}
return pageBodySize;
}
static drflac_result drflac_ogg__read_page_header_after_capture_pattern(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32)
{
drflac_uint8 data[23];
drflac_uint32 i;
DRFLAC_ASSERT(*pCRC32 == DRFLAC_OGG_CAPTURE_PATTERN_CRC32);
if (onRead(pUserData, data, 23) != 23) {
return DRFLAC_AT_END;
}
*pBytesRead += 23;
pHeader->capturePattern[0] = 'O';
pHeader->capturePattern[1] = 'g';
pHeader->capturePattern[2] = 'g';
pHeader->capturePattern[3] = 'S';
pHeader->structureVersion = data[0];
pHeader->headerType = data[1];
DRFLAC_COPY_MEMORY(&pHeader->granulePosition, &data[ 2], 8);
DRFLAC_COPY_MEMORY(&pHeader->serialNumber, &data[10], 4);
DRFLAC_COPY_MEMORY(&pHeader->sequenceNumber, &data[14], 4);
DRFLAC_COPY_MEMORY(&pHeader->checksum, &data[18], 4);
pHeader->segmentCount = data[22];
data[18] = 0;
data[19] = 0;
data[20] = 0;
data[21] = 0;
for (i = 0; i < 23; ++i) {
*pCRC32 = drflac_crc32_byte(*pCRC32, data[i]);
}
if (onRead(pUserData, pHeader->segmentTable, pHeader->segmentCount) != pHeader->segmentCount) {
return DRFLAC_AT_END;
}
*pBytesRead += pHeader->segmentCount;
for (i = 0; i < pHeader->segmentCount; ++i) {
*pCRC32 = drflac_crc32_byte(*pCRC32, pHeader->segmentTable[i]);
}
return DRFLAC_SUCCESS;
}
static drflac_result drflac_ogg__read_page_header(drflac_read_proc onRead, void* pUserData, drflac_ogg_page_header* pHeader, drflac_uint32* pBytesRead, drflac_uint32* pCRC32)
{
drflac_uint8 id[4];
*pBytesRead = 0;
if (onRead(pUserData, id, 4) != 4) {
return DRFLAC_AT_END;
}
*pBytesRead += 4;
for (;;) {
if (drflac_ogg__is_capture_pattern(id)) {
drflac_result result;
*pCRC32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32;
result = drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, pHeader, pBytesRead, pCRC32);
if (result == DRFLAC_SUCCESS) {
return DRFLAC_SUCCESS;
} else {
if (result == DRFLAC_CRC_MISMATCH) {
continue;
} else {
return result;
}
}
} else {
id[0] = id[1];
id[1] = id[2];
id[2] = id[3];
if (onRead(pUserData, &id[3], 1) != 1) {
return DRFLAC_AT_END;
}
*pBytesRead += 1;
}
}
}
typedef struct
{
drflac_read_proc onRead;
drflac_seek_proc onSeek;
void* pUserData;
drflac_uint64 currentBytePos;
drflac_uint64 firstBytePos;
drflac_uint32 serialNumber;
drflac_ogg_page_header bosPageHeader;
drflac_ogg_page_header currentPageHeader;
drflac_uint32 bytesRemainingInPage;
drflac_uint32 pageDataSize;
drflac_uint8 pageData[DRFLAC_OGG_MAX_PAGE_SIZE];
} drflac_oggbs;
static size_t drflac_oggbs__read_physical(drflac_oggbs* oggbs, void* bufferOut, size_t bytesToRead)
{
size_t bytesActuallyRead = oggbs->onRead(oggbs->pUserData, bufferOut, bytesToRead);
oggbs->currentBytePos += bytesActuallyRead;
return bytesActuallyRead;
}
static drflac_bool32 drflac_oggbs__seek_physical(drflac_oggbs* oggbs, drflac_uint64 offset, drflac_seek_origin origin)
{
if (origin == drflac_seek_origin_start) {
if (offset <= 0x7FFFFFFF) {
if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_start)) {
return DRFLAC_FALSE;
}
oggbs->currentBytePos = offset;
return DRFLAC_TRUE;
} else {
if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_start)) {
return DRFLAC_FALSE;
}
oggbs->currentBytePos = offset;
return drflac_oggbs__seek_physical(oggbs, offset - 0x7FFFFFFF, drflac_seek_origin_current);
}
} else {
while (offset > 0x7FFFFFFF) {
if (!oggbs->onSeek(oggbs->pUserData, 0x7FFFFFFF, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
oggbs->currentBytePos += 0x7FFFFFFF;
offset -= 0x7FFFFFFF;
}
if (!oggbs->onSeek(oggbs->pUserData, (int)offset, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
oggbs->currentBytePos += offset;
return DRFLAC_TRUE;
}
}
static drflac_bool32 drflac_oggbs__goto_next_page(drflac_oggbs* oggbs, drflac_ogg_crc_mismatch_recovery recoveryMethod)
{
drflac_ogg_page_header header;
for (;;) {
drflac_uint32 crc32 = 0;
drflac_uint32 bytesRead;
drflac_uint32 pageBodySize;
#ifndef DR_FLAC_NO_CRC
drflac_uint32 actualCRC32;
#endif
if (drflac_ogg__read_page_header(oggbs->onRead, oggbs->pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) {
return DRFLAC_FALSE;
}
oggbs->currentBytePos += bytesRead;
pageBodySize = drflac_ogg__get_page_body_size(&header);
if (pageBodySize > DRFLAC_OGG_MAX_PAGE_SIZE) {
continue;
}
if (header.serialNumber != oggbs->serialNumber) {
if (pageBodySize > 0 && !drflac_oggbs__seek_physical(oggbs, pageBodySize, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
continue;
}
if (drflac_oggbs__read_physical(oggbs, oggbs->pageData, pageBodySize) != pageBodySize) {
return DRFLAC_FALSE;
}
oggbs->pageDataSize = pageBodySize;
#ifndef DR_FLAC_NO_CRC
actualCRC32 = drflac_crc32_buffer(crc32, oggbs->pageData, oggbs->pageDataSize);
if (actualCRC32 != header.checksum) {
if (recoveryMethod == drflac_ogg_recover_on_crc_mismatch) {
continue;
} else {
drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch);
return DRFLAC_FALSE;
}
}
#else
(void)recoveryMethod;
#endif
oggbs->currentPageHeader = header;
oggbs->bytesRemainingInPage = pageBodySize;
return DRFLAC_TRUE;
}
}
#if 0
static drflac_uint8 drflac_oggbs__get_current_segment_index(drflac_oggbs* oggbs, drflac_uint8* pBytesRemainingInSeg)
{
drflac_uint32 bytesConsumedInPage = drflac_ogg__get_page_body_size(&oggbs->currentPageHeader) - oggbs->bytesRemainingInPage;
drflac_uint8 iSeg = 0;
drflac_uint32 iByte = 0;
while (iByte < bytesConsumedInPage) {
drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg];
if (iByte + segmentSize > bytesConsumedInPage) {
break;
} else {
iSeg += 1;
iByte += segmentSize;
}
}
*pBytesRemainingInSeg = oggbs->currentPageHeader.segmentTable[iSeg] - (drflac_uint8)(bytesConsumedInPage - iByte);
return iSeg;
}
static drflac_bool32 drflac_oggbs__seek_to_next_packet(drflac_oggbs* oggbs)
{
for (;;) {
drflac_bool32 atEndOfPage = DRFLAC_FALSE;
drflac_uint8 bytesRemainingInSeg;
drflac_uint8 iFirstSeg = drflac_oggbs__get_current_segment_index(oggbs, &bytesRemainingInSeg);
drflac_uint32 bytesToEndOfPacketOrPage = bytesRemainingInSeg;
for (drflac_uint8 iSeg = iFirstSeg; iSeg < oggbs->currentPageHeader.segmentCount; ++iSeg) {
drflac_uint8 segmentSize = oggbs->currentPageHeader.segmentTable[iSeg];
if (segmentSize < 255) {
if (iSeg == oggbs->currentPageHeader.segmentCount-1) {
atEndOfPage = DRFLAC_TRUE;
}
break;
}
bytesToEndOfPacketOrPage += segmentSize;
}
drflac_oggbs__seek_physical(oggbs, bytesToEndOfPacketOrPage, drflac_seek_origin_current);
oggbs->bytesRemainingInPage -= bytesToEndOfPacketOrPage;
if (atEndOfPage) {
if (!drflac_oggbs__goto_next_page(oggbs)) {
return DRFLAC_FALSE;
}
if ((oggbs->currentPageHeader.headerType & 0x01) == 0) {
return DRFLAC_TRUE;
}
} else {
return DRFLAC_TRUE;
}
}
}
static drflac_bool32 drflac_oggbs__seek_to_next_frame(drflac_oggbs* oggbs)
{
return drflac_oggbs__seek_to_next_packet(oggbs);
}
#endif
static size_t drflac__on_read_ogg(void* pUserData, void* bufferOut, size_t bytesToRead)
{
drflac_oggbs* oggbs = (drflac_oggbs*)pUserData;
drflac_uint8* pRunningBufferOut = (drflac_uint8*)bufferOut;
size_t bytesRead = 0;
DRFLAC_ASSERT(oggbs != NULL);
DRFLAC_ASSERT(pRunningBufferOut != NULL);
while (bytesRead < bytesToRead) {
size_t bytesRemainingToRead = bytesToRead - bytesRead;
if (oggbs->bytesRemainingInPage >= bytesRemainingToRead) {
DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), bytesRemainingToRead);
bytesRead += bytesRemainingToRead;
oggbs->bytesRemainingInPage -= (drflac_uint32)bytesRemainingToRead;
break;
}
if (oggbs->bytesRemainingInPage > 0) {
DRFLAC_COPY_MEMORY(pRunningBufferOut, oggbs->pageData + (oggbs->pageDataSize - oggbs->bytesRemainingInPage), oggbs->bytesRemainingInPage);
bytesRead += oggbs->bytesRemainingInPage;
pRunningBufferOut += oggbs->bytesRemainingInPage;
oggbs->bytesRemainingInPage = 0;
}
DRFLAC_ASSERT(bytesRemainingToRead > 0);
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) {
break;
}
}
return bytesRead;
}
static drflac_bool32 drflac__on_seek_ogg(void* pUserData, int offset, drflac_seek_origin origin)
{
drflac_oggbs* oggbs = (drflac_oggbs*)pUserData;
int bytesSeeked = 0;
DRFLAC_ASSERT(oggbs != NULL);
DRFLAC_ASSERT(offset >= 0);
if (origin == drflac_seek_origin_start) {
if (!drflac_oggbs__seek_physical(oggbs, (int)oggbs->firstBytePos, drflac_seek_origin_start)) {
return DRFLAC_FALSE;
}
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) {
return DRFLAC_FALSE;
}
return drflac__on_seek_ogg(pUserData, offset, drflac_seek_origin_current);
}
DRFLAC_ASSERT(origin == drflac_seek_origin_current);
while (bytesSeeked < offset) {
int bytesRemainingToSeek = offset - bytesSeeked;
DRFLAC_ASSERT(bytesRemainingToSeek >= 0);
if (oggbs->bytesRemainingInPage >= (size_t)bytesRemainingToSeek) {
bytesSeeked += bytesRemainingToSeek;
(void)bytesSeeked;
oggbs->bytesRemainingInPage -= bytesRemainingToSeek;
break;
}
if (oggbs->bytesRemainingInPage > 0) {
bytesSeeked += (int)oggbs->bytesRemainingInPage;
oggbs->bytesRemainingInPage = 0;
}
DRFLAC_ASSERT(bytesRemainingToSeek > 0);
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_fail_on_crc_mismatch)) {
return DRFLAC_FALSE;
}
}
return DRFLAC_TRUE;
}
static drflac_bool32 drflac_ogg__seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex)
{
drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
drflac_uint64 originalBytePos;
drflac_uint64 runningGranulePosition;
drflac_uint64 runningFrameBytePos;
drflac_uint64 runningPCMFrameCount;
DRFLAC_ASSERT(oggbs != NULL);
originalBytePos = oggbs->currentBytePos;
if (!drflac__seek_to_byte(&pFlac->bs, pFlac->firstFLACFramePosInBytes)) {
return DRFLAC_FALSE;
}
oggbs->bytesRemainingInPage = 0;
runningGranulePosition = 0;
for (;;) {
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) {
drflac_oggbs__seek_physical(oggbs, originalBytePos, drflac_seek_origin_start);
return DRFLAC_FALSE;
}
runningFrameBytePos = oggbs->currentBytePos - drflac_ogg__get_page_header_size(&oggbs->currentPageHeader) - oggbs->pageDataSize;
if (oggbs->currentPageHeader.granulePosition >= pcmFrameIndex) {
break;
}
if ((oggbs->currentPageHeader.headerType & 0x01) == 0) {
if (oggbs->currentPageHeader.segmentTable[0] >= 2) {
drflac_uint8 firstBytesInPage[2];
firstBytesInPage[0] = oggbs->pageData[0];
firstBytesInPage[1] = oggbs->pageData[1];
if ((firstBytesInPage[0] == 0xFF) && (firstBytesInPage[1] & 0xFC) == 0xF8) {
runningGranulePosition = oggbs->currentPageHeader.granulePosition;
}
continue;
}
}
}
if (!drflac_oggbs__seek_physical(oggbs, runningFrameBytePos, drflac_seek_origin_start)) {
return DRFLAC_FALSE;
}
if (!drflac_oggbs__goto_next_page(oggbs, drflac_ogg_recover_on_crc_mismatch)) {
return DRFLAC_FALSE;
}
runningPCMFrameCount = runningGranulePosition;
for (;;) {
drflac_uint64 firstPCMFrameInFLACFrame = 0;
drflac_uint64 lastPCMFrameInFLACFrame = 0;
drflac_uint64 pcmFrameCountInThisFrame;
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
return DRFLAC_FALSE;
}
drflac__get_pcm_frame_range_of_current_flac_frame(pFlac, &firstPCMFrameInFLACFrame, &lastPCMFrameInFLACFrame);
pcmFrameCountInThisFrame = (lastPCMFrameInFLACFrame - firstPCMFrameInFLACFrame) + 1;
if (pcmFrameIndex == pFlac->totalPCMFrameCount && (runningPCMFrameCount + pcmFrameCountInThisFrame) == pFlac->totalPCMFrameCount) {
drflac_result result = drflac__decode_flac_frame(pFlac);
if (result == DRFLAC_SUCCESS) {
pFlac->currentPCMFrame = pcmFrameIndex;
pFlac->currentFLACFrame.pcmFramesRemaining = 0;
return DRFLAC_TRUE;
} else {
return DRFLAC_FALSE;
}
}
if (pcmFrameIndex < (runningPCMFrameCount + pcmFrameCountInThisFrame)) {
drflac_result result = drflac__decode_flac_frame(pFlac);
if (result == DRFLAC_SUCCESS) {
drflac_uint64 pcmFramesToDecode = (size_t)(pcmFrameIndex - runningPCMFrameCount);
if (pcmFramesToDecode == 0) {
return DRFLAC_TRUE;
}
pFlac->currentPCMFrame = runningPCMFrameCount;
return drflac__seek_forward_by_pcm_frames(pFlac, pcmFramesToDecode) == pcmFramesToDecode;
} else {
if (result == DRFLAC_CRC_MISMATCH) {
continue;
} else {
return DRFLAC_FALSE;
}
}
} else {
drflac_result result = drflac__seek_to_next_flac_frame(pFlac);
if (result == DRFLAC_SUCCESS) {
runningPCMFrameCount += pcmFrameCountInThisFrame;
} else {
if (result == DRFLAC_CRC_MISMATCH) {
continue;
} else {
return DRFLAC_FALSE;
}
}
}
}
}
static drflac_bool32 drflac__init_private__ogg(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, void* pUserDataMD, drflac_bool32 relaxed)
{
drflac_ogg_page_header header;
drflac_uint32 crc32 = DRFLAC_OGG_CAPTURE_PATTERN_CRC32;
drflac_uint32 bytesRead = 0;
(void)relaxed;
pInit->container = drflac_container_ogg;
pInit->oggFirstBytePos = 0;
if (drflac_ogg__read_page_header_after_capture_pattern(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) {
return DRFLAC_FALSE;
}
pInit->runningFilePos += bytesRead;
for (;;) {
int pageBodySize;
if ((header.headerType & 0x02) == 0) {
return DRFLAC_FALSE;
}
pageBodySize = drflac_ogg__get_page_body_size(&header);
if (pageBodySize == 51) {
drflac_uint32 bytesRemainingInPage = pageBodySize;
drflac_uint8 packetType;
if (onRead(pUserData, &packetType, 1) != 1) {
return DRFLAC_FALSE;
}
bytesRemainingInPage -= 1;
if (packetType == 0x7F) {
drflac_uint8 sig[4];
if (onRead(pUserData, sig, 4) != 4) {
return DRFLAC_FALSE;
}
bytesRemainingInPage -= 4;
if (sig[0] == 'F' && sig[1] == 'L' && sig[2] == 'A' && sig[3] == 'C') {
drflac_uint8 mappingVersion[2];
if (onRead(pUserData, mappingVersion, 2) != 2) {
return DRFLAC_FALSE;
}
if (mappingVersion[0] != 1) {
return DRFLAC_FALSE;
}
if (!onSeek(pUserData, 2, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
if (onRead(pUserData, sig, 4) != 4) {
return DRFLAC_FALSE;
}
if (sig[0] == 'f' && sig[1] == 'L' && sig[2] == 'a' && sig[3] == 'C') {
drflac_streaminfo streaminfo;
drflac_uint8 isLastBlock;
drflac_uint8 blockType;
drflac_uint32 blockSize;
if (!drflac__read_and_decode_block_header(onRead, pUserData, &isLastBlock, &blockType, &blockSize)) {
return DRFLAC_FALSE;
}
if (blockType != DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO || blockSize != 34) {
return DRFLAC_FALSE;
}
if (drflac__read_streaminfo(onRead, pUserData, &streaminfo)) {
pInit->hasStreamInfoBlock = DRFLAC_TRUE;
pInit->sampleRate = streaminfo.sampleRate;
pInit->channels = streaminfo.channels;
pInit->bitsPerSample = streaminfo.bitsPerSample;
pInit->totalPCMFrameCount = streaminfo.totalPCMFrameCount;
pInit->maxBlockSizeInPCMFrames = streaminfo.maxBlockSizeInPCMFrames;
pInit->hasMetadataBlocks = !isLastBlock;
if (onMeta) {
drflac_metadata metadata;
metadata.type = DRFLAC_METADATA_BLOCK_TYPE_STREAMINFO;
metadata.pRawData = NULL;
metadata.rawDataSize = 0;
metadata.data.streaminfo = streaminfo;
onMeta(pUserDataMD, &metadata);
}
pInit->runningFilePos += pageBodySize;
pInit->oggFirstBytePos = pInit->runningFilePos - 79;
pInit->oggSerial = header.serialNumber;
pInit->oggBosHeader = header;
break;
} else {
return DRFLAC_FALSE;
}
} else {
return DRFLAC_FALSE;
}
} else {
if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
}
} else {
if (!onSeek(pUserData, bytesRemainingInPage, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
}
} else {
if (!onSeek(pUserData, pageBodySize, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
}
pInit->runningFilePos += pageBodySize;
if (drflac_ogg__read_page_header(onRead, pUserData, &header, &bytesRead, &crc32) != DRFLAC_SUCCESS) {
return DRFLAC_FALSE;
}
pInit->runningFilePos += bytesRead;
}
pInit->hasMetadataBlocks = DRFLAC_TRUE;
return DRFLAC_TRUE;
}
#endif
static drflac_bool32 drflac__init_private(drflac_init_info* pInit, drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD)
{
drflac_bool32 relaxed;
drflac_uint8 id[4];
if (pInit == NULL || onRead == NULL || onSeek == NULL) {
return DRFLAC_FALSE;
}
DRFLAC_ZERO_MEMORY(pInit, sizeof(*pInit));
pInit->onRead = onRead;
pInit->onSeek = onSeek;
pInit->onMeta = onMeta;
pInit->container = container;
pInit->pUserData = pUserData;
pInit->pUserDataMD = pUserDataMD;
pInit->bs.onRead = onRead;
pInit->bs.onSeek = onSeek;
pInit->bs.pUserData = pUserData;
drflac__reset_cache(&pInit->bs);
relaxed = container != drflac_container_unknown;
for (;;) {
if (onRead(pUserData, id, 4) != 4) {
return DRFLAC_FALSE;
}
pInit->runningFilePos += 4;
if (id[0] == 'I' && id[1] == 'D' && id[2] == '3') {
drflac_uint8 header[6];
drflac_uint8 flags;
drflac_uint32 headerSize;
if (onRead(pUserData, header, 6) != 6) {
return DRFLAC_FALSE;
}
pInit->runningFilePos += 6;
flags = header[1];
DRFLAC_COPY_MEMORY(&headerSize, header+2, 4);
headerSize = drflac__unsynchsafe_32(drflac__be2host_32(headerSize));
if (flags & 0x10) {
headerSize += 10;
}
if (!onSeek(pUserData, headerSize, drflac_seek_origin_current)) {
return DRFLAC_FALSE;
}
pInit->runningFilePos += headerSize;
} else {
break;
}
}
if (id[0] == 'f' && id[1] == 'L' && id[2] == 'a' && id[3] == 'C') {
return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
}
#ifndef DR_FLAC_NO_OGG
if (id[0] == 'O' && id[1] == 'g' && id[2] == 'g' && id[3] == 'S') {
return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
}
#endif
if (relaxed) {
if (container == drflac_container_native) {
return drflac__init_private__native(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
}
#ifndef DR_FLAC_NO_OGG
if (container == drflac_container_ogg) {
return drflac__init_private__ogg(pInit, onRead, onSeek, onMeta, pUserData, pUserDataMD, relaxed);
}
#endif
}
return DRFLAC_FALSE;
}
static void drflac__init_from_info(drflac* pFlac, const drflac_init_info* pInit)
{
DRFLAC_ASSERT(pFlac != NULL);
DRFLAC_ASSERT(pInit != NULL);
DRFLAC_ZERO_MEMORY(pFlac, sizeof(*pFlac));
pFlac->bs = pInit->bs;
pFlac->onMeta = pInit->onMeta;
pFlac->pUserDataMD = pInit->pUserDataMD;
pFlac->maxBlockSizeInPCMFrames = pInit->maxBlockSizeInPCMFrames;
pFlac->sampleRate = pInit->sampleRate;
pFlac->channels = (drflac_uint8)pInit->channels;
pFlac->bitsPerSample = (drflac_uint8)pInit->bitsPerSample;
pFlac->totalPCMFrameCount = pInit->totalPCMFrameCount;
pFlac->container = pInit->container;
}
static drflac* drflac_open_with_metadata_private(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, void* pUserDataMD, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac_init_info init;
drflac_uint32 allocationSize;
drflac_uint32 wholeSIMDVectorCountPerChannel;
drflac_uint32 decodedSamplesAllocationSize;
#ifndef DR_FLAC_NO_OGG
drflac_oggbs oggbs;
#endif
drflac_uint64 firstFramePos;
drflac_uint64 seektablePos;
drflac_uint32 seektableSize;
drflac_allocation_callbacks allocationCallbacks;
drflac* pFlac;
drflac__init_cpu_caps();
if (!drflac__init_private(&init, onRead, onSeek, onMeta, container, pUserData, pUserDataMD)) {
return NULL;
}
if (pAllocationCallbacks != NULL) {
allocationCallbacks = *pAllocationCallbacks;
if (allocationCallbacks.onFree == NULL || (allocationCallbacks.onMalloc == NULL && allocationCallbacks.onRealloc == NULL)) {
return NULL;
}
} else {
allocationCallbacks.pUserData = NULL;
allocationCallbacks.onMalloc = drflac__malloc_default;
allocationCallbacks.onRealloc = drflac__realloc_default;
allocationCallbacks.onFree = drflac__free_default;
}
allocationSize = sizeof(drflac);
if ((init.maxBlockSizeInPCMFrames % (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) == 0) {
wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32)));
} else {
wholeSIMDVectorCountPerChannel = (init.maxBlockSizeInPCMFrames / (DRFLAC_MAX_SIMD_VECTOR_SIZE / sizeof(drflac_int32))) + 1;
}
decodedSamplesAllocationSize = wholeSIMDVectorCountPerChannel * DRFLAC_MAX_SIMD_VECTOR_SIZE * init.channels;
allocationSize += decodedSamplesAllocationSize;
allocationSize += DRFLAC_MAX_SIMD_VECTOR_SIZE;
#ifndef DR_FLAC_NO_OGG
if (init.container == drflac_container_ogg) {
allocationSize += sizeof(drflac_oggbs);
}
DRFLAC_ZERO_MEMORY(&oggbs, sizeof(oggbs));
if (init.container == drflac_container_ogg) {
oggbs.onRead = onRead;
oggbs.onSeek = onSeek;
oggbs.pUserData = pUserData;
oggbs.currentBytePos = init.oggFirstBytePos;
oggbs.firstBytePos = init.oggFirstBytePos;
oggbs.serialNumber = init.oggSerial;
oggbs.bosPageHeader = init.oggBosHeader;
oggbs.bytesRemainingInPage = 0;
}
#endif
firstFramePos = 42;
seektablePos = 0;
seektableSize = 0;
if (init.hasMetadataBlocks) {
drflac_read_proc onReadOverride = onRead;
drflac_seek_proc onSeekOverride = onSeek;
void* pUserDataOverride = pUserData;
#ifndef DR_FLAC_NO_OGG
if (init.container == drflac_container_ogg) {
onReadOverride = drflac__on_read_ogg;
onSeekOverride = drflac__on_seek_ogg;
pUserDataOverride = (void*)&oggbs;
}
#endif
if (!drflac__read_and_decode_metadata(onReadOverride, onSeekOverride, onMeta, pUserDataOverride, pUserDataMD, &firstFramePos, &seektablePos, &seektableSize, &allocationCallbacks)) {
return NULL;
}
allocationSize += seektableSize;
}
pFlac = (drflac*)drflac__malloc_from_callbacks(allocationSize, &allocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
drflac__init_from_info(pFlac, &init);
pFlac->allocationCallbacks = allocationCallbacks;
pFlac->pDecodedSamples = (drflac_int32*)drflac_align((size_t)pFlac->pExtraData, DRFLAC_MAX_SIMD_VECTOR_SIZE);
#ifndef DR_FLAC_NO_OGG
if (init.container == drflac_container_ogg) {
drflac_oggbs* pInternalOggbs = (drflac_oggbs*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize + seektableSize);
*pInternalOggbs = oggbs;
pFlac->bs.onRead = drflac__on_read_ogg;
pFlac->bs.onSeek = drflac__on_seek_ogg;
pFlac->bs.pUserData = (void*)pInternalOggbs;
pFlac->_oggbs = (void*)pInternalOggbs;
}
#endif
pFlac->firstFLACFramePosInBytes = firstFramePos;
#ifndef DR_FLAC_NO_OGG
if (init.container == drflac_container_ogg)
{
pFlac->pSeekpoints = NULL;
pFlac->seekpointCount = 0;
}
else
#endif
{
if (seektablePos != 0) {
pFlac->seekpointCount = seektableSize / sizeof(*pFlac->pSeekpoints);
pFlac->pSeekpoints = (drflac_seekpoint*)((drflac_uint8*)pFlac->pDecodedSamples + decodedSamplesAllocationSize);
DRFLAC_ASSERT(pFlac->bs.onSeek != NULL);
DRFLAC_ASSERT(pFlac->bs.onRead != NULL);
if (pFlac->bs.onSeek(pFlac->bs.pUserData, (int)seektablePos, drflac_seek_origin_start)) {
if (pFlac->bs.onRead(pFlac->bs.pUserData, pFlac->pSeekpoints, seektableSize) == seektableSize) {
drflac_uint32 iSeekpoint;
for (iSeekpoint = 0; iSeekpoint < pFlac->seekpointCount; ++iSeekpoint) {
pFlac->pSeekpoints[iSeekpoint].firstPCMFrame = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].firstPCMFrame);
pFlac->pSeekpoints[iSeekpoint].flacFrameOffset = drflac__be2host_64(pFlac->pSeekpoints[iSeekpoint].flacFrameOffset);
pFlac->pSeekpoints[iSeekpoint].pcmFrameCount = drflac__be2host_16(pFlac->pSeekpoints[iSeekpoint].pcmFrameCount);
}
} else {
pFlac->pSeekpoints = NULL;
pFlac->seekpointCount = 0;
}
if (!pFlac->bs.onSeek(pFlac->bs.pUserData, (int)pFlac->firstFLACFramePosInBytes, drflac_seek_origin_start)) {
drflac__free_from_callbacks(pFlac, &allocationCallbacks);
return NULL;
}
} else {
pFlac->pSeekpoints = NULL;
pFlac->seekpointCount = 0;
}
}
}
if (!init.hasStreamInfoBlock) {
pFlac->currentFLACFrame.header = init.firstFrameHeader;
for (;;) {
drflac_result result = drflac__decode_flac_frame(pFlac);
if (result == DRFLAC_SUCCESS) {
break;
} else {
if (result == DRFLAC_CRC_MISMATCH) {
if (!drflac__read_next_flac_frame_header(&pFlac->bs, pFlac->bitsPerSample, &pFlac->currentFLACFrame.header)) {
drflac__free_from_callbacks(pFlac, &allocationCallbacks);
return NULL;
}
continue;
} else {
drflac__free_from_callbacks(pFlac, &allocationCallbacks);
return NULL;
}
}
}
}
return pFlac;
}
#ifndef DR_FLAC_NO_STDIO
#include <stdio.h>
#include <wchar.h>
#include <errno.h>
static drflac_result drflac_result_from_errno(int e)
{
switch (e)
{
case 0: return DRFLAC_SUCCESS;
#ifdef EPERM
case EPERM: return DRFLAC_INVALID_OPERATION;
#endif
#ifdef ENOENT
case ENOENT: return DRFLAC_DOES_NOT_EXIST;
#endif
#ifdef ESRCH
case ESRCH: return DRFLAC_DOES_NOT_EXIST;
#endif
#ifdef EINTR
case EINTR: return DRFLAC_INTERRUPT;
#endif
#ifdef EIO
case EIO: return DRFLAC_IO_ERROR;
#endif
#ifdef ENXIO
case ENXIO: return DRFLAC_DOES_NOT_EXIST;
#endif
#ifdef E2BIG
case E2BIG: return DRFLAC_INVALID_ARGS;
#endif
#ifdef ENOEXEC
case ENOEXEC: return DRFLAC_INVALID_FILE;
#endif
#ifdef EBADF
case EBADF: return DRFLAC_INVALID_FILE;
#endif
#ifdef ECHILD
case ECHILD: return DRFLAC_ERROR;
#endif
#ifdef EAGAIN
case EAGAIN: return DRFLAC_UNAVAILABLE;
#endif
#ifdef ENOMEM
case ENOMEM: return DRFLAC_OUT_OF_MEMORY;
#endif
#ifdef EACCES
case EACCES: return DRFLAC_ACCESS_DENIED;
#endif
#ifdef EFAULT
case EFAULT: return DRFLAC_BAD_ADDRESS;
#endif
#ifdef ENOTBLK
case ENOTBLK: return DRFLAC_ERROR;
#endif
#ifdef EBUSY
case EBUSY: return DRFLAC_BUSY;
#endif
#ifdef EEXIST
case EEXIST: return DRFLAC_ALREADY_EXISTS;
#endif
#ifdef EXDEV
case EXDEV: return DRFLAC_ERROR;
#endif
#ifdef ENODEV
case ENODEV: return DRFLAC_DOES_NOT_EXIST;
#endif
#ifdef ENOTDIR
case ENOTDIR: return DRFLAC_NOT_DIRECTORY;
#endif
#ifdef EISDIR
case EISDIR: return DRFLAC_IS_DIRECTORY;
#endif
#ifdef EINVAL
case EINVAL: return DRFLAC_INVALID_ARGS;
#endif
#ifdef ENFILE
case ENFILE: return DRFLAC_TOO_MANY_OPEN_FILES;
#endif
#ifdef EMFILE
case EMFILE: return DRFLAC_TOO_MANY_OPEN_FILES;
#endif
#ifdef ENOTTY
case ENOTTY: return DRFLAC_INVALID_OPERATION;
#endif
#ifdef ETXTBSY
case ETXTBSY: return DRFLAC_BUSY;
#endif
#ifdef EFBIG
case EFBIG: return DRFLAC_TOO_BIG;
#endif
#ifdef ENOSPC
case ENOSPC: return DRFLAC_NO_SPACE;
#endif
#ifdef ESPIPE
case ESPIPE: return DRFLAC_BAD_SEEK;
#endif
#ifdef EROFS
case EROFS: return DRFLAC_ACCESS_DENIED;
#endif
#ifdef EMLINK
case EMLINK: return DRFLAC_TOO_MANY_LINKS;
#endif
#ifdef EPIPE
case EPIPE: return DRFLAC_BAD_PIPE;
#endif
#ifdef EDOM
case EDOM: return DRFLAC_OUT_OF_RANGE;
#endif
#ifdef ERANGE
case ERANGE: return DRFLAC_OUT_OF_RANGE;
#endif
#ifdef EDEADLK
case EDEADLK: return DRFLAC_DEADLOCK;
#endif
#ifdef ENAMETOOLONG
case ENAMETOOLONG: return DRFLAC_PATH_TOO_LONG;
#endif
#ifdef ENOLCK
case ENOLCK: return DRFLAC_ERROR;
#endif
#ifdef ENOSYS
case ENOSYS: return DRFLAC_NOT_IMPLEMENTED;
#endif
#ifdef ENOTEMPTY
case ENOTEMPTY: return DRFLAC_DIRECTORY_NOT_EMPTY;
#endif
#ifdef ELOOP
case ELOOP: return DRFLAC_TOO_MANY_LINKS;
#endif
#ifdef ENOMSG
case ENOMSG: return DRFLAC_NO_MESSAGE;
#endif
#ifdef EIDRM
case EIDRM: return DRFLAC_ERROR;
#endif
#ifdef ECHRNG
case ECHRNG: return DRFLAC_ERROR;
#endif
#ifdef EL2NSYNC
case EL2NSYNC: return DRFLAC_ERROR;
#endif
#ifdef EL3HLT
case EL3HLT: return DRFLAC_ERROR;
#endif
#ifdef EL3RST
case EL3RST: return DRFLAC_ERROR;
#endif
#ifdef ELNRNG
case ELNRNG: return DRFLAC_OUT_OF_RANGE;
#endif
#ifdef EUNATCH
case EUNATCH: return DRFLAC_ERROR;
#endif
#ifdef ENOCSI
case ENOCSI: return DRFLAC_ERROR;
#endif
#ifdef EL2HLT
case EL2HLT: return DRFLAC_ERROR;
#endif
#ifdef EBADE
case EBADE: return DRFLAC_ERROR;
#endif
#ifdef EBADR
case EBADR: return DRFLAC_ERROR;
#endif
#ifdef EXFULL
case EXFULL: return DRFLAC_ERROR;
#endif
#ifdef ENOANO
case ENOANO: return DRFLAC_ERROR;
#endif
#ifdef EBADRQC
case EBADRQC: return DRFLAC_ERROR;
#endif
#ifdef EBADSLT
case EBADSLT: return DRFLAC_ERROR;
#endif
#ifdef EBFONT
case EBFONT: return DRFLAC_INVALID_FILE;
#endif
#ifdef ENOSTR
case ENOSTR: return DRFLAC_ERROR;
#endif
#ifdef ENODATA
case ENODATA: return DRFLAC_NO_DATA_AVAILABLE;
#endif
#ifdef ETIME
case ETIME: return DRFLAC_TIMEOUT;
#endif
#ifdef ENOSR
case ENOSR: return DRFLAC_NO_DATA_AVAILABLE;
#endif
#ifdef ENONET
case ENONET: return DRFLAC_NO_NETWORK;
#endif
#ifdef ENOPKG
case ENOPKG: return DRFLAC_ERROR;
#endif
#ifdef EREMOTE
case EREMOTE: return DRFLAC_ERROR;
#endif
#ifdef ENOLINK
case ENOLINK: return DRFLAC_ERROR;
#endif
#ifdef EADV
case EADV: return DRFLAC_ERROR;
#endif
#ifdef ESRMNT
case ESRMNT: return DRFLAC_ERROR;
#endif
#ifdef ECOMM
case ECOMM: return DRFLAC_ERROR;
#endif
#ifdef EPROTO
case EPROTO: return DRFLAC_ERROR;
#endif
#ifdef EMULTIHOP
case EMULTIHOP: return DRFLAC_ERROR;
#endif
#ifdef EDOTDOT
case EDOTDOT: return DRFLAC_ERROR;
#endif
#ifdef EBADMSG
case EBADMSG: return DRFLAC_BAD_MESSAGE;
#endif
#ifdef EOVERFLOW
case EOVERFLOW: return DRFLAC_TOO_BIG;
#endif
#ifdef ENOTUNIQ
case ENOTUNIQ: return DRFLAC_NOT_UNIQUE;
#endif
#ifdef EBADFD
case EBADFD: return DRFLAC_ERROR;
#endif
#ifdef EREMCHG
case EREMCHG: return DRFLAC_ERROR;
#endif
#ifdef ELIBACC
case ELIBACC: return DRFLAC_ACCESS_DENIED;
#endif
#ifdef ELIBBAD
case ELIBBAD: return DRFLAC_INVALID_FILE;
#endif
#ifdef ELIBSCN
case ELIBSCN: return DRFLAC_INVALID_FILE;
#endif
#ifdef ELIBMAX
case ELIBMAX: return DRFLAC_ERROR;
#endif
#ifdef ELIBEXEC
case ELIBEXEC: return DRFLAC_ERROR;
#endif
#ifdef EILSEQ
case EILSEQ: return DRFLAC_INVALID_DATA;
#endif
#ifdef ERESTART
case ERESTART: return DRFLAC_ERROR;
#endif
#ifdef ESTRPIPE
case ESTRPIPE: return DRFLAC_ERROR;
#endif
#ifdef EUSERS
case EUSERS: return DRFLAC_ERROR;
#endif
#ifdef ENOTSOCK
case ENOTSOCK: return DRFLAC_NOT_SOCKET;
#endif
#ifdef EDESTADDRREQ
case EDESTADDRREQ: return DRFLAC_NO_ADDRESS;
#endif
#ifdef EMSGSIZE
case EMSGSIZE: return DRFLAC_TOO_BIG;
#endif
#ifdef EPROTOTYPE
case EPROTOTYPE: return DRFLAC_BAD_PROTOCOL;
#endif
#ifdef ENOPROTOOPT
case ENOPROTOOPT: return DRFLAC_PROTOCOL_UNAVAILABLE;
#endif
#ifdef EPROTONOSUPPORT
case EPROTONOSUPPORT: return DRFLAC_PROTOCOL_NOT_SUPPORTED;
#endif
#ifdef ESOCKTNOSUPPORT
case ESOCKTNOSUPPORT: return DRFLAC_SOCKET_NOT_SUPPORTED;
#endif
#ifdef EOPNOTSUPP
case EOPNOTSUPP: return DRFLAC_INVALID_OPERATION;
#endif
#ifdef EPFNOSUPPORT
case EPFNOSUPPORT: return DRFLAC_PROTOCOL_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EAFNOSUPPORT
case EAFNOSUPPORT: return DRFLAC_ADDRESS_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EADDRINUSE
case EADDRINUSE: return DRFLAC_ALREADY_IN_USE;
#endif
#ifdef EADDRNOTAVAIL
case EADDRNOTAVAIL: return DRFLAC_ERROR;
#endif
#ifdef ENETDOWN
case ENETDOWN: return DRFLAC_NO_NETWORK;
#endif
#ifdef ENETUNREACH
case ENETUNREACH: return DRFLAC_NO_NETWORK;
#endif
#ifdef ENETRESET
case ENETRESET: return DRFLAC_NO_NETWORK;
#endif
#ifdef ECONNABORTED
case ECONNABORTED: return DRFLAC_NO_NETWORK;
#endif
#ifdef ECONNRESET
case ECONNRESET: return DRFLAC_CONNECTION_RESET;
#endif
#ifdef ENOBUFS
case ENOBUFS: return DRFLAC_NO_SPACE;
#endif
#ifdef EISCONN
case EISCONN: return DRFLAC_ALREADY_CONNECTED;
#endif
#ifdef ENOTCONN
case ENOTCONN: return DRFLAC_NOT_CONNECTED;
#endif
#ifdef ESHUTDOWN
case ESHUTDOWN: return DRFLAC_ERROR;
#endif
#ifdef ETOOMANYREFS
case ETOOMANYREFS: return DRFLAC_ERROR;
#endif
#ifdef ETIMEDOUT
case ETIMEDOUT: return DRFLAC_TIMEOUT;
#endif
#ifdef ECONNREFUSED
case ECONNREFUSED: return DRFLAC_CONNECTION_REFUSED;
#endif
#ifdef EHOSTDOWN
case EHOSTDOWN: return DRFLAC_NO_HOST;
#endif
#ifdef EHOSTUNREACH
case EHOSTUNREACH: return DRFLAC_NO_HOST;
#endif
#ifdef EALREADY
case EALREADY: return DRFLAC_IN_PROGRESS;
#endif
#ifdef EINPROGRESS
case EINPROGRESS: return DRFLAC_IN_PROGRESS;
#endif
#ifdef ESTALE
case ESTALE: return DRFLAC_INVALID_FILE;
#endif
#ifdef EUCLEAN
case EUCLEAN: return DRFLAC_ERROR;
#endif
#ifdef ENOTNAM
case ENOTNAM: return DRFLAC_ERROR;
#endif
#ifdef ENAVAIL
case ENAVAIL: return DRFLAC_ERROR;
#endif
#ifdef EISNAM
case EISNAM: return DRFLAC_ERROR;
#endif
#ifdef EREMOTEIO
case EREMOTEIO: return DRFLAC_IO_ERROR;
#endif
#ifdef EDQUOT
case EDQUOT: return DRFLAC_NO_SPACE;
#endif
#ifdef ENOMEDIUM
case ENOMEDIUM: return DRFLAC_DOES_NOT_EXIST;
#endif
#ifdef EMEDIUMTYPE
case EMEDIUMTYPE: return DRFLAC_ERROR;
#endif
#ifdef ECANCELED
case ECANCELED: return DRFLAC_CANCELLED;
#endif
#ifdef ENOKEY
case ENOKEY: return DRFLAC_ERROR;
#endif
#ifdef EKEYEXPIRED
case EKEYEXPIRED: return DRFLAC_ERROR;
#endif
#ifdef EKEYREVOKED
case EKEYREVOKED: return DRFLAC_ERROR;
#endif
#ifdef EKEYREJECTED
case EKEYREJECTED: return DRFLAC_ERROR;
#endif
#ifdef EOWNERDEAD
case EOWNERDEAD: return DRFLAC_ERROR;
#endif
#ifdef ENOTRECOVERABLE
case ENOTRECOVERABLE: return DRFLAC_ERROR;
#endif
#ifdef ERFKILL
case ERFKILL: return DRFLAC_ERROR;
#endif
#ifdef EHWPOISON
case EHWPOISON: return DRFLAC_ERROR;
#endif
default: return DRFLAC_ERROR;
}
}
static drflac_result drflac_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
{
#if _MSC_VER && _MSC_VER >= 1400
errno_t err;
#endif
if (ppFile != NULL) {
*ppFile = NULL;
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return DRFLAC_INVALID_ARGS;
}
#if _MSC_VER && _MSC_VER >= 1400
err = fopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return drflac_result_from_errno(err);
}
#else
#if defined(_WIN32) || defined(__APPLE__)
*ppFile = fopen(pFilePath, pOpenMode);
#else
#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
*ppFile = fopen64(pFilePath, pOpenMode);
#else
*ppFile = fopen(pFilePath, pOpenMode);
#endif
#endif
if (*ppFile == NULL) {
drflac_result result = drflac_result_from_errno(errno);
if (result == DRFLAC_SUCCESS) {
result = DRFLAC_ERROR;
}
return result;
}
#endif
return DRFLAC_SUCCESS;
}
#if defined(_WIN32)
#if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
#define DRFLAC_HAS_WFOPEN
#endif
#endif
static drflac_result drflac_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drflac_allocation_callbacks* pAllocationCallbacks)
{
if (ppFile != NULL) {
*ppFile = NULL;
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return DRFLAC_INVALID_ARGS;
}
#if defined(DRFLAC_HAS_WFOPEN)
{
#if defined(_MSC_VER) && _MSC_VER >= 1400
errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return drflac_result_from_errno(err);
}
#else
*ppFile = _wfopen(pFilePath, pOpenMode);
if (*ppFile == NULL) {
return drflac_result_from_errno(errno);
}
#endif
(void)pAllocationCallbacks;
}
#else
{
mbstate_t mbs;
size_t lenMB;
const wchar_t* pFilePathTemp = pFilePath;
char* pFilePathMB = NULL;
char pOpenModeMB[32] = {0};
DRFLAC_ZERO_OBJECT(&mbs);
lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
if (lenMB == (size_t)-1) {
return drflac_result_from_errno(errno);
}
pFilePathMB = (char*)drflac__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
if (pFilePathMB == NULL) {
return DRFLAC_OUT_OF_MEMORY;
}
pFilePathTemp = pFilePath;
DRFLAC_ZERO_OBJECT(&mbs);
wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
{
size_t i = 0;
for (;;) {
if (pOpenMode[i] == 0) {
pOpenModeMB[i] = '\0';
break;
}
pOpenModeMB[i] = (char)pOpenMode[i];
i += 1;
}
}
*ppFile = fopen(pFilePathMB, pOpenModeMB);
drflac__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
}
if (*ppFile == NULL) {
return DRFLAC_ERROR;
}
#endif
return DRFLAC_SUCCESS;
}
static size_t drflac__on_read_stdio(void* pUserData, void* bufferOut, size_t bytesToRead)
{
return fread(bufferOut, 1, bytesToRead, (FILE*)pUserData);
}
static drflac_bool32 drflac__on_seek_stdio(void* pUserData, int offset, drflac_seek_origin origin)
{
DRFLAC_ASSERT(offset >= 0);
return fseek((FILE*)pUserData, offset, (origin == drflac_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
}
DRFLAC_API drflac* drflac_open_file(const char* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
FILE* pFile;
if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) {
return NULL;
}
pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
if (pFlac == NULL) {
fclose(pFile);
return NULL;
}
return pFlac;
}
DRFLAC_API drflac* drflac_open_file_w(const wchar_t* pFileName, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
FILE* pFile;
if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) {
return NULL;
}
pFlac = drflac_open(drflac__on_read_stdio, drflac__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
if (pFlac == NULL) {
fclose(pFile);
return NULL;
}
return pFlac;
}
DRFLAC_API drflac* drflac_open_file_with_metadata(const char* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
FILE* pFile;
if (drflac_fopen(&pFile, pFileName, "rb") != DRFLAC_SUCCESS) {
return NULL;
}
pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks);
if (pFlac == NULL) {
fclose(pFile);
return pFlac;
}
return pFlac;
}
DRFLAC_API drflac* drflac_open_file_with_metadata_w(const wchar_t* pFileName, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
FILE* pFile;
if (drflac_wfopen(&pFile, pFileName, L"rb", pAllocationCallbacks) != DRFLAC_SUCCESS) {
return NULL;
}
pFlac = drflac_open_with_metadata_private(drflac__on_read_stdio, drflac__on_seek_stdio, onMeta, drflac_container_unknown, (void*)pFile, pUserData, pAllocationCallbacks);
if (pFlac == NULL) {
fclose(pFile);
return pFlac;
}
return pFlac;
}
#endif
static size_t drflac__on_read_memory(void* pUserData, void* bufferOut, size_t bytesToRead)
{
drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData;
size_t bytesRemaining;
DRFLAC_ASSERT(memoryStream != NULL);
DRFLAC_ASSERT(memoryStream->dataSize >= memoryStream->currentReadPos);
bytesRemaining = memoryStream->dataSize - memoryStream->currentReadPos;
if (bytesToRead > bytesRemaining) {
bytesToRead = bytesRemaining;
}
if (bytesToRead > 0) {
DRFLAC_COPY_MEMORY(bufferOut, memoryStream->data + memoryStream->currentReadPos, bytesToRead);
memoryStream->currentReadPos += bytesToRead;
}
return bytesToRead;
}
static drflac_bool32 drflac__on_seek_memory(void* pUserData, int offset, drflac_seek_origin origin)
{
drflac__memory_stream* memoryStream = (drflac__memory_stream*)pUserData;
DRFLAC_ASSERT(memoryStream != NULL);
DRFLAC_ASSERT(offset >= 0);
if (offset > (drflac_int64)memoryStream->dataSize) {
return DRFLAC_FALSE;
}
if (origin == drflac_seek_origin_current) {
if (memoryStream->currentReadPos + offset <= memoryStream->dataSize) {
memoryStream->currentReadPos += offset;
} else {
return DRFLAC_FALSE;
}
} else {
if ((drflac_uint32)offset <= memoryStream->dataSize) {
memoryStream->currentReadPos = offset;
} else {
return DRFLAC_FALSE;
}
}
return DRFLAC_TRUE;
}
DRFLAC_API drflac* drflac_open_memory(const void* pData, size_t dataSize, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac__memory_stream memoryStream;
drflac* pFlac;
memoryStream.data = (const drflac_uint8*)pData;
memoryStream.dataSize = dataSize;
memoryStream.currentReadPos = 0;
pFlac = drflac_open(drflac__on_read_memory, drflac__on_seek_memory, &memoryStream, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
pFlac->memoryStream = memoryStream;
#ifndef DR_FLAC_NO_OGG
if (pFlac->container == drflac_container_ogg)
{
drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
oggbs->pUserData = &pFlac->memoryStream;
}
else
#endif
{
pFlac->bs.pUserData = &pFlac->memoryStream;
}
return pFlac;
}
DRFLAC_API drflac* drflac_open_memory_with_metadata(const void* pData, size_t dataSize, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac__memory_stream memoryStream;
drflac* pFlac;
memoryStream.data = (const drflac_uint8*)pData;
memoryStream.dataSize = dataSize;
memoryStream.currentReadPos = 0;
pFlac = drflac_open_with_metadata_private(drflac__on_read_memory, drflac__on_seek_memory, onMeta, drflac_container_unknown, &memoryStream, pUserData, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
pFlac->memoryStream = memoryStream;
#ifndef DR_FLAC_NO_OGG
if (pFlac->container == drflac_container_ogg)
{
drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
oggbs->pUserData = &pFlac->memoryStream;
}
else
#endif
{
pFlac->bs.pUserData = &pFlac->memoryStream;
}
return pFlac;
}
DRFLAC_API drflac* drflac_open(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
{
return drflac_open_with_metadata_private(onRead, onSeek, NULL, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks);
}
DRFLAC_API drflac* drflac_open_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
{
return drflac_open_with_metadata_private(onRead, onSeek, NULL, container, pUserData, pUserData, pAllocationCallbacks);
}
DRFLAC_API drflac* drflac_open_with_metadata(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
{
return drflac_open_with_metadata_private(onRead, onSeek, onMeta, drflac_container_unknown, pUserData, pUserData, pAllocationCallbacks);
}
DRFLAC_API drflac* drflac_open_with_metadata_relaxed(drflac_read_proc onRead, drflac_seek_proc onSeek, drflac_meta_proc onMeta, drflac_container container, void* pUserData, const drflac_allocation_callbacks* pAllocationCallbacks)
{
return drflac_open_with_metadata_private(onRead, onSeek, onMeta, container, pUserData, pUserData, pAllocationCallbacks);
}
DRFLAC_API void drflac_close(drflac* pFlac)
{
if (pFlac == NULL) {
return;
}
#ifndef DR_FLAC_NO_STDIO
if (pFlac->bs.onRead == drflac__on_read_stdio) {
fclose((FILE*)pFlac->bs.pUserData);
}
#ifndef DR_FLAC_NO_OGG
if (pFlac->container == drflac_container_ogg) {
drflac_oggbs* oggbs = (drflac_oggbs*)pFlac->_oggbs;
DRFLAC_ASSERT(pFlac->bs.onRead == drflac__on_read_ogg);
if (oggbs->onRead == drflac__on_read_stdio) {
fclose((FILE*)oggbs->pUserData);
}
}
#endif
#endif
drflac__free_from_callbacks(pFlac, &pFlac->allocationCallbacks);
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
for (i = 0; i < frameCount; ++i) {
drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
drflac_uint32 right = left - side;
pOutputSamples[i*2+0] = (drflac_int32)left;
pOutputSamples[i*2+1] = (drflac_int32)right;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0;
drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0;
drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0;
drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0;
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1;
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1;
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1;
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1;
drflac_uint32 right0 = left0 - side0;
drflac_uint32 right1 = left1 - side1;
drflac_uint32 right2 = left2 - side2;
drflac_uint32 right3 = left3 - side3;
pOutputSamples[i*8+0] = (drflac_int32)left0;
pOutputSamples[i*8+1] = (drflac_int32)right0;
pOutputSamples[i*8+2] = (drflac_int32)left1;
pOutputSamples[i*8+3] = (drflac_int32)right1;
pOutputSamples[i*8+4] = (drflac_int32)left2;
pOutputSamples[i*8+5] = (drflac_int32)right2;
pOutputSamples[i*8+6] = (drflac_int32)left3;
pOutputSamples[i*8+7] = (drflac_int32)right3;
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 left = pInputSamples0U32[i] << shift0;
drflac_uint32 side = pInputSamples1U32[i] << shift1;
drflac_uint32 right = left - side;
pOutputSamples[i*2+0] = (drflac_int32)left;
pOutputSamples[i*2+1] = (drflac_int32)right;
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
for (i = 0; i < frameCount4; ++i) {
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
__m128i right = _mm_sub_epi32(left, side);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 left = pInputSamples0U32[i] << shift0;
drflac_uint32 side = pInputSamples1U32[i] << shift1;
drflac_uint32 right = left - side;
pOutputSamples[i*2+0] = (drflac_int32)left;
pOutputSamples[i*2+1] = (drflac_int32)right;
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
int32x4_t shift0_4;
int32x4_t shift1_4;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
shift0_4 = vdupq_n_s32(shift0);
shift1_4 = vdupq_n_s32(shift1);
for (i = 0; i < frameCount4; ++i) {
uint32x4_t left;
uint32x4_t side;
uint32x4_t right;
left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
right = vsubq_u32(left, side);
drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 left = pInputSamples0U32[i] << shift0;
drflac_uint32 side = pInputSamples1U32[i] << shift1;
drflac_uint32 right = left - side;
pOutputSamples[i*2+0] = (drflac_int32)left;
pOutputSamples[i*2+1] = (drflac_int32)right;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_s32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_s32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
for (i = 0; i < frameCount; ++i) {
drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
drflac_uint32 left = right + side;
pOutputSamples[i*2+0] = (drflac_int32)left;
pOutputSamples[i*2+1] = (drflac_int32)right;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0;
drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0;
drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0;
drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0;
drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1;
drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1;
drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1;
drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1;
drflac_uint32 left0 = right0 + side0;
drflac_uint32 left1 = right1 + side1;
drflac_uint32 left2 = right2 + side2;
drflac_uint32 left3 = right3 + side3;
pOutputSamples[i*8+0] = (drflac_int32)left0;
pOutputSamples[i*8+1] = (drflac_int32)right0;
pOutputSamples[i*8+2] = (drflac_int32)left1;
pOutputSamples[i*8+3] = (drflac_int32)right1;
pOutputSamples[i*8+4] = (drflac_int32)left2;
pOutputSamples[i*8+5] = (drflac_int32)right2;
pOutputSamples[i*8+6] = (drflac_int32)left3;
pOutputSamples[i*8+7] = (drflac_int32)right3;
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 side = pInputSamples0U32[i] << shift0;
drflac_uint32 right = pInputSamples1U32[i] << shift1;
drflac_uint32 left = right + side;
pOutputSamples[i*2+0] = (drflac_int32)left;
pOutputSamples[i*2+1] = (drflac_int32)right;
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
for (i = 0; i < frameCount4; ++i) {
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
__m128i left = _mm_add_epi32(right, side);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 side = pInputSamples0U32[i] << shift0;
drflac_uint32 right = pInputSamples1U32[i] << shift1;
drflac_uint32 left = right + side;
pOutputSamples[i*2+0] = (drflac_int32)left;
pOutputSamples[i*2+1] = (drflac_int32)right;
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
int32x4_t shift0_4;
int32x4_t shift1_4;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
shift0_4 = vdupq_n_s32(shift0);
shift1_4 = vdupq_n_s32(shift1);
for (i = 0; i < frameCount4; ++i) {
uint32x4_t side;
uint32x4_t right;
uint32x4_t left;
side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
left = vaddq_u32(right, side);
drflac__vst2q_u32((drflac_uint32*)pOutputSamples + i*8, vzipq_u32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 side = pInputSamples0U32[i] << shift0;
drflac_uint32 right = pInputSamples1U32[i] << shift1;
drflac_uint32 left = right + side;
pOutputSamples[i*2+0] = (drflac_int32)left;
pOutputSamples[i*2+1] = (drflac_int32)right;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_s32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_s32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
for (drflac_uint64 i = 0; i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample);
pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample);
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_int32 shift = unusedBitsPerSample;
if (shift > 0) {
shift -= 1;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 temp0L;
drflac_uint32 temp1L;
drflac_uint32 temp2L;
drflac_uint32 temp3L;
drflac_uint32 temp0R;
drflac_uint32 temp1R;
drflac_uint32 temp2R;
drflac_uint32 temp3R;
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid0 = (mid0 << 1) | (side0 & 0x01);
mid1 = (mid1 << 1) | (side1 & 0x01);
mid2 = (mid2 << 1) | (side2 & 0x01);
mid3 = (mid3 << 1) | (side3 & 0x01);
temp0L = (mid0 + side0) << shift;
temp1L = (mid1 + side1) << shift;
temp2L = (mid2 + side2) << shift;
temp3L = (mid3 + side3) << shift;
temp0R = (mid0 - side0) << shift;
temp1R = (mid1 - side1) << shift;
temp2R = (mid2 - side2) << shift;
temp3R = (mid3 - side3) << shift;
pOutputSamples[i*8+0] = (drflac_int32)temp0L;
pOutputSamples[i*8+1] = (drflac_int32)temp0R;
pOutputSamples[i*8+2] = (drflac_int32)temp1L;
pOutputSamples[i*8+3] = (drflac_int32)temp1R;
pOutputSamples[i*8+4] = (drflac_int32)temp2L;
pOutputSamples[i*8+5] = (drflac_int32)temp2R;
pOutputSamples[i*8+6] = (drflac_int32)temp3L;
pOutputSamples[i*8+7] = (drflac_int32)temp3R;
}
} else {
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 temp0L;
drflac_uint32 temp1L;
drflac_uint32 temp2L;
drflac_uint32 temp3L;
drflac_uint32 temp0R;
drflac_uint32 temp1R;
drflac_uint32 temp2R;
drflac_uint32 temp3R;
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid0 = (mid0 << 1) | (side0 & 0x01);
mid1 = (mid1 << 1) | (side1 & 0x01);
mid2 = (mid2 << 1) | (side2 & 0x01);
mid3 = (mid3 << 1) | (side3 & 0x01);
temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1);
temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1);
temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1);
temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1);
temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1);
temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1);
temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1);
temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1);
pOutputSamples[i*8+0] = (drflac_int32)temp0L;
pOutputSamples[i*8+1] = (drflac_int32)temp0R;
pOutputSamples[i*8+2] = (drflac_int32)temp1L;
pOutputSamples[i*8+3] = (drflac_int32)temp1R;
pOutputSamples[i*8+4] = (drflac_int32)temp2L;
pOutputSamples[i*8+5] = (drflac_int32)temp2R;
pOutputSamples[i*8+6] = (drflac_int32)temp3L;
pOutputSamples[i*8+7] = (drflac_int32)temp3R;
}
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample);
pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample);
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_int32 shift = unusedBitsPerSample;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
if (shift == 0) {
for (i = 0; i < frameCount4; ++i) {
__m128i mid;
__m128i side;
__m128i left;
__m128i right;
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1);
right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1;
pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1;
}
} else {
shift -= 1;
for (i = 0; i < frameCount4; ++i) {
__m128i mid;
__m128i side;
__m128i left;
__m128i right;
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift);
right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift);
pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift);
}
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_int32 shift = unusedBitsPerSample;
int32x4_t wbpsShift0_4;
int32x4_t wbpsShift1_4;
uint32x4_t one4;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
one4 = vdupq_n_u32(1);
if (shift == 0) {
for (i = 0; i < frameCount4; ++i) {
uint32x4_t mid;
uint32x4_t side;
int32x4_t left;
int32x4_t right;
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4));
left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1);
right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1);
drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int32)(mid + side) >> 1;
pOutputSamples[i*2+1] = (drflac_int32)(mid - side) >> 1;
}
} else {
int32x4_t shift4;
shift -= 1;
shift4 = vdupq_n_s32(shift);
for (i = 0; i < frameCount4; ++i) {
uint32x4_t mid;
uint32x4_t side;
int32x4_t left;
int32x4_t right;
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, one4));
left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4));
right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4));
drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift);
pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift);
}
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_s32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_s32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
for (drflac_uint64 i = 0; i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample));
pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample));
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0;
drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0;
drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0;
drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0;
drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1;
drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1;
drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1;
drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1;
pOutputSamples[i*8+0] = (drflac_int32)tempL0;
pOutputSamples[i*8+1] = (drflac_int32)tempR0;
pOutputSamples[i*8+2] = (drflac_int32)tempL1;
pOutputSamples[i*8+3] = (drflac_int32)tempR1;
pOutputSamples[i*8+4] = (drflac_int32)tempL2;
pOutputSamples[i*8+5] = (drflac_int32)tempR2;
pOutputSamples[i*8+6] = (drflac_int32)tempL3;
pOutputSamples[i*8+7] = (drflac_int32)tempR3;
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0);
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1);
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
for (i = 0; i < frameCount4; ++i) {
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 0), _mm_unpacklo_epi32(left, right));
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8 + 4), _mm_unpackhi_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0);
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1);
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
int32x4_t shift4_0 = vdupq_n_s32(shift0);
int32x4_t shift4_1 = vdupq_n_s32(shift1);
for (i = 0; i < frameCount4; ++i) {
int32x4_t left;
int32x4_t right;
left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift4_0));
right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift4_1));
drflac__vst2q_s32(pOutputSamples + i*8, vzipq_s32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0);
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1);
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int32* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_s32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_s32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s32(drflac* pFlac, drflac_uint64 framesToRead, drflac_int32* pBufferOut)
{
drflac_uint64 framesRead;
drflac_uint32 unusedBitsPerSample;
if (pFlac == NULL || framesToRead == 0) {
return 0;
}
if (pBufferOut == NULL) {
return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead);
}
DRFLAC_ASSERT(pFlac->bitsPerSample <= 32);
unusedBitsPerSample = 32 - pFlac->bitsPerSample;
framesRead = 0;
while (framesToRead > 0) {
if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
break;
}
} else {
unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining;
drflac_uint64 frameCountThisIteration = framesToRead;
if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) {
frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining;
}
if (channelCount == 2) {
const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame;
const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame;
switch (pFlac->currentFLACFrame.header.channelAssignment)
{
case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE:
{
drflac_read_pcm_frames_s32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE:
{
drflac_read_pcm_frames_s32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE:
{
drflac_read_pcm_frames_s32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT:
default:
{
drflac_read_pcm_frames_s32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
}
} else {
drflac_uint64 i;
for (i = 0; i < frameCountThisIteration; ++i) {
unsigned int j;
for (j = 0; j < channelCount; ++j) {
pBufferOut[(i*channelCount)+j] = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample));
}
}
}
framesRead += frameCountThisIteration;
pBufferOut += frameCountThisIteration * channelCount;
framesToRead -= frameCountThisIteration;
pFlac->currentPCMFrame += frameCountThisIteration;
pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration;
}
}
return framesRead;
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
for (i = 0; i < frameCount; ++i) {
drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
drflac_uint32 right = left - side;
left >>= 16;
right >>= 16;
pOutputSamples[i*2+0] = (drflac_int16)left;
pOutputSamples[i*2+1] = (drflac_int16)right;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0;
drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0;
drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0;
drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0;
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1;
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1;
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1;
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1;
drflac_uint32 right0 = left0 - side0;
drflac_uint32 right1 = left1 - side1;
drflac_uint32 right2 = left2 - side2;
drflac_uint32 right3 = left3 - side3;
left0 >>= 16;
left1 >>= 16;
left2 >>= 16;
left3 >>= 16;
right0 >>= 16;
right1 >>= 16;
right2 >>= 16;
right3 >>= 16;
pOutputSamples[i*8+0] = (drflac_int16)left0;
pOutputSamples[i*8+1] = (drflac_int16)right0;
pOutputSamples[i*8+2] = (drflac_int16)left1;
pOutputSamples[i*8+3] = (drflac_int16)right1;
pOutputSamples[i*8+4] = (drflac_int16)left2;
pOutputSamples[i*8+5] = (drflac_int16)right2;
pOutputSamples[i*8+6] = (drflac_int16)left3;
pOutputSamples[i*8+7] = (drflac_int16)right3;
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 left = pInputSamples0U32[i] << shift0;
drflac_uint32 side = pInputSamples1U32[i] << shift1;
drflac_uint32 right = left - side;
left >>= 16;
right >>= 16;
pOutputSamples[i*2+0] = (drflac_int16)left;
pOutputSamples[i*2+1] = (drflac_int16)right;
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
for (i = 0; i < frameCount4; ++i) {
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
__m128i right = _mm_sub_epi32(left, side);
left = _mm_srai_epi32(left, 16);
right = _mm_srai_epi32(right, 16);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 left = pInputSamples0U32[i] << shift0;
drflac_uint32 side = pInputSamples1U32[i] << shift1;
drflac_uint32 right = left - side;
left >>= 16;
right >>= 16;
pOutputSamples[i*2+0] = (drflac_int16)left;
pOutputSamples[i*2+1] = (drflac_int16)right;
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
int32x4_t shift0_4;
int32x4_t shift1_4;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
shift0_4 = vdupq_n_s32(shift0);
shift1_4 = vdupq_n_s32(shift1);
for (i = 0; i < frameCount4; ++i) {
uint32x4_t left;
uint32x4_t side;
uint32x4_t right;
left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
right = vsubq_u32(left, side);
left = vshrq_n_u32(left, 16);
right = vshrq_n_u32(right, 16);
drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right)));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 left = pInputSamples0U32[i] << shift0;
drflac_uint32 side = pInputSamples1U32[i] << shift1;
drflac_uint32 right = left - side;
left >>= 16;
right >>= 16;
pOutputSamples[i*2+0] = (drflac_int16)left;
pOutputSamples[i*2+1] = (drflac_int16)right;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s16__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s16__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_s16__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_s16__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
for (i = 0; i < frameCount; ++i) {
drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
drflac_uint32 left = right + side;
left >>= 16;
right >>= 16;
pOutputSamples[i*2+0] = (drflac_int16)left;
pOutputSamples[i*2+1] = (drflac_int16)right;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0;
drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0;
drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0;
drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0;
drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1;
drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1;
drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1;
drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1;
drflac_uint32 left0 = right0 + side0;
drflac_uint32 left1 = right1 + side1;
drflac_uint32 left2 = right2 + side2;
drflac_uint32 left3 = right3 + side3;
left0 >>= 16;
left1 >>= 16;
left2 >>= 16;
left3 >>= 16;
right0 >>= 16;
right1 >>= 16;
right2 >>= 16;
right3 >>= 16;
pOutputSamples[i*8+0] = (drflac_int16)left0;
pOutputSamples[i*8+1] = (drflac_int16)right0;
pOutputSamples[i*8+2] = (drflac_int16)left1;
pOutputSamples[i*8+3] = (drflac_int16)right1;
pOutputSamples[i*8+4] = (drflac_int16)left2;
pOutputSamples[i*8+5] = (drflac_int16)right2;
pOutputSamples[i*8+6] = (drflac_int16)left3;
pOutputSamples[i*8+7] = (drflac_int16)right3;
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 side = pInputSamples0U32[i] << shift0;
drflac_uint32 right = pInputSamples1U32[i] << shift1;
drflac_uint32 left = right + side;
left >>= 16;
right >>= 16;
pOutputSamples[i*2+0] = (drflac_int16)left;
pOutputSamples[i*2+1] = (drflac_int16)right;
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
for (i = 0; i < frameCount4; ++i) {
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
__m128i left = _mm_add_epi32(right, side);
left = _mm_srai_epi32(left, 16);
right = _mm_srai_epi32(right, 16);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 side = pInputSamples0U32[i] << shift0;
drflac_uint32 right = pInputSamples1U32[i] << shift1;
drflac_uint32 left = right + side;
left >>= 16;
right >>= 16;
pOutputSamples[i*2+0] = (drflac_int16)left;
pOutputSamples[i*2+1] = (drflac_int16)right;
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
int32x4_t shift0_4;
int32x4_t shift1_4;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
shift0_4 = vdupq_n_s32(shift0);
shift1_4 = vdupq_n_s32(shift1);
for (i = 0; i < frameCount4; ++i) {
uint32x4_t side;
uint32x4_t right;
uint32x4_t left;
side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
left = vaddq_u32(right, side);
left = vshrq_n_u32(left, 16);
right = vshrq_n_u32(right, 16);
drflac__vst2q_u16((drflac_uint16*)pOutputSamples + i*8, vzip_u16(vmovn_u32(left), vmovn_u32(right)));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 side = pInputSamples0U32[i] << shift0;
drflac_uint32 right = pInputSamples1U32[i] << shift1;
drflac_uint32 left = right + side;
left >>= 16;
right >>= 16;
pOutputSamples[i*2+0] = (drflac_int16)left;
pOutputSamples[i*2+1] = (drflac_int16)right;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s16__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s16__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_s16__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_s16__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
for (drflac_uint64 i = 0; i < frameCount; ++i) {
drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16);
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift = unusedBitsPerSample;
if (shift > 0) {
shift -= 1;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 temp0L;
drflac_uint32 temp1L;
drflac_uint32 temp2L;
drflac_uint32 temp3L;
drflac_uint32 temp0R;
drflac_uint32 temp1R;
drflac_uint32 temp2R;
drflac_uint32 temp3R;
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid0 = (mid0 << 1) | (side0 & 0x01);
mid1 = (mid1 << 1) | (side1 & 0x01);
mid2 = (mid2 << 1) | (side2 & 0x01);
mid3 = (mid3 << 1) | (side3 & 0x01);
temp0L = (mid0 + side0) << shift;
temp1L = (mid1 + side1) << shift;
temp2L = (mid2 + side2) << shift;
temp3L = (mid3 + side3) << shift;
temp0R = (mid0 - side0) << shift;
temp1R = (mid1 - side1) << shift;
temp2R = (mid2 - side2) << shift;
temp3R = (mid3 - side3) << shift;
temp0L >>= 16;
temp1L >>= 16;
temp2L >>= 16;
temp3L >>= 16;
temp0R >>= 16;
temp1R >>= 16;
temp2R >>= 16;
temp3R >>= 16;
pOutputSamples[i*8+0] = (drflac_int16)temp0L;
pOutputSamples[i*8+1] = (drflac_int16)temp0R;
pOutputSamples[i*8+2] = (drflac_int16)temp1L;
pOutputSamples[i*8+3] = (drflac_int16)temp1R;
pOutputSamples[i*8+4] = (drflac_int16)temp2L;
pOutputSamples[i*8+5] = (drflac_int16)temp2R;
pOutputSamples[i*8+6] = (drflac_int16)temp3L;
pOutputSamples[i*8+7] = (drflac_int16)temp3R;
}
} else {
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 temp0L;
drflac_uint32 temp1L;
drflac_uint32 temp2L;
drflac_uint32 temp3L;
drflac_uint32 temp0R;
drflac_uint32 temp1R;
drflac_uint32 temp2R;
drflac_uint32 temp3R;
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid0 = (mid0 << 1) | (side0 & 0x01);
mid1 = (mid1 << 1) | (side1 & 0x01);
mid2 = (mid2 << 1) | (side2 & 0x01);
mid3 = (mid3 << 1) | (side3 & 0x01);
temp0L = ((drflac_int32)(mid0 + side0) >> 1);
temp1L = ((drflac_int32)(mid1 + side1) >> 1);
temp2L = ((drflac_int32)(mid2 + side2) >> 1);
temp3L = ((drflac_int32)(mid3 + side3) >> 1);
temp0R = ((drflac_int32)(mid0 - side0) >> 1);
temp1R = ((drflac_int32)(mid1 - side1) >> 1);
temp2R = ((drflac_int32)(mid2 - side2) >> 1);
temp3R = ((drflac_int32)(mid3 - side3) >> 1);
temp0L >>= 16;
temp1L >>= 16;
temp2L >>= 16;
temp3L >>= 16;
temp0R >>= 16;
temp1R >>= 16;
temp2R >>= 16;
temp3R >>= 16;
pOutputSamples[i*8+0] = (drflac_int16)temp0L;
pOutputSamples[i*8+1] = (drflac_int16)temp0R;
pOutputSamples[i*8+2] = (drflac_int16)temp1L;
pOutputSamples[i*8+3] = (drflac_int16)temp1R;
pOutputSamples[i*8+4] = (drflac_int16)temp2L;
pOutputSamples[i*8+5] = (drflac_int16)temp2R;
pOutputSamples[i*8+6] = (drflac_int16)temp3L;
pOutputSamples[i*8+7] = (drflac_int16)temp3R;
}
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)(((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) >> 16);
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift = unusedBitsPerSample;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
if (shift == 0) {
for (i = 0; i < frameCount4; ++i) {
__m128i mid;
__m128i side;
__m128i left;
__m128i right;
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
left = _mm_srai_epi32(_mm_add_epi32(mid, side), 1);
right = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1);
left = _mm_srai_epi32(left, 16);
right = _mm_srai_epi32(right, 16);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16);
}
} else {
shift -= 1;
for (i = 0; i < frameCount4; ++i) {
__m128i mid;
__m128i side;
__m128i left;
__m128i right;
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
left = _mm_slli_epi32(_mm_add_epi32(mid, side), shift);
right = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift);
left = _mm_srai_epi32(left, 16);
right = _mm_srai_epi32(right, 16);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16);
}
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift = unusedBitsPerSample;
int32x4_t wbpsShift0_4;
int32x4_t wbpsShift1_4;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
wbpsShift0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
wbpsShift1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
if (shift == 0) {
for (i = 0; i < frameCount4; ++i) {
uint32x4_t mid;
uint32x4_t side;
int32x4_t left;
int32x4_t right;
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
left = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1);
right = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1);
left = vshrq_n_s32(left, 16);
right = vshrq_n_s32(right, 16);
drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right)));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int16)(((drflac_int32)(mid + side) >> 1) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)(((drflac_int32)(mid - side) >> 1) >> 16);
}
} else {
int32x4_t shift4;
shift -= 1;
shift4 = vdupq_n_s32(shift);
for (i = 0; i < frameCount4; ++i) {
uint32x4_t mid;
uint32x4_t side;
int32x4_t left;
int32x4_t right;
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbpsShift0_4);
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbpsShift1_4);
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
left = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4));
right = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4));
left = vshrq_n_s32(left, 16);
right = vshrq_n_s32(right, 16);
drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right)));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int16)(((mid + side) << shift) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)(((mid - side) << shift) >> 16);
}
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s16__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s16__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_s16__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_s16__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
for (drflac_uint64 i = 0; i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) >> 16);
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0;
drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0;
drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0;
drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0;
drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1;
drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1;
drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1;
drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1;
tempL0 >>= 16;
tempL1 >>= 16;
tempL2 >>= 16;
tempL3 >>= 16;
tempR0 >>= 16;
tempR1 >>= 16;
tempR2 >>= 16;
tempR3 >>= 16;
pOutputSamples[i*8+0] = (drflac_int16)tempL0;
pOutputSamples[i*8+1] = (drflac_int16)tempR0;
pOutputSamples[i*8+2] = (drflac_int16)tempL1;
pOutputSamples[i*8+3] = (drflac_int16)tempR1;
pOutputSamples[i*8+4] = (drflac_int16)tempL2;
pOutputSamples[i*8+5] = (drflac_int16)tempR2;
pOutputSamples[i*8+6] = (drflac_int16)tempL3;
pOutputSamples[i*8+7] = (drflac_int16)tempR3;
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16);
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
for (i = 0; i < frameCount4; ++i) {
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
left = _mm_srai_epi32(left, 16);
right = _mm_srai_epi32(right, 16);
_mm_storeu_si128((__m128i*)(pOutputSamples + i*8), drflac__mm_packs_interleaved_epi32(left, right));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16);
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
int32x4_t shift0_4 = vdupq_n_s32(shift0);
int32x4_t shift1_4 = vdupq_n_s32(shift1);
for (i = 0; i < frameCount4; ++i) {
int32x4_t left;
int32x4_t right;
left = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4));
right = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4));
left = vshrq_n_s32(left, 16);
right = vshrq_n_s32(right, 16);
drflac__vst2q_s16(pOutputSamples + i*8, vzip_s16(vmovn_s32(left), vmovn_s32(right)));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int16)((pInputSamples0U32[i] << shift0) >> 16);
pOutputSamples[i*2+1] = (drflac_int16)((pInputSamples1U32[i] << shift1) >> 16);
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_s16__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, drflac_int16* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s16__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_s16__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_s16__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_s16__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_s16(drflac* pFlac, drflac_uint64 framesToRead, drflac_int16* pBufferOut)
{
drflac_uint64 framesRead;
drflac_uint32 unusedBitsPerSample;
if (pFlac == NULL || framesToRead == 0) {
return 0;
}
if (pBufferOut == NULL) {
return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead);
}
DRFLAC_ASSERT(pFlac->bitsPerSample <= 32);
unusedBitsPerSample = 32 - pFlac->bitsPerSample;
framesRead = 0;
while (framesToRead > 0) {
if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
break;
}
} else {
unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining;
drflac_uint64 frameCountThisIteration = framesToRead;
if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) {
frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining;
}
if (channelCount == 2) {
const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame;
const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame;
switch (pFlac->currentFLACFrame.header.channelAssignment)
{
case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE:
{
drflac_read_pcm_frames_s16__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE:
{
drflac_read_pcm_frames_s16__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE:
{
drflac_read_pcm_frames_s16__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT:
default:
{
drflac_read_pcm_frames_s16__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
}
} else {
drflac_uint64 i;
for (i = 0; i < frameCountThisIteration; ++i) {
unsigned int j;
for (j = 0; j < channelCount; ++j) {
drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample));
pBufferOut[(i*channelCount)+j] = (drflac_int16)(sampleS32 >> 16);
}
}
}
framesRead += frameCountThisIteration;
pBufferOut += frameCountThisIteration * channelCount;
framesToRead -= frameCountThisIteration;
pFlac->currentPCMFrame += frameCountThisIteration;
pFlac->currentFLACFrame.pcmFramesRemaining -= (drflac_uint32)frameCountThisIteration;
}
}
return framesRead;
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
for (i = 0; i < frameCount; ++i) {
drflac_uint32 left = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
drflac_uint32 right = left - side;
pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0);
pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0);
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
float factor = 1 / 2147483648.0;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 left0 = pInputSamples0U32[i*4+0] << shift0;
drflac_uint32 left1 = pInputSamples0U32[i*4+1] << shift0;
drflac_uint32 left2 = pInputSamples0U32[i*4+2] << shift0;
drflac_uint32 left3 = pInputSamples0U32[i*4+3] << shift0;
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << shift1;
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << shift1;
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << shift1;
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << shift1;
drflac_uint32 right0 = left0 - side0;
drflac_uint32 right1 = left1 - side1;
drflac_uint32 right2 = left2 - side2;
drflac_uint32 right3 = left3 - side3;
pOutputSamples[i*8+0] = (drflac_int32)left0 * factor;
pOutputSamples[i*8+1] = (drflac_int32)right0 * factor;
pOutputSamples[i*8+2] = (drflac_int32)left1 * factor;
pOutputSamples[i*8+3] = (drflac_int32)right1 * factor;
pOutputSamples[i*8+4] = (drflac_int32)left2 * factor;
pOutputSamples[i*8+5] = (drflac_int32)right2 * factor;
pOutputSamples[i*8+6] = (drflac_int32)left3 * factor;
pOutputSamples[i*8+7] = (drflac_int32)right3 * factor;
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 left = pInputSamples0U32[i] << shift0;
drflac_uint32 side = pInputSamples1U32[i] << shift1;
drflac_uint32 right = left - side;
pOutputSamples[i*2+0] = (drflac_int32)left * factor;
pOutputSamples[i*2+1] = (drflac_int32)right * factor;
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
__m128 factor;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
factor = _mm_set1_ps(1.0f / 8388608.0f);
for (i = 0; i < frameCount4; ++i) {
__m128i left = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
__m128i right = _mm_sub_epi32(left, side);
__m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor);
__m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor);
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 left = pInputSamples0U32[i] << shift0;
drflac_uint32 side = pInputSamples1U32[i] << shift1;
drflac_uint32 right = left - side;
pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
float32x4_t factor4;
int32x4_t shift0_4;
int32x4_t shift1_4;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
factor4 = vdupq_n_f32(1.0f / 8388608.0f);
shift0_4 = vdupq_n_s32(shift0);
shift1_4 = vdupq_n_s32(shift1);
for (i = 0; i < frameCount4; ++i) {
uint32x4_t left;
uint32x4_t side;
uint32x4_t right;
float32x4_t leftf;
float32x4_t rightf;
left = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
right = vsubq_u32(left, side);
leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4);
rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4);
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 left = pInputSamples0U32[i] << shift0;
drflac_uint32 side = pInputSamples1U32[i] << shift1;
drflac_uint32 right = left - side;
pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_left_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_f32__decode_left_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_f32__decode_left_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_f32__decode_left_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_f32__decode_left_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
for (i = 0; i < frameCount; ++i) {
drflac_uint32 side = (drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
drflac_uint32 right = (drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
drflac_uint32 left = right + side;
pOutputSamples[i*2+0] = (float)((drflac_int32)left / 2147483648.0);
pOutputSamples[i*2+1] = (float)((drflac_int32)right / 2147483648.0);
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
float factor = 1 / 2147483648.0;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 side0 = pInputSamples0U32[i*4+0] << shift0;
drflac_uint32 side1 = pInputSamples0U32[i*4+1] << shift0;
drflac_uint32 side2 = pInputSamples0U32[i*4+2] << shift0;
drflac_uint32 side3 = pInputSamples0U32[i*4+3] << shift0;
drflac_uint32 right0 = pInputSamples1U32[i*4+0] << shift1;
drflac_uint32 right1 = pInputSamples1U32[i*4+1] << shift1;
drflac_uint32 right2 = pInputSamples1U32[i*4+2] << shift1;
drflac_uint32 right3 = pInputSamples1U32[i*4+3] << shift1;
drflac_uint32 left0 = right0 + side0;
drflac_uint32 left1 = right1 + side1;
drflac_uint32 left2 = right2 + side2;
drflac_uint32 left3 = right3 + side3;
pOutputSamples[i*8+0] = (drflac_int32)left0 * factor;
pOutputSamples[i*8+1] = (drflac_int32)right0 * factor;
pOutputSamples[i*8+2] = (drflac_int32)left1 * factor;
pOutputSamples[i*8+3] = (drflac_int32)right1 * factor;
pOutputSamples[i*8+4] = (drflac_int32)left2 * factor;
pOutputSamples[i*8+5] = (drflac_int32)right2 * factor;
pOutputSamples[i*8+6] = (drflac_int32)left3 * factor;
pOutputSamples[i*8+7] = (drflac_int32)right3 * factor;
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 side = pInputSamples0U32[i] << shift0;
drflac_uint32 right = pInputSamples1U32[i] << shift1;
drflac_uint32 left = right + side;
pOutputSamples[i*2+0] = (drflac_int32)left * factor;
pOutputSamples[i*2+1] = (drflac_int32)right * factor;
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
__m128 factor;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
factor = _mm_set1_ps(1.0f / 8388608.0f);
for (i = 0; i < frameCount4; ++i) {
__m128i side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
__m128i right = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
__m128i left = _mm_add_epi32(right, side);
__m128 leftf = _mm_mul_ps(_mm_cvtepi32_ps(left), factor);
__m128 rightf = _mm_mul_ps(_mm_cvtepi32_ps(right), factor);
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 side = pInputSamples0U32[i] << shift0;
drflac_uint32 right = pInputSamples1U32[i] << shift1;
drflac_uint32 left = right + side;
pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
float32x4_t factor4;
int32x4_t shift0_4;
int32x4_t shift1_4;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
factor4 = vdupq_n_f32(1.0f / 8388608.0f);
shift0_4 = vdupq_n_s32(shift0);
shift1_4 = vdupq_n_s32(shift1);
for (i = 0; i < frameCount4; ++i) {
uint32x4_t side;
uint32x4_t right;
uint32x4_t left;
float32x4_t leftf;
float32x4_t rightf;
side = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4);
right = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4);
left = vaddq_u32(right, side);
leftf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(left)), factor4);
rightf = vmulq_f32(vcvtq_f32_s32(vreinterpretq_s32_u32(right)), factor4);
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 side = pInputSamples0U32[i] << shift0;
drflac_uint32 right = pInputSamples1U32[i] << shift1;
drflac_uint32 left = right + side;
pOutputSamples[i*2+0] = (drflac_int32)left / 8388608.0f;
pOutputSamples[i*2+1] = (drflac_int32)right / 8388608.0f;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_right_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_f32__decode_right_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_f32__decode_right_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_f32__decode_right_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_f32__decode_right_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
for (drflac_uint64 i = 0; i < frameCount; ++i) {
drflac_uint32 mid = (drflac_uint32)pInputSamples0[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = (drflac_uint32)pInputSamples1[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (float)((((drflac_int32)(mid + side) >> 1) << (unusedBitsPerSample)) / 2147483648.0);
pOutputSamples[i*2+1] = (float)((((drflac_int32)(mid - side) >> 1) << (unusedBitsPerSample)) / 2147483648.0);
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift = unusedBitsPerSample;
float factor = 1 / 2147483648.0;
if (shift > 0) {
shift -= 1;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 temp0L;
drflac_uint32 temp1L;
drflac_uint32 temp2L;
drflac_uint32 temp3L;
drflac_uint32 temp0R;
drflac_uint32 temp1R;
drflac_uint32 temp2R;
drflac_uint32 temp3R;
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid0 = (mid0 << 1) | (side0 & 0x01);
mid1 = (mid1 << 1) | (side1 & 0x01);
mid2 = (mid2 << 1) | (side2 & 0x01);
mid3 = (mid3 << 1) | (side3 & 0x01);
temp0L = (mid0 + side0) << shift;
temp1L = (mid1 + side1) << shift;
temp2L = (mid2 + side2) << shift;
temp3L = (mid3 + side3) << shift;
temp0R = (mid0 - side0) << shift;
temp1R = (mid1 - side1) << shift;
temp2R = (mid2 - side2) << shift;
temp3R = (mid3 - side3) << shift;
pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor;
pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor;
pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor;
pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor;
pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor;
pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor;
pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor;
pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor;
}
} else {
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 temp0L;
drflac_uint32 temp1L;
drflac_uint32 temp2L;
drflac_uint32 temp3L;
drflac_uint32 temp0R;
drflac_uint32 temp1R;
drflac_uint32 temp2R;
drflac_uint32 temp3R;
drflac_uint32 mid0 = pInputSamples0U32[i*4+0] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid1 = pInputSamples0U32[i*4+1] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid2 = pInputSamples0U32[i*4+2] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 mid3 = pInputSamples0U32[i*4+3] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side0 = pInputSamples1U32[i*4+0] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side1 = pInputSamples1U32[i*4+1] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side2 = pInputSamples1U32[i*4+2] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
drflac_uint32 side3 = pInputSamples1U32[i*4+3] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid0 = (mid0 << 1) | (side0 & 0x01);
mid1 = (mid1 << 1) | (side1 & 0x01);
mid2 = (mid2 << 1) | (side2 & 0x01);
mid3 = (mid3 << 1) | (side3 & 0x01);
temp0L = (drflac_uint32)((drflac_int32)(mid0 + side0) >> 1);
temp1L = (drflac_uint32)((drflac_int32)(mid1 + side1) >> 1);
temp2L = (drflac_uint32)((drflac_int32)(mid2 + side2) >> 1);
temp3L = (drflac_uint32)((drflac_int32)(mid3 + side3) >> 1);
temp0R = (drflac_uint32)((drflac_int32)(mid0 - side0) >> 1);
temp1R = (drflac_uint32)((drflac_int32)(mid1 - side1) >> 1);
temp2R = (drflac_uint32)((drflac_int32)(mid2 - side2) >> 1);
temp3R = (drflac_uint32)((drflac_int32)(mid3 - side3) >> 1);
pOutputSamples[i*8+0] = (drflac_int32)temp0L * factor;
pOutputSamples[i*8+1] = (drflac_int32)temp0R * factor;
pOutputSamples[i*8+2] = (drflac_int32)temp1L * factor;
pOutputSamples[i*8+3] = (drflac_int32)temp1R * factor;
pOutputSamples[i*8+4] = (drflac_int32)temp2L * factor;
pOutputSamples[i*8+5] = (drflac_int32)temp2R * factor;
pOutputSamples[i*8+6] = (drflac_int32)temp3L * factor;
pOutputSamples[i*8+7] = (drflac_int32)temp3R * factor;
}
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid + side) >> 1) << unusedBitsPerSample) * factor;
pOutputSamples[i*2+1] = (drflac_int32)((drflac_uint32)((drflac_int32)(mid - side) >> 1) << unusedBitsPerSample) * factor;
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift = unusedBitsPerSample - 8;
float factor;
__m128 factor128;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
factor = 1.0f / 8388608.0f;
factor128 = _mm_set1_ps(factor);
if (shift == 0) {
for (i = 0; i < frameCount4; ++i) {
__m128i mid;
__m128i side;
__m128i tempL;
__m128i tempR;
__m128 leftf;
__m128 rightf;
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
tempL = _mm_srai_epi32(_mm_add_epi32(mid, side), 1);
tempR = _mm_srai_epi32(_mm_sub_epi32(mid, side), 1);
leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128);
rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128);
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor;
pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor;
}
} else {
shift -= 1;
for (i = 0; i < frameCount4; ++i) {
__m128i mid;
__m128i side;
__m128i tempL;
__m128i tempR;
__m128 leftf;
__m128 rightf;
mid = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
side = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
mid = _mm_or_si128(_mm_slli_epi32(mid, 1), _mm_and_si128(side, _mm_set1_epi32(0x01)));
tempL = _mm_slli_epi32(_mm_add_epi32(mid, side), shift);
tempR = _mm_slli_epi32(_mm_sub_epi32(mid, side), shift);
leftf = _mm_mul_ps(_mm_cvtepi32_ps(tempL), factor128);
rightf = _mm_mul_ps(_mm_cvtepi32_ps(tempR), factor128);
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor;
pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor;
}
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift = unusedBitsPerSample - 8;
float factor;
float32x4_t factor4;
int32x4_t shift4;
int32x4_t wbps0_4;
int32x4_t wbps1_4;
DRFLAC_ASSERT(pFlac->bitsPerSample <= 24);
factor = 1.0f / 8388608.0f;
factor4 = vdupq_n_f32(factor);
wbps0_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample);
wbps1_4 = vdupq_n_s32(pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample);
if (shift == 0) {
for (i = 0; i < frameCount4; ++i) {
int32x4_t lefti;
int32x4_t righti;
float32x4_t leftf;
float32x4_t rightf;
uint32x4_t mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4);
uint32x4_t side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4);
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
lefti = vshrq_n_s32(vreinterpretq_s32_u32(vaddq_u32(mid, side)), 1);
righti = vshrq_n_s32(vreinterpretq_s32_u32(vsubq_u32(mid, side)), 1);
leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4);
rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4);
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = ((drflac_int32)(mid + side) >> 1) * factor;
pOutputSamples[i*2+1] = ((drflac_int32)(mid - side) >> 1) * factor;
}
} else {
shift -= 1;
shift4 = vdupq_n_s32(shift);
for (i = 0; i < frameCount4; ++i) {
uint32x4_t mid;
uint32x4_t side;
int32x4_t lefti;
int32x4_t righti;
float32x4_t leftf;
float32x4_t rightf;
mid = vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), wbps0_4);
side = vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), wbps1_4);
mid = vorrq_u32(vshlq_n_u32(mid, 1), vandq_u32(side, vdupq_n_u32(1)));
lefti = vreinterpretq_s32_u32(vshlq_u32(vaddq_u32(mid, side), shift4));
righti = vreinterpretq_s32_u32(vshlq_u32(vsubq_u32(mid, side), shift4));
leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4);
rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4);
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
drflac_uint32 mid = pInputSamples0U32[i] << pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 side = pInputSamples1U32[i] << pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
mid = (mid << 1) | (side & 0x01);
pOutputSamples[i*2+0] = (drflac_int32)((mid + side) << shift) * factor;
pOutputSamples[i*2+1] = (drflac_int32)((mid - side) << shift) * factor;
}
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_mid_side(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_f32__decode_mid_side__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_f32__decode_mid_side__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_f32__decode_mid_side__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_f32__decode_mid_side__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
#if 0
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__reference(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
for (drflac_uint64 i = 0; i < frameCount; ++i) {
pOutputSamples[i*2+0] = (float)((drflac_int32)((drflac_uint32)pInputSamples0[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample)) / 2147483648.0);
pOutputSamples[i*2+1] = (float)((drflac_int32)((drflac_uint32)pInputSamples1[i] << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample)) / 2147483648.0);
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample;
drflac_uint32 shift1 = unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample;
float factor = 1 / 2147483648.0;
for (i = 0; i < frameCount4; ++i) {
drflac_uint32 tempL0 = pInputSamples0U32[i*4+0] << shift0;
drflac_uint32 tempL1 = pInputSamples0U32[i*4+1] << shift0;
drflac_uint32 tempL2 = pInputSamples0U32[i*4+2] << shift0;
drflac_uint32 tempL3 = pInputSamples0U32[i*4+3] << shift0;
drflac_uint32 tempR0 = pInputSamples1U32[i*4+0] << shift1;
drflac_uint32 tempR1 = pInputSamples1U32[i*4+1] << shift1;
drflac_uint32 tempR2 = pInputSamples1U32[i*4+2] << shift1;
drflac_uint32 tempR3 = pInputSamples1U32[i*4+3] << shift1;
pOutputSamples[i*8+0] = (drflac_int32)tempL0 * factor;
pOutputSamples[i*8+1] = (drflac_int32)tempR0 * factor;
pOutputSamples[i*8+2] = (drflac_int32)tempL1 * factor;
pOutputSamples[i*8+3] = (drflac_int32)tempR1 * factor;
pOutputSamples[i*8+4] = (drflac_int32)tempL2 * factor;
pOutputSamples[i*8+5] = (drflac_int32)tempR2 * factor;
pOutputSamples[i*8+6] = (drflac_int32)tempL3 * factor;
pOutputSamples[i*8+7] = (drflac_int32)tempR3 * factor;
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor;
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor;
}
}
#if defined(DRFLAC_SUPPORT_SSE2)
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
float factor = 1.0f / 8388608.0f;
__m128 factor128 = _mm_set1_ps(factor);
for (i = 0; i < frameCount4; ++i) {
__m128i lefti;
__m128i righti;
__m128 leftf;
__m128 rightf;
lefti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples0 + i), shift0);
righti = _mm_slli_epi32(_mm_loadu_si128((const __m128i*)pInputSamples1 + i), shift1);
leftf = _mm_mul_ps(_mm_cvtepi32_ps(lefti), factor128);
rightf = _mm_mul_ps(_mm_cvtepi32_ps(righti), factor128);
_mm_storeu_ps(pOutputSamples + i*8 + 0, _mm_unpacklo_ps(leftf, rightf));
_mm_storeu_ps(pOutputSamples + i*8 + 4, _mm_unpackhi_ps(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor;
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor;
}
}
#endif
#if defined(DRFLAC_SUPPORT_NEON)
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo__neon(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
drflac_uint64 i;
drflac_uint64 frameCount4 = frameCount >> 2;
const drflac_uint32* pInputSamples0U32 = (const drflac_uint32*)pInputSamples0;
const drflac_uint32* pInputSamples1U32 = (const drflac_uint32*)pInputSamples1;
drflac_uint32 shift0 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[0].wastedBitsPerSample) - 8;
drflac_uint32 shift1 = (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[1].wastedBitsPerSample) - 8;
float factor = 1.0f / 8388608.0f;
float32x4_t factor4 = vdupq_n_f32(factor);
int32x4_t shift0_4 = vdupq_n_s32(shift0);
int32x4_t shift1_4 = vdupq_n_s32(shift1);
for (i = 0; i < frameCount4; ++i) {
int32x4_t lefti;
int32x4_t righti;
float32x4_t leftf;
float32x4_t rightf;
lefti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples0U32 + i*4), shift0_4));
righti = vreinterpretq_s32_u32(vshlq_u32(vld1q_u32(pInputSamples1U32 + i*4), shift1_4));
leftf = vmulq_f32(vcvtq_f32_s32(lefti), factor4);
rightf = vmulq_f32(vcvtq_f32_s32(righti), factor4);
drflac__vst2q_f32(pOutputSamples + i*8, vzipq_f32(leftf, rightf));
}
for (i = (frameCount4 << 2); i < frameCount; ++i) {
pOutputSamples[i*2+0] = (drflac_int32)(pInputSamples0U32[i] << shift0) * factor;
pOutputSamples[i*2+1] = (drflac_int32)(pInputSamples1U32[i] << shift1) * factor;
}
}
#endif
static DRFLAC_INLINE void drflac_read_pcm_frames_f32__decode_independent_stereo(drflac* pFlac, drflac_uint64 frameCount, drflac_uint32 unusedBitsPerSample, const drflac_int32* pInputSamples0, const drflac_int32* pInputSamples1, float* pOutputSamples)
{
#if defined(DRFLAC_SUPPORT_SSE2)
if (drflac__gIsSSE2Supported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_f32__decode_independent_stereo__sse2(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#elif defined(DRFLAC_SUPPORT_NEON)
if (drflac__gIsNEONSupported && pFlac->bitsPerSample <= 24) {
drflac_read_pcm_frames_f32__decode_independent_stereo__neon(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
} else
#endif
{
#if 0
drflac_read_pcm_frames_f32__decode_independent_stereo__reference(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#else
drflac_read_pcm_frames_f32__decode_independent_stereo__scalar(pFlac, frameCount, unusedBitsPerSample, pInputSamples0, pInputSamples1, pOutputSamples);
#endif
}
}
DRFLAC_API drflac_uint64 drflac_read_pcm_frames_f32(drflac* pFlac, drflac_uint64 framesToRead, float* pBufferOut)
{
drflac_uint64 framesRead;
drflac_uint32 unusedBitsPerSample;
if (pFlac == NULL || framesToRead == 0) {
return 0;
}
if (pBufferOut == NULL) {
return drflac__seek_forward_by_pcm_frames(pFlac, framesToRead);
}
DRFLAC_ASSERT(pFlac->bitsPerSample <= 32);
unusedBitsPerSample = 32 - pFlac->bitsPerSample;
framesRead = 0;
while (framesToRead > 0) {
if (pFlac->currentFLACFrame.pcmFramesRemaining == 0) {
if (!drflac__read_and_decode_next_flac_frame(pFlac)) {
break;
}
} else {
unsigned int channelCount = drflac__get_channel_count_from_channel_assignment(pFlac->currentFLACFrame.header.channelAssignment);
drflac_uint64 iFirstPCMFrame = pFlac->currentFLACFrame.header.blockSizeInPCMFrames - pFlac->currentFLACFrame.pcmFramesRemaining;
drflac_uint64 frameCountThisIteration = framesToRead;
if (frameCountThisIteration > pFlac->currentFLACFrame.pcmFramesRemaining) {
frameCountThisIteration = pFlac->currentFLACFrame.pcmFramesRemaining;
}
if (channelCount == 2) {
const drflac_int32* pDecodedSamples0 = pFlac->currentFLACFrame.subframes[0].pSamplesS32 + iFirstPCMFrame;
const drflac_int32* pDecodedSamples1 = pFlac->currentFLACFrame.subframes[1].pSamplesS32 + iFirstPCMFrame;
switch (pFlac->currentFLACFrame.header.channelAssignment)
{
case DRFLAC_CHANNEL_ASSIGNMENT_LEFT_SIDE:
{
drflac_read_pcm_frames_f32__decode_left_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
case DRFLAC_CHANNEL_ASSIGNMENT_RIGHT_SIDE:
{
drflac_read_pcm_frames_f32__decode_right_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
case DRFLAC_CHANNEL_ASSIGNMENT_MID_SIDE:
{
drflac_read_pcm_frames_f32__decode_mid_side(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
case DRFLAC_CHANNEL_ASSIGNMENT_INDEPENDENT:
default:
{
drflac_read_pcm_frames_f32__decode_independent_stereo(pFlac, frameCountThisIteration, unusedBitsPerSample, pDecodedSamples0, pDecodedSamples1, pBufferOut);
} break;
}
} else {
drflac_uint64 i;
for (i = 0; i < frameCountThisIteration; ++i) {
unsigned int j;
for (j = 0; j < channelCount; ++j) {
drflac_int32 sampleS32 = (drflac_int32)((drflac_uint32)(pFlac->currentFLACFrame.subframes[j].pSamplesS32[iFirstPCMFrame + i]) << (unusedBitsPerSample + pFlac->currentFLACFrame.subframes[j].wastedBitsPerSample));
pBufferOut[(i*channelCount)+j] = (float)(sampleS32 / 2147483648.0);
}
}
}
framesRead += frameCountThisIteration;
pBufferOut += frameCountThisIteration * channelCount;
framesToRead -= frameCountThisIteration;
pFlac->currentPCMFrame += frameCountThisIteration;
pFlac->currentFLACFrame.pcmFramesRemaining -= (unsigned int)frameCountThisIteration;
}
}
return framesRead;
}
DRFLAC_API drflac_bool32 drflac_seek_to_pcm_frame(drflac* pFlac, drflac_uint64 pcmFrameIndex)
{
if (pFlac == NULL) {
return DRFLAC_FALSE;
}
if (pFlac->currentPCMFrame == pcmFrameIndex) {
return DRFLAC_TRUE;
}
if (pFlac->firstFLACFramePosInBytes == 0) {
return DRFLAC_FALSE;
}
if (pcmFrameIndex == 0) {
pFlac->currentPCMFrame = 0;
return drflac__seek_to_first_frame(pFlac);
} else {
drflac_bool32 wasSuccessful = DRFLAC_FALSE;
if (pcmFrameIndex > pFlac->totalPCMFrameCount) {
pcmFrameIndex = pFlac->totalPCMFrameCount;
}
if (pcmFrameIndex > pFlac->currentPCMFrame) {
drflac_uint32 offset = (drflac_uint32)(pcmFrameIndex - pFlac->currentPCMFrame);
if (pFlac->currentFLACFrame.pcmFramesRemaining > offset) {
pFlac->currentFLACFrame.pcmFramesRemaining -= offset;
pFlac->currentPCMFrame = pcmFrameIndex;
return DRFLAC_TRUE;
}
} else {
drflac_uint32 offsetAbs = (drflac_uint32)(pFlac->currentPCMFrame - pcmFrameIndex);
drflac_uint32 currentFLACFramePCMFrameCount = pFlac->currentFLACFrame.header.blockSizeInPCMFrames;
drflac_uint32 currentFLACFramePCMFramesConsumed = currentFLACFramePCMFrameCount - pFlac->currentFLACFrame.pcmFramesRemaining;
if (currentFLACFramePCMFramesConsumed > offsetAbs) {
pFlac->currentFLACFrame.pcmFramesRemaining += offsetAbs;
pFlac->currentPCMFrame = pcmFrameIndex;
return DRFLAC_TRUE;
}
}
#ifndef DR_FLAC_NO_OGG
if (pFlac->container == drflac_container_ogg)
{
wasSuccessful = drflac_ogg__seek_to_pcm_frame(pFlac, pcmFrameIndex);
}
else
#endif
{
if (!pFlac->_noSeekTableSeek) {
wasSuccessful = drflac__seek_to_pcm_frame__seek_table(pFlac, pcmFrameIndex);
}
#if !defined(DR_FLAC_NO_CRC)
if (!wasSuccessful && !pFlac->_noBinarySearchSeek && pFlac->totalPCMFrameCount > 0) {
wasSuccessful = drflac__seek_to_pcm_frame__binary_search(pFlac, pcmFrameIndex);
}
#endif
if (!wasSuccessful && !pFlac->_noBruteForceSeek) {
wasSuccessful = drflac__seek_to_pcm_frame__brute_force(pFlac, pcmFrameIndex);
}
}
pFlac->currentPCMFrame = pcmFrameIndex;
return wasSuccessful;
}
}
#if defined(SIZE_MAX)
#define DRFLAC_SIZE_MAX SIZE_MAX
#else
#if defined(DRFLAC_64BIT)
#define DRFLAC_SIZE_MAX ((drflac_uint64)0xFFFFFFFFFFFFFFFF)
#else
#define DRFLAC_SIZE_MAX 0xFFFFFFFF
#endif
#endif
#define DRFLAC_DEFINE_FULL_READ_AND_CLOSE(extension, type) \
static type* drflac__full_read_and_close_ ## extension (drflac* pFlac, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut)\
{ \
type* pSampleData = NULL; \
drflac_uint64 totalPCMFrameCount; \
\
DRFLAC_ASSERT(pFlac != NULL); \
\
totalPCMFrameCount = pFlac->totalPCMFrameCount; \
\
if (totalPCMFrameCount == 0) { \
type buffer[4096]; \
drflac_uint64 pcmFramesRead; \
size_t sampleDataBufferSize = sizeof(buffer); \
\
pSampleData = (type*)drflac__malloc_from_callbacks(sampleDataBufferSize, &pFlac->allocationCallbacks); \
if (pSampleData == NULL) { \
goto on_error; \
} \
\
while ((pcmFramesRead = (drflac_uint64)drflac_read_pcm_frames_##extension(pFlac, sizeof(buffer)/sizeof(buffer[0])/pFlac->channels, buffer)) > 0) { \
if (((totalPCMFrameCount + pcmFramesRead) * pFlac->channels * sizeof(type)) > sampleDataBufferSize) { \
type* pNewSampleData; \
size_t newSampleDataBufferSize; \
\
newSampleDataBufferSize = sampleDataBufferSize * 2; \
pNewSampleData = (type*)drflac__realloc_from_callbacks(pSampleData, newSampleDataBufferSize, sampleDataBufferSize, &pFlac->allocationCallbacks); \
if (pNewSampleData == NULL) { \
drflac__free_from_callbacks(pSampleData, &pFlac->allocationCallbacks); \
goto on_error; \
} \
\
sampleDataBufferSize = newSampleDataBufferSize; \
pSampleData = pNewSampleData; \
} \
\
DRFLAC_COPY_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), buffer, (size_t)(pcmFramesRead*pFlac->channels*sizeof(type))); \
totalPCMFrameCount += pcmFramesRead; \
} \
\
\
DRFLAC_ZERO_MEMORY(pSampleData + (totalPCMFrameCount*pFlac->channels), (size_t)(sampleDataBufferSize - totalPCMFrameCount*pFlac->channels*sizeof(type))); \
} else { \
drflac_uint64 dataSize = totalPCMFrameCount*pFlac->channels*sizeof(type); \
if (dataSize > DRFLAC_SIZE_MAX) { \
goto on_error; \
} \
\
pSampleData = (type*)drflac__malloc_from_callbacks((size_t)dataSize, &pFlac->allocationCallbacks); \
if (pSampleData == NULL) { \
goto on_error; \
} \
\
totalPCMFrameCount = drflac_read_pcm_frames_##extension(pFlac, pFlac->totalPCMFrameCount, pSampleData); \
} \
\
if (sampleRateOut) *sampleRateOut = pFlac->sampleRate; \
if (channelsOut) *channelsOut = pFlac->channels; \
if (totalPCMFrameCountOut) *totalPCMFrameCountOut = totalPCMFrameCount; \
\
drflac_close(pFlac); \
return pSampleData; \
\
on_error: \
drflac_close(pFlac); \
return NULL; \
}
DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s32, drflac_int32)
DRFLAC_DEFINE_FULL_READ_AND_CLOSE(s16, drflac_int16)
DRFLAC_DEFINE_FULL_READ_AND_CLOSE(f32, float)
DRFLAC_API drflac_int32* drflac_open_and_read_pcm_frames_s32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalPCMFrameCountOut) {
*totalPCMFrameCountOut = 0;
}
pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
return drflac__full_read_and_close_s32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut);
}
DRFLAC_API drflac_int16* drflac_open_and_read_pcm_frames_s16(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalPCMFrameCountOut) {
*totalPCMFrameCountOut = 0;
}
pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
return drflac__full_read_and_close_s16(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut);
}
DRFLAC_API float* drflac_open_and_read_pcm_frames_f32(drflac_read_proc onRead, drflac_seek_proc onSeek, void* pUserData, unsigned int* channelsOut, unsigned int* sampleRateOut, drflac_uint64* totalPCMFrameCountOut, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
if (channelsOut) {
*channelsOut = 0;
}
if (sampleRateOut) {
*sampleRateOut = 0;
}
if (totalPCMFrameCountOut) {
*totalPCMFrameCountOut = 0;
}
pFlac = drflac_open(onRead, onSeek, pUserData, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
return drflac__full_read_and_close_f32(pFlac, channelsOut, sampleRateOut, totalPCMFrameCountOut);
}
#ifndef DR_FLAC_NO_STDIO
DRFLAC_API drflac_int32* drflac_open_file_and_read_pcm_frames_s32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
if (sampleRate) {
*sampleRate = 0;
}
if (channels) {
*channels = 0;
}
if (totalPCMFrameCount) {
*totalPCMFrameCount = 0;
}
pFlac = drflac_open_file(filename, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount);
}
DRFLAC_API drflac_int16* drflac_open_file_and_read_pcm_frames_s16(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
if (sampleRate) {
*sampleRate = 0;
}
if (channels) {
*channels = 0;
}
if (totalPCMFrameCount) {
*totalPCMFrameCount = 0;
}
pFlac = drflac_open_file(filename, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount);
}
DRFLAC_API float* drflac_open_file_and_read_pcm_frames_f32(const char* filename, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
if (sampleRate) {
*sampleRate = 0;
}
if (channels) {
*channels = 0;
}
if (totalPCMFrameCount) {
*totalPCMFrameCount = 0;
}
pFlac = drflac_open_file(filename, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount);
}
#endif
DRFLAC_API drflac_int32* drflac_open_memory_and_read_pcm_frames_s32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
if (sampleRate) {
*sampleRate = 0;
}
if (channels) {
*channels = 0;
}
if (totalPCMFrameCount) {
*totalPCMFrameCount = 0;
}
pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
return drflac__full_read_and_close_s32(pFlac, channels, sampleRate, totalPCMFrameCount);
}
DRFLAC_API drflac_int16* drflac_open_memory_and_read_pcm_frames_s16(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
if (sampleRate) {
*sampleRate = 0;
}
if (channels) {
*channels = 0;
}
if (totalPCMFrameCount) {
*totalPCMFrameCount = 0;
}
pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
return drflac__full_read_and_close_s16(pFlac, channels, sampleRate, totalPCMFrameCount);
}
DRFLAC_API float* drflac_open_memory_and_read_pcm_frames_f32(const void* data, size_t dataSize, unsigned int* channels, unsigned int* sampleRate, drflac_uint64* totalPCMFrameCount, const drflac_allocation_callbacks* pAllocationCallbacks)
{
drflac* pFlac;
if (sampleRate) {
*sampleRate = 0;
}
if (channels) {
*channels = 0;
}
if (totalPCMFrameCount) {
*totalPCMFrameCount = 0;
}
pFlac = drflac_open_memory(data, dataSize, pAllocationCallbacks);
if (pFlac == NULL) {
return NULL;
}
return drflac__full_read_and_close_f32(pFlac, channels, sampleRate, totalPCMFrameCount);
}
DRFLAC_API void drflac_free(void* p, const drflac_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
drflac__free_from_callbacks(p, pAllocationCallbacks);
} else {
drflac__free_default(p, NULL);
}
}
DRFLAC_API void drflac_init_vorbis_comment_iterator(drflac_vorbis_comment_iterator* pIter, drflac_uint32 commentCount, const void* pComments)
{
if (pIter == NULL) {
return;
}
pIter->countRemaining = commentCount;
pIter->pRunningData = (const char*)pComments;
}
DRFLAC_API const char* drflac_next_vorbis_comment(drflac_vorbis_comment_iterator* pIter, drflac_uint32* pCommentLengthOut)
{
drflac_int32 length;
const char* pComment;
if (pCommentLengthOut) {
*pCommentLengthOut = 0;
}
if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) {
return NULL;
}
length = drflac__le2host_32(*(const drflac_uint32*)pIter->pRunningData);
pIter->pRunningData += 4;
pComment = pIter->pRunningData;
pIter->pRunningData += length;
pIter->countRemaining -= 1;
if (pCommentLengthOut) {
*pCommentLengthOut = length;
}
return pComment;
}
DRFLAC_API void drflac_init_cuesheet_track_iterator(drflac_cuesheet_track_iterator* pIter, drflac_uint32 trackCount, const void* pTrackData)
{
if (pIter == NULL) {
return;
}
pIter->countRemaining = trackCount;
pIter->pRunningData = (const char*)pTrackData;
}
DRFLAC_API drflac_bool32 drflac_next_cuesheet_track(drflac_cuesheet_track_iterator* pIter, drflac_cuesheet_track* pCuesheetTrack)
{
drflac_cuesheet_track cuesheetTrack;
const char* pRunningData;
drflac_uint64 offsetHi;
drflac_uint64 offsetLo;
if (pIter == NULL || pIter->countRemaining == 0 || pIter->pRunningData == NULL) {
return DRFLAC_FALSE;
}
pRunningData = pIter->pRunningData;
offsetHi = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
offsetLo = drflac__be2host_32(*(const drflac_uint32*)pRunningData); pRunningData += 4;
cuesheetTrack.offset = offsetLo | (offsetHi << 32);
cuesheetTrack.trackNumber = pRunningData[0]; pRunningData += 1;
DRFLAC_COPY_MEMORY(cuesheetTrack.ISRC, pRunningData, sizeof(cuesheetTrack.ISRC)); pRunningData += 12;
cuesheetTrack.isAudio = (pRunningData[0] & 0x80) != 0;
cuesheetTrack.preEmphasis = (pRunningData[0] & 0x40) != 0; pRunningData += 14;
cuesheetTrack.indexCount = pRunningData[0]; pRunningData += 1;
cuesheetTrack.pIndexPoints = (const drflac_cuesheet_track_index*)pRunningData; pRunningData += cuesheetTrack.indexCount * sizeof(drflac_cuesheet_track_index);
pIter->pRunningData = pRunningData;
pIter->countRemaining -= 1;
if (pCuesheetTrack) {
*pCuesheetTrack = cuesheetTrack;
}
return DRFLAC_TRUE;
}
#if defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#endif
/* dr_flac_c end */
#endif /* DRFLAC_IMPLEMENTATION */
#endif /* MA_NO_FLAC */
#ifndef MA_NO_MP3
#if !defined(DR_MP3_IMPLEMENTATION) && !defined(DRMP3_IMPLEMENTATION) /* For backwards compatibility. Will be removed in version 0.11 for cleanliness. */
/* dr_mp3_c begin */
#ifndef dr_mp3_c
#define dr_mp3_c
#include <stdlib.h>
#include <string.h>
#include <limits.h>
DRMP3_API void drmp3_version(drmp3_uint32* pMajor, drmp3_uint32* pMinor, drmp3_uint32* pRevision)
{
if (pMajor) {
*pMajor = DRMP3_VERSION_MAJOR;
}
if (pMinor) {
*pMinor = DRMP3_VERSION_MINOR;
}
if (pRevision) {
*pRevision = DRMP3_VERSION_REVISION;
}
}
DRMP3_API const char* drmp3_version_string()
{
return DRMP3_VERSION_STRING;
}
#if defined(__TINYC__)
#define DR_MP3_NO_SIMD
#endif
#define DRMP3_OFFSET_PTR(p, offset) ((void*)((drmp3_uint8*)(p) + (offset)))
#define DRMP3_MAX_FREE_FORMAT_FRAME_SIZE 2304
#ifndef DRMP3_MAX_FRAME_SYNC_MATCHES
#define DRMP3_MAX_FRAME_SYNC_MATCHES 10
#endif
#define DRMP3_MAX_L3_FRAME_PAYLOAD_BYTES DRMP3_MAX_FREE_FORMAT_FRAME_SIZE
#define DRMP3_MAX_BITRESERVOIR_BYTES 511
#define DRMP3_SHORT_BLOCK_TYPE 2
#define DRMP3_STOP_BLOCK_TYPE 3
#define DRMP3_MODE_MONO 3
#define DRMP3_MODE_JOINT_STEREO 1
#define DRMP3_HDR_SIZE 4
#define DRMP3_HDR_IS_MONO(h) (((h[3]) & 0xC0) == 0xC0)
#define DRMP3_HDR_IS_MS_STEREO(h) (((h[3]) & 0xE0) == 0x60)
#define DRMP3_HDR_IS_FREE_FORMAT(h) (((h[2]) & 0xF0) == 0)
#define DRMP3_HDR_IS_CRC(h) (!((h[1]) & 1))
#define DRMP3_HDR_TEST_PADDING(h) ((h[2]) & 0x2)
#define DRMP3_HDR_TEST_MPEG1(h) ((h[1]) & 0x8)
#define DRMP3_HDR_TEST_NOT_MPEG25(h) ((h[1]) & 0x10)
#define DRMP3_HDR_TEST_I_STEREO(h) ((h[3]) & 0x10)
#define DRMP3_HDR_TEST_MS_STEREO(h) ((h[3]) & 0x20)
#define DRMP3_HDR_GET_STEREO_MODE(h) (((h[3]) >> 6) & 3)
#define DRMP3_HDR_GET_STEREO_MODE_EXT(h) (((h[3]) >> 4) & 3)
#define DRMP3_HDR_GET_LAYER(h) (((h[1]) >> 1) & 3)
#define DRMP3_HDR_GET_BITRATE(h) ((h[2]) >> 4)
#define DRMP3_HDR_GET_SAMPLE_RATE(h) (((h[2]) >> 2) & 3)
#define DRMP3_HDR_GET_MY_SAMPLE_RATE(h) (DRMP3_HDR_GET_SAMPLE_RATE(h) + (((h[1] >> 3) & 1) + ((h[1] >> 4) & 1))*3)
#define DRMP3_HDR_IS_FRAME_576(h) ((h[1] & 14) == 2)
#define DRMP3_HDR_IS_LAYER_1(h) ((h[1] & 6) == 6)
#define DRMP3_BITS_DEQUANTIZER_OUT -1
#define DRMP3_MAX_SCF (255 + DRMP3_BITS_DEQUANTIZER_OUT*4 - 210)
#define DRMP3_MAX_SCFI ((DRMP3_MAX_SCF + 3) & ~3)
#define DRMP3_MIN(a, b) ((a) > (b) ? (b) : (a))
#define DRMP3_MAX(a, b) ((a) < (b) ? (b) : (a))
#if !defined(DR_MP3_NO_SIMD)
#if !defined(DR_MP3_ONLY_SIMD) && (defined(_M_X64) || defined(_M_ARM64) || defined(__x86_64__) || defined(__aarch64__))
#define DR_MP3_ONLY_SIMD
#endif
#if ((defined(_MSC_VER) && _MSC_VER >= 1400) && (defined(_M_IX86) || defined(_M_X64))) || ((defined(__i386__) || defined(__x86_64__)) && defined(__SSE2__))
#if defined(_MSC_VER)
#include <intrin.h>
#endif
#include <emmintrin.h>
#define DRMP3_HAVE_SSE 1
#define DRMP3_HAVE_SIMD 1
#define DRMP3_VSTORE _mm_storeu_ps
#define DRMP3_VLD _mm_loadu_ps
#define DRMP3_VSET _mm_set1_ps
#define DRMP3_VADD _mm_add_ps
#define DRMP3_VSUB _mm_sub_ps
#define DRMP3_VMUL _mm_mul_ps
#define DRMP3_VMAC(a, x, y) _mm_add_ps(a, _mm_mul_ps(x, y))
#define DRMP3_VMSB(a, x, y) _mm_sub_ps(a, _mm_mul_ps(x, y))
#define DRMP3_VMUL_S(x, s) _mm_mul_ps(x, _mm_set1_ps(s))
#define DRMP3_VREV(x) _mm_shuffle_ps(x, x, _MM_SHUFFLE(0, 1, 2, 3))
typedef __m128 drmp3_f4;
#if defined(_MSC_VER) || defined(DR_MP3_ONLY_SIMD)
#define drmp3_cpuid __cpuid
#else
static __inline__ __attribute__((always_inline)) void drmp3_cpuid(int CPUInfo[], const int InfoType)
{
#if defined(__PIC__)
__asm__ __volatile__(
#if defined(__x86_64__)
"push %%rbx\n"
"cpuid\n"
"xchgl %%ebx, %1\n"
"pop %%rbx\n"
#else
"xchgl %%ebx, %1\n"
"cpuid\n"
"xchgl %%ebx, %1\n"
#endif
: "=a" (CPUInfo[0]), "=r" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3])
: "a" (InfoType));
#else
__asm__ __volatile__(
"cpuid"
: "=a" (CPUInfo[0]), "=b" (CPUInfo[1]), "=c" (CPUInfo[2]), "=d" (CPUInfo[3])
: "a" (InfoType));
#endif
}
#endif
static int drmp3_have_simd(void)
{
#ifdef DR_MP3_ONLY_SIMD
return 1;
#else
static int g_have_simd;
int CPUInfo[4];
#ifdef MINIMP3_TEST
static int g_counter;
if (g_counter++ > 100)
return 0;
#endif
if (g_have_simd)
goto end;
drmp3_cpuid(CPUInfo, 0);
if (CPUInfo[0] > 0)
{
drmp3_cpuid(CPUInfo, 1);
g_have_simd = (CPUInfo[3] & (1 << 26)) + 1;
return g_have_simd - 1;
}
end:
return g_have_simd - 1;
#endif
}
#elif defined(__ARM_NEON) || defined(__aarch64__)
#include <arm_neon.h>
#define DRMP3_HAVE_SSE 0
#define DRMP3_HAVE_SIMD 1
#define DRMP3_VSTORE vst1q_f32
#define DRMP3_VLD vld1q_f32
#define DRMP3_VSET vmovq_n_f32
#define DRMP3_VADD vaddq_f32
#define DRMP3_VSUB vsubq_f32
#define DRMP3_VMUL vmulq_f32
#define DRMP3_VMAC(a, x, y) vmlaq_f32(a, x, y)
#define DRMP3_VMSB(a, x, y) vmlsq_f32(a, x, y)
#define DRMP3_VMUL_S(x, s) vmulq_f32(x, vmovq_n_f32(s))
#define DRMP3_VREV(x) vcombine_f32(vget_high_f32(vrev64q_f32(x)), vget_low_f32(vrev64q_f32(x)))
typedef float32x4_t drmp3_f4;
static int drmp3_have_simd(void)
{
return 1;
}
#else
#define DRMP3_HAVE_SSE 0
#define DRMP3_HAVE_SIMD 0
#ifdef DR_MP3_ONLY_SIMD
#error DR_MP3_ONLY_SIMD used, but SSE/NEON not enabled
#endif
#endif
#else
#define DRMP3_HAVE_SIMD 0
#endif
#if defined(__ARM_ARCH) && (__ARM_ARCH >= 6) && !defined(__aarch64__)
#define DRMP3_HAVE_ARMV6 1
static __inline__ __attribute__((always_inline)) drmp3_int32 drmp3_clip_int16_arm(int32_t a)
{
drmp3_int32 x = 0;
__asm__ ("ssat %0, #16, %1" : "=r"(x) : "r"(a));
return x;
}
#endif
typedef struct
{
const drmp3_uint8 *buf;
int pos, limit;
} drmp3_bs;
typedef struct
{
float scf[3*64];
drmp3_uint8 total_bands, stereo_bands, bitalloc[64], scfcod[64];
} drmp3_L12_scale_info;
typedef struct
{
drmp3_uint8 tab_offset, code_tab_width, band_count;
} drmp3_L12_subband_alloc;
typedef struct
{
const drmp3_uint8 *sfbtab;
drmp3_uint16 part_23_length, big_values, scalefac_compress;
drmp3_uint8 global_gain, block_type, mixed_block_flag, n_long_sfb, n_short_sfb;
drmp3_uint8 table_select[3], region_count[3], subblock_gain[3];
drmp3_uint8 preflag, scalefac_scale, count1_table, scfsi;
} drmp3_L3_gr_info;
typedef struct
{
drmp3_bs bs;
drmp3_uint8 maindata[DRMP3_MAX_BITRESERVOIR_BYTES + DRMP3_MAX_L3_FRAME_PAYLOAD_BYTES];
drmp3_L3_gr_info gr_info[4];
float grbuf[2][576], scf[40], syn[18 + 15][2*32];
drmp3_uint8 ist_pos[2][39];
} drmp3dec_scratch;
static void drmp3_bs_init(drmp3_bs *bs, const drmp3_uint8 *data, int bytes)
{
bs->buf = data;
bs->pos = 0;
bs->limit = bytes*8;
}
static drmp3_uint32 drmp3_bs_get_bits(drmp3_bs *bs, int n)
{
drmp3_uint32 next, cache = 0, s = bs->pos & 7;
int shl = n + s;
const drmp3_uint8 *p = bs->buf + (bs->pos >> 3);
if ((bs->pos += n) > bs->limit)
return 0;
next = *p++ & (255 >> s);
while ((shl -= 8) > 0)
{
cache |= next << shl;
next = *p++;
}
return cache | (next >> -shl);
}
static int drmp3_hdr_valid(const drmp3_uint8 *h)
{
return h[0] == 0xff &&
((h[1] & 0xF0) == 0xf0 || (h[1] & 0xFE) == 0xe2) &&
(DRMP3_HDR_GET_LAYER(h) != 0) &&
(DRMP3_HDR_GET_BITRATE(h) != 15) &&
(DRMP3_HDR_GET_SAMPLE_RATE(h) != 3);
}
static int drmp3_hdr_compare(const drmp3_uint8 *h1, const drmp3_uint8 *h2)
{
return drmp3_hdr_valid(h2) &&
((h1[1] ^ h2[1]) & 0xFE) == 0 &&
((h1[2] ^ h2[2]) & 0x0C) == 0 &&
!(DRMP3_HDR_IS_FREE_FORMAT(h1) ^ DRMP3_HDR_IS_FREE_FORMAT(h2));
}
static unsigned drmp3_hdr_bitrate_kbps(const drmp3_uint8 *h)
{
static const drmp3_uint8 halfrate[2][3][15] = {
{ { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,4,8,12,16,20,24,28,32,40,48,56,64,72,80 }, { 0,16,24,28,32,40,48,56,64,72,80,88,96,112,128 } },
{ { 0,16,20,24,28,32,40,48,56,64,80,96,112,128,160 }, { 0,16,24,28,32,40,48,56,64,80,96,112,128,160,192 }, { 0,16,32,48,64,80,96,112,128,144,160,176,192,208,224 } },
};
return 2*halfrate[!!DRMP3_HDR_TEST_MPEG1(h)][DRMP3_HDR_GET_LAYER(h) - 1][DRMP3_HDR_GET_BITRATE(h)];
}
static unsigned drmp3_hdr_sample_rate_hz(const drmp3_uint8 *h)
{
static const unsigned g_hz[3] = { 44100, 48000, 32000 };
return g_hz[DRMP3_HDR_GET_SAMPLE_RATE(h)] >> (int)!DRMP3_HDR_TEST_MPEG1(h) >> (int)!DRMP3_HDR_TEST_NOT_MPEG25(h);
}
static unsigned drmp3_hdr_frame_samples(const drmp3_uint8 *h)
{
return DRMP3_HDR_IS_LAYER_1(h) ? 384 : (1152 >> (int)DRMP3_HDR_IS_FRAME_576(h));
}
static int drmp3_hdr_frame_bytes(const drmp3_uint8 *h, int free_format_size)
{
int frame_bytes = drmp3_hdr_frame_samples(h)*drmp3_hdr_bitrate_kbps(h)*125/drmp3_hdr_sample_rate_hz(h);
if (DRMP3_HDR_IS_LAYER_1(h))
{
frame_bytes &= ~3;
}
return frame_bytes ? frame_bytes : free_format_size;
}
static int drmp3_hdr_padding(const drmp3_uint8 *h)
{
return DRMP3_HDR_TEST_PADDING(h) ? (DRMP3_HDR_IS_LAYER_1(h) ? 4 : 1) : 0;
}
#ifndef DR_MP3_ONLY_MP3
static const drmp3_L12_subband_alloc *drmp3_L12_subband_alloc_table(const drmp3_uint8 *hdr, drmp3_L12_scale_info *sci)
{
const drmp3_L12_subband_alloc *alloc;
int mode = DRMP3_HDR_GET_STEREO_MODE(hdr);
int nbands, stereo_bands = (mode == DRMP3_MODE_MONO) ? 0 : (mode == DRMP3_MODE_JOINT_STEREO) ? (DRMP3_HDR_GET_STEREO_MODE_EXT(hdr) << 2) + 4 : 32;
if (DRMP3_HDR_IS_LAYER_1(hdr))
{
static const drmp3_L12_subband_alloc g_alloc_L1[] = { { 76, 4, 32 } };
alloc = g_alloc_L1;
nbands = 32;
} else if (!DRMP3_HDR_TEST_MPEG1(hdr))
{
static const drmp3_L12_subband_alloc g_alloc_L2M2[] = { { 60, 4, 4 }, { 44, 3, 7 }, { 44, 2, 19 } };
alloc = g_alloc_L2M2;
nbands = 30;
} else
{
static const drmp3_L12_subband_alloc g_alloc_L2M1[] = { { 0, 4, 3 }, { 16, 4, 8 }, { 32, 3, 12 }, { 40, 2, 7 } };
int sample_rate_idx = DRMP3_HDR_GET_SAMPLE_RATE(hdr);
unsigned kbps = drmp3_hdr_bitrate_kbps(hdr) >> (int)(mode != DRMP3_MODE_MONO);
if (!kbps)
{
kbps = 192;
}
alloc = g_alloc_L2M1;
nbands = 27;
if (kbps < 56)
{
static const drmp3_L12_subband_alloc g_alloc_L2M1_lowrate[] = { { 44, 4, 2 }, { 44, 3, 10 } };
alloc = g_alloc_L2M1_lowrate;
nbands = sample_rate_idx == 2 ? 12 : 8;
} else if (kbps >= 96 && sample_rate_idx != 1)
{
nbands = 30;
}
}
sci->total_bands = (drmp3_uint8)nbands;
sci->stereo_bands = (drmp3_uint8)DRMP3_MIN(stereo_bands, nbands);
return alloc;
}
static void drmp3_L12_read_scalefactors(drmp3_bs *bs, drmp3_uint8 *pba, drmp3_uint8 *scfcod, int bands, float *scf)
{
static const float g_deq_L12[18*3] = {
#define DRMP3_DQ(x) 9.53674316e-07f/x, 7.56931807e-07f/x, 6.00777173e-07f/x
DRMP3_DQ(3),DRMP3_DQ(7),DRMP3_DQ(15),DRMP3_DQ(31),DRMP3_DQ(63),DRMP3_DQ(127),DRMP3_DQ(255),DRMP3_DQ(511),DRMP3_DQ(1023),DRMP3_DQ(2047),DRMP3_DQ(4095),DRMP3_DQ(8191),DRMP3_DQ(16383),DRMP3_DQ(32767),DRMP3_DQ(65535),DRMP3_DQ(3),DRMP3_DQ(5),DRMP3_DQ(9)
};
int i, m;
for (i = 0; i < bands; i++)
{
float s = 0;
int ba = *pba++;
int mask = ba ? 4 + ((19 >> scfcod[i]) & 3) : 0;
for (m = 4; m; m >>= 1)
{
if (mask & m)
{
int b = drmp3_bs_get_bits(bs, 6);
s = g_deq_L12[ba*3 - 6 + b % 3]*(int)(1 << 21 >> b/3);
}
*scf++ = s;
}
}
}
static void drmp3_L12_read_scale_info(const drmp3_uint8 *hdr, drmp3_bs *bs, drmp3_L12_scale_info *sci)
{
static const drmp3_uint8 g_bitalloc_code_tab[] = {
0,17, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16,
0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,16,
0,17,18, 3,19,4,5,16,
0,17,18,16,
0,17,18,19, 4,5,6, 7,8, 9,10,11,12,13,14,15,
0,17,18, 3,19,4,5, 6,7, 8, 9,10,11,12,13,14,
0, 2, 3, 4, 5,6,7, 8,9,10,11,12,13,14,15,16
};
const drmp3_L12_subband_alloc *subband_alloc = drmp3_L12_subband_alloc_table(hdr, sci);
int i, k = 0, ba_bits = 0;
const drmp3_uint8 *ba_code_tab = g_bitalloc_code_tab;
for (i = 0; i < sci->total_bands; i++)
{
drmp3_uint8 ba;
if (i == k)
{
k += subband_alloc->band_count;
ba_bits = subband_alloc->code_tab_width;
ba_code_tab = g_bitalloc_code_tab + subband_alloc->tab_offset;
subband_alloc++;
}
ba = ba_code_tab[drmp3_bs_get_bits(bs, ba_bits)];
sci->bitalloc[2*i] = ba;
if (i < sci->stereo_bands)
{
ba = ba_code_tab[drmp3_bs_get_bits(bs, ba_bits)];
}
sci->bitalloc[2*i + 1] = sci->stereo_bands ? ba : 0;
}
for (i = 0; i < 2*sci->total_bands; i++)
{
sci->scfcod[i] = (drmp3_uint8)(sci->bitalloc[i] ? DRMP3_HDR_IS_LAYER_1(hdr) ? 2 : drmp3_bs_get_bits(bs, 2) : 6);
}
drmp3_L12_read_scalefactors(bs, sci->bitalloc, sci->scfcod, sci->total_bands*2, sci->scf);
for (i = sci->stereo_bands; i < sci->total_bands; i++)
{
sci->bitalloc[2*i + 1] = 0;
}
}
static int drmp3_L12_dequantize_granule(float *grbuf, drmp3_bs *bs, drmp3_L12_scale_info *sci, int group_size)
{
int i, j, k, choff = 576;
for (j = 0; j < 4; j++)
{
float *dst = grbuf + group_size*j;
for (i = 0; i < 2*sci->total_bands; i++)
{
int ba = sci->bitalloc[i];
if (ba != 0)
{
if (ba < 17)
{
int half = (1 << (ba - 1)) - 1;
for (k = 0; k < group_size; k++)
{
dst[k] = (float)((int)drmp3_bs_get_bits(bs, ba) - half);
}
} else
{
unsigned mod = (2 << (ba - 17)) + 1;
unsigned code = drmp3_bs_get_bits(bs, mod + 2 - (mod >> 3));
for (k = 0; k < group_size; k++, code /= mod)
{
dst[k] = (float)((int)(code % mod - mod/2));
}
}
}
dst += choff;
choff = 18 - choff;
}
}
return group_size*4;
}
static void drmp3_L12_apply_scf_384(drmp3_L12_scale_info *sci, const float *scf, float *dst)
{
int i, k;
memcpy(dst + 576 + sci->stereo_bands*18, dst + sci->stereo_bands*18, (sci->total_bands - sci->stereo_bands)*18*sizeof(float));
for (i = 0; i < sci->total_bands; i++, dst += 18, scf += 6)
{
for (k = 0; k < 12; k++)
{
dst[k + 0] *= scf[0];
dst[k + 576] *= scf[3];
}
}
}
#endif
static int drmp3_L3_read_side_info(drmp3_bs *bs, drmp3_L3_gr_info *gr, const drmp3_uint8 *hdr)
{
static const drmp3_uint8 g_scf_long[8][23] = {
{ 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 },
{ 12,12,12,12,12,12,16,20,24,28,32,40,48,56,64,76,90,2,2,2,2,2,0 },
{ 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 },
{ 6,6,6,6,6,6,8,10,12,14,16,18,22,26,32,38,46,54,62,70,76,36,0 },
{ 6,6,6,6,6,6,8,10,12,14,16,20,24,28,32,38,46,52,60,68,58,54,0 },
{ 4,4,4,4,4,4,6,6,8,8,10,12,16,20,24,28,34,42,50,54,76,158,0 },
{ 4,4,4,4,4,4,6,6,6,8,10,12,16,18,22,28,34,40,46,54,54,192,0 },
{ 4,4,4,4,4,4,6,6,8,10,12,16,20,24,30,38,46,56,68,84,102,26,0 }
};
static const drmp3_uint8 g_scf_short[8][40] = {
{ 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
{ 8,8,8,8,8,8,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 },
{ 4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 },
{ 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 },
{ 4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
{ 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 },
{ 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 },
{ 4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 }
};
static const drmp3_uint8 g_scf_mixed[8][40] = {
{ 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
{ 12,12,12,4,4,4,8,8,8,12,12,12,16,16,16,20,20,20,24,24,24,28,28,28,36,36,36,2,2,2,2,2,2,2,2,2,26,26,26,0 },
{ 6,6,6,6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,14,14,14,18,18,18,26,26,26,32,32,32,42,42,42,18,18,18,0 },
{ 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,32,32,32,44,44,44,12,12,12,0 },
{ 6,6,6,6,6,6,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,24,24,24,30,30,30,40,40,40,18,18,18,0 },
{ 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,10,10,10,12,12,12,14,14,14,18,18,18,22,22,22,30,30,30,56,56,56,0 },
{ 4,4,4,4,4,4,6,6,4,4,4,6,6,6,6,6,6,10,10,10,12,12,12,14,14,14,16,16,16,20,20,20,26,26,26,66,66,66,0 },
{ 4,4,4,4,4,4,6,6,4,4,4,6,6,6,8,8,8,12,12,12,16,16,16,20,20,20,26,26,26,34,34,34,42,42,42,12,12,12,0 }
};
unsigned tables, scfsi = 0;
int main_data_begin, part_23_sum = 0;
int gr_count = DRMP3_HDR_IS_MONO(hdr) ? 1 : 2;
int sr_idx = DRMP3_HDR_GET_MY_SAMPLE_RATE(hdr); sr_idx -= (sr_idx != 0);
if (DRMP3_HDR_TEST_MPEG1(hdr))
{
gr_count *= 2;
main_data_begin = drmp3_bs_get_bits(bs, 9);
scfsi = drmp3_bs_get_bits(bs, 7 + gr_count);
} else
{
main_data_begin = drmp3_bs_get_bits(bs, 8 + gr_count) >> gr_count;
}
do
{
if (DRMP3_HDR_IS_MONO(hdr))
{
scfsi <<= 4;
}
gr->part_23_length = (drmp3_uint16)drmp3_bs_get_bits(bs, 12);
part_23_sum += gr->part_23_length;
gr->big_values = (drmp3_uint16)drmp3_bs_get_bits(bs, 9);
if (gr->big_values > 288)
{
return -1;
}
gr->global_gain = (drmp3_uint8)drmp3_bs_get_bits(bs, 8);
gr->scalefac_compress = (drmp3_uint16)drmp3_bs_get_bits(bs, DRMP3_HDR_TEST_MPEG1(hdr) ? 4 : 9);
gr->sfbtab = g_scf_long[sr_idx];
gr->n_long_sfb = 22;
gr->n_short_sfb = 0;
if (drmp3_bs_get_bits(bs, 1))
{
gr->block_type = (drmp3_uint8)drmp3_bs_get_bits(bs, 2);
if (!gr->block_type)
{
return -1;
}
gr->mixed_block_flag = (drmp3_uint8)drmp3_bs_get_bits(bs, 1);
gr->region_count[0] = 7;
gr->region_count[1] = 255;
if (gr->block_type == DRMP3_SHORT_BLOCK_TYPE)
{
scfsi &= 0x0F0F;
if (!gr->mixed_block_flag)
{
gr->region_count[0] = 8;
gr->sfbtab = g_scf_short[sr_idx];
gr->n_long_sfb = 0;
gr->n_short_sfb = 39;
} else
{
gr->sfbtab = g_scf_mixed[sr_idx];
gr->n_long_sfb = DRMP3_HDR_TEST_MPEG1(hdr) ? 8 : 6;
gr->n_short_sfb = 30;
}
}
tables = drmp3_bs_get_bits(bs, 10);
tables <<= 5;
gr->subblock_gain[0] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3);
gr->subblock_gain[1] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3);
gr->subblock_gain[2] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3);
} else
{
gr->block_type = 0;
gr->mixed_block_flag = 0;
tables = drmp3_bs_get_bits(bs, 15);
gr->region_count[0] = (drmp3_uint8)drmp3_bs_get_bits(bs, 4);
gr->region_count[1] = (drmp3_uint8)drmp3_bs_get_bits(bs, 3);
gr->region_count[2] = 255;
}
gr->table_select[0] = (drmp3_uint8)(tables >> 10);
gr->table_select[1] = (drmp3_uint8)((tables >> 5) & 31);
gr->table_select[2] = (drmp3_uint8)((tables) & 31);
gr->preflag = (drmp3_uint8)(DRMP3_HDR_TEST_MPEG1(hdr) ? drmp3_bs_get_bits(bs, 1) : (gr->scalefac_compress >= 500));
gr->scalefac_scale = (drmp3_uint8)drmp3_bs_get_bits(bs, 1);
gr->count1_table = (drmp3_uint8)drmp3_bs_get_bits(bs, 1);
gr->scfsi = (drmp3_uint8)((scfsi >> 12) & 15);
scfsi <<= 4;
gr++;
} while(--gr_count);
if (part_23_sum + bs->pos > bs->limit + main_data_begin*8)
{
return -1;
}
return main_data_begin;
}
static void drmp3_L3_read_scalefactors(drmp3_uint8 *scf, drmp3_uint8 *ist_pos, const drmp3_uint8 *scf_size, const drmp3_uint8 *scf_count, drmp3_bs *bitbuf, int scfsi)
{
int i, k;
for (i = 0; i < 4 && scf_count[i]; i++, scfsi *= 2)
{
int cnt = scf_count[i];
if (scfsi & 8)
{
memcpy(scf, ist_pos, cnt);
} else
{
int bits = scf_size[i];
if (!bits)
{
memset(scf, 0, cnt);
memset(ist_pos, 0, cnt);
} else
{
int max_scf = (scfsi < 0) ? (1 << bits) - 1 : -1;
for (k = 0; k < cnt; k++)
{
int s = drmp3_bs_get_bits(bitbuf, bits);
ist_pos[k] = (drmp3_uint8)(s == max_scf ? -1 : s);
scf[k] = (drmp3_uint8)s;
}
}
}
ist_pos += cnt;
scf += cnt;
}
scf[0] = scf[1] = scf[2] = 0;
}
static float drmp3_L3_ldexp_q2(float y, int exp_q2)
{
static const float g_expfrac[4] = { 9.31322575e-10f,7.83145814e-10f,6.58544508e-10f,5.53767716e-10f };
int e;
do
{
e = DRMP3_MIN(30*4, exp_q2);
y *= g_expfrac[e & 3]*(1 << 30 >> (e >> 2));
} while ((exp_q2 -= e) > 0);
return y;
}
static void drmp3_L3_decode_scalefactors(const drmp3_uint8 *hdr, drmp3_uint8 *ist_pos, drmp3_bs *bs, const drmp3_L3_gr_info *gr, float *scf, int ch)
{
static const drmp3_uint8 g_scf_partitions[3][28] = {
{ 6,5,5, 5,6,5,5,5,6,5, 7,3,11,10,0,0, 7, 7, 7,0, 6, 6,6,3, 8, 8,5,0 },
{ 8,9,6,12,6,9,9,9,6,9,12,6,15,18,0,0, 6,15,12,0, 6,12,9,6, 6,18,9,0 },
{ 9,9,6,12,9,9,9,9,9,9,12,6,18,18,0,0,12,12,12,0,12, 9,9,6,15,12,9,0 }
};
const drmp3_uint8 *scf_partition = g_scf_partitions[!!gr->n_short_sfb + !gr->n_long_sfb];
drmp3_uint8 scf_size[4], iscf[40];
int i, scf_shift = gr->scalefac_scale + 1, gain_exp, scfsi = gr->scfsi;
float gain;
if (DRMP3_HDR_TEST_MPEG1(hdr))
{
static const drmp3_uint8 g_scfc_decode[16] = { 0,1,2,3, 12,5,6,7, 9,10,11,13, 14,15,18,19 };
int part = g_scfc_decode[gr->scalefac_compress];
scf_size[1] = scf_size[0] = (drmp3_uint8)(part >> 2);
scf_size[3] = scf_size[2] = (drmp3_uint8)(part & 3);
} else
{
static const drmp3_uint8 g_mod[6*4] = { 5,5,4,4,5,5,4,1,4,3,1,1,5,6,6,1,4,4,4,1,4,3,1,1 };
int k, modprod, sfc, ist = DRMP3_HDR_TEST_I_STEREO(hdr) && ch;
sfc = gr->scalefac_compress >> ist;
for (k = ist*3*4; sfc >= 0; sfc -= modprod, k += 4)
{
for (modprod = 1, i = 3; i >= 0; i--)
{
scf_size[i] = (drmp3_uint8)(sfc / modprod % g_mod[k + i]);
modprod *= g_mod[k + i];
}
}
scf_partition += k;
scfsi = -16;
}
drmp3_L3_read_scalefactors(iscf, ist_pos, scf_size, scf_partition, bs, scfsi);
if (gr->n_short_sfb)
{
int sh = 3 - scf_shift;
for (i = 0; i < gr->n_short_sfb; i += 3)
{
iscf[gr->n_long_sfb + i + 0] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 0] + (gr->subblock_gain[0] << sh));
iscf[gr->n_long_sfb + i + 1] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 1] + (gr->subblock_gain[1] << sh));
iscf[gr->n_long_sfb + i + 2] = (drmp3_uint8)(iscf[gr->n_long_sfb + i + 2] + (gr->subblock_gain[2] << sh));
}
} else if (gr->preflag)
{
static const drmp3_uint8 g_preamp[10] = { 1,1,1,1,2,2,3,3,3,2 };
for (i = 0; i < 10; i++)
{
iscf[11 + i] = (drmp3_uint8)(iscf[11 + i] + g_preamp[i]);
}
}
gain_exp = gr->global_gain + DRMP3_BITS_DEQUANTIZER_OUT*4 - 210 - (DRMP3_HDR_IS_MS_STEREO(hdr) ? 2 : 0);
gain = drmp3_L3_ldexp_q2(1 << (DRMP3_MAX_SCFI/4), DRMP3_MAX_SCFI - gain_exp);
for (i = 0; i < (int)(gr->n_long_sfb + gr->n_short_sfb); i++)
{
scf[i] = drmp3_L3_ldexp_q2(gain, iscf[i] << scf_shift);
}
}
static const float g_drmp3_pow43[129 + 16] = {
0,-1,-2.519842f,-4.326749f,-6.349604f,-8.549880f,-10.902724f,-13.390518f,-16.000000f,-18.720754f,-21.544347f,-24.463781f,-27.473142f,-30.567351f,-33.741992f,-36.993181f,
0,1,2.519842f,4.326749f,6.349604f,8.549880f,10.902724f,13.390518f,16.000000f,18.720754f,21.544347f,24.463781f,27.473142f,30.567351f,33.741992f,36.993181f,40.317474f,43.711787f,47.173345f,50.699631f,54.288352f,57.937408f,61.644865f,65.408941f,69.227979f,73.100443f,77.024898f,81.000000f,85.024491f,89.097188f,93.216975f,97.382800f,101.593667f,105.848633f,110.146801f,114.487321f,118.869381f,123.292209f,127.755065f,132.257246f,136.798076f,141.376907f,145.993119f,150.646117f,155.335327f,160.060199f,164.820202f,169.614826f,174.443577f,179.305980f,184.201575f,189.129918f,194.090580f,199.083145f,204.107210f,209.162385f,214.248292f,219.364564f,224.510845f,229.686789f,234.892058f,240.126328f,245.389280f,250.680604f,256.000000f,261.347174f,266.721841f,272.123723f,277.552547f,283.008049f,288.489971f,293.998060f,299.532071f,305.091761f,310.676898f,316.287249f,321.922592f,327.582707f,333.267377f,338.976394f,344.709550f,350.466646f,356.247482f,362.051866f,367.879608f,373.730522f,379.604427f,385.501143f,391.420496f,397.362314f,403.326427f,409.312672f,415.320884f,421.350905f,427.402579f,433.475750f,439.570269f,445.685987f,451.822757f,457.980436f,464.158883f,470.357960f,476.577530f,482.817459f,489.077615f,495.357868f,501.658090f,507.978156f,514.317941f,520.677324f,527.056184f,533.454404f,539.871867f,546.308458f,552.764065f,559.238575f,565.731879f,572.243870f,578.774440f,585.323483f,591.890898f,598.476581f,605.080431f,611.702349f,618.342238f,625.000000f,631.675540f,638.368763f,645.079578f
};
static float drmp3_L3_pow_43(int x)
{
float frac;
int sign, mult = 256;
if (x < 129)
{
return g_drmp3_pow43[16 + x];
}
if (x < 1024)
{
mult = 16;
x <<= 3;
}
sign = 2*x & 64;
frac = (float)((x & 63) - sign) / ((x & ~63) + sign);
return g_drmp3_pow43[16 + ((x + sign) >> 6)]*(1.f + frac*((4.f/3) + frac*(2.f/9)))*mult;
}
static void drmp3_L3_huffman(float *dst, drmp3_bs *bs, const drmp3_L3_gr_info *gr_info, const float *scf, int layer3gr_limit)
{
static const drmp3_int16 tabs[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
785,785,785,785,784,784,784,784,513,513,513,513,513,513,513,513,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,
-255,1313,1298,1282,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,290,288,
-255,1313,1298,1282,769,769,769,769,529,529,529,529,529,529,529,529,528,528,528,528,528,528,528,528,512,512,512,512,512,512,512,512,290,288,
-253,-318,-351,-367,785,785,785,785,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,819,818,547,547,275,275,275,275,561,560,515,546,289,274,288,258,
-254,-287,1329,1299,1314,1312,1057,1057,1042,1042,1026,1026,784,784,784,784,529,529,529,529,529,529,529,529,769,769,769,769,768,768,768,768,563,560,306,306,291,259,
-252,-413,-477,-542,1298,-575,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-383,-399,1107,1092,1106,1061,849,849,789,789,1104,1091,773,773,1076,1075,341,340,325,309,834,804,577,577,532,532,516,516,832,818,803,816,561,561,531,531,515,546,289,289,288,258,
-252,-429,-493,-559,1057,1057,1042,1042,529,529,529,529,529,529,529,529,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,-382,1077,-415,1106,1061,1104,849,849,789,789,1091,1076,1029,1075,834,834,597,581,340,340,339,324,804,833,532,532,832,772,818,803,817,787,816,771,290,290,290,290,288,258,
-253,-349,-414,-447,-463,1329,1299,-479,1314,1312,1057,1057,1042,1042,1026,1026,785,785,785,785,784,784,784,784,769,769,769,769,768,768,768,768,-319,851,821,-335,836,850,805,849,341,340,325,336,533,533,579,579,564,564,773,832,578,548,563,516,321,276,306,291,304,259,
-251,-572,-733,-830,-863,-879,1041,1041,784,784,784,784,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,1396,1351,1381,1366,1395,1335,1380,-559,1334,1138,1138,1063,1063,1350,1392,1031,1031,1062,1062,1364,1363,1120,1120,1333,1348,881,881,881,881,375,374,359,373,343,358,341,325,791,791,1123,1122,-703,1105,1045,-719,865,865,790,790,774,774,1104,1029,338,293,323,308,-799,-815,833,788,772,818,803,816,322,292,307,320,561,531,515,546,289,274,288,258,
-251,-525,-605,-685,-765,-831,-846,1298,1057,1057,1312,1282,785,785,785,785,784,784,784,784,769,769,769,769,512,512,512,512,512,512,512,512,1399,1398,1383,1367,1382,1396,1351,-511,1381,1366,1139,1139,1079,1079,1124,1124,1364,1349,1363,1333,882,882,882,882,807,807,807,807,1094,1094,1136,1136,373,341,535,535,881,775,867,822,774,-591,324,338,-671,849,550,550,866,864,609,609,293,336,534,534,789,835,773,-751,834,804,308,307,833,788,832,772,562,562,547,547,305,275,560,515,290,290,
-252,-397,-477,-557,-622,-653,-719,-735,-750,1329,1299,1314,1057,1057,1042,1042,1312,1282,1024,1024,785,785,785,785,784,784,784,784,769,769,769,769,-383,1127,1141,1111,1126,1140,1095,1110,869,869,883,883,1079,1109,882,882,375,374,807,868,838,881,791,-463,867,822,368,263,852,837,836,-543,610,610,550,550,352,336,534,534,865,774,851,821,850,805,593,533,579,564,773,832,578,578,548,548,577,577,307,276,306,291,516,560,259,259,
-250,-2107,-2507,-2764,-2909,-2974,-3007,-3023,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-767,-1052,-1213,-1277,-1358,-1405,-1469,-1535,-1550,-1582,-1614,-1647,-1662,-1694,-1726,-1759,-1774,-1807,-1822,-1854,-1886,1565,-1919,-1935,-1951,-1967,1731,1730,1580,1717,-1983,1729,1564,-1999,1548,-2015,-2031,1715,1595,-2047,1714,-2063,1610,-2079,1609,-2095,1323,1323,1457,1457,1307,1307,1712,1547,1641,1700,1699,1594,1685,1625,1442,1442,1322,1322,-780,-973,-910,1279,1278,1277,1262,1276,1261,1275,1215,1260,1229,-959,974,974,989,989,-943,735,478,478,495,463,506,414,-1039,1003,958,1017,927,942,987,957,431,476,1272,1167,1228,-1183,1256,-1199,895,895,941,941,1242,1227,1212,1135,1014,1014,490,489,503,487,910,1013,985,925,863,894,970,955,1012,847,-1343,831,755,755,984,909,428,366,754,559,-1391,752,486,457,924,997,698,698,983,893,740,740,908,877,739,739,667,667,953,938,497,287,271,271,683,606,590,712,726,574,302,302,738,736,481,286,526,725,605,711,636,724,696,651,589,681,666,710,364,467,573,695,466,466,301,465,379,379,709,604,665,679,316,316,634,633,436,436,464,269,424,394,452,332,438,363,347,408,393,448,331,422,362,407,392,421,346,406,391,376,375,359,1441,1306,-2367,1290,-2383,1337,-2399,-2415,1426,1321,-2431,1411,1336,-2447,-2463,-2479,1169,1169,1049,1049,1424,1289,1412,1352,1319,-2495,1154,1154,1064,1064,1153,1153,416,390,360,404,403,389,344,374,373,343,358,372,327,357,342,311,356,326,1395,1394,1137,1137,1047,1047,1365,1392,1287,1379,1334,1364,1349,1378,1318,1363,792,792,792,792,1152,1152,1032,1032,1121,1121,1046,1046,1120,1120,1030,1030,-2895,1106,1061,1104,849,849,789,789,1091,1076,1029,1090,1060,1075,833,833,309,324,532,532,832,772,818,803,561,561,531,560,515,546,289,274,288,258,
-250,-1179,-1579,-1836,-1996,-2124,-2253,-2333,-2413,-2477,-2542,-2574,-2607,-2622,-2655,1314,1313,1298,1312,1282,785,785,785,785,1040,1040,1025,1025,768,768,768,768,-766,-798,-830,-862,-895,-911,-927,-943,-959,-975,-991,-1007,-1023,-1039,-1055,-1070,1724,1647,-1103,-1119,1631,1767,1662,1738,1708,1723,-1135,1780,1615,1779,1599,1677,1646,1778,1583,-1151,1777,1567,1737,1692,1765,1722,1707,1630,1751,1661,1764,1614,1736,1676,1763,1750,1645,1598,1721,1691,1762,1706,1582,1761,1566,-1167,1749,1629,767,766,751,765,494,494,735,764,719,749,734,763,447,447,748,718,477,506,431,491,446,476,461,505,415,430,475,445,504,399,460,489,414,503,383,474,429,459,502,502,746,752,488,398,501,473,413,472,486,271,480,270,-1439,-1455,1357,-1471,-1487,-1503,1341,1325,-1519,1489,1463,1403,1309,-1535,1372,1448,1418,1476,1356,1462,1387,-1551,1475,1340,1447,1402,1386,-1567,1068,1068,1474,1461,455,380,468,440,395,425,410,454,364,467,466,464,453,269,409,448,268,432,1371,1473,1432,1417,1308,1460,1355,1446,1459,1431,1083,1083,1401,1416,1458,1445,1067,1067,1370,1457,1051,1051,1291,1430,1385,1444,1354,1415,1400,1443,1082,1082,1173,1113,1186,1066,1185,1050,-1967,1158,1128,1172,1097,1171,1081,-1983,1157,1112,416,266,375,400,1170,1142,1127,1065,793,793,1169,1033,1156,1096,1141,1111,1155,1080,1126,1140,898,898,808,808,897,897,792,792,1095,1152,1032,1125,1110,1139,1079,1124,882,807,838,881,853,791,-2319,867,368,263,822,852,837,866,806,865,-2399,851,352,262,534,534,821,836,594,594,549,549,593,593,533,533,848,773,579,579,564,578,548,563,276,276,577,576,306,291,516,560,305,305,275,259,
-251,-892,-2058,-2620,-2828,-2957,-3023,-3039,1041,1041,1040,1040,769,769,769,769,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,256,-511,-527,-543,-559,1530,-575,-591,1528,1527,1407,1526,1391,1023,1023,1023,1023,1525,1375,1268,1268,1103,1103,1087,1087,1039,1039,1523,-604,815,815,815,815,510,495,509,479,508,463,507,447,431,505,415,399,-734,-782,1262,-815,1259,1244,-831,1258,1228,-847,-863,1196,-879,1253,987,987,748,-767,493,493,462,477,414,414,686,669,478,446,461,445,474,429,487,458,412,471,1266,1264,1009,1009,799,799,-1019,-1276,-1452,-1581,-1677,-1757,-1821,-1886,-1933,-1997,1257,1257,1483,1468,1512,1422,1497,1406,1467,1496,1421,1510,1134,1134,1225,1225,1466,1451,1374,1405,1252,1252,1358,1480,1164,1164,1251,1251,1238,1238,1389,1465,-1407,1054,1101,-1423,1207,-1439,830,830,1248,1038,1237,1117,1223,1148,1236,1208,411,426,395,410,379,269,1193,1222,1132,1235,1221,1116,976,976,1192,1162,1177,1220,1131,1191,963,963,-1647,961,780,-1663,558,558,994,993,437,408,393,407,829,978,813,797,947,-1743,721,721,377,392,844,950,828,890,706,706,812,859,796,960,948,843,934,874,571,571,-1919,690,555,689,421,346,539,539,944,779,918,873,932,842,903,888,570,570,931,917,674,674,-2575,1562,-2591,1609,-2607,1654,1322,1322,1441,1441,1696,1546,1683,1593,1669,1624,1426,1426,1321,1321,1639,1680,1425,1425,1305,1305,1545,1668,1608,1623,1667,1592,1638,1666,1320,1320,1652,1607,1409,1409,1304,1304,1288,1288,1664,1637,1395,1395,1335,1335,1622,1636,1394,1394,1319,1319,1606,1621,1392,1392,1137,1137,1137,1137,345,390,360,375,404,373,1047,-2751,-2767,-2783,1062,1121,1046,-2799,1077,-2815,1106,1061,789,789,1105,1104,263,355,310,340,325,354,352,262,339,324,1091,1076,1029,1090,1060,1075,833,833,788,788,1088,1028,818,818,803,803,561,561,531,531,816,771,546,546,289,274,288,258,
-253,-317,-381,-446,-478,-509,1279,1279,-811,-1179,-1451,-1756,-1900,-2028,-2189,-2253,-2333,-2414,-2445,-2511,-2526,1313,1298,-2559,1041,1041,1040,1040,1025,1025,1024,1024,1022,1007,1021,991,1020,975,1019,959,687,687,1018,1017,671,671,655,655,1016,1015,639,639,758,758,623,623,757,607,756,591,755,575,754,559,543,543,1009,783,-575,-621,-685,-749,496,-590,750,749,734,748,974,989,1003,958,988,973,1002,942,987,957,972,1001,926,986,941,971,956,1000,910,985,925,999,894,970,-1071,-1087,-1102,1390,-1135,1436,1509,1451,1374,-1151,1405,1358,1480,1420,-1167,1507,1494,1389,1342,1465,1435,1450,1326,1505,1310,1493,1373,1479,1404,1492,1464,1419,428,443,472,397,736,526,464,464,486,457,442,471,484,482,1357,1449,1434,1478,1388,1491,1341,1490,1325,1489,1463,1403,1309,1477,1372,1448,1418,1433,1476,1356,1462,1387,-1439,1475,1340,1447,1402,1474,1324,1461,1371,1473,269,448,1432,1417,1308,1460,-1711,1459,-1727,1441,1099,1099,1446,1386,1431,1401,-1743,1289,1083,1083,1160,1160,1458,1445,1067,1067,1370,1457,1307,1430,1129,1129,1098,1098,268,432,267,416,266,400,-1887,1144,1187,1082,1173,1113,1186,1066,1050,1158,1128,1143,1172,1097,1171,1081,420,391,1157,1112,1170,1142,1127,1065,1169,1049,1156,1096,1141,1111,1155,1080,1126,1154,1064,1153,1140,1095,1048,-2159,1125,1110,1137,-2175,823,823,1139,1138,807,807,384,264,368,263,868,838,853,791,867,822,852,837,866,806,865,790,-2319,851,821,836,352,262,850,805,849,-2399,533,533,835,820,336,261,578,548,563,577,532,532,832,772,562,562,547,547,305,275,560,515,290,290,288,258 };
static const drmp3_uint8 tab32[] = { 130,162,193,209,44,28,76,140,9,9,9,9,9,9,9,9,190,254,222,238,126,94,157,157,109,61,173,205};
static const drmp3_uint8 tab33[] = { 252,236,220,204,188,172,156,140,124,108,92,76,60,44,28,12 };
static const drmp3_int16 tabindex[2*16] = { 0,32,64,98,0,132,180,218,292,364,426,538,648,746,0,1126,1460,1460,1460,1460,1460,1460,1460,1460,1842,1842,1842,1842,1842,1842,1842,1842 };
static const drmp3_uint8 g_linbits[] = { 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,2,3,4,6,8,10,13,4,5,6,7,8,9,11,13 };
#define DRMP3_PEEK_BITS(n) (bs_cache >> (32 - n))
#define DRMP3_FLUSH_BITS(n) { bs_cache <<= (n); bs_sh += (n); }
#define DRMP3_CHECK_BITS while (bs_sh >= 0) { bs_cache |= (drmp3_uint32)*bs_next_ptr++ << bs_sh; bs_sh -= 8; }
#define DRMP3_BSPOS ((bs_next_ptr - bs->buf)*8 - 24 + bs_sh)
float one = 0.0f;
int ireg = 0, big_val_cnt = gr_info->big_values;
const drmp3_uint8 *sfb = gr_info->sfbtab;
const drmp3_uint8 *bs_next_ptr = bs->buf + bs->pos/8;
drmp3_uint32 bs_cache = (((bs_next_ptr[0]*256u + bs_next_ptr[1])*256u + bs_next_ptr[2])*256u + bs_next_ptr[3]) << (bs->pos & 7);
int pairs_to_decode, np, bs_sh = (bs->pos & 7) - 8;
bs_next_ptr += 4;
while (big_val_cnt > 0)
{
int tab_num = gr_info->table_select[ireg];
int sfb_cnt = gr_info->region_count[ireg++];
const drmp3_int16 *codebook = tabs + tabindex[tab_num];
int linbits = g_linbits[tab_num];
if (linbits)
{
do
{
np = *sfb++ / 2;
pairs_to_decode = DRMP3_MIN(big_val_cnt, np);
one = *scf++;
do
{
int j, w = 5;
int leaf = codebook[DRMP3_PEEK_BITS(w)];
while (leaf < 0)
{
DRMP3_FLUSH_BITS(w);
w = leaf & 7;
leaf = codebook[DRMP3_PEEK_BITS(w) - (leaf >> 3)];
}
DRMP3_FLUSH_BITS(leaf >> 8);
for (j = 0; j < 2; j++, dst++, leaf >>= 4)
{
int lsb = leaf & 0x0F;
if (lsb == 15)
{
lsb += DRMP3_PEEK_BITS(linbits);
DRMP3_FLUSH_BITS(linbits);
DRMP3_CHECK_BITS;
*dst = one*drmp3_L3_pow_43(lsb)*((drmp3_int32)bs_cache < 0 ? -1: 1);
} else
{
*dst = g_drmp3_pow43[16 + lsb - 16*(bs_cache >> 31)]*one;
}
DRMP3_FLUSH_BITS(lsb ? 1 : 0);
}
DRMP3_CHECK_BITS;
} while (--pairs_to_decode);
} while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0);
} else
{
do
{
np = *sfb++ / 2;
pairs_to_decode = DRMP3_MIN(big_val_cnt, np);
one = *scf++;
do
{
int j, w = 5;
int leaf = codebook[DRMP3_PEEK_BITS(w)];
while (leaf < 0)
{
DRMP3_FLUSH_BITS(w);
w = leaf & 7;
leaf = codebook[DRMP3_PEEK_BITS(w) - (leaf >> 3)];
}
DRMP3_FLUSH_BITS(leaf >> 8);
for (j = 0; j < 2; j++, dst++, leaf >>= 4)
{
int lsb = leaf & 0x0F;
*dst = g_drmp3_pow43[16 + lsb - 16*(bs_cache >> 31)]*one;
DRMP3_FLUSH_BITS(lsb ? 1 : 0);
}
DRMP3_CHECK_BITS;
} while (--pairs_to_decode);
} while ((big_val_cnt -= np) > 0 && --sfb_cnt >= 0);
}
}
for (np = 1 - big_val_cnt;; dst += 4)
{
const drmp3_uint8 *codebook_count1 = (gr_info->count1_table) ? tab33 : tab32;
int leaf = codebook_count1[DRMP3_PEEK_BITS(4)];
if (!(leaf & 8))
{
leaf = codebook_count1[(leaf >> 3) + (bs_cache << 4 >> (32 - (leaf & 3)))];
}
DRMP3_FLUSH_BITS(leaf & 7);
if (DRMP3_BSPOS > layer3gr_limit)
{
break;
}
#define DRMP3_RELOAD_SCALEFACTOR if (!--np) { np = *sfb++/2; if (!np) break; one = *scf++; }
#define DRMP3_DEQ_COUNT1(s) if (leaf & (128 >> s)) { dst[s] = ((drmp3_int32)bs_cache < 0) ? -one : one; DRMP3_FLUSH_BITS(1) }
DRMP3_RELOAD_SCALEFACTOR;
DRMP3_DEQ_COUNT1(0);
DRMP3_DEQ_COUNT1(1);
DRMP3_RELOAD_SCALEFACTOR;
DRMP3_DEQ_COUNT1(2);
DRMP3_DEQ_COUNT1(3);
DRMP3_CHECK_BITS;
}
bs->pos = layer3gr_limit;
}
static void drmp3_L3_midside_stereo(float *left, int n)
{
int i = 0;
float *right = left + 576;
#if DRMP3_HAVE_SIMD
if (drmp3_have_simd()) for (; i < n - 3; i += 4)
{
drmp3_f4 vl = DRMP3_VLD(left + i);
drmp3_f4 vr = DRMP3_VLD(right + i);
DRMP3_VSTORE(left + i, DRMP3_VADD(vl, vr));
DRMP3_VSTORE(right + i, DRMP3_VSUB(vl, vr));
}
#endif
for (; i < n; i++)
{
float a = left[i];
float b = right[i];
left[i] = a + b;
right[i] = a - b;
}
}
static void drmp3_L3_intensity_stereo_band(float *left, int n, float kl, float kr)
{
int i;
for (i = 0; i < n; i++)
{
left[i + 576] = left[i]*kr;
left[i] = left[i]*kl;
}
}
static void drmp3_L3_stereo_top_band(const float *right, const drmp3_uint8 *sfb, int nbands, int max_band[3])
{
int i, k;
max_band[0] = max_band[1] = max_band[2] = -1;
for (i = 0; i < nbands; i++)
{
for (k = 0; k < sfb[i]; k += 2)
{
if (right[k] != 0 || right[k + 1] != 0)
{
max_band[i % 3] = i;
break;
}
}
right += sfb[i];
}
}
static void drmp3_L3_stereo_process(float *left, const drmp3_uint8 *ist_pos, const drmp3_uint8 *sfb, const drmp3_uint8 *hdr, int max_band[3], int mpeg2_sh)
{
static const float g_pan[7*2] = { 0,1,0.21132487f,0.78867513f,0.36602540f,0.63397460f,0.5f,0.5f,0.63397460f,0.36602540f,0.78867513f,0.21132487f,1,0 };
unsigned i, max_pos = DRMP3_HDR_TEST_MPEG1(hdr) ? 7 : 64;
for (i = 0; sfb[i]; i++)
{
unsigned ipos = ist_pos[i];
if ((int)i > max_band[i % 3] && ipos < max_pos)
{
float kl, kr, s = DRMP3_HDR_TEST_MS_STEREO(hdr) ? 1.41421356f : 1;
if (DRMP3_HDR_TEST_MPEG1(hdr))
{
kl = g_pan[2*ipos];
kr = g_pan[2*ipos + 1];
} else
{
kl = 1;
kr = drmp3_L3_ldexp_q2(1, (ipos + 1) >> 1 << mpeg2_sh);
if (ipos & 1)
{
kl = kr;
kr = 1;
}
}
drmp3_L3_intensity_stereo_band(left, sfb[i], kl*s, kr*s);
} else if (DRMP3_HDR_TEST_MS_STEREO(hdr))
{
drmp3_L3_midside_stereo(left, sfb[i]);
}
left += sfb[i];
}
}
static void drmp3_L3_intensity_stereo(float *left, drmp3_uint8 *ist_pos, const drmp3_L3_gr_info *gr, const drmp3_uint8 *hdr)
{
int max_band[3], n_sfb = gr->n_long_sfb + gr->n_short_sfb;
int i, max_blocks = gr->n_short_sfb ? 3 : 1;
drmp3_L3_stereo_top_band(left + 576, gr->sfbtab, n_sfb, max_band);
if (gr->n_long_sfb)
{
max_band[0] = max_band[1] = max_band[2] = DRMP3_MAX(DRMP3_MAX(max_band[0], max_band[1]), max_band[2]);
}
for (i = 0; i < max_blocks; i++)
{
int default_pos = DRMP3_HDR_TEST_MPEG1(hdr) ? 3 : 0;
int itop = n_sfb - max_blocks + i;
int prev = itop - max_blocks;
ist_pos[itop] = (drmp3_uint8)(max_band[i] >= prev ? default_pos : ist_pos[prev]);
}
drmp3_L3_stereo_process(left, ist_pos, gr->sfbtab, hdr, max_band, gr[1].scalefac_compress & 1);
}
static void drmp3_L3_reorder(float *grbuf, float *scratch, const drmp3_uint8 *sfb)
{
int i, len;
float *src = grbuf, *dst = scratch;
for (;0 != (len = *sfb); sfb += 3, src += 2*len)
{
for (i = 0; i < len; i++, src++)
{
*dst++ = src[0*len];
*dst++ = src[1*len];
*dst++ = src[2*len];
}
}
memcpy(grbuf, scratch, (dst - scratch)*sizeof(float));
}
static void drmp3_L3_antialias(float *grbuf, int nbands)
{
static const float g_aa[2][8] = {
{0.85749293f,0.88174200f,0.94962865f,0.98331459f,0.99551782f,0.99916056f,0.99989920f,0.99999316f},
{0.51449576f,0.47173197f,0.31337745f,0.18191320f,0.09457419f,0.04096558f,0.01419856f,0.00369997f}
};
for (; nbands > 0; nbands--, grbuf += 18)
{
int i = 0;
#if DRMP3_HAVE_SIMD
if (drmp3_have_simd()) for (; i < 8; i += 4)
{
drmp3_f4 vu = DRMP3_VLD(grbuf + 18 + i);
drmp3_f4 vd = DRMP3_VLD(grbuf + 14 - i);
drmp3_f4 vc0 = DRMP3_VLD(g_aa[0] + i);
drmp3_f4 vc1 = DRMP3_VLD(g_aa[1] + i);
vd = DRMP3_VREV(vd);
DRMP3_VSTORE(grbuf + 18 + i, DRMP3_VSUB(DRMP3_VMUL(vu, vc0), DRMP3_VMUL(vd, vc1)));
vd = DRMP3_VADD(DRMP3_VMUL(vu, vc1), DRMP3_VMUL(vd, vc0));
DRMP3_VSTORE(grbuf + 14 - i, DRMP3_VREV(vd));
}
#endif
#ifndef DR_MP3_ONLY_SIMD
for(; i < 8; i++)
{
float u = grbuf[18 + i];
float d = grbuf[17 - i];
grbuf[18 + i] = u*g_aa[0][i] - d*g_aa[1][i];
grbuf[17 - i] = u*g_aa[1][i] + d*g_aa[0][i];
}
#endif
}
}
static void drmp3_L3_dct3_9(float *y)
{
float s0, s1, s2, s3, s4, s5, s6, s7, s8, t0, t2, t4;
s0 = y[0]; s2 = y[2]; s4 = y[4]; s6 = y[6]; s8 = y[8];
t0 = s0 + s6*0.5f;
s0 -= s6;
t4 = (s4 + s2)*0.93969262f;
t2 = (s8 + s2)*0.76604444f;
s6 = (s4 - s8)*0.17364818f;
s4 += s8 - s2;
s2 = s0 - s4*0.5f;
y[4] = s4 + s0;
s8 = t0 - t2 + s6;
s0 = t0 - t4 + t2;
s4 = t0 + t4 - s6;
s1 = y[1]; s3 = y[3]; s5 = y[5]; s7 = y[7];
s3 *= 0.86602540f;
t0 = (s5 + s1)*0.98480775f;
t4 = (s5 - s7)*0.34202014f;
t2 = (s1 + s7)*0.64278761f;
s1 = (s1 - s5 - s7)*0.86602540f;
s5 = t0 - s3 - t2;
s7 = t4 - s3 - t0;
s3 = t4 + s3 - t2;
y[0] = s4 - s7;
y[1] = s2 + s1;
y[2] = s0 - s3;
y[3] = s8 + s5;
y[5] = s8 - s5;
y[6] = s0 + s3;
y[7] = s2 - s1;
y[8] = s4 + s7;
}
static void drmp3_L3_imdct36(float *grbuf, float *overlap, const float *window, int nbands)
{
int i, j;
static const float g_twid9[18] = {
0.73727734f,0.79335334f,0.84339145f,0.88701083f,0.92387953f,0.95371695f,0.97629601f,0.99144486f,0.99904822f,0.67559021f,0.60876143f,0.53729961f,0.46174861f,0.38268343f,0.30070580f,0.21643961f,0.13052619f,0.04361938f
};
for (j = 0; j < nbands; j++, grbuf += 18, overlap += 9)
{
float co[9], si[9];
co[0] = -grbuf[0];
si[0] = grbuf[17];
for (i = 0; i < 4; i++)
{
si[8 - 2*i] = grbuf[4*i + 1] - grbuf[4*i + 2];
co[1 + 2*i] = grbuf[4*i + 1] + grbuf[4*i + 2];
si[7 - 2*i] = grbuf[4*i + 4] - grbuf[4*i + 3];
co[2 + 2*i] = -(grbuf[4*i + 3] + grbuf[4*i + 4]);
}
drmp3_L3_dct3_9(co);
drmp3_L3_dct3_9(si);
si[1] = -si[1];
si[3] = -si[3];
si[5] = -si[5];
si[7] = -si[7];
i = 0;
#if DRMP3_HAVE_SIMD
if (drmp3_have_simd()) for (; i < 8; i += 4)
{
drmp3_f4 vovl = DRMP3_VLD(overlap + i);
drmp3_f4 vc = DRMP3_VLD(co + i);
drmp3_f4 vs = DRMP3_VLD(si + i);
drmp3_f4 vr0 = DRMP3_VLD(g_twid9 + i);
drmp3_f4 vr1 = DRMP3_VLD(g_twid9 + 9 + i);
drmp3_f4 vw0 = DRMP3_VLD(window + i);
drmp3_f4 vw1 = DRMP3_VLD(window + 9 + i);
drmp3_f4 vsum = DRMP3_VADD(DRMP3_VMUL(vc, vr1), DRMP3_VMUL(vs, vr0));
DRMP3_VSTORE(overlap + i, DRMP3_VSUB(DRMP3_VMUL(vc, vr0), DRMP3_VMUL(vs, vr1)));
DRMP3_VSTORE(grbuf + i, DRMP3_VSUB(DRMP3_VMUL(vovl, vw0), DRMP3_VMUL(vsum, vw1)));
vsum = DRMP3_VADD(DRMP3_VMUL(vovl, vw1), DRMP3_VMUL(vsum, vw0));
DRMP3_VSTORE(grbuf + 14 - i, DRMP3_VREV(vsum));
}
#endif
for (; i < 9; i++)
{
float ovl = overlap[i];
float sum = co[i]*g_twid9[9 + i] + si[i]*g_twid9[0 + i];
overlap[i] = co[i]*g_twid9[0 + i] - si[i]*g_twid9[9 + i];
grbuf[i] = ovl*window[0 + i] - sum*window[9 + i];
grbuf[17 - i] = ovl*window[9 + i] + sum*window[0 + i];
}
}
}
static void drmp3_L3_idct3(float x0, float x1, float x2, float *dst)
{
float m1 = x1*0.86602540f;
float a1 = x0 - x2*0.5f;
dst[1] = x0 + x2;
dst[0] = a1 + m1;
dst[2] = a1 - m1;
}
static void drmp3_L3_imdct12(float *x, float *dst, float *overlap)
{
static const float g_twid3[6] = { 0.79335334f,0.92387953f,0.99144486f, 0.60876143f,0.38268343f,0.13052619f };
float co[3], si[3];
int i;
drmp3_L3_idct3(-x[0], x[6] + x[3], x[12] + x[9], co);
drmp3_L3_idct3(x[15], x[12] - x[9], x[6] - x[3], si);
si[1] = -si[1];
for (i = 0; i < 3; i++)
{
float ovl = overlap[i];
float sum = co[i]*g_twid3[3 + i] + si[i]*g_twid3[0 + i];
overlap[i] = co[i]*g_twid3[0 + i] - si[i]*g_twid3[3 + i];
dst[i] = ovl*g_twid3[2 - i] - sum*g_twid3[5 - i];
dst[5 - i] = ovl*g_twid3[5 - i] + sum*g_twid3[2 - i];
}
}
static void drmp3_L3_imdct_short(float *grbuf, float *overlap, int nbands)
{
for (;nbands > 0; nbands--, overlap += 9, grbuf += 18)
{
float tmp[18];
memcpy(tmp, grbuf, sizeof(tmp));
memcpy(grbuf, overlap, 6*sizeof(float));
drmp3_L3_imdct12(tmp, grbuf + 6, overlap + 6);
drmp3_L3_imdct12(tmp + 1, grbuf + 12, overlap + 6);
drmp3_L3_imdct12(tmp + 2, overlap, overlap + 6);
}
}
static void drmp3_L3_change_sign(float *grbuf)
{
int b, i;
for (b = 0, grbuf += 18; b < 32; b += 2, grbuf += 36)
for (i = 1; i < 18; i += 2)
grbuf[i] = -grbuf[i];
}
static void drmp3_L3_imdct_gr(float *grbuf, float *overlap, unsigned block_type, unsigned n_long_bands)
{
static const float g_mdct_window[2][18] = {
{ 0.99904822f,0.99144486f,0.97629601f,0.95371695f,0.92387953f,0.88701083f,0.84339145f,0.79335334f,0.73727734f,0.04361938f,0.13052619f,0.21643961f,0.30070580f,0.38268343f,0.46174861f,0.53729961f,0.60876143f,0.67559021f },
{ 1,1,1,1,1,1,0.99144486f,0.92387953f,0.79335334f,0,0,0,0,0,0,0.13052619f,0.38268343f,0.60876143f }
};
if (n_long_bands)
{
drmp3_L3_imdct36(grbuf, overlap, g_mdct_window[0], n_long_bands);
grbuf += 18*n_long_bands;
overlap += 9*n_long_bands;
}
if (block_type == DRMP3_SHORT_BLOCK_TYPE)
drmp3_L3_imdct_short(grbuf, overlap, 32 - n_long_bands);
else
drmp3_L3_imdct36(grbuf, overlap, g_mdct_window[block_type == DRMP3_STOP_BLOCK_TYPE], 32 - n_long_bands);
}
static void drmp3_L3_save_reservoir(drmp3dec *h, drmp3dec_scratch *s)
{
int pos = (s->bs.pos + 7)/8u;
int remains = s->bs.limit/8u - pos;
if (remains > DRMP3_MAX_BITRESERVOIR_BYTES)
{
pos += remains - DRMP3_MAX_BITRESERVOIR_BYTES;
remains = DRMP3_MAX_BITRESERVOIR_BYTES;
}
if (remains > 0)
{
memmove(h->reserv_buf, s->maindata + pos, remains);
}
h->reserv = remains;
}
static int drmp3_L3_restore_reservoir(drmp3dec *h, drmp3_bs *bs, drmp3dec_scratch *s, int main_data_begin)
{
int frame_bytes = (bs->limit - bs->pos)/8;
int bytes_have = DRMP3_MIN(h->reserv, main_data_begin);
memcpy(s->maindata, h->reserv_buf + DRMP3_MAX(0, h->reserv - main_data_begin), DRMP3_MIN(h->reserv, main_data_begin));
memcpy(s->maindata + bytes_have, bs->buf + bs->pos/8, frame_bytes);
drmp3_bs_init(&s->bs, s->maindata, bytes_have + frame_bytes);
return h->reserv >= main_data_begin;
}
static void drmp3_L3_decode(drmp3dec *h, drmp3dec_scratch *s, drmp3_L3_gr_info *gr_info, int nch)
{
int ch;
for (ch = 0; ch < nch; ch++)
{
int layer3gr_limit = s->bs.pos + gr_info[ch].part_23_length;
drmp3_L3_decode_scalefactors(h->header, s->ist_pos[ch], &s->bs, gr_info + ch, s->scf, ch);
drmp3_L3_huffman(s->grbuf[ch], &s->bs, gr_info + ch, s->scf, layer3gr_limit);
}
if (DRMP3_HDR_TEST_I_STEREO(h->header))
{
drmp3_L3_intensity_stereo(s->grbuf[0], s->ist_pos[1], gr_info, h->header);
} else if (DRMP3_HDR_IS_MS_STEREO(h->header))
{
drmp3_L3_midside_stereo(s->grbuf[0], 576);
}
for (ch = 0; ch < nch; ch++, gr_info++)
{
int aa_bands = 31;
int n_long_bands = (gr_info->mixed_block_flag ? 2 : 0) << (int)(DRMP3_HDR_GET_MY_SAMPLE_RATE(h->header) == 2);
if (gr_info->n_short_sfb)
{
aa_bands = n_long_bands - 1;
drmp3_L3_reorder(s->grbuf[ch] + n_long_bands*18, s->syn[0], gr_info->sfbtab + gr_info->n_long_sfb);
}
drmp3_L3_antialias(s->grbuf[ch], aa_bands);
drmp3_L3_imdct_gr(s->grbuf[ch], h->mdct_overlap[ch], gr_info->block_type, n_long_bands);
drmp3_L3_change_sign(s->grbuf[ch]);
}
}
static void drmp3d_DCT_II(float *grbuf, int n)
{
static const float g_sec[24] = {
10.19000816f,0.50060302f,0.50241929f,3.40760851f,0.50547093f,0.52249861f,2.05778098f,0.51544732f,0.56694406f,1.48416460f,0.53104258f,0.64682180f,1.16943991f,0.55310392f,0.78815460f,0.97256821f,0.58293498f,1.06067765f,0.83934963f,0.62250412f,1.72244716f,0.74453628f,0.67480832f,5.10114861f
};
int i, k = 0;
#if DRMP3_HAVE_SIMD
if (drmp3_have_simd()) for (; k < n; k += 4)
{
drmp3_f4 t[4][8], *x;
float *y = grbuf + k;
for (x = t[0], i = 0; i < 8; i++, x++)
{
drmp3_f4 x0 = DRMP3_VLD(&y[i*18]);
drmp3_f4 x1 = DRMP3_VLD(&y[(15 - i)*18]);
drmp3_f4 x2 = DRMP3_VLD(&y[(16 + i)*18]);
drmp3_f4 x3 = DRMP3_VLD(&y[(31 - i)*18]);
drmp3_f4 t0 = DRMP3_VADD(x0, x3);
drmp3_f4 t1 = DRMP3_VADD(x1, x2);
drmp3_f4 t2 = DRMP3_VMUL_S(DRMP3_VSUB(x1, x2), g_sec[3*i + 0]);
drmp3_f4 t3 = DRMP3_VMUL_S(DRMP3_VSUB(x0, x3), g_sec[3*i + 1]);
x[0] = DRMP3_VADD(t0, t1);
x[8] = DRMP3_VMUL_S(DRMP3_VSUB(t0, t1), g_sec[3*i + 2]);
x[16] = DRMP3_VADD(t3, t2);
x[24] = DRMP3_VMUL_S(DRMP3_VSUB(t3, t2), g_sec[3*i + 2]);
}
for (x = t[0], i = 0; i < 4; i++, x += 8)
{
drmp3_f4 x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt;
xt = DRMP3_VSUB(x0, x7); x0 = DRMP3_VADD(x0, x7);
x7 = DRMP3_VSUB(x1, x6); x1 = DRMP3_VADD(x1, x6);
x6 = DRMP3_VSUB(x2, x5); x2 = DRMP3_VADD(x2, x5);
x5 = DRMP3_VSUB(x3, x4); x3 = DRMP3_VADD(x3, x4);
x4 = DRMP3_VSUB(x0, x3); x0 = DRMP3_VADD(x0, x3);
x3 = DRMP3_VSUB(x1, x2); x1 = DRMP3_VADD(x1, x2);
x[0] = DRMP3_VADD(x0, x1);
x[4] = DRMP3_VMUL_S(DRMP3_VSUB(x0, x1), 0.70710677f);
x5 = DRMP3_VADD(x5, x6);
x6 = DRMP3_VMUL_S(DRMP3_VADD(x6, x7), 0.70710677f);
x7 = DRMP3_VADD(x7, xt);
x3 = DRMP3_VMUL_S(DRMP3_VADD(x3, x4), 0.70710677f);
x5 = DRMP3_VSUB(x5, DRMP3_VMUL_S(x7, 0.198912367f));
x7 = DRMP3_VADD(x7, DRMP3_VMUL_S(x5, 0.382683432f));
x5 = DRMP3_VSUB(x5, DRMP3_VMUL_S(x7, 0.198912367f));
x0 = DRMP3_VSUB(xt, x6); xt = DRMP3_VADD(xt, x6);
x[1] = DRMP3_VMUL_S(DRMP3_VADD(xt, x7), 0.50979561f);
x[2] = DRMP3_VMUL_S(DRMP3_VADD(x4, x3), 0.54119611f);
x[3] = DRMP3_VMUL_S(DRMP3_VSUB(x0, x5), 0.60134488f);
x[5] = DRMP3_VMUL_S(DRMP3_VADD(x0, x5), 0.89997619f);
x[6] = DRMP3_VMUL_S(DRMP3_VSUB(x4, x3), 1.30656302f);
x[7] = DRMP3_VMUL_S(DRMP3_VSUB(xt, x7), 2.56291556f);
}
if (k > n - 3)
{
#if DRMP3_HAVE_SSE
#define DRMP3_VSAVE2(i, v) _mm_storel_pi((__m64 *)(void*)&y[i*18], v)
#else
#define DRMP3_VSAVE2(i, v) vst1_f32((float32_t *)&y[i*18], vget_low_f32(v))
#endif
for (i = 0; i < 7; i++, y += 4*18)
{
drmp3_f4 s = DRMP3_VADD(t[3][i], t[3][i + 1]);
DRMP3_VSAVE2(0, t[0][i]);
DRMP3_VSAVE2(1, DRMP3_VADD(t[2][i], s));
DRMP3_VSAVE2(2, DRMP3_VADD(t[1][i], t[1][i + 1]));
DRMP3_VSAVE2(3, DRMP3_VADD(t[2][1 + i], s));
}
DRMP3_VSAVE2(0, t[0][7]);
DRMP3_VSAVE2(1, DRMP3_VADD(t[2][7], t[3][7]));
DRMP3_VSAVE2(2, t[1][7]);
DRMP3_VSAVE2(3, t[3][7]);
} else
{
#define DRMP3_VSAVE4(i, v) DRMP3_VSTORE(&y[i*18], v)
for (i = 0; i < 7; i++, y += 4*18)
{
drmp3_f4 s = DRMP3_VADD(t[3][i], t[3][i + 1]);
DRMP3_VSAVE4(0, t[0][i]);
DRMP3_VSAVE4(1, DRMP3_VADD(t[2][i], s));
DRMP3_VSAVE4(2, DRMP3_VADD(t[1][i], t[1][i + 1]));
DRMP3_VSAVE4(3, DRMP3_VADD(t[2][1 + i], s));
}
DRMP3_VSAVE4(0, t[0][7]);
DRMP3_VSAVE4(1, DRMP3_VADD(t[2][7], t[3][7]));
DRMP3_VSAVE4(2, t[1][7]);
DRMP3_VSAVE4(3, t[3][7]);
}
} else
#endif
#ifdef DR_MP3_ONLY_SIMD
{}
#else
for (; k < n; k++)
{
float t[4][8], *x, *y = grbuf + k;
for (x = t[0], i = 0; i < 8; i++, x++)
{
float x0 = y[i*18];
float x1 = y[(15 - i)*18];
float x2 = y[(16 + i)*18];
float x3 = y[(31 - i)*18];
float t0 = x0 + x3;
float t1 = x1 + x2;
float t2 = (x1 - x2)*g_sec[3*i + 0];
float t3 = (x0 - x3)*g_sec[3*i + 1];
x[0] = t0 + t1;
x[8] = (t0 - t1)*g_sec[3*i + 2];
x[16] = t3 + t2;
x[24] = (t3 - t2)*g_sec[3*i + 2];
}
for (x = t[0], i = 0; i < 4; i++, x += 8)
{
float x0 = x[0], x1 = x[1], x2 = x[2], x3 = x[3], x4 = x[4], x5 = x[5], x6 = x[6], x7 = x[7], xt;
xt = x0 - x7; x0 += x7;
x7 = x1 - x6; x1 += x6;
x6 = x2 - x5; x2 += x5;
x5 = x3 - x4; x3 += x4;
x4 = x0 - x3; x0 += x3;
x3 = x1 - x2; x1 += x2;
x[0] = x0 + x1;
x[4] = (x0 - x1)*0.70710677f;
x5 = x5 + x6;
x6 = (x6 + x7)*0.70710677f;
x7 = x7 + xt;
x3 = (x3 + x4)*0.70710677f;
x5 -= x7*0.198912367f;
x7 += x5*0.382683432f;
x5 -= x7*0.198912367f;
x0 = xt - x6; xt += x6;
x[1] = (xt + x7)*0.50979561f;
x[2] = (x4 + x3)*0.54119611f;
x[3] = (x0 - x5)*0.60134488f;
x[5] = (x0 + x5)*0.89997619f;
x[6] = (x4 - x3)*1.30656302f;
x[7] = (xt - x7)*2.56291556f;
}
for (i = 0; i < 7; i++, y += 4*18)
{
y[0*18] = t[0][i];
y[1*18] = t[2][i] + t[3][i] + t[3][i + 1];
y[2*18] = t[1][i] + t[1][i + 1];
y[3*18] = t[2][i + 1] + t[3][i] + t[3][i + 1];
}
y[0*18] = t[0][7];
y[1*18] = t[2][7] + t[3][7];
y[2*18] = t[1][7];
y[3*18] = t[3][7];
}
#endif
}
#ifndef DR_MP3_FLOAT_OUTPUT
typedef drmp3_int16 drmp3d_sample_t;
static drmp3_int16 drmp3d_scale_pcm(float sample)
{
drmp3_int16 s;
#if DRMP3_HAVE_ARMV6
drmp3_int32 s32 = (drmp3_int32)(sample + .5f);
s32 -= (s32 < 0);
s = (drmp3_int16)drmp3_clip_int16_arm(s32);
#else
if (sample >= 32766.5) return (drmp3_int16) 32767;
if (sample <= -32767.5) return (drmp3_int16)-32768;
s = (drmp3_int16)(sample + .5f);
s -= (s < 0);
#endif
return s;
}
#else
typedef float drmp3d_sample_t;
static float drmp3d_scale_pcm(float sample)
{
return sample*(1.f/32768.f);
}
#endif
static void drmp3d_synth_pair(drmp3d_sample_t *pcm, int nch, const float *z)
{
float a;
a = (z[14*64] - z[ 0]) * 29;
a += (z[ 1*64] + z[13*64]) * 213;
a += (z[12*64] - z[ 2*64]) * 459;
a += (z[ 3*64] + z[11*64]) * 2037;
a += (z[10*64] - z[ 4*64]) * 5153;
a += (z[ 5*64] + z[ 9*64]) * 6574;
a += (z[ 8*64] - z[ 6*64]) * 37489;
a += z[ 7*64] * 75038;
pcm[0] = drmp3d_scale_pcm(a);
z += 2;
a = z[14*64] * 104;
a += z[12*64] * 1567;
a += z[10*64] * 9727;
a += z[ 8*64] * 64019;
a += z[ 6*64] * -9975;
a += z[ 4*64] * -45;
a += z[ 2*64] * 146;
a += z[ 0*64] * -5;
pcm[16*nch] = drmp3d_scale_pcm(a);
}
static void drmp3d_synth(float *xl, drmp3d_sample_t *dstl, int nch, float *lins)
{
int i;
float *xr = xl + 576*(nch - 1);
drmp3d_sample_t *dstr = dstl + (nch - 1);
static const float g_win[] = {
-1,26,-31,208,218,401,-519,2063,2000,4788,-5517,7134,5959,35640,-39336,74992,
-1,24,-35,202,222,347,-581,2080,1952,4425,-5879,7640,5288,33791,-41176,74856,
-1,21,-38,196,225,294,-645,2087,1893,4063,-6237,8092,4561,31947,-43006,74630,
-1,19,-41,190,227,244,-711,2085,1822,3705,-6589,8492,3776,30112,-44821,74313,
-1,17,-45,183,228,197,-779,2075,1739,3351,-6935,8840,2935,28289,-46617,73908,
-1,16,-49,176,228,153,-848,2057,1644,3004,-7271,9139,2037,26482,-48390,73415,
-2,14,-53,169,227,111,-919,2032,1535,2663,-7597,9389,1082,24694,-50137,72835,
-2,13,-58,161,224,72,-991,2001,1414,2330,-7910,9592,70,22929,-51853,72169,
-2,11,-63,154,221,36,-1064,1962,1280,2006,-8209,9750,-998,21189,-53534,71420,
-2,10,-68,147,215,2,-1137,1919,1131,1692,-8491,9863,-2122,19478,-55178,70590,
-3,9,-73,139,208,-29,-1210,1870,970,1388,-8755,9935,-3300,17799,-56778,69679,
-3,8,-79,132,200,-57,-1283,1817,794,1095,-8998,9966,-4533,16155,-58333,68692,
-4,7,-85,125,189,-83,-1356,1759,605,814,-9219,9959,-5818,14548,-59838,67629,
-4,7,-91,117,177,-106,-1428,1698,402,545,-9416,9916,-7154,12980,-61289,66494,
-5,6,-97,111,163,-127,-1498,1634,185,288,-9585,9838,-8540,11455,-62684,65290
};
float *zlin = lins + 15*64;
const float *w = g_win;
zlin[4*15] = xl[18*16];
zlin[4*15 + 1] = xr[18*16];
zlin[4*15 + 2] = xl[0];
zlin[4*15 + 3] = xr[0];
zlin[4*31] = xl[1 + 18*16];
zlin[4*31 + 1] = xr[1 + 18*16];
zlin[4*31 + 2] = xl[1];
zlin[4*31 + 3] = xr[1];
drmp3d_synth_pair(dstr, nch, lins + 4*15 + 1);
drmp3d_synth_pair(dstr + 32*nch, nch, lins + 4*15 + 64 + 1);
drmp3d_synth_pair(dstl, nch, lins + 4*15);
drmp3d_synth_pair(dstl + 32*nch, nch, lins + 4*15 + 64);
#if DRMP3_HAVE_SIMD
if (drmp3_have_simd()) for (i = 14; i >= 0; i--)
{
#define DRMP3_VLOAD(k) drmp3_f4 w0 = DRMP3_VSET(*w++); drmp3_f4 w1 = DRMP3_VSET(*w++); drmp3_f4 vz = DRMP3_VLD(&zlin[4*i - 64*k]); drmp3_f4 vy = DRMP3_VLD(&zlin[4*i - 64*(15 - k)]);
#define DRMP3_V0(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0)) ; a = DRMP3_VSUB(DRMP3_VMUL(vz, w0), DRMP3_VMUL(vy, w1)); }
#define DRMP3_V1(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(b, DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0))); a = DRMP3_VADD(a, DRMP3_VSUB(DRMP3_VMUL(vz, w0), DRMP3_VMUL(vy, w1))); }
#define DRMP3_V2(k) { DRMP3_VLOAD(k) b = DRMP3_VADD(b, DRMP3_VADD(DRMP3_VMUL(vz, w1), DRMP3_VMUL(vy, w0))); a = DRMP3_VADD(a, DRMP3_VSUB(DRMP3_VMUL(vy, w1), DRMP3_VMUL(vz, w0))); }
drmp3_f4 a, b;
zlin[4*i] = xl[18*(31 - i)];
zlin[4*i + 1] = xr[18*(31 - i)];
zlin[4*i + 2] = xl[1 + 18*(31 - i)];
zlin[4*i + 3] = xr[1 + 18*(31 - i)];
zlin[4*i + 64] = xl[1 + 18*(1 + i)];
zlin[4*i + 64 + 1] = xr[1 + 18*(1 + i)];
zlin[4*i - 64 + 2] = xl[18*(1 + i)];
zlin[4*i - 64 + 3] = xr[18*(1 + i)];
DRMP3_V0(0) DRMP3_V2(1) DRMP3_V1(2) DRMP3_V2(3) DRMP3_V1(4) DRMP3_V2(5) DRMP3_V1(6) DRMP3_V2(7)
{
#ifndef DR_MP3_FLOAT_OUTPUT
#if DRMP3_HAVE_SSE
static const drmp3_f4 g_max = { 32767.0f, 32767.0f, 32767.0f, 32767.0f };
static const drmp3_f4 g_min = { -32768.0f, -32768.0f, -32768.0f, -32768.0f };
__m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, g_max), g_min)),
_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, g_max), g_min)));
dstr[(15 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 1);
dstr[(17 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 5);
dstl[(15 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 0);
dstl[(17 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 4);
dstr[(47 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 3);
dstr[(49 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 7);
dstl[(47 - i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 2);
dstl[(49 + i)*nch] = (drmp3_int16)_mm_extract_epi16(pcm8, 6);
#else
int16x4_t pcma, pcmb;
a = DRMP3_VADD(a, DRMP3_VSET(0.5f));
b = DRMP3_VADD(b, DRMP3_VSET(0.5f));
pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, DRMP3_VSET(0)))));
pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, DRMP3_VSET(0)))));
vst1_lane_s16(dstr + (15 - i)*nch, pcma, 1);
vst1_lane_s16(dstr + (17 + i)*nch, pcmb, 1);
vst1_lane_s16(dstl + (15 - i)*nch, pcma, 0);
vst1_lane_s16(dstl + (17 + i)*nch, pcmb, 0);
vst1_lane_s16(dstr + (47 - i)*nch, pcma, 3);
vst1_lane_s16(dstr + (49 + i)*nch, pcmb, 3);
vst1_lane_s16(dstl + (47 - i)*nch, pcma, 2);
vst1_lane_s16(dstl + (49 + i)*nch, pcmb, 2);
#endif
#else
static const drmp3_f4 g_scale = { 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f, 1.0f/32768.0f };
a = DRMP3_VMUL(a, g_scale);
b = DRMP3_VMUL(b, g_scale);
#if DRMP3_HAVE_SSE
_mm_store_ss(dstr + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(1, 1, 1, 1)));
_mm_store_ss(dstr + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(1, 1, 1, 1)));
_mm_store_ss(dstl + (15 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(0, 0, 0, 0)));
_mm_store_ss(dstl + (17 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(0, 0, 0, 0)));
_mm_store_ss(dstr + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(3, 3, 3, 3)));
_mm_store_ss(dstr + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(3, 3, 3, 3)));
_mm_store_ss(dstl + (47 - i)*nch, _mm_shuffle_ps(a, a, _MM_SHUFFLE(2, 2, 2, 2)));
_mm_store_ss(dstl + (49 + i)*nch, _mm_shuffle_ps(b, b, _MM_SHUFFLE(2, 2, 2, 2)));
#else
vst1q_lane_f32(dstr + (15 - i)*nch, a, 1);
vst1q_lane_f32(dstr + (17 + i)*nch, b, 1);
vst1q_lane_f32(dstl + (15 - i)*nch, a, 0);
vst1q_lane_f32(dstl + (17 + i)*nch, b, 0);
vst1q_lane_f32(dstr + (47 - i)*nch, a, 3);
vst1q_lane_f32(dstr + (49 + i)*nch, b, 3);
vst1q_lane_f32(dstl + (47 - i)*nch, a, 2);
vst1q_lane_f32(dstl + (49 + i)*nch, b, 2);
#endif
#endif
}
} else
#endif
#ifdef DR_MP3_ONLY_SIMD
{}
#else
for (i = 14; i >= 0; i--)
{
#define DRMP3_LOAD(k) float w0 = *w++; float w1 = *w++; float *vz = &zlin[4*i - k*64]; float *vy = &zlin[4*i - (15 - k)*64];
#define DRMP3_S0(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] = vz[j]*w1 + vy[j]*w0, a[j] = vz[j]*w0 - vy[j]*w1; }
#define DRMP3_S1(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vz[j]*w0 - vy[j]*w1; }
#define DRMP3_S2(k) { int j; DRMP3_LOAD(k); for (j = 0; j < 4; j++) b[j] += vz[j]*w1 + vy[j]*w0, a[j] += vy[j]*w1 - vz[j]*w0; }
float a[4], b[4];
zlin[4*i] = xl[18*(31 - i)];
zlin[4*i + 1] = xr[18*(31 - i)];
zlin[4*i + 2] = xl[1 + 18*(31 - i)];
zlin[4*i + 3] = xr[1 + 18*(31 - i)];
zlin[4*(i + 16)] = xl[1 + 18*(1 + i)];
zlin[4*(i + 16) + 1] = xr[1 + 18*(1 + i)];
zlin[4*(i - 16) + 2] = xl[18*(1 + i)];
zlin[4*(i - 16) + 3] = xr[18*(1 + i)];
DRMP3_S0(0) DRMP3_S2(1) DRMP3_S1(2) DRMP3_S2(3) DRMP3_S1(4) DRMP3_S2(5) DRMP3_S1(6) DRMP3_S2(7)
dstr[(15 - i)*nch] = drmp3d_scale_pcm(a[1]);
dstr[(17 + i)*nch] = drmp3d_scale_pcm(b[1]);
dstl[(15 - i)*nch] = drmp3d_scale_pcm(a[0]);
dstl[(17 + i)*nch] = drmp3d_scale_pcm(b[0]);
dstr[(47 - i)*nch] = drmp3d_scale_pcm(a[3]);
dstr[(49 + i)*nch] = drmp3d_scale_pcm(b[3]);
dstl[(47 - i)*nch] = drmp3d_scale_pcm(a[2]);
dstl[(49 + i)*nch] = drmp3d_scale_pcm(b[2]);
}
#endif
}
static void drmp3d_synth_granule(float *qmf_state, float *grbuf, int nbands, int nch, drmp3d_sample_t *pcm, float *lins)
{
int i;
for (i = 0; i < nch; i++)
{
drmp3d_DCT_II(grbuf + 576*i, nbands);
}
memcpy(lins, qmf_state, sizeof(float)*15*64);
for (i = 0; i < nbands; i += 2)
{
drmp3d_synth(grbuf + i, pcm + 32*nch*i, nch, lins + i*64);
}
#ifndef DR_MP3_NONSTANDARD_BUT_LOGICAL
if (nch == 1)
{
for (i = 0; i < 15*64; i += 2)
{
qmf_state[i] = lins[nbands*64 + i];
}
} else
#endif
{
memcpy(qmf_state, lins + nbands*64, sizeof(float)*15*64);
}
}
static int drmp3d_match_frame(const drmp3_uint8 *hdr, int mp3_bytes, int frame_bytes)
{
int i, nmatch;
for (i = 0, nmatch = 0; nmatch < DRMP3_MAX_FRAME_SYNC_MATCHES; nmatch++)
{
i += drmp3_hdr_frame_bytes(hdr + i, frame_bytes) + drmp3_hdr_padding(hdr + i);
if (i + DRMP3_HDR_SIZE > mp3_bytes)
return nmatch > 0;
if (!drmp3_hdr_compare(hdr, hdr + i))
return 0;
}
return 1;
}
static int drmp3d_find_frame(const drmp3_uint8 *mp3, int mp3_bytes, int *free_format_bytes, int *ptr_frame_bytes)
{
int i, k;
for (i = 0; i < mp3_bytes - DRMP3_HDR_SIZE; i++, mp3++)
{
if (drmp3_hdr_valid(mp3))
{
int frame_bytes = drmp3_hdr_frame_bytes(mp3, *free_format_bytes);
int frame_and_padding = frame_bytes + drmp3_hdr_padding(mp3);
for (k = DRMP3_HDR_SIZE; !frame_bytes && k < DRMP3_MAX_FREE_FORMAT_FRAME_SIZE && i + 2*k < mp3_bytes - DRMP3_HDR_SIZE; k++)
{
if (drmp3_hdr_compare(mp3, mp3 + k))
{
int fb = k - drmp3_hdr_padding(mp3);
int nextfb = fb + drmp3_hdr_padding(mp3 + k);
if (i + k + nextfb + DRMP3_HDR_SIZE > mp3_bytes || !drmp3_hdr_compare(mp3, mp3 + k + nextfb))
continue;
frame_and_padding = k;
frame_bytes = fb;
*free_format_bytes = fb;
}
}
if ((frame_bytes && i + frame_and_padding <= mp3_bytes &&
drmp3d_match_frame(mp3, mp3_bytes - i, frame_bytes)) ||
(!i && frame_and_padding == mp3_bytes))
{
*ptr_frame_bytes = frame_and_padding;
return i;
}
*free_format_bytes = 0;
}
}
*ptr_frame_bytes = 0;
return mp3_bytes;
}
DRMP3_API void drmp3dec_init(drmp3dec *dec)
{
dec->header[0] = 0;
}
DRMP3_API int drmp3dec_decode_frame(drmp3dec *dec, const drmp3_uint8 *mp3, int mp3_bytes, void *pcm, drmp3dec_frame_info *info)
{
int i = 0, igr, frame_size = 0, success = 1;
const drmp3_uint8 *hdr;
drmp3_bs bs_frame[1];
drmp3dec_scratch scratch;
if (mp3_bytes > 4 && dec->header[0] == 0xff && drmp3_hdr_compare(dec->header, mp3))
{
frame_size = drmp3_hdr_frame_bytes(mp3, dec->free_format_bytes) + drmp3_hdr_padding(mp3);
if (frame_size != mp3_bytes && (frame_size + DRMP3_HDR_SIZE > mp3_bytes || !drmp3_hdr_compare(mp3, mp3 + frame_size)))
{
frame_size = 0;
}
}
if (!frame_size)
{
memset(dec, 0, sizeof(drmp3dec));
i = drmp3d_find_frame(mp3, mp3_bytes, &dec->free_format_bytes, &frame_size);
if (!frame_size || i + frame_size > mp3_bytes)
{
info->frame_bytes = i;
return 0;
}
}
hdr = mp3 + i;
memcpy(dec->header, hdr, DRMP3_HDR_SIZE);
info->frame_bytes = i + frame_size;
info->channels = DRMP3_HDR_IS_MONO(hdr) ? 1 : 2;
info->hz = drmp3_hdr_sample_rate_hz(hdr);
info->layer = 4 - DRMP3_HDR_GET_LAYER(hdr);
info->bitrate_kbps = drmp3_hdr_bitrate_kbps(hdr);
drmp3_bs_init(bs_frame, hdr + DRMP3_HDR_SIZE, frame_size - DRMP3_HDR_SIZE);
if (DRMP3_HDR_IS_CRC(hdr))
{
drmp3_bs_get_bits(bs_frame, 16);
}
if (info->layer == 3)
{
int main_data_begin = drmp3_L3_read_side_info(bs_frame, scratch.gr_info, hdr);
if (main_data_begin < 0 || bs_frame->pos > bs_frame->limit)
{
drmp3dec_init(dec);
return 0;
}
success = drmp3_L3_restore_reservoir(dec, bs_frame, &scratch, main_data_begin);
if (success && pcm != NULL)
{
for (igr = 0; igr < (DRMP3_HDR_TEST_MPEG1(hdr) ? 2 : 1); igr++, pcm = DRMP3_OFFSET_PTR(pcm, sizeof(drmp3d_sample_t)*576*info->channels))
{
memset(scratch.grbuf[0], 0, 576*2*sizeof(float));
drmp3_L3_decode(dec, &scratch, scratch.gr_info + igr*info->channels, info->channels);
drmp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 18, info->channels, (drmp3d_sample_t*)pcm, scratch.syn[0]);
}
}
drmp3_L3_save_reservoir(dec, &scratch);
} else
{
#ifdef DR_MP3_ONLY_MP3
return 0;
#else
drmp3_L12_scale_info sci[1];
if (pcm == NULL) {
return drmp3_hdr_frame_samples(hdr);
}
drmp3_L12_read_scale_info(hdr, bs_frame, sci);
memset(scratch.grbuf[0], 0, 576*2*sizeof(float));
for (i = 0, igr = 0; igr < 3; igr++)
{
if (12 == (i += drmp3_L12_dequantize_granule(scratch.grbuf[0] + i, bs_frame, sci, info->layer | 1)))
{
i = 0;
drmp3_L12_apply_scf_384(sci, sci->scf + igr, scratch.grbuf[0]);
drmp3d_synth_granule(dec->qmf_state, scratch.grbuf[0], 12, info->channels, (drmp3d_sample_t*)pcm, scratch.syn[0]);
memset(scratch.grbuf[0], 0, 576*2*sizeof(float));
pcm = DRMP3_OFFSET_PTR(pcm, sizeof(drmp3d_sample_t)*384*info->channels);
}
if (bs_frame->pos > bs_frame->limit)
{
drmp3dec_init(dec);
return 0;
}
}
#endif
}
return success*drmp3_hdr_frame_samples(dec->header);
}
DRMP3_API void drmp3dec_f32_to_s16(const float *in, drmp3_int16 *out, size_t num_samples)
{
size_t i = 0;
#if DRMP3_HAVE_SIMD
size_t aligned_count = num_samples & ~7;
for(; i < aligned_count; i+=8)
{
drmp3_f4 scale = DRMP3_VSET(32768.0f);
drmp3_f4 a = DRMP3_VMUL(DRMP3_VLD(&in[i ]), scale);
drmp3_f4 b = DRMP3_VMUL(DRMP3_VLD(&in[i+4]), scale);
#if DRMP3_HAVE_SSE
drmp3_f4 s16max = DRMP3_VSET( 32767.0f);
drmp3_f4 s16min = DRMP3_VSET(-32768.0f);
__m128i pcm8 = _mm_packs_epi32(_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(a, s16max), s16min)),
_mm_cvtps_epi32(_mm_max_ps(_mm_min_ps(b, s16max), s16min)));
out[i ] = (drmp3_int16)_mm_extract_epi16(pcm8, 0);
out[i+1] = (drmp3_int16)_mm_extract_epi16(pcm8, 1);
out[i+2] = (drmp3_int16)_mm_extract_epi16(pcm8, 2);
out[i+3] = (drmp3_int16)_mm_extract_epi16(pcm8, 3);
out[i+4] = (drmp3_int16)_mm_extract_epi16(pcm8, 4);
out[i+5] = (drmp3_int16)_mm_extract_epi16(pcm8, 5);
out[i+6] = (drmp3_int16)_mm_extract_epi16(pcm8, 6);
out[i+7] = (drmp3_int16)_mm_extract_epi16(pcm8, 7);
#else
int16x4_t pcma, pcmb;
a = DRMP3_VADD(a, DRMP3_VSET(0.5f));
b = DRMP3_VADD(b, DRMP3_VSET(0.5f));
pcma = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(a), vreinterpretq_s32_u32(vcltq_f32(a, DRMP3_VSET(0)))));
pcmb = vqmovn_s32(vqaddq_s32(vcvtq_s32_f32(b), vreinterpretq_s32_u32(vcltq_f32(b, DRMP3_VSET(0)))));
vst1_lane_s16(out+i , pcma, 0);
vst1_lane_s16(out+i+1, pcma, 1);
vst1_lane_s16(out+i+2, pcma, 2);
vst1_lane_s16(out+i+3, pcma, 3);
vst1_lane_s16(out+i+4, pcmb, 0);
vst1_lane_s16(out+i+5, pcmb, 1);
vst1_lane_s16(out+i+6, pcmb, 2);
vst1_lane_s16(out+i+7, pcmb, 3);
#endif
}
#endif
for(; i < num_samples; i++)
{
float sample = in[i] * 32768.0f;
if (sample >= 32766.5)
out[i] = (drmp3_int16) 32767;
else if (sample <= -32767.5)
out[i] = (drmp3_int16)-32768;
else
{
short s = (drmp3_int16)(sample + .5f);
s -= (s < 0);
out[i] = s;
}
}
}
#include <math.h>
#if defined(SIZE_MAX)
#define DRMP3_SIZE_MAX SIZE_MAX
#else
#if defined(_WIN64) || defined(_LP64) || defined(__LP64__)
#define DRMP3_SIZE_MAX ((drmp3_uint64)0xFFFFFFFFFFFFFFFF)
#else
#define DRMP3_SIZE_MAX 0xFFFFFFFF
#endif
#endif
#ifndef DRMP3_SEEK_LEADING_MP3_FRAMES
#define DRMP3_SEEK_LEADING_MP3_FRAMES 2
#endif
#define DRMP3_MIN_DATA_CHUNK_SIZE 16384
#ifndef DRMP3_DATA_CHUNK_SIZE
#define DRMP3_DATA_CHUNK_SIZE DRMP3_MIN_DATA_CHUNK_SIZE*4
#endif
#ifndef DRMP3_ASSERT
#include <assert.h>
#define DRMP3_ASSERT(expression) assert(expression)
#endif
#ifndef DRMP3_COPY_MEMORY
#define DRMP3_COPY_MEMORY(dst, src, sz) memcpy((dst), (src), (sz))
#endif
#ifndef DRMP3_ZERO_MEMORY
#define DRMP3_ZERO_MEMORY(p, sz) memset((p), 0, (sz))
#endif
#define DRMP3_ZERO_OBJECT(p) DRMP3_ZERO_MEMORY((p), sizeof(*(p)))
#ifndef DRMP3_MALLOC
#define DRMP3_MALLOC(sz) malloc((sz))
#endif
#ifndef DRMP3_REALLOC
#define DRMP3_REALLOC(p, sz) realloc((p), (sz))
#endif
#ifndef DRMP3_FREE
#define DRMP3_FREE(p) free((p))
#endif
#define DRMP3_COUNTOF(x) (sizeof(x) / sizeof(x[0]))
#define DRMP3_CLAMP(x, lo, hi) (DRMP3_MAX(lo, DRMP3_MIN(x, hi)))
#ifndef DRMP3_PI_D
#define DRMP3_PI_D 3.14159265358979323846264
#endif
#define DRMP3_DEFAULT_RESAMPLER_LPF_ORDER 2
static DRMP3_INLINE float drmp3_mix_f32(float x, float y, float a)
{
return x*(1-a) + y*a;
}
static DRMP3_INLINE float drmp3_mix_f32_fast(float x, float y, float a)
{
float r0 = (y - x);
float r1 = r0*a;
return x + r1;
}
static DRMP3_INLINE drmp3_uint32 drmp3_gcf_u32(drmp3_uint32 a, drmp3_uint32 b)
{
for (;;) {
if (b == 0) {
break;
} else {
drmp3_uint32 t = a;
a = b;
b = t % a;
}
}
return a;
}
static DRMP3_INLINE double drmp3_sin(double x)
{
return sin(x);
}
static DRMP3_INLINE double drmp3_exp(double x)
{
return exp(x);
}
static DRMP3_INLINE double drmp3_cos(double x)
{
return drmp3_sin((DRMP3_PI_D*0.5) - x);
}
static void* drmp3__malloc_default(size_t sz, void* pUserData)
{
(void)pUserData;
return DRMP3_MALLOC(sz);
}
static void* drmp3__realloc_default(void* p, size_t sz, void* pUserData)
{
(void)pUserData;
return DRMP3_REALLOC(p, sz);
}
static void drmp3__free_default(void* p, void* pUserData)
{
(void)pUserData;
DRMP3_FREE(p);
}
static void* drmp3__malloc_from_callbacks(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onMalloc != NULL) {
return pAllocationCallbacks->onMalloc(sz, pAllocationCallbacks->pUserData);
}
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(NULL, sz, pAllocationCallbacks->pUserData);
}
return NULL;
}
static void* drmp3__realloc_from_callbacks(void* p, size_t szNew, size_t szOld, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks == NULL) {
return NULL;
}
if (pAllocationCallbacks->onRealloc != NULL) {
return pAllocationCallbacks->onRealloc(p, szNew, pAllocationCallbacks->pUserData);
}
if (pAllocationCallbacks->onMalloc != NULL && pAllocationCallbacks->onFree != NULL) {
void* p2;
p2 = pAllocationCallbacks->onMalloc(szNew, pAllocationCallbacks->pUserData);
if (p2 == NULL) {
return NULL;
}
if (p != NULL) {
DRMP3_COPY_MEMORY(p2, p, szOld);
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
return p2;
}
return NULL;
}
static void drmp3__free_from_callbacks(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
if (p == NULL || pAllocationCallbacks == NULL) {
return;
}
if (pAllocationCallbacks->onFree != NULL) {
pAllocationCallbacks->onFree(p, pAllocationCallbacks->pUserData);
}
}
static drmp3_allocation_callbacks drmp3_copy_allocation_callbacks_or_defaults(const drmp3_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
return *pAllocationCallbacks;
} else {
drmp3_allocation_callbacks allocationCallbacks;
allocationCallbacks.pUserData = NULL;
allocationCallbacks.onMalloc = drmp3__malloc_default;
allocationCallbacks.onRealloc = drmp3__realloc_default;
allocationCallbacks.onFree = drmp3__free_default;
return allocationCallbacks;
}
}
static size_t drmp3__on_read(drmp3* pMP3, void* pBufferOut, size_t bytesToRead)
{
size_t bytesRead = pMP3->onRead(pMP3->pUserData, pBufferOut, bytesToRead);
pMP3->streamCursor += bytesRead;
return bytesRead;
}
static drmp3_bool32 drmp3__on_seek(drmp3* pMP3, int offset, drmp3_seek_origin origin)
{
DRMP3_ASSERT(offset >= 0);
if (!pMP3->onSeek(pMP3->pUserData, offset, origin)) {
return DRMP3_FALSE;
}
if (origin == drmp3_seek_origin_start) {
pMP3->streamCursor = (drmp3_uint64)offset;
} else {
pMP3->streamCursor += offset;
}
return DRMP3_TRUE;
}
static drmp3_bool32 drmp3__on_seek_64(drmp3* pMP3, drmp3_uint64 offset, drmp3_seek_origin origin)
{
if (offset <= 0x7FFFFFFF) {
return drmp3__on_seek(pMP3, (int)offset, origin);
}
if (!drmp3__on_seek(pMP3, 0x7FFFFFFF, drmp3_seek_origin_start)) {
return DRMP3_FALSE;
}
offset -= 0x7FFFFFFF;
while (offset > 0) {
if (offset <= 0x7FFFFFFF) {
if (!drmp3__on_seek(pMP3, (int)offset, drmp3_seek_origin_current)) {
return DRMP3_FALSE;
}
offset = 0;
} else {
if (!drmp3__on_seek(pMP3, 0x7FFFFFFF, drmp3_seek_origin_current)) {
return DRMP3_FALSE;
}
offset -= 0x7FFFFFFF;
}
}
return DRMP3_TRUE;
}
static drmp3_uint32 drmp3_decode_next_frame_ex__callbacks(drmp3* pMP3, drmp3d_sample_t* pPCMFrames)
{
drmp3_uint32 pcmFramesRead = 0;
DRMP3_ASSERT(pMP3 != NULL);
DRMP3_ASSERT(pMP3->onRead != NULL);
if (pMP3->atEnd) {
return 0;
}
for (;;) {
drmp3dec_frame_info info;
if (pMP3->dataSize < DRMP3_MIN_DATA_CHUNK_SIZE) {
size_t bytesRead;
memmove(pMP3->pData, pMP3->pData + pMP3->dataConsumed, pMP3->dataSize);
pMP3->dataConsumed = 0;
if (pMP3->dataCapacity < DRMP3_DATA_CHUNK_SIZE) {
drmp3_uint8* pNewData;
size_t newDataCap;
newDataCap = DRMP3_DATA_CHUNK_SIZE;
pNewData = (drmp3_uint8*)drmp3__realloc_from_callbacks(pMP3->pData, newDataCap, pMP3->dataCapacity, &pMP3->allocationCallbacks);
if (pNewData == NULL) {
return 0;
}
pMP3->pData = pNewData;
pMP3->dataCapacity = newDataCap;
}
bytesRead = drmp3__on_read(pMP3, pMP3->pData + pMP3->dataSize, (pMP3->dataCapacity - pMP3->dataSize));
if (bytesRead == 0) {
if (pMP3->dataSize == 0) {
pMP3->atEnd = DRMP3_TRUE;
return 0;
}
}
pMP3->dataSize += bytesRead;
}
if (pMP3->dataSize > INT_MAX) {
pMP3->atEnd = DRMP3_TRUE;
return 0;
}
pcmFramesRead = drmp3dec_decode_frame(&pMP3->decoder, pMP3->pData + pMP3->dataConsumed, (int)pMP3->dataSize, pPCMFrames, &info);
if (info.frame_bytes > 0) {
pMP3->dataConsumed += (size_t)info.frame_bytes;
pMP3->dataSize -= (size_t)info.frame_bytes;
}
if (pcmFramesRead > 0) {
pcmFramesRead = drmp3_hdr_frame_samples(pMP3->decoder.header);
pMP3->pcmFramesConsumedInMP3Frame = 0;
pMP3->pcmFramesRemainingInMP3Frame = pcmFramesRead;
pMP3->mp3FrameChannels = info.channels;
pMP3->mp3FrameSampleRate = info.hz;
break;
} else if (info.frame_bytes == 0) {
size_t bytesRead;
memmove(pMP3->pData, pMP3->pData + pMP3->dataConsumed, pMP3->dataSize);
pMP3->dataConsumed = 0;
if (pMP3->dataCapacity == pMP3->dataSize) {
drmp3_uint8* pNewData;
size_t newDataCap;
newDataCap = pMP3->dataCapacity + DRMP3_DATA_CHUNK_SIZE;
pNewData = (drmp3_uint8*)drmp3__realloc_from_callbacks(pMP3->pData, newDataCap, pMP3->dataCapacity, &pMP3->allocationCallbacks);
if (pNewData == NULL) {
return 0;
}
pMP3->pData = pNewData;
pMP3->dataCapacity = newDataCap;
}
bytesRead = drmp3__on_read(pMP3, pMP3->pData + pMP3->dataSize, (pMP3->dataCapacity - pMP3->dataSize));
if (bytesRead == 0) {
pMP3->atEnd = DRMP3_TRUE;
return 0;
}
pMP3->dataSize += bytesRead;
}
};
return pcmFramesRead;
}
static drmp3_uint32 drmp3_decode_next_frame_ex__memory(drmp3* pMP3, drmp3d_sample_t* pPCMFrames)
{
drmp3_uint32 pcmFramesRead = 0;
drmp3dec_frame_info info;
DRMP3_ASSERT(pMP3 != NULL);
DRMP3_ASSERT(pMP3->memory.pData != NULL);
if (pMP3->atEnd) {
return 0;
}
pcmFramesRead = drmp3dec_decode_frame(&pMP3->decoder, pMP3->memory.pData + pMP3->memory.currentReadPos, (int)(pMP3->memory.dataSize - pMP3->memory.currentReadPos), pPCMFrames, &info);
if (pcmFramesRead > 0) {
pMP3->pcmFramesConsumedInMP3Frame = 0;
pMP3->pcmFramesRemainingInMP3Frame = pcmFramesRead;
pMP3->mp3FrameChannels = info.channels;
pMP3->mp3FrameSampleRate = info.hz;
}
pMP3->memory.currentReadPos += (size_t)info.frame_bytes;
return pcmFramesRead;
}
static drmp3_uint32 drmp3_decode_next_frame_ex(drmp3* pMP3, drmp3d_sample_t* pPCMFrames)
{
if (pMP3->memory.pData != NULL && pMP3->memory.dataSize > 0) {
return drmp3_decode_next_frame_ex__memory(pMP3, pPCMFrames);
} else {
return drmp3_decode_next_frame_ex__callbacks(pMP3, pPCMFrames);
}
}
static drmp3_uint32 drmp3_decode_next_frame(drmp3* pMP3)
{
DRMP3_ASSERT(pMP3 != NULL);
return drmp3_decode_next_frame_ex(pMP3, (drmp3d_sample_t*)pMP3->pcmFrames);
}
#if 0
static drmp3_uint32 drmp3_seek_next_frame(drmp3* pMP3)
{
drmp3_uint32 pcmFrameCount;
DRMP3_ASSERT(pMP3 != NULL);
pcmFrameCount = drmp3_decode_next_frame_ex(pMP3, NULL);
if (pcmFrameCount == 0) {
return 0;
}
pMP3->currentPCMFrame += pcmFrameCount;
pMP3->pcmFramesConsumedInMP3Frame = pcmFrameCount;
pMP3->pcmFramesRemainingInMP3Frame = 0;
return pcmFrameCount;
}
#endif
static drmp3_bool32 drmp3_init_internal(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
DRMP3_ASSERT(pMP3 != NULL);
DRMP3_ASSERT(onRead != NULL);
drmp3dec_init(&pMP3->decoder);
pMP3->onRead = onRead;
pMP3->onSeek = onSeek;
pMP3->pUserData = pUserData;
pMP3->allocationCallbacks = drmp3_copy_allocation_callbacks_or_defaults(pAllocationCallbacks);
if (pMP3->allocationCallbacks.onFree == NULL || (pMP3->allocationCallbacks.onMalloc == NULL && pMP3->allocationCallbacks.onRealloc == NULL)) {
return DRMP3_FALSE;
}
if (!drmp3_decode_next_frame(pMP3)) {
drmp3_uninit(pMP3);
return DRMP3_FALSE;
}
pMP3->channels = pMP3->mp3FrameChannels;
pMP3->sampleRate = pMP3->mp3FrameSampleRate;
return DRMP3_TRUE;
}
DRMP3_API drmp3_bool32 drmp3_init(drmp3* pMP3, drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
if (pMP3 == NULL || onRead == NULL) {
return DRMP3_FALSE;
}
DRMP3_ZERO_OBJECT(pMP3);
return drmp3_init_internal(pMP3, onRead, onSeek, pUserData, pAllocationCallbacks);
}
static size_t drmp3__on_read_memory(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
drmp3* pMP3 = (drmp3*)pUserData;
size_t bytesRemaining;
DRMP3_ASSERT(pMP3 != NULL);
DRMP3_ASSERT(pMP3->memory.dataSize >= pMP3->memory.currentReadPos);
bytesRemaining = pMP3->memory.dataSize - pMP3->memory.currentReadPos;
if (bytesToRead > bytesRemaining) {
bytesToRead = bytesRemaining;
}
if (bytesToRead > 0) {
DRMP3_COPY_MEMORY(pBufferOut, pMP3->memory.pData + pMP3->memory.currentReadPos, bytesToRead);
pMP3->memory.currentReadPos += bytesToRead;
}
return bytesToRead;
}
static drmp3_bool32 drmp3__on_seek_memory(void* pUserData, int byteOffset, drmp3_seek_origin origin)
{
drmp3* pMP3 = (drmp3*)pUserData;
DRMP3_ASSERT(pMP3 != NULL);
if (origin == drmp3_seek_origin_current) {
if (byteOffset > 0) {
if (pMP3->memory.currentReadPos + byteOffset > pMP3->memory.dataSize) {
byteOffset = (int)(pMP3->memory.dataSize - pMP3->memory.currentReadPos);
}
} else {
if (pMP3->memory.currentReadPos < (size_t)-byteOffset) {
byteOffset = -(int)pMP3->memory.currentReadPos;
}
}
pMP3->memory.currentReadPos += byteOffset;
} else {
if ((drmp3_uint32)byteOffset <= pMP3->memory.dataSize) {
pMP3->memory.currentReadPos = byteOffset;
} else {
pMP3->memory.currentReadPos = pMP3->memory.dataSize;
}
}
return DRMP3_TRUE;
}
DRMP3_API drmp3_bool32 drmp3_init_memory(drmp3* pMP3, const void* pData, size_t dataSize, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
if (pMP3 == NULL) {
return DRMP3_FALSE;
}
DRMP3_ZERO_OBJECT(pMP3);
if (pData == NULL || dataSize == 0) {
return DRMP3_FALSE;
}
pMP3->memory.pData = (const drmp3_uint8*)pData;
pMP3->memory.dataSize = dataSize;
pMP3->memory.currentReadPos = 0;
return drmp3_init_internal(pMP3, drmp3__on_read_memory, drmp3__on_seek_memory, pMP3, pAllocationCallbacks);
}
#ifndef DR_MP3_NO_STDIO
#include <stdio.h>
#include <wchar.h>
#include <errno.h>
static drmp3_result drmp3_result_from_errno(int e)
{
switch (e)
{
case 0: return DRMP3_SUCCESS;
#ifdef EPERM
case EPERM: return DRMP3_INVALID_OPERATION;
#endif
#ifdef ENOENT
case ENOENT: return DRMP3_DOES_NOT_EXIST;
#endif
#ifdef ESRCH
case ESRCH: return DRMP3_DOES_NOT_EXIST;
#endif
#ifdef EINTR
case EINTR: return DRMP3_INTERRUPT;
#endif
#ifdef EIO
case EIO: return DRMP3_IO_ERROR;
#endif
#ifdef ENXIO
case ENXIO: return DRMP3_DOES_NOT_EXIST;
#endif
#ifdef E2BIG
case E2BIG: return DRMP3_INVALID_ARGS;
#endif
#ifdef ENOEXEC
case ENOEXEC: return DRMP3_INVALID_FILE;
#endif
#ifdef EBADF
case EBADF: return DRMP3_INVALID_FILE;
#endif
#ifdef ECHILD
case ECHILD: return DRMP3_ERROR;
#endif
#ifdef EAGAIN
case EAGAIN: return DRMP3_UNAVAILABLE;
#endif
#ifdef ENOMEM
case ENOMEM: return DRMP3_OUT_OF_MEMORY;
#endif
#ifdef EACCES
case EACCES: return DRMP3_ACCESS_DENIED;
#endif
#ifdef EFAULT
case EFAULT: return DRMP3_BAD_ADDRESS;
#endif
#ifdef ENOTBLK
case ENOTBLK: return DRMP3_ERROR;
#endif
#ifdef EBUSY
case EBUSY: return DRMP3_BUSY;
#endif
#ifdef EEXIST
case EEXIST: return DRMP3_ALREADY_EXISTS;
#endif
#ifdef EXDEV
case EXDEV: return DRMP3_ERROR;
#endif
#ifdef ENODEV
case ENODEV: return DRMP3_DOES_NOT_EXIST;
#endif
#ifdef ENOTDIR
case ENOTDIR: return DRMP3_NOT_DIRECTORY;
#endif
#ifdef EISDIR
case EISDIR: return DRMP3_IS_DIRECTORY;
#endif
#ifdef EINVAL
case EINVAL: return DRMP3_INVALID_ARGS;
#endif
#ifdef ENFILE
case ENFILE: return DRMP3_TOO_MANY_OPEN_FILES;
#endif
#ifdef EMFILE
case EMFILE: return DRMP3_TOO_MANY_OPEN_FILES;
#endif
#ifdef ENOTTY
case ENOTTY: return DRMP3_INVALID_OPERATION;
#endif
#ifdef ETXTBSY
case ETXTBSY: return DRMP3_BUSY;
#endif
#ifdef EFBIG
case EFBIG: return DRMP3_TOO_BIG;
#endif
#ifdef ENOSPC
case ENOSPC: return DRMP3_NO_SPACE;
#endif
#ifdef ESPIPE
case ESPIPE: return DRMP3_BAD_SEEK;
#endif
#ifdef EROFS
case EROFS: return DRMP3_ACCESS_DENIED;
#endif
#ifdef EMLINK
case EMLINK: return DRMP3_TOO_MANY_LINKS;
#endif
#ifdef EPIPE
case EPIPE: return DRMP3_BAD_PIPE;
#endif
#ifdef EDOM
case EDOM: return DRMP3_OUT_OF_RANGE;
#endif
#ifdef ERANGE
case ERANGE: return DRMP3_OUT_OF_RANGE;
#endif
#ifdef EDEADLK
case EDEADLK: return DRMP3_DEADLOCK;
#endif
#ifdef ENAMETOOLONG
case ENAMETOOLONG: return DRMP3_PATH_TOO_LONG;
#endif
#ifdef ENOLCK
case ENOLCK: return DRMP3_ERROR;
#endif
#ifdef ENOSYS
case ENOSYS: return DRMP3_NOT_IMPLEMENTED;
#endif
#ifdef ENOTEMPTY
case ENOTEMPTY: return DRMP3_DIRECTORY_NOT_EMPTY;
#endif
#ifdef ELOOP
case ELOOP: return DRMP3_TOO_MANY_LINKS;
#endif
#ifdef ENOMSG
case ENOMSG: return DRMP3_NO_MESSAGE;
#endif
#ifdef EIDRM
case EIDRM: return DRMP3_ERROR;
#endif
#ifdef ECHRNG
case ECHRNG: return DRMP3_ERROR;
#endif
#ifdef EL2NSYNC
case EL2NSYNC: return DRMP3_ERROR;
#endif
#ifdef EL3HLT
case EL3HLT: return DRMP3_ERROR;
#endif
#ifdef EL3RST
case EL3RST: return DRMP3_ERROR;
#endif
#ifdef ELNRNG
case ELNRNG: return DRMP3_OUT_OF_RANGE;
#endif
#ifdef EUNATCH
case EUNATCH: return DRMP3_ERROR;
#endif
#ifdef ENOCSI
case ENOCSI: return DRMP3_ERROR;
#endif
#ifdef EL2HLT
case EL2HLT: return DRMP3_ERROR;
#endif
#ifdef EBADE
case EBADE: return DRMP3_ERROR;
#endif
#ifdef EBADR
case EBADR: return DRMP3_ERROR;
#endif
#ifdef EXFULL
case EXFULL: return DRMP3_ERROR;
#endif
#ifdef ENOANO
case ENOANO: return DRMP3_ERROR;
#endif
#ifdef EBADRQC
case EBADRQC: return DRMP3_ERROR;
#endif
#ifdef EBADSLT
case EBADSLT: return DRMP3_ERROR;
#endif
#ifdef EBFONT
case EBFONT: return DRMP3_INVALID_FILE;
#endif
#ifdef ENOSTR
case ENOSTR: return DRMP3_ERROR;
#endif
#ifdef ENODATA
case ENODATA: return DRMP3_NO_DATA_AVAILABLE;
#endif
#ifdef ETIME
case ETIME: return DRMP3_TIMEOUT;
#endif
#ifdef ENOSR
case ENOSR: return DRMP3_NO_DATA_AVAILABLE;
#endif
#ifdef ENONET
case ENONET: return DRMP3_NO_NETWORK;
#endif
#ifdef ENOPKG
case ENOPKG: return DRMP3_ERROR;
#endif
#ifdef EREMOTE
case EREMOTE: return DRMP3_ERROR;
#endif
#ifdef ENOLINK
case ENOLINK: return DRMP3_ERROR;
#endif
#ifdef EADV
case EADV: return DRMP3_ERROR;
#endif
#ifdef ESRMNT
case ESRMNT: return DRMP3_ERROR;
#endif
#ifdef ECOMM
case ECOMM: return DRMP3_ERROR;
#endif
#ifdef EPROTO
case EPROTO: return DRMP3_ERROR;
#endif
#ifdef EMULTIHOP
case EMULTIHOP: return DRMP3_ERROR;
#endif
#ifdef EDOTDOT
case EDOTDOT: return DRMP3_ERROR;
#endif
#ifdef EBADMSG
case EBADMSG: return DRMP3_BAD_MESSAGE;
#endif
#ifdef EOVERFLOW
case EOVERFLOW: return DRMP3_TOO_BIG;
#endif
#ifdef ENOTUNIQ
case ENOTUNIQ: return DRMP3_NOT_UNIQUE;
#endif
#ifdef EBADFD
case EBADFD: return DRMP3_ERROR;
#endif
#ifdef EREMCHG
case EREMCHG: return DRMP3_ERROR;
#endif
#ifdef ELIBACC
case ELIBACC: return DRMP3_ACCESS_DENIED;
#endif
#ifdef ELIBBAD
case ELIBBAD: return DRMP3_INVALID_FILE;
#endif
#ifdef ELIBSCN
case ELIBSCN: return DRMP3_INVALID_FILE;
#endif
#ifdef ELIBMAX
case ELIBMAX: return DRMP3_ERROR;
#endif
#ifdef ELIBEXEC
case ELIBEXEC: return DRMP3_ERROR;
#endif
#ifdef EILSEQ
case EILSEQ: return DRMP3_INVALID_DATA;
#endif
#ifdef ERESTART
case ERESTART: return DRMP3_ERROR;
#endif
#ifdef ESTRPIPE
case ESTRPIPE: return DRMP3_ERROR;
#endif
#ifdef EUSERS
case EUSERS: return DRMP3_ERROR;
#endif
#ifdef ENOTSOCK
case ENOTSOCK: return DRMP3_NOT_SOCKET;
#endif
#ifdef EDESTADDRREQ
case EDESTADDRREQ: return DRMP3_NO_ADDRESS;
#endif
#ifdef EMSGSIZE
case EMSGSIZE: return DRMP3_TOO_BIG;
#endif
#ifdef EPROTOTYPE
case EPROTOTYPE: return DRMP3_BAD_PROTOCOL;
#endif
#ifdef ENOPROTOOPT
case ENOPROTOOPT: return DRMP3_PROTOCOL_UNAVAILABLE;
#endif
#ifdef EPROTONOSUPPORT
case EPROTONOSUPPORT: return DRMP3_PROTOCOL_NOT_SUPPORTED;
#endif
#ifdef ESOCKTNOSUPPORT
case ESOCKTNOSUPPORT: return DRMP3_SOCKET_NOT_SUPPORTED;
#endif
#ifdef EOPNOTSUPP
case EOPNOTSUPP: return DRMP3_INVALID_OPERATION;
#endif
#ifdef EPFNOSUPPORT
case EPFNOSUPPORT: return DRMP3_PROTOCOL_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EAFNOSUPPORT
case EAFNOSUPPORT: return DRMP3_ADDRESS_FAMILY_NOT_SUPPORTED;
#endif
#ifdef EADDRINUSE
case EADDRINUSE: return DRMP3_ALREADY_IN_USE;
#endif
#ifdef EADDRNOTAVAIL
case EADDRNOTAVAIL: return DRMP3_ERROR;
#endif
#ifdef ENETDOWN
case ENETDOWN: return DRMP3_NO_NETWORK;
#endif
#ifdef ENETUNREACH
case ENETUNREACH: return DRMP3_NO_NETWORK;
#endif
#ifdef ENETRESET
case ENETRESET: return DRMP3_NO_NETWORK;
#endif
#ifdef ECONNABORTED
case ECONNABORTED: return DRMP3_NO_NETWORK;
#endif
#ifdef ECONNRESET
case ECONNRESET: return DRMP3_CONNECTION_RESET;
#endif
#ifdef ENOBUFS
case ENOBUFS: return DRMP3_NO_SPACE;
#endif
#ifdef EISCONN
case EISCONN: return DRMP3_ALREADY_CONNECTED;
#endif
#ifdef ENOTCONN
case ENOTCONN: return DRMP3_NOT_CONNECTED;
#endif
#ifdef ESHUTDOWN
case ESHUTDOWN: return DRMP3_ERROR;
#endif
#ifdef ETOOMANYREFS
case ETOOMANYREFS: return DRMP3_ERROR;
#endif
#ifdef ETIMEDOUT
case ETIMEDOUT: return DRMP3_TIMEOUT;
#endif
#ifdef ECONNREFUSED
case ECONNREFUSED: return DRMP3_CONNECTION_REFUSED;
#endif
#ifdef EHOSTDOWN
case EHOSTDOWN: return DRMP3_NO_HOST;
#endif
#ifdef EHOSTUNREACH
case EHOSTUNREACH: return DRMP3_NO_HOST;
#endif
#ifdef EALREADY
case EALREADY: return DRMP3_IN_PROGRESS;
#endif
#ifdef EINPROGRESS
case EINPROGRESS: return DRMP3_IN_PROGRESS;
#endif
#ifdef ESTALE
case ESTALE: return DRMP3_INVALID_FILE;
#endif
#ifdef EUCLEAN
case EUCLEAN: return DRMP3_ERROR;
#endif
#ifdef ENOTNAM
case ENOTNAM: return DRMP3_ERROR;
#endif
#ifdef ENAVAIL
case ENAVAIL: return DRMP3_ERROR;
#endif
#ifdef EISNAM
case EISNAM: return DRMP3_ERROR;
#endif
#ifdef EREMOTEIO
case EREMOTEIO: return DRMP3_IO_ERROR;
#endif
#ifdef EDQUOT
case EDQUOT: return DRMP3_NO_SPACE;
#endif
#ifdef ENOMEDIUM
case ENOMEDIUM: return DRMP3_DOES_NOT_EXIST;
#endif
#ifdef EMEDIUMTYPE
case EMEDIUMTYPE: return DRMP3_ERROR;
#endif
#ifdef ECANCELED
case ECANCELED: return DRMP3_CANCELLED;
#endif
#ifdef ENOKEY
case ENOKEY: return DRMP3_ERROR;
#endif
#ifdef EKEYEXPIRED
case EKEYEXPIRED: return DRMP3_ERROR;
#endif
#ifdef EKEYREVOKED
case EKEYREVOKED: return DRMP3_ERROR;
#endif
#ifdef EKEYREJECTED
case EKEYREJECTED: return DRMP3_ERROR;
#endif
#ifdef EOWNERDEAD
case EOWNERDEAD: return DRMP3_ERROR;
#endif
#ifdef ENOTRECOVERABLE
case ENOTRECOVERABLE: return DRMP3_ERROR;
#endif
#ifdef ERFKILL
case ERFKILL: return DRMP3_ERROR;
#endif
#ifdef EHWPOISON
case EHWPOISON: return DRMP3_ERROR;
#endif
default: return DRMP3_ERROR;
}
}
static drmp3_result drmp3_fopen(FILE** ppFile, const char* pFilePath, const char* pOpenMode)
{
#if _MSC_VER && _MSC_VER >= 1400
errno_t err;
#endif
if (ppFile != NULL) {
*ppFile = NULL;
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return DRMP3_INVALID_ARGS;
}
#if _MSC_VER && _MSC_VER >= 1400
err = fopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return drmp3_result_from_errno(err);
}
#else
#if defined(_WIN32) || defined(__APPLE__)
*ppFile = fopen(pFilePath, pOpenMode);
#else
#if defined(_FILE_OFFSET_BITS) && _FILE_OFFSET_BITS == 64 && defined(_LARGEFILE64_SOURCE)
*ppFile = fopen64(pFilePath, pOpenMode);
#else
*ppFile = fopen(pFilePath, pOpenMode);
#endif
#endif
if (*ppFile == NULL) {
drmp3_result result = drmp3_result_from_errno(errno);
if (result == DRMP3_SUCCESS) {
result = DRMP3_ERROR;
}
return result;
}
#endif
return DRMP3_SUCCESS;
}
#if defined(_WIN32)
#if defined(_MSC_VER) || defined(__MINGW64__) || !defined(__STRICT_ANSI__)
#define DRMP3_HAS_WFOPEN
#endif
#endif
static drmp3_result drmp3_wfopen(FILE** ppFile, const wchar_t* pFilePath, const wchar_t* pOpenMode, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
if (ppFile != NULL) {
*ppFile = NULL;
}
if (pFilePath == NULL || pOpenMode == NULL || ppFile == NULL) {
return DRMP3_INVALID_ARGS;
}
#if defined(DRMP3_HAS_WFOPEN)
{
#if defined(_MSC_VER) && _MSC_VER >= 1400
errno_t err = _wfopen_s(ppFile, pFilePath, pOpenMode);
if (err != 0) {
return drmp3_result_from_errno(err);
}
#else
*ppFile = _wfopen(pFilePath, pOpenMode);
if (*ppFile == NULL) {
return drmp3_result_from_errno(errno);
}
#endif
(void)pAllocationCallbacks;
}
#else
{
mbstate_t mbs;
size_t lenMB;
const wchar_t* pFilePathTemp = pFilePath;
char* pFilePathMB = NULL;
char pOpenModeMB[32] = {0};
DRMP3_ZERO_OBJECT(&mbs);
lenMB = wcsrtombs(NULL, &pFilePathTemp, 0, &mbs);
if (lenMB == (size_t)-1) {
return drmp3_result_from_errno(errno);
}
pFilePathMB = (char*)drmp3__malloc_from_callbacks(lenMB + 1, pAllocationCallbacks);
if (pFilePathMB == NULL) {
return DRMP3_OUT_OF_MEMORY;
}
pFilePathTemp = pFilePath;
DRMP3_ZERO_OBJECT(&mbs);
wcsrtombs(pFilePathMB, &pFilePathTemp, lenMB + 1, &mbs);
{
size_t i = 0;
for (;;) {
if (pOpenMode[i] == 0) {
pOpenModeMB[i] = '\0';
break;
}
pOpenModeMB[i] = (char)pOpenMode[i];
i += 1;
}
}
*ppFile = fopen(pFilePathMB, pOpenModeMB);
drmp3__free_from_callbacks(pFilePathMB, pAllocationCallbacks);
}
if (*ppFile == NULL) {
return DRMP3_ERROR;
}
#endif
return DRMP3_SUCCESS;
}
static size_t drmp3__on_read_stdio(void* pUserData, void* pBufferOut, size_t bytesToRead)
{
return fread(pBufferOut, 1, bytesToRead, (FILE*)pUserData);
}
static drmp3_bool32 drmp3__on_seek_stdio(void* pUserData, int offset, drmp3_seek_origin origin)
{
return fseek((FILE*)pUserData, offset, (origin == drmp3_seek_origin_current) ? SEEK_CUR : SEEK_SET) == 0;
}
DRMP3_API drmp3_bool32 drmp3_init_file(drmp3* pMP3, const char* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drmp3_fopen(&pFile, pFilePath, "rb") != DRMP3_SUCCESS) {
return DRMP3_FALSE;
}
return drmp3_init(pMP3, drmp3__on_read_stdio, drmp3__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
}
DRMP3_API drmp3_bool32 drmp3_init_file_w(drmp3* pMP3, const wchar_t* pFilePath, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
FILE* pFile;
if (drmp3_wfopen(&pFile, pFilePath, L"rb", pAllocationCallbacks) != DRMP3_SUCCESS) {
return DRMP3_FALSE;
}
return drmp3_init(pMP3, drmp3__on_read_stdio, drmp3__on_seek_stdio, (void*)pFile, pAllocationCallbacks);
}
#endif
DRMP3_API void drmp3_uninit(drmp3* pMP3)
{
if (pMP3 == NULL) {
return;
}
#ifndef DR_MP3_NO_STDIO
if (pMP3->onRead == drmp3__on_read_stdio) {
fclose((FILE*)pMP3->pUserData);
}
#endif
drmp3__free_from_callbacks(pMP3->pData, &pMP3->allocationCallbacks);
}
#if defined(DR_MP3_FLOAT_OUTPUT)
static void drmp3_f32_to_s16(drmp3_int16* dst, const float* src, drmp3_uint64 sampleCount)
{
drmp3_uint64 i;
drmp3_uint64 i4;
drmp3_uint64 sampleCount4;
i = 0;
sampleCount4 = sampleCount >> 2;
for (i4 = 0; i4 < sampleCount4; i4 += 1) {
float x0 = src[i+0];
float x1 = src[i+1];
float x2 = src[i+2];
float x3 = src[i+3];
x0 = ((x0 < -1) ? -1 : ((x0 > 1) ? 1 : x0));
x1 = ((x1 < -1) ? -1 : ((x1 > 1) ? 1 : x1));
x2 = ((x2 < -1) ? -1 : ((x2 > 1) ? 1 : x2));
x3 = ((x3 < -1) ? -1 : ((x3 > 1) ? 1 : x3));
x0 = x0 * 32767.0f;
x1 = x1 * 32767.0f;
x2 = x2 * 32767.0f;
x3 = x3 * 32767.0f;
dst[i+0] = (drmp3_int16)x0;
dst[i+1] = (drmp3_int16)x1;
dst[i+2] = (drmp3_int16)x2;
dst[i+3] = (drmp3_int16)x3;
i += 4;
}
for (; i < sampleCount; i += 1) {
float x = src[i];
x = ((x < -1) ? -1 : ((x > 1) ? 1 : x));
x = x * 32767.0f;
dst[i] = (drmp3_int16)x;
}
}
#endif
#if !defined(DR_MP3_FLOAT_OUTPUT)
static void drmp3_s16_to_f32(float* dst, const drmp3_int16* src, drmp3_uint64 sampleCount)
{
drmp3_uint64 i;
for (i = 0; i < sampleCount; i += 1) {
float x = (float)src[i];
x = x * 0.000030517578125f;
dst[i] = x;
}
}
#endif
static drmp3_uint64 drmp3_read_pcm_frames_raw(drmp3* pMP3, drmp3_uint64 framesToRead, void* pBufferOut)
{
drmp3_uint64 totalFramesRead = 0;
DRMP3_ASSERT(pMP3 != NULL);
DRMP3_ASSERT(pMP3->onRead != NULL);
while (framesToRead > 0) {
drmp3_uint32 framesToConsume = (drmp3_uint32)DRMP3_MIN(pMP3->pcmFramesRemainingInMP3Frame, framesToRead);
if (pBufferOut != NULL) {
#if defined(DR_MP3_FLOAT_OUTPUT)
float* pFramesOutF32 = (float*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(float) * totalFramesRead * pMP3->channels);
float* pFramesInF32 = (float*)DRMP3_OFFSET_PTR(&pMP3->pcmFrames[0], sizeof(float) * pMP3->pcmFramesConsumedInMP3Frame * pMP3->mp3FrameChannels);
DRMP3_COPY_MEMORY(pFramesOutF32, pFramesInF32, sizeof(float) * framesToConsume * pMP3->channels);
#else
drmp3_int16* pFramesOutS16 = (drmp3_int16*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalFramesRead * pMP3->channels);
drmp3_int16* pFramesInS16 = (drmp3_int16*)DRMP3_OFFSET_PTR(&pMP3->pcmFrames[0], sizeof(drmp3_int16) * pMP3->pcmFramesConsumedInMP3Frame * pMP3->mp3FrameChannels);
DRMP3_COPY_MEMORY(pFramesOutS16, pFramesInS16, sizeof(drmp3_int16) * framesToConsume * pMP3->channels);
#endif
}
pMP3->currentPCMFrame += framesToConsume;
pMP3->pcmFramesConsumedInMP3Frame += framesToConsume;
pMP3->pcmFramesRemainingInMP3Frame -= framesToConsume;
totalFramesRead += framesToConsume;
framesToRead -= framesToConsume;
if (framesToRead == 0) {
break;
}
DRMP3_ASSERT(pMP3->pcmFramesRemainingInMP3Frame == 0);
if (drmp3_decode_next_frame(pMP3) == 0) {
break;
}
}
return totalFramesRead;
}
DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_f32(drmp3* pMP3, drmp3_uint64 framesToRead, float* pBufferOut)
{
if (pMP3 == NULL || pMP3->onRead == NULL) {
return 0;
}
#if defined(DR_MP3_FLOAT_OUTPUT)
return drmp3_read_pcm_frames_raw(pMP3, framesToRead, pBufferOut);
#else
{
drmp3_int16 pTempS16[8192];
drmp3_uint64 totalPCMFramesRead = 0;
while (totalPCMFramesRead < framesToRead) {
drmp3_uint64 framesJustRead;
drmp3_uint64 framesRemaining = framesToRead - totalPCMFramesRead;
drmp3_uint64 framesToReadNow = DRMP3_COUNTOF(pTempS16) / pMP3->channels;
if (framesToReadNow > framesRemaining) {
framesToReadNow = framesRemaining;
}
framesJustRead = drmp3_read_pcm_frames_raw(pMP3, framesToReadNow, pTempS16);
if (framesJustRead == 0) {
break;
}
drmp3_s16_to_f32((float*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalPCMFramesRead * pMP3->channels), pTempS16, framesJustRead * pMP3->channels);
totalPCMFramesRead += framesJustRead;
}
return totalPCMFramesRead;
}
#endif
}
DRMP3_API drmp3_uint64 drmp3_read_pcm_frames_s16(drmp3* pMP3, drmp3_uint64 framesToRead, drmp3_int16* pBufferOut)
{
if (pMP3 == NULL || pMP3->onRead == NULL) {
return 0;
}
#if !defined(DR_MP3_FLOAT_OUTPUT)
return drmp3_read_pcm_frames_raw(pMP3, framesToRead, pBufferOut);
#else
{
float pTempF32[4096];
drmp3_uint64 totalPCMFramesRead = 0;
while (totalPCMFramesRead < framesToRead) {
drmp3_uint64 framesJustRead;
drmp3_uint64 framesRemaining = framesToRead - totalPCMFramesRead;
drmp3_uint64 framesToReadNow = DRMP3_COUNTOF(pTempF32) / pMP3->channels;
if (framesToReadNow > framesRemaining) {
framesToReadNow = framesRemaining;
}
framesJustRead = drmp3_read_pcm_frames_raw(pMP3, framesToReadNow, pTempF32);
if (framesJustRead == 0) {
break;
}
drmp3_f32_to_s16((drmp3_int16*)DRMP3_OFFSET_PTR(pBufferOut, sizeof(drmp3_int16) * totalPCMFramesRead * pMP3->channels), pTempF32, framesJustRead * pMP3->channels);
totalPCMFramesRead += framesJustRead;
}
return totalPCMFramesRead;
}
#endif
}
static void drmp3_reset(drmp3* pMP3)
{
DRMP3_ASSERT(pMP3 != NULL);
pMP3->pcmFramesConsumedInMP3Frame = 0;
pMP3->pcmFramesRemainingInMP3Frame = 0;
pMP3->currentPCMFrame = 0;
pMP3->dataSize = 0;
pMP3->atEnd = DRMP3_FALSE;
drmp3dec_init(&pMP3->decoder);
}
static drmp3_bool32 drmp3_seek_to_start_of_stream(drmp3* pMP3)
{
DRMP3_ASSERT(pMP3 != NULL);
DRMP3_ASSERT(pMP3->onSeek != NULL);
if (!drmp3__on_seek(pMP3, 0, drmp3_seek_origin_start)) {
return DRMP3_FALSE;
}
drmp3_reset(pMP3);
return DRMP3_TRUE;
}
static drmp3_bool32 drmp3_seek_forward_by_pcm_frames__brute_force(drmp3* pMP3, drmp3_uint64 frameOffset)
{
drmp3_uint64 framesRead;
#if defined(DR_MP3_FLOAT_OUTPUT)
framesRead = drmp3_read_pcm_frames_f32(pMP3, frameOffset, NULL);
#else
framesRead = drmp3_read_pcm_frames_s16(pMP3, frameOffset, NULL);
#endif
if (framesRead != frameOffset) {
return DRMP3_FALSE;
}
return DRMP3_TRUE;
}
static drmp3_bool32 drmp3_seek_to_pcm_frame__brute_force(drmp3* pMP3, drmp3_uint64 frameIndex)
{
DRMP3_ASSERT(pMP3 != NULL);
if (frameIndex == pMP3->currentPCMFrame) {
return DRMP3_TRUE;
}
if (frameIndex < pMP3->currentPCMFrame) {
if (!drmp3_seek_to_start_of_stream(pMP3)) {
return DRMP3_FALSE;
}
}
DRMP3_ASSERT(frameIndex >= pMP3->currentPCMFrame);
return drmp3_seek_forward_by_pcm_frames__brute_force(pMP3, (frameIndex - pMP3->currentPCMFrame));
}
static drmp3_bool32 drmp3_find_closest_seek_point(drmp3* pMP3, drmp3_uint64 frameIndex, drmp3_uint32* pSeekPointIndex)
{
drmp3_uint32 iSeekPoint;
DRMP3_ASSERT(pSeekPointIndex != NULL);
*pSeekPointIndex = 0;
if (frameIndex < pMP3->pSeekPoints[0].pcmFrameIndex) {
return DRMP3_FALSE;
}
for (iSeekPoint = 0; iSeekPoint < pMP3->seekPointCount; ++iSeekPoint) {
if (pMP3->pSeekPoints[iSeekPoint].pcmFrameIndex > frameIndex) {
break;
}
*pSeekPointIndex = iSeekPoint;
}
return DRMP3_TRUE;
}
static drmp3_bool32 drmp3_seek_to_pcm_frame__seek_table(drmp3* pMP3, drmp3_uint64 frameIndex)
{
drmp3_seek_point seekPoint;
drmp3_uint32 priorSeekPointIndex;
drmp3_uint16 iMP3Frame;
drmp3_uint64 leftoverFrames;
DRMP3_ASSERT(pMP3 != NULL);
DRMP3_ASSERT(pMP3->pSeekPoints != NULL);
DRMP3_ASSERT(pMP3->seekPointCount > 0);
if (drmp3_find_closest_seek_point(pMP3, frameIndex, &priorSeekPointIndex)) {
seekPoint = pMP3->pSeekPoints[priorSeekPointIndex];
} else {
seekPoint.seekPosInBytes = 0;
seekPoint.pcmFrameIndex = 0;
seekPoint.mp3FramesToDiscard = 0;
seekPoint.pcmFramesToDiscard = 0;
}
if (!drmp3__on_seek_64(pMP3, seekPoint.seekPosInBytes, drmp3_seek_origin_start)) {
return DRMP3_FALSE;
}
drmp3_reset(pMP3);
for (iMP3Frame = 0; iMP3Frame < seekPoint.mp3FramesToDiscard; ++iMP3Frame) {
drmp3_uint32 pcmFramesRead;
drmp3d_sample_t* pPCMFrames;
pPCMFrames = NULL;
if (iMP3Frame == seekPoint.mp3FramesToDiscard-1) {
pPCMFrames = (drmp3d_sample_t*)pMP3->pcmFrames;
}
pcmFramesRead = drmp3_decode_next_frame_ex(pMP3, pPCMFrames);
if (pcmFramesRead == 0) {
return DRMP3_FALSE;
}
}
pMP3->currentPCMFrame = seekPoint.pcmFrameIndex - seekPoint.pcmFramesToDiscard;
leftoverFrames = frameIndex - pMP3->currentPCMFrame;
return drmp3_seek_forward_by_pcm_frames__brute_force(pMP3, leftoverFrames);
}
DRMP3_API drmp3_bool32 drmp3_seek_to_pcm_frame(drmp3* pMP3, drmp3_uint64 frameIndex)
{
if (pMP3 == NULL || pMP3->onSeek == NULL) {
return DRMP3_FALSE;
}
if (frameIndex == 0) {
return drmp3_seek_to_start_of_stream(pMP3);
}
if (pMP3->pSeekPoints != NULL && pMP3->seekPointCount > 0) {
return drmp3_seek_to_pcm_frame__seek_table(pMP3, frameIndex);
} else {
return drmp3_seek_to_pcm_frame__brute_force(pMP3, frameIndex);
}
}
DRMP3_API drmp3_bool32 drmp3_get_mp3_and_pcm_frame_count(drmp3* pMP3, drmp3_uint64* pMP3FrameCount, drmp3_uint64* pPCMFrameCount)
{
drmp3_uint64 currentPCMFrame;
drmp3_uint64 totalPCMFrameCount;
drmp3_uint64 totalMP3FrameCount;
if (pMP3 == NULL) {
return DRMP3_FALSE;
}
if (pMP3->onSeek == NULL) {
return DRMP3_FALSE;
}
currentPCMFrame = pMP3->currentPCMFrame;
if (!drmp3_seek_to_start_of_stream(pMP3)) {
return DRMP3_FALSE;
}
totalPCMFrameCount = 0;
totalMP3FrameCount = 0;
for (;;) {
drmp3_uint32 pcmFramesInCurrentMP3Frame;
pcmFramesInCurrentMP3Frame = drmp3_decode_next_frame_ex(pMP3, NULL);
if (pcmFramesInCurrentMP3Frame == 0) {
break;
}
totalPCMFrameCount += pcmFramesInCurrentMP3Frame;
totalMP3FrameCount += 1;
}
if (!drmp3_seek_to_start_of_stream(pMP3)) {
return DRMP3_FALSE;
}
if (!drmp3_seek_to_pcm_frame(pMP3, currentPCMFrame)) {
return DRMP3_FALSE;
}
if (pMP3FrameCount != NULL) {
*pMP3FrameCount = totalMP3FrameCount;
}
if (pPCMFrameCount != NULL) {
*pPCMFrameCount = totalPCMFrameCount;
}
return DRMP3_TRUE;
}
DRMP3_API drmp3_uint64 drmp3_get_pcm_frame_count(drmp3* pMP3)
{
drmp3_uint64 totalPCMFrameCount;
if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, NULL, &totalPCMFrameCount)) {
return 0;
}
return totalPCMFrameCount;
}
DRMP3_API drmp3_uint64 drmp3_get_mp3_frame_count(drmp3* pMP3)
{
drmp3_uint64 totalMP3FrameCount;
if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, &totalMP3FrameCount, NULL)) {
return 0;
}
return totalMP3FrameCount;
}
static void drmp3__accumulate_running_pcm_frame_count(drmp3* pMP3, drmp3_uint32 pcmFrameCountIn, drmp3_uint64* pRunningPCMFrameCount, float* pRunningPCMFrameCountFractionalPart)
{
float srcRatio;
float pcmFrameCountOutF;
drmp3_uint32 pcmFrameCountOut;
srcRatio = (float)pMP3->mp3FrameSampleRate / (float)pMP3->sampleRate;
DRMP3_ASSERT(srcRatio > 0);
pcmFrameCountOutF = *pRunningPCMFrameCountFractionalPart + (pcmFrameCountIn / srcRatio);
pcmFrameCountOut = (drmp3_uint32)pcmFrameCountOutF;
*pRunningPCMFrameCountFractionalPart = pcmFrameCountOutF - pcmFrameCountOut;
*pRunningPCMFrameCount += pcmFrameCountOut;
}
typedef struct
{
drmp3_uint64 bytePos;
drmp3_uint64 pcmFrameIndex;
} drmp3__seeking_mp3_frame_info;
DRMP3_API drmp3_bool32 drmp3_calculate_seek_points(drmp3* pMP3, drmp3_uint32* pSeekPointCount, drmp3_seek_point* pSeekPoints)
{
drmp3_uint32 seekPointCount;
drmp3_uint64 currentPCMFrame;
drmp3_uint64 totalMP3FrameCount;
drmp3_uint64 totalPCMFrameCount;
if (pMP3 == NULL || pSeekPointCount == NULL || pSeekPoints == NULL) {
return DRMP3_FALSE;
}
seekPointCount = *pSeekPointCount;
if (seekPointCount == 0) {
return DRMP3_FALSE;
}
currentPCMFrame = pMP3->currentPCMFrame;
if (!drmp3_get_mp3_and_pcm_frame_count(pMP3, &totalMP3FrameCount, &totalPCMFrameCount)) {
return DRMP3_FALSE;
}
if (totalMP3FrameCount < DRMP3_SEEK_LEADING_MP3_FRAMES+1) {
seekPointCount = 1;
pSeekPoints[0].seekPosInBytes = 0;
pSeekPoints[0].pcmFrameIndex = 0;
pSeekPoints[0].mp3FramesToDiscard = 0;
pSeekPoints[0].pcmFramesToDiscard = 0;
} else {
drmp3_uint64 pcmFramesBetweenSeekPoints;
drmp3__seeking_mp3_frame_info mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES+1];
drmp3_uint64 runningPCMFrameCount = 0;
float runningPCMFrameCountFractionalPart = 0;
drmp3_uint64 nextTargetPCMFrame;
drmp3_uint32 iMP3Frame;
drmp3_uint32 iSeekPoint;
if (seekPointCount > totalMP3FrameCount-1) {
seekPointCount = (drmp3_uint32)totalMP3FrameCount-1;
}
pcmFramesBetweenSeekPoints = totalPCMFrameCount / (seekPointCount+1);
if (!drmp3_seek_to_start_of_stream(pMP3)) {
return DRMP3_FALSE;
}
for (iMP3Frame = 0; iMP3Frame < DRMP3_SEEK_LEADING_MP3_FRAMES+1; ++iMP3Frame) {
drmp3_uint32 pcmFramesInCurrentMP3FrameIn;
DRMP3_ASSERT(pMP3->streamCursor >= pMP3->dataSize);
mp3FrameInfo[iMP3Frame].bytePos = pMP3->streamCursor - pMP3->dataSize;
mp3FrameInfo[iMP3Frame].pcmFrameIndex = runningPCMFrameCount;
pcmFramesInCurrentMP3FrameIn = drmp3_decode_next_frame_ex(pMP3, NULL);
if (pcmFramesInCurrentMP3FrameIn == 0) {
return DRMP3_FALSE;
}
drmp3__accumulate_running_pcm_frame_count(pMP3, pcmFramesInCurrentMP3FrameIn, &runningPCMFrameCount, &runningPCMFrameCountFractionalPart);
}
nextTargetPCMFrame = 0;
for (iSeekPoint = 0; iSeekPoint < seekPointCount; ++iSeekPoint) {
nextTargetPCMFrame += pcmFramesBetweenSeekPoints;
for (;;) {
if (nextTargetPCMFrame < runningPCMFrameCount) {
pSeekPoints[iSeekPoint].seekPosInBytes = mp3FrameInfo[0].bytePos;
pSeekPoints[iSeekPoint].pcmFrameIndex = nextTargetPCMFrame;
pSeekPoints[iSeekPoint].mp3FramesToDiscard = DRMP3_SEEK_LEADING_MP3_FRAMES;
pSeekPoints[iSeekPoint].pcmFramesToDiscard = (drmp3_uint16)(nextTargetPCMFrame - mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES-1].pcmFrameIndex);
break;
} else {
size_t i;
drmp3_uint32 pcmFramesInCurrentMP3FrameIn;
for (i = 0; i < DRMP3_COUNTOF(mp3FrameInfo)-1; ++i) {
mp3FrameInfo[i] = mp3FrameInfo[i+1];
}
mp3FrameInfo[DRMP3_COUNTOF(mp3FrameInfo)-1].bytePos = pMP3->streamCursor - pMP3->dataSize;
mp3FrameInfo[DRMP3_COUNTOF(mp3FrameInfo)-1].pcmFrameIndex = runningPCMFrameCount;
pcmFramesInCurrentMP3FrameIn = drmp3_decode_next_frame_ex(pMP3, NULL);
if (pcmFramesInCurrentMP3FrameIn == 0) {
pSeekPoints[iSeekPoint].seekPosInBytes = mp3FrameInfo[0].bytePos;
pSeekPoints[iSeekPoint].pcmFrameIndex = nextTargetPCMFrame;
pSeekPoints[iSeekPoint].mp3FramesToDiscard = DRMP3_SEEK_LEADING_MP3_FRAMES;
pSeekPoints[iSeekPoint].pcmFramesToDiscard = (drmp3_uint16)(nextTargetPCMFrame - mp3FrameInfo[DRMP3_SEEK_LEADING_MP3_FRAMES-1].pcmFrameIndex);
break;
}
drmp3__accumulate_running_pcm_frame_count(pMP3, pcmFramesInCurrentMP3FrameIn, &runningPCMFrameCount, &runningPCMFrameCountFractionalPart);
}
}
}
if (!drmp3_seek_to_start_of_stream(pMP3)) {
return DRMP3_FALSE;
}
if (!drmp3_seek_to_pcm_frame(pMP3, currentPCMFrame)) {
return DRMP3_FALSE;
}
}
*pSeekPointCount = seekPointCount;
return DRMP3_TRUE;
}
DRMP3_API drmp3_bool32 drmp3_bind_seek_table(drmp3* pMP3, drmp3_uint32 seekPointCount, drmp3_seek_point* pSeekPoints)
{
if (pMP3 == NULL) {
return DRMP3_FALSE;
}
if (seekPointCount == 0 || pSeekPoints == NULL) {
pMP3->seekPointCount = 0;
pMP3->pSeekPoints = NULL;
} else {
pMP3->seekPointCount = seekPointCount;
pMP3->pSeekPoints = pSeekPoints;
}
return DRMP3_TRUE;
}
static float* drmp3__full_read_and_close_f32(drmp3* pMP3, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount)
{
drmp3_uint64 totalFramesRead = 0;
drmp3_uint64 framesCapacity = 0;
float* pFrames = NULL;
float temp[4096];
DRMP3_ASSERT(pMP3 != NULL);
for (;;) {
drmp3_uint64 framesToReadRightNow = DRMP3_COUNTOF(temp) / pMP3->channels;
drmp3_uint64 framesJustRead = drmp3_read_pcm_frames_f32(pMP3, framesToReadRightNow, temp);
if (framesJustRead == 0) {
break;
}
if (framesCapacity < totalFramesRead + framesJustRead) {
drmp3_uint64 oldFramesBufferSize;
drmp3_uint64 newFramesBufferSize;
drmp3_uint64 newFramesCap;
float* pNewFrames;
newFramesCap = framesCapacity * 2;
if (newFramesCap < totalFramesRead + framesJustRead) {
newFramesCap = totalFramesRead + framesJustRead;
}
oldFramesBufferSize = framesCapacity * pMP3->channels * sizeof(float);
newFramesBufferSize = newFramesCap * pMP3->channels * sizeof(float);
if (newFramesBufferSize > DRMP3_SIZE_MAX) {
break;
}
pNewFrames = (float*)drmp3__realloc_from_callbacks(pFrames, (size_t)newFramesBufferSize, (size_t)oldFramesBufferSize, &pMP3->allocationCallbacks);
if (pNewFrames == NULL) {
drmp3__free_from_callbacks(pFrames, &pMP3->allocationCallbacks);
break;
}
pFrames = pNewFrames;
framesCapacity = newFramesCap;
}
DRMP3_COPY_MEMORY(pFrames + totalFramesRead*pMP3->channels, temp, (size_t)(framesJustRead*pMP3->channels*sizeof(float)));
totalFramesRead += framesJustRead;
if (framesJustRead != framesToReadRightNow) {
break;
}
}
if (pConfig != NULL) {
pConfig->channels = pMP3->channels;
pConfig->sampleRate = pMP3->sampleRate;
}
drmp3_uninit(pMP3);
if (pTotalFrameCount) {
*pTotalFrameCount = totalFramesRead;
}
return pFrames;
}
static drmp3_int16* drmp3__full_read_and_close_s16(drmp3* pMP3, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount)
{
drmp3_uint64 totalFramesRead = 0;
drmp3_uint64 framesCapacity = 0;
drmp3_int16* pFrames = NULL;
drmp3_int16 temp[4096];
DRMP3_ASSERT(pMP3 != NULL);
for (;;) {
drmp3_uint64 framesToReadRightNow = DRMP3_COUNTOF(temp) / pMP3->channels;
drmp3_uint64 framesJustRead = drmp3_read_pcm_frames_s16(pMP3, framesToReadRightNow, temp);
if (framesJustRead == 0) {
break;
}
if (framesCapacity < totalFramesRead + framesJustRead) {
drmp3_uint64 newFramesBufferSize;
drmp3_uint64 oldFramesBufferSize;
drmp3_uint64 newFramesCap;
drmp3_int16* pNewFrames;
newFramesCap = framesCapacity * 2;
if (newFramesCap < totalFramesRead + framesJustRead) {
newFramesCap = totalFramesRead + framesJustRead;
}
oldFramesBufferSize = framesCapacity * pMP3->channels * sizeof(drmp3_int16);
newFramesBufferSize = newFramesCap * pMP3->channels * sizeof(drmp3_int16);
if (newFramesBufferSize > DRMP3_SIZE_MAX) {
break;
}
pNewFrames = (drmp3_int16*)drmp3__realloc_from_callbacks(pFrames, (size_t)newFramesBufferSize, (size_t)oldFramesBufferSize, &pMP3->allocationCallbacks);
if (pNewFrames == NULL) {
drmp3__free_from_callbacks(pFrames, &pMP3->allocationCallbacks);
break;
}
pFrames = pNewFrames;
framesCapacity = newFramesCap;
}
DRMP3_COPY_MEMORY(pFrames + totalFramesRead*pMP3->channels, temp, (size_t)(framesJustRead*pMP3->channels*sizeof(drmp3_int16)));
totalFramesRead += framesJustRead;
if (framesJustRead != framesToReadRightNow) {
break;
}
}
if (pConfig != NULL) {
pConfig->channels = pMP3->channels;
pConfig->sampleRate = pMP3->sampleRate;
}
drmp3_uninit(pMP3);
if (pTotalFrameCount) {
*pTotalFrameCount = totalFramesRead;
}
return pFrames;
}
DRMP3_API float* drmp3_open_and_read_pcm_frames_f32(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
drmp3 mp3;
if (!drmp3_init(&mp3, onRead, onSeek, pUserData, pAllocationCallbacks)) {
return NULL;
}
return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount);
}
DRMP3_API drmp3_int16* drmp3_open_and_read_pcm_frames_s16(drmp3_read_proc onRead, drmp3_seek_proc onSeek, void* pUserData, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
drmp3 mp3;
if (!drmp3_init(&mp3, onRead, onSeek, pUserData, pAllocationCallbacks)) {
return NULL;
}
return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount);
}
DRMP3_API float* drmp3_open_memory_and_read_pcm_frames_f32(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
drmp3 mp3;
if (!drmp3_init_memory(&mp3, pData, dataSize, pAllocationCallbacks)) {
return NULL;
}
return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount);
}
DRMP3_API drmp3_int16* drmp3_open_memory_and_read_pcm_frames_s16(const void* pData, size_t dataSize, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
drmp3 mp3;
if (!drmp3_init_memory(&mp3, pData, dataSize, pAllocationCallbacks)) {
return NULL;
}
return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount);
}
#ifndef DR_MP3_NO_STDIO
DRMP3_API float* drmp3_open_file_and_read_pcm_frames_f32(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
drmp3 mp3;
if (!drmp3_init_file(&mp3, filePath, pAllocationCallbacks)) {
return NULL;
}
return drmp3__full_read_and_close_f32(&mp3, pConfig, pTotalFrameCount);
}
DRMP3_API drmp3_int16* drmp3_open_file_and_read_pcm_frames_s16(const char* filePath, drmp3_config* pConfig, drmp3_uint64* pTotalFrameCount, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
drmp3 mp3;
if (!drmp3_init_file(&mp3, filePath, pAllocationCallbacks)) {
return NULL;
}
return drmp3__full_read_and_close_s16(&mp3, pConfig, pTotalFrameCount);
}
#endif
DRMP3_API void* drmp3_malloc(size_t sz, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
return drmp3__malloc_from_callbacks(sz, pAllocationCallbacks);
} else {
return drmp3__malloc_default(sz, NULL);
}
}
DRMP3_API void drmp3_free(void* p, const drmp3_allocation_callbacks* pAllocationCallbacks)
{
if (pAllocationCallbacks != NULL) {
drmp3__free_from_callbacks(p, pAllocationCallbacks);
} else {
drmp3__free_default(p, NULL);
}
}
#endif
/* dr_mp3_c end */
#endif /* DRMP3_IMPLEMENTATION */
#endif /* MA_NO_MP3 */
/* End globally disabled warnings. */
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
#endif /* MINIAUDIO_IMPLEMENTATION */
/*
MAJOR CHANGES IN VERSION 0.9
============================
Version 0.9 includes major API changes, centered mostly around full-duplex and the rebrand to "miniaudio". Before I go into
detail about the major changes I would like to apologize. I know it's annoying dealing with breaking API changes, but I think
it's best to get these changes out of the way now while the library is still relatively young and unknown.
There's been a lot of refactoring with this release so there's a good chance a few bugs have been introduced. I apologize in
advance for this. You may want to hold off on upgrading for the short term if you're worried. If mini_al v0.8.14 works for
you, and you don't need full-duplex support, you can avoid upgrading (though you won't be getting future bug fixes).
Rebranding to "miniaudio"
-------------------------
The decision was made to rename mini_al to miniaudio. Don't worry, it's the same project. The reason for this is simple:
1) Having the word "audio" in the title makes it immediately clear that the library is related to audio; and
2) I don't like the look of the underscore.
This rebrand has necessitated a change in namespace from "mal" to "ma". I know this is annoying, and I apologize, but it's
better to get this out of the road now rather than later. Also, since there are necessary API changes for full-duplex support
I think it's better to just get the namespace change over and done with at the same time as the full-duplex changes. I'm hoping
this will be the last of the major API changes. Fingers crossed!
The implementation define is now "#define MINIAUDIO_IMPLEMENTATION". You can also use "#define MA_IMPLEMENTATION" if that's
your preference.
Full-Duplex Support
-------------------
The major feature added to version 0.9 is full-duplex. This has necessitated a few API changes.
1) The data callback has now changed. Previously there was one type of callback for playback and another for capture. I wanted
to avoid a third callback just for full-duplex so the decision was made to break this API and unify the callbacks. Now,
there is just one callback which is the same for all three modes (playback, capture, duplex). The new callback looks like
the following:
void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount);
This callback allows you to move data straight out of the input buffer and into the output buffer in full-duplex mode. In
playback-only mode, pInput will be null. Likewise, pOutput will be null in capture-only mode. The sample count is no longer
returned from the callback since it's not necessary for miniaudio anymore.
2) The device config needed to change in order to support full-duplex. Full-duplex requires the ability to allow the client
to choose a different PCM format for the playback and capture sides. The old ma_device_config object simply did not allow
this and needed to change. With these changes you now specify the device ID, format, channels, channel map and share mode
on a per-playback and per-capture basis (see example below). The sample rate must be the same for playback and capture.
Since the device config API has changed I have also decided to take the opportunity to simplify device initialization. Now,
the device ID, device type and callback user data are set in the config. ma_device_init() is now simplified down to taking
just the context, device config and a pointer to the device object being initialized. The rationale for this change is that
it just makes more sense to me that these are set as part of the config like everything else.
Example device initialization:
ma_device_config config = ma_device_config_init(ma_device_type_duplex); // Or ma_device_type_playback or ma_device_type_capture.
config.playback.pDeviceID = &myPlaybackDeviceID; // Or NULL for the default playback device.
config.playback.format = ma_format_f32;
config.playback.channels = 2;
config.capture.pDeviceID = &myCaptureDeviceID; // Or NULL for the default capture device.
config.capture.format = ma_format_s16;
config.capture.channels = 1;
config.sampleRate = 44100;
config.dataCallback = data_callback;
config.pUserData = &myUserData;
result = ma_device_init(&myContext, &config, &device);
if (result != MA_SUCCESS) {
... handle error ...
}
Note that the "onDataCallback" member of ma_device_config has been renamed to "dataCallback". Also, "onStopCallback" has
been renamed to "stopCallback".
This is the first pass for full-duplex and there is a known bug. You will hear crackling on the following backends when sample
rate conversion is required for the playback device:
- Core Audio
- JACK
- AAudio
- OpenSL
- WebAudio
In addition to the above, not all platforms have been absolutely thoroughly tested simply because I lack the hardware for such
thorough testing. If you experience a bug, an issue report on GitHub or an email would be greatly appreciated (and a sample
program that reproduces the issue if possible).
Other API Changes
-----------------
In addition to the above, the following API changes have been made:
- The log callback is no longer passed to ma_context_config_init(). Instead you need to set it manually after initialization.
- The onLogCallback member of ma_context_config has been renamed to "logCallback".
- The log callback now takes a logLevel parameter. The new callback looks like: void log_callback(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message)
- You can use ma_log_level_to_string() to convert the logLevel to human readable text if you want to log it.
- Some APIs have been renamed:
- mal_decoder_read() -> ma_decoder_read_pcm_frames()
- mal_decoder_seek_to_frame() -> ma_decoder_seek_to_pcm_frame()
- mal_sine_wave_read() -> ma_sine_wave_read_f32()
- mal_sine_wave_read_ex() -> ma_sine_wave_read_f32_ex()
- Some APIs have been removed:
- mal_device_get_buffer_size_in_bytes()
- mal_device_set_recv_callback()
- mal_device_set_send_callback()
- mal_src_set_input_sample_rate()
- mal_src_set_output_sample_rate()
- Error codes have been rearranged. If you're a binding maintainer you will need to update.
- The ma_backend enums have been rearranged to priority order. The rationale for this is to simplify automatic backend selection
and to make it easier to see the priority. If you're a binding maintainer you will need to update.
- ma_dsp has been renamed to ma_pcm_converter. The rationale for this change is that I'm expecting "ma_dsp" to conflict with
some future planned high-level APIs.
- For functions that take a pointer/count combo, such as ma_decoder_read_pcm_frames(), the parameter order has changed so that
the pointer comes before the count. The rationale for this is to keep it consistent with things like memcpy().
Miscellaneous Changes
---------------------
The following miscellaneous changes have also been made.
- The AAudio backend has been added for Android 8 and above. This is Android's new "High-Performance Audio" API. (For the
record, this is one of the nicest audio APIs out there, just behind the BSD audio APIs).
- The WebAudio backend has been added. This is based on ScriptProcessorNode. This removes the need for SDL.
- The SDL and OpenAL backends have been removed. These were originally implemented to add support for platforms for which miniaudio
was not explicitly supported. These are no longer needed and have therefore been removed.
- Device initialization now fails if the requested share mode is not supported. If you ask for exclusive mode, you either get an
exclusive mode device, or an error. The rationale for this change is to give the client more control over how to handle cases
when the desired shared mode is unavailable.
- A lock-free ring buffer API has been added. There are two varients of this. "ma_rb" operates on bytes, whereas "ma_pcm_rb"
operates on PCM frames.
- The library is now licensed as a choice of Public Domain (Unlicense) _or_ MIT-0 (No Attribution) which is the same as MIT, but
removes the attribution requirement. The rationale for this is to support countries that don't recognize public domain.
*/
/*
REVISION HISTORY
================
v0.10.9 - 2020-06-24
- Amalgamation of dr_wav, dr_flac and dr_mp3. With this change, including the header section of these libraries before the implementation of miniaudio is no
longer required. Decoding of WAV, FLAC and MP3 should be supported seamlessly without any additional libraries. Decoders can be excluded from the build
with the following options:
- MA_NO_WAV
- MA_NO_FLAC
- MA_NO_MP3
If you get errors about multiple definitions you need to either enable the options above, move the implementation of dr_wav, dr_flac and/or dr_mp3 to before
the implementation of miniaudio, or update dr_wav, dr_flac and/or dr_mp3.
- Changes to the internal atomics library. This has been replaced with c89atomic.h which is embedded within this file.
- Fix a bug when a decoding backend reports configurations outside the limits of miniaudio's decoder abstraction.
- Fix the UWP build.
- Fix the Core Audio build.
- Fix the -std=c89 build on GCC.
v0.10.8 - 2020-06-22
- Remove dependency on ma_context from mutexes.
- Change ma_data_source_read_pcm_frames() to return a result code and output the frames read as an output parameter.
- Change ma_data_source_seek_pcm_frames() to return a result code and output the frames seeked as an output parameter.
- Change ma_audio_buffer_unmap() to return MA_AT_END when the end has been reached. This should be considered successful.
- Change playback.pDeviceID and capture.pDeviceID to constant pointers in ma_device_config.
- Add support for initializing decoders from a virtual file system object. This is achieved via the ma_vfs API and allows the application to customize file
IO for the loading and reading of raw audio data. Passing in NULL for the VFS will use defaults. New APIs:
- ma_decoder_init_vfs()
- ma_decoder_init_vfs_wav()
- ma_decoder_init_vfs_flac()
- ma_decoder_init_vfs_mp3()
- ma_decoder_init_vfs_vorbis()
- ma_decoder_init_vfs_w()
- ma_decoder_init_vfs_wav_w()
- ma_decoder_init_vfs_flac_w()
- ma_decoder_init_vfs_mp3_w()
- ma_decoder_init_vfs_vorbis_w()
- Add support for memory mapping to ma_data_source.
- ma_data_source_map()
- ma_data_source_unmap()
- Add ma_offset_pcm_frames_ptr() and ma_offset_pcm_frames_const_ptr() which can be used for offsetting a pointer by a specified number of PCM frames.
- Add initial implementation of ma_yield() which is useful for spin locks which will be used in some upcoming work.
- Add documentation for log levels.
- The ma_event API has been made public in preparation for some uncoming work.
- Fix a bug in ma_decoder_seek_to_pcm_frame() where the internal sample rate is not being taken into account for determining the seek location.
- Fix some bugs with the linear resampler when dynamically changing the sample rate.
- Fix compilation errors with MA_NO_DEVICE_IO.
- Fix some warnings with GCC and -std=c89.
- Fix some formatting warnings with GCC and -Wall and -Wpedantic.
- Fix some warnings with VC6.
- Minor optimization to ma_copy_pcm_frames(). This is now a no-op when the input and output buffers are the same.
v0.10.7 - 2020-05-25
- Fix a compilation error in the C++ build.
- Silence a warning.
v0.10.6 - 2020-05-24
- Change ma_clip_samples_f32() and ma_clip_pcm_frames_f32() to take a 64-bit sample/frame count.
- Change ma_zero_pcm_frames() to clear to 128 for ma_format_u8.
- Add ma_silence_pcm_frames() which replaces ma_zero_pcm_frames(). ma_zero_pcm_frames() will be removed in version 0.11.
- Add support for u8, s24 and s32 formats to ma_channel_converter.
- Add compile-time and run-time version querying.
- MA_VERSION_MINOR
- MA_VERSION_MAJOR
- MA_VERSION_REVISION
- MA_VERSION_STRING
- ma_version()
- ma_version_string()
- Add ma_audio_buffer for reading raw audio data directly from memory.
- Fix a bug in shuffle mode in ma_channel_converter.
- Fix compilation errors in certain configurations for ALSA and PulseAudio.
- The data callback now initializes the output buffer to 128 when the playback sample format is ma_format_u8.
v0.10.5 - 2020-05-05
- Change ma_zero_pcm_frames() to take a 64-bit frame count.
- Add ma_copy_pcm_frames().
- Add MA_NO_GENERATION build option to exclude the `ma_waveform` and `ma_noise` APIs from the build.
- Add support for formatted logging to the VC6 build.
- Fix a crash in the linear resampler when LPF order is 0.
- Fix compilation errors and warnings with older versions of Visual Studio.
- Minor documentation updates.
v0.10.4 - 2020-04-12
- Fix a data conversion bug when converting from the client format to the native device format.
v0.10.3 - 2020-04-07
- Bring up to date with breaking changes to dr_mp3.
- Remove MA_NO_STDIO. This was causing compilation errors and the maintenance cost versus practical benefit is no longer worthwhile.
- Fix a bug with data conversion where it was unnecessarily converting to s16 or f32 and then straight back to the original format.
- Fix compilation errors and warnings with Visual Studio 2005.
- ALSA: Disable ALSA's automatic data conversion by default and add configuration options to the device config:
- alsa.noAutoFormat
- alsa.noAutoChannels
- alsa.noAutoResample
- WASAPI: Add some overrun recovery for ma_device_type_capture devices.
v0.10.2 - 2020-03-22
- Decorate some APIs with MA_API which were missed in the previous version.
- Fix a bug in ma_linear_resampler_set_rate() and ma_linear_resampler_set_rate_ratio().
v0.10.1 - 2020-03-17
- Add MA_API decoration. This can be customized by defining it before including miniaudio.h.
- Fix a bug where opening a file would return a success code when in fact it failed.
- Fix compilation errors with Visual Studio 6 and 2003.
- Fix warnings on macOS.
v0.10.0 - 2020-03-07
- API CHANGE: Refactor data conversion APIs
- ma_format_converter has been removed. Use ma_convert_pcm_frames_format() instead.
- ma_channel_router has been replaced with ma_channel_converter.
- ma_src has been replaced with ma_resampler
- ma_pcm_converter has been replaced with ma_data_converter
- API CHANGE: Add support for custom memory allocation callbacks. The following APIs have been updated to take an extra parameter for the allocation
callbacks:
- ma_malloc()
- ma_realloc()
- ma_free()
- ma_aligned_malloc()
- ma_aligned_free()
- ma_rb_init() / ma_rb_init_ex()
- ma_pcm_rb_init() / ma_pcm_rb_init_ex()
- API CHANGE: Simplify latency specification in device configurations. The bufferSizeInFrames and bufferSizeInMilliseconds parameters have been replaced with
periodSizeInFrames and periodSizeInMilliseconds respectively. The previous variables defined the size of the entire buffer, whereas the new ones define the
size of a period. The following APIs have been removed since they are no longer relevant:
- ma_get_default_buffer_size_in_milliseconds()
- ma_get_default_buffer_size_in_frames()
- API CHANGE: ma_device_set_stop_callback() has been removed. If you require a stop callback, you must now set it via the device config just like the data
callback.
- API CHANGE: The ma_sine_wave API has been replaced with ma_waveform. The following APIs have been removed:
- ma_sine_wave_init()
- ma_sine_wave_read_f32()
- ma_sine_wave_read_f32_ex()
- API CHANGE: ma_convert_frames() has been updated to take an extra parameter which is the size of the output buffer in PCM frames. Parameters have also been
reordered.
- API CHANGE: ma_convert_frames_ex() has been changed to take a pointer to a ma_data_converter_config object to specify the input and output formats to
convert between.
- API CHANGE: ma_calculate_frame_count_after_src() has been renamed to ma_calculate_frame_count_after_resampling().
- Add support for the following filters:
- Biquad (ma_biquad)
- First order low-pass (ma_lpf1)
- Second order low-pass (ma_lpf2)
- Low-pass with configurable order (ma_lpf)
- First order high-pass (ma_hpf1)
- Second order high-pass (ma_hpf2)
- High-pass with configurable order (ma_hpf)
- Second order band-pass (ma_bpf2)
- Band-pass with configurable order (ma_bpf)
- Second order peaking EQ (ma_peak2)
- Second order notching (ma_notch2)
- Second order low shelf (ma_loshelf2)
- Second order high shelf (ma_hishelf2)
- Add waveform generation API (ma_waveform) with support for the following:
- Sine
- Square
- Triangle
- Sawtooth
- Add noise generation API (ma_noise) with support for the following:
- White
- Pink
- Brownian
- Add encoding API (ma_encoder). This only supports outputting to WAV files via dr_wav.
- Add ma_result_description() which is used to retrieve a human readable description of a given result code.
- Result codes have been changed. Binding maintainers will need to update their result code constants.
- More meaningful result codes are now returned when a file fails to open.
- Internal functions have all been made static where possible.
- Fix potential crash when ma_device object's are not aligned to MA_SIMD_ALIGNMENT.
- Fix a bug in ma_decoder_get_length_in_pcm_frames() where it was returning the length based on the internal sample rate rather than the output sample rate.
- Fix bugs in some backends where the device is not drained properly in ma_device_stop().
- Improvements to documentation.
v0.9.10 - 2020-01-15
- Fix compilation errors due to #if/#endif mismatches.
- WASAPI: Fix a bug where automatic stream routing is being performed for devices that are initialized with an explicit device ID.
- iOS: Fix a crash on device uninitialization.
v0.9.9 - 2020-01-09
- Fix compilation errors with MinGW.
- Fix compilation errors when compiling on Apple platforms.
- WASAPI: Add support for disabling hardware offloading.
- WASAPI: Add support for disabling automatic stream routing.
- Core Audio: Fix bugs in the case where the internal device uses deinterleaved buffers.
- Core Audio: Add support for controlling the session category (AVAudioSessionCategory) and options (AVAudioSessionCategoryOptions).
- JACK: Fix bug where incorrect ports are connected.
v0.9.8 - 2019-10-07
- WASAPI: Fix a potential deadlock when starting a full-duplex device.
- WASAPI: Enable automatic resampling by default. Disable with config.wasapi.noAutoConvertSRC.
- Core Audio: Fix bugs with automatic stream routing.
- Add support for controlling whether or not the content of the output buffer passed in to the data callback is pre-initialized
to zero. By default it will be initialized to zero, but this can be changed by setting noPreZeroedOutputBuffer in the device
config. Setting noPreZeroedOutputBuffer to true will leave the contents undefined.
- Add support for clipping samples after the data callback has returned. This only applies when the playback sample format is
configured as ma_format_f32. If you are doing clipping yourself, you can disable this overhead by setting noClip to true in
the device config.
- Add support for master volume control for devices.
- Use ma_device_set_master_volume() to set the volume to a factor between 0 and 1, where 0 is silence and 1 is full volume.
- Use ma_device_set_master_gain_db() to set the volume in decibels where 0 is full volume and < 0 reduces the volume.
- Fix warnings emitted by GCC when `__inline__` is undefined or defined as nothing.
v0.9.7 - 2019-08-28
- Add support for loopback mode (WASAPI only).
- To use this, set the device type to ma_device_type_loopback, and then fill out the capture section of the device config.
- If you need to capture from a specific output device, set the capture device ID to that of a playback device.
- Fix a crash when an error is posted in ma_device_init().
- Fix a compilation error when compiling for ARM architectures.
- Fix a bug with the audio(4) backend where the device is incorrectly being opened in non-blocking mode.
- Fix memory leaks in the Core Audio backend.
- Minor refactoring to the WinMM, ALSA, PulseAudio, OSS, audio(4), sndio and null backends.
v0.9.6 - 2019-08-04
- Add support for loading decoders using a wchar_t string for file paths.
- Don't trigger an assert when ma_device_start() is called on a device that is already started. This will now log a warning
and return MA_INVALID_OPERATION. The same applies for ma_device_stop().
- Try fixing an issue with PulseAudio taking a long time to start playback.
- Fix a bug in ma_convert_frames() and ma_convert_frames_ex().
- Fix memory leaks in the WASAPI backend.
- Fix a compilation error with Visual Studio 2010.
v0.9.5 - 2019-05-21
- Add logging to ma_dlopen() and ma_dlsym().
- Add ma_decoder_get_length_in_pcm_frames().
- Fix a bug with capture on the OpenSL|ES backend.
- Fix a bug with the ALSA backend where a device would not restart after being stopped.
v0.9.4 - 2019-05-06
- Add support for C89. With this change, miniaudio should compile clean with GCC/Clang with "-std=c89 -ansi -pedantic" and
Microsoft compilers back to VC6. Other compilers should also work, but have not been tested.
v0.9.3 - 2019-04-19
- Fix compiler errors on GCC when compiling with -std=c99.
v0.9.2 - 2019-04-08
- Add support for per-context user data.
- Fix a potential bug with context configs.
- Fix some bugs with PulseAudio.
v0.9.1 - 2019-03-17
- Fix a bug where the output buffer is not getting zeroed out before calling the data callback. This happens when
the device is running in passthrough mode (not doing any data conversion).
- Fix an issue where the data callback is getting called too frequently on the WASAPI and DirectSound backends.
- Fix error on the UWP build.
- Fix a build error on Apple platforms.
v0.9 - 2019-03-06
- Rebranded to "miniaudio". All namespaces have been renamed from "mal" to "ma".
- API CHANGE: ma_device_init() and ma_device_config_init() have changed significantly:
- The device type, device ID and user data pointer have moved from ma_device_init() to the config.
- All variations of ma_device_config_init_*() have been removed in favor of just ma_device_config_init().
- ma_device_config_init() now takes only one parameter which is the device type. All other properties need
to be set on the returned object directly.
- The onDataCallback and onStopCallback members of ma_device_config have been renamed to "dataCallback"
and "stopCallback".
- The ID of the physical device is now split into two: one for the playback device and the other for the
capture device. This is required for full-duplex. These are named "pPlaybackDeviceID" and "pCaptureDeviceID".
- API CHANGE: The data callback has changed. It now uses a unified callback for all device types rather than
being separate for each. It now takes two pointers - one containing input data and the other output data. This
design in required for full-duplex. The return value is now void instead of the number of frames written. The
new callback looks like the following:
void data_callback(ma_device* pDevice, void* pOutput, const void* pInput, ma_uint32 frameCount);
- API CHANGE: Remove the log callback parameter from ma_context_config_init(). With this change,
ma_context_config_init() now takes no parameters and the log callback is set via the structure directly. The
new policy for config initialization is that only mandatory settings are passed in to *_config_init(). The
"onLog" member of ma_context_config has been renamed to "logCallback".
- API CHANGE: Remove ma_device_get_buffer_size_in_bytes().
- API CHANGE: Rename decoding APIs to "pcm_frames" convention.
- mal_decoder_read() -> ma_decoder_read_pcm_frames()
- mal_decoder_seek_to_frame() -> ma_decoder_seek_to_pcm_frame()
- API CHANGE: Rename sine wave reading APIs to f32 convention.
- mal_sine_wave_read() -> ma_sine_wave_read_f32()
- mal_sine_wave_read_ex() -> ma_sine_wave_read_f32_ex()
- API CHANGE: Remove some deprecated APIs
- mal_device_set_recv_callback()
- mal_device_set_send_callback()
- mal_src_set_input_sample_rate()
- mal_src_set_output_sample_rate()
- API CHANGE: Add log level to the log callback. New signature:
- void on_log(ma_context* pContext, ma_device* pDevice, ma_uint32 logLevel, const char* message)
- API CHANGE: Changes to result codes. Constants have changed and unused codes have been removed. If you're
a binding mainainer you will need to update your result code constants.
- API CHANGE: Change the order of the ma_backend enums to priority order. If you are a binding maintainer, you
will need to update.
- API CHANGE: Rename mal_dsp to ma_pcm_converter. All functions have been renamed from mal_dsp_*() to
ma_pcm_converter_*(). All structures have been renamed from mal_dsp* to ma_pcm_converter*.
- API CHANGE: Reorder parameters of ma_decoder_read_pcm_frames() to be consistent with the new parameter order scheme.
- The resampling algorithm has been changed from sinc to linear. The rationale for this is that the sinc implementation
is too inefficient right now. This will hopefully be improved at a later date.
- Device initialization will no longer fall back to shared mode if exclusive mode is requested but is unusable.
With this change, if you request an device in exclusive mode, but exclusive mode is not supported, it will not
automatically fall back to shared mode. The client will need to reinitialize the device in shared mode if that's
what they want.
- Add ring buffer API. This is ma_rb and ma_pcm_rb, the difference being that ma_rb operates on bytes and
ma_pcm_rb operates on PCM frames.
- Add Web Audio backend. This is used when compiling with Emscripten. The SDL backend, which was previously
used for web support, will be removed in a future version.
- Add AAudio backend (Android Audio). This is the new priority backend for Android. Support for AAudio starts
with Android 8. OpenSL|ES is used as a fallback for older versions of Android.
- Remove OpenAL and SDL backends.
- Fix a possible deadlock when rapidly stopping the device after it has started.
- Update documentation.
- Change licensing to a choice of public domain _or_ MIT-0 (No Attribution).
v0.8.14 - 2018-12-16
- Core Audio: Fix a bug where the device state is not set correctly after stopping.
- Add support for custom weights to the channel router.
- Update decoders to use updated APIs in dr_flac, dr_mp3 and dr_wav.
v0.8.13 - 2018-12-04
- Core Audio: Fix a bug with channel mapping.
- Fix a bug with channel routing where the back/left and back/right channels have the wrong weight.
v0.8.12 - 2018-11-27
- Drop support for SDL 1.2. The Emscripten build now requires "-s USE_SDL=2".
- Fix a linking error with ALSA.
- Fix a bug on iOS where the device name is not set correctly.
v0.8.11 - 2018-11-21
- iOS bug fixes.
- Minor tweaks to PulseAudio.
v0.8.10 - 2018-10-21
- Core Audio: Fix a hang when uninitializing a device.
- Fix a bug where an incorrect value is returned from mal_device_stop().
v0.8.9 - 2018-09-28
- Fix a bug with the SDL backend where device initialization fails.
v0.8.8 - 2018-09-14
- Fix Linux build with the ALSA backend.
- Minor documentation fix.
v0.8.7 - 2018-09-12
- Fix a bug with UWP detection.
v0.8.6 - 2018-08-26
- Automatically switch the internal device when the default device is unplugged. Note that this is still in the
early stages and not all backends handle this the same way. As of this version, this will not detect a default
device switch when changed from the operating system's audio preferences (unless the backend itself handles
this automatically). This is not supported in exclusive mode.
- WASAPI and Core Audio: Add support for stream routing. When the application is using a default device and the
user switches the default device via the operating system's audio preferences, miniaudio will automatically switch
the internal device to the new default. This is not supported in exclusive mode.
- WASAPI: Add support for hardware offloading via IAudioClient2. Only supported on Windows 8 and newer.
- WASAPI: Add support for low-latency shared mode via IAudioClient3. Only supported on Windows 10 and newer.
- Add support for compiling the UWP build as C.
- mal_device_set_recv_callback() and mal_device_set_send_callback() have been deprecated. You must now set this
when the device is initialized with mal_device_init*(). These will be removed in version 0.9.0.
v0.8.5 - 2018-08-12
- Add support for specifying the size of a device's buffer in milliseconds. You can still set the buffer size in
frames if that suits you. When bufferSizeInFrames is 0, bufferSizeInMilliseconds will be used. If both are non-0
then bufferSizeInFrames will take priority. If both are set to 0 the default buffer size is used.
- Add support for the audio(4) backend to OpenBSD.
- Fix a bug with the ALSA backend that was causing problems on Raspberry Pi. This significantly improves the
Raspberry Pi experience.
- Fix a bug where an incorrect number of samples is returned from sinc resampling.
- Add support for setting the value to be passed to internal calls to CoInitializeEx().
- WASAPI and WinMM: Stop the device when it is unplugged.
v0.8.4 - 2018-08-06
- Add sndio backend for OpenBSD.
- Add audio(4) backend for NetBSD.
- Drop support for the OSS backend on everything except FreeBSD and DragonFly BSD.
- Formats are now native-endian (were previously little-endian).
- Mark some APIs as deprecated:
- mal_src_set_input_sample_rate() and mal_src_set_output_sample_rate() are replaced with mal_src_set_sample_rate().
- mal_dsp_set_input_sample_rate() and mal_dsp_set_output_sample_rate() are replaced with mal_dsp_set_sample_rate().
- Fix a bug when capturing using the WASAPI backend.
- Fix some aliasing issues with resampling, specifically when increasing the sample rate.
- Fix warnings.
v0.8.3 - 2018-07-15
- Fix a crackling bug when resampling in capture mode.
- Core Audio: Fix a bug where capture does not work.
- ALSA: Fix a bug where the worker thread can get stuck in an infinite loop.
- PulseAudio: Fix a bug where mal_context_init() succeeds when PulseAudio is unusable.
- JACK: Fix a bug where mal_context_init() succeeds when JACK is unusable.
v0.8.2 - 2018-07-07
- Fix a bug on macOS with Core Audio where the internal callback is not called.
v0.8.1 - 2018-07-06
- Fix compilation errors and warnings.
v0.8 - 2018-07-05
- Changed MAL_IMPLEMENTATION to MINI_AL_IMPLEMENTATION for consistency with other libraries. The old
way is still supported for now, but you should update as it may be removed in the future.
- API CHANGE: Replace device enumeration APIs. mal_enumerate_devices() has been replaced with
mal_context_get_devices(). An additional low-level device enumration API has been introduced called
mal_context_enumerate_devices() which uses a callback to report devices.
- API CHANGE: Rename mal_get_sample_size_in_bytes() to mal_get_bytes_per_sample() and add
mal_get_bytes_per_frame().
- API CHANGE: Replace mal_device_config.preferExclusiveMode with mal_device_config.shareMode.
- This new config can be set to mal_share_mode_shared (default) or mal_share_mode_exclusive.
- API CHANGE: Remove excludeNullDevice from mal_context_config.alsa.
- API CHANGE: Rename MAL_MAX_SAMPLE_SIZE_IN_BYTES to MAL_MAX_PCM_SAMPLE_SIZE_IN_BYTES.
- API CHANGE: Change the default channel mapping to the standard Microsoft mapping.
- API CHANGE: Remove backend-specific result codes.
- API CHANGE: Changes to the format conversion APIs (mal_pcm_f32_to_s16(), etc.)
- Add support for Core Audio (Apple).
- Add support for PulseAudio.
- This is the highest priority backend on Linux (higher priority than ALSA) since it is commonly
installed by default on many of the popular distros and offer's more seamless integration on
platforms where PulseAudio is used. In addition, if PulseAudio is installed and running (which
is extremely common), it's better to just use PulseAudio directly rather than going through the
"pulse" ALSA plugin (which is what the "default" ALSA device is likely set to).
- Add support for JACK.
- Remove dependency on asound.h for the ALSA backend. This means the ALSA development packages are no
longer required to build miniaudio.
- Remove dependency on dsound.h for the DirectSound backend. This fixes build issues with some
distributions of MinGW.
- Remove dependency on audioclient.h for the WASAPI backend. This fixes build issues with some
distributions of MinGW.
- Add support for dithering to format conversion.
- Add support for configuring the priority of the worker thread.
- Add a sine wave generator.
- Improve efficiency of sample rate conversion.
- Introduce the notion of standard channel maps. Use mal_get_standard_channel_map().
- Introduce the notion of default device configurations. A default config uses the same configuration
as the backend's internal device, and as such results in a pass-through data transmission pipeline.
- Add support for passing in NULL for the device config in mal_device_init(), which uses a default
config. This requires manually calling mal_device_set_send/recv_callback().
- Add support for decoding from raw PCM data (mal_decoder_init_raw(), etc.)
- Make mal_device_init_ex() more robust.
- Make some APIs more const-correct.
- Fix errors with SDL detection on Apple platforms.
- Fix errors with OpenAL detection.
- Fix some memory leaks.
- Fix a bug with opening decoders from memory.
- Early work on SSE2, AVX2 and NEON optimizations.
- Miscellaneous bug fixes.
- Documentation updates.
v0.7 - 2018-02-25
- API CHANGE: Change mal_src_read_frames() and mal_dsp_read_frames() to use 64-bit sample counts.
- Add decoder APIs for loading WAV, FLAC, Vorbis and MP3 files.
- Allow opening of devices without a context.
- In this case the context is created and managed internally by the device.
- Change the default channel mapping to the same as that used by FLAC.
- Fix build errors with macOS.
v0.6c - 2018-02-12
- Fix build errors with BSD/OSS.
v0.6b - 2018-02-03
- Fix some warnings when compiling with Visual C++.
v0.6a - 2018-01-26
- Fix errors with channel mixing when increasing the channel count.
- Improvements to the build system for the OpenAL backend.
- Documentation fixes.
v0.6 - 2017-12-08
- API CHANGE: Expose and improve mutex APIs. If you were using the mutex APIs before this version you'll
need to update.
- API CHANGE: SRC and DSP callbacks now take a pointer to a mal_src and mal_dsp object respectively.
- API CHANGE: Improvements to event and thread APIs. These changes make these APIs more consistent.
- Add support for SDL and Emscripten.
- Simplify the build system further for when development packages for various backends are not installed.
With this change, when the compiler supports __has_include, backends without the relevant development
packages installed will be ignored. This fixes the build for old versions of MinGW.
- Fixes to the Android build.
- Add mal_convert_frames(). This is a high-level helper API for performing a one-time, bulk conversion of
audio data to a different format.
- Improvements to f32 -> u8/s16/s24/s32 conversion routines.
- Fix a bug where the wrong value is returned from mal_device_start() for the OpenSL backend.
- Fixes and improvements for Raspberry Pi.
- Warning fixes.
v0.5 - 2017-11-11
- API CHANGE: The mal_context_init() function now takes a pointer to a mal_context_config object for
configuring the context. The works in the same kind of way as the device config. The rationale for this
change is to give applications better control over context-level properties, add support for backend-
specific configurations, and support extensibility without breaking the API.
- API CHANGE: The alsa.preferPlugHW device config variable has been removed since it's not really useful for
anything anymore.
- ALSA: By default, device enumeration will now only enumerate over unique card/device pairs. Applications
can enable verbose device enumeration by setting the alsa.useVerboseDeviceEnumeration context config
variable.
- ALSA: When opening a device in shared mode (the default), the dmix/dsnoop plugin will be prioritized. If
this fails it will fall back to the hw plugin. With this change the preferExclusiveMode config is now
honored. Note that this does not happen when alsa.useVerboseDeviceEnumeration is set to true (see above)
which is by design.
- ALSA: Add support for excluding the "null" device using the alsa.excludeNullDevice context config variable.
- ALSA: Fix a bug with channel mapping which causes an assertion to fail.
- Fix errors with enumeration when pInfo is set to NULL.
- OSS: Fix a bug when starting a device when the client sends 0 samples for the initial buffer fill.
v0.4 - 2017-11-05
- API CHANGE: The log callback is now per-context rather than per-device and as is thus now passed to
mal_context_init(). The rationale for this change is that it allows applications to capture diagnostic
messages at the context level. Previously this was only available at the device level.
- API CHANGE: The device config passed to mal_device_init() is now const.
- Added support for OSS which enables support on BSD platforms.
- Added support for WinMM (waveOut/waveIn).
- Added support for UWP (Universal Windows Platform) applications. Currently C++ only.
- Added support for exclusive mode for selected backends. Currently supported on WASAPI.
- POSIX builds no longer require explicit linking to libpthread (-lpthread).
- ALSA: Explicit linking to libasound (-lasound) is no longer required.
- ALSA: Latency improvements.
- ALSA: Use MMAP mode where available. This can be disabled with the alsa.noMMap config.
- ALSA: Use "hw" devices instead of "plughw" devices by default. This can be disabled with the
alsa.preferPlugHW config.
- WASAPI is now the highest priority backend on Windows platforms.
- Fixed an error with sample rate conversion which was causing crackling when capturing.
- Improved error handling.
- Improved compiler support.
- Miscellaneous bug fixes.
v0.3 - 2017-06-19
- API CHANGE: Introduced the notion of a context. The context is the highest level object and is required for
enumerating and creating devices. Now, applications must first create a context, and then use that to
enumerate and create devices. The reason for this change is to ensure device enumeration and creation is
tied to the same backend. In addition, some backends are better suited to this design.
- API CHANGE: Removed the rewinding APIs because they're too inconsistent across the different backends, hard
to test and maintain, and just generally unreliable.
- Added helper APIs for initializing mal_device_config objects.
- Null Backend: Fixed a crash when recording.
- Fixed build for UWP.
- Added support for f32 formats to the OpenSL|ES backend.
- Added initial implementation of the WASAPI backend.
- Added initial implementation of the OpenAL backend.
- Added support for low quality linear sample rate conversion.
- Added early support for basic channel mapping.
v0.2 - 2016-10-28
- API CHANGE: Add user data pointer as the last parameter to mal_device_init(). The rationale for this
change is to ensure the logging callback has access to the user data during initialization.
- API CHANGE: Have device configuration properties be passed to mal_device_init() via a structure. Rationale:
1) The number of parameters is just getting too much.
2) It makes it a bit easier to add new configuration properties in the future. In particular, there's a
chance there will be support added for backend-specific properties.
- Dropped support for f64, A-law and Mu-law formats since they just aren't common enough to justify the
added maintenance cost.
- DirectSound: Increased the default buffer size for capture devices.
- Added initial implementation of the OpenSL|ES backend.
v0.1 - 2016-10-21
- Initial versioned release.
*/
/*
This software is available as a choice of the following licenses. Choose
whichever you prefer.
===============================================================================
ALTERNATIVE 1 - Public Domain (www.unlicense.org)
===============================================================================
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
software, either in source code form or as a compiled binary, for any purpose,
commercial or non-commercial, and by any means.
In jurisdictions that recognize copyright laws, the author or authors of this
software dedicate any and all copyright interest in the software to the public
domain. We make this dedication for the benefit of the public at large and to
the detriment of our heirs and successors. We intend this dedication to be an
overt act of relinquishment in perpetuity of all present and future rights to
this software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
===============================================================================
ALTERNATIVE 2 - MIT No Attribution
===============================================================================
Copyright 2020 David Reid
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/