DoukutsuNikki/src/Backends/Audio/SDL2.cpp

275 lines
6.0 KiB
C++

#include "../Audio.h"
#include <stddef.h>
#include <string.h>
#include <string>
#include "SDL.h"
#include "../Misc.h"
#ifdef EXTRA_SOUND_FORMATS
#include "../../ExtraSoundFormats.h"
#endif
#include "SoftwareMixer.h"
#define MIN(a, b) ((a) < (b) ? (a) : (b))
static SDL_AudioDeviceID device_id;
static unsigned long output_frequency;
static void (*organya_callback)(void);
static unsigned int organya_callback_milliseconds;
static void MixSoundsAndUpdateOrganya(long *stream, size_t frames_total)
{
if (organya_callback_milliseconds == 0)
{
Mixer_MixSounds(stream, frames_total);
}
else
{
// Synchronise audio generation with Organya.
// In the original game, Organya ran asynchronously in a separate thread,
// firing off commands to DirectSound in realtime. To match that, we'd
// need a very low-latency buffer, otherwise we'd get mistimed instruments.
// Instead, we can just do this.
unsigned int frames_done = 0;
while (frames_done != frames_total)
{
static unsigned long organya_countdown;
if (organya_countdown == 0)
{
organya_countdown = (organya_callback_milliseconds * output_frequency) / 1000; // organya_timer is in milliseconds, so convert it to audio frames
organya_callback();
}
const unsigned int frames_to_do = MIN(organya_countdown, frames_total - frames_done);
Mixer_MixSounds(stream + frames_done * 2, frames_to_do);
frames_done += frames_to_do;
organya_countdown -= frames_to_do;
}
}
}
static void Callback(void *user_data, Uint8 *stream_uint8, int len)
{
(void)user_data;
short *stream = (short*)stream_uint8;
const size_t frames_total = len / sizeof(short) / 2;
size_t frames_done = 0;
while (frames_done != frames_total)
{
long mix_buffer[0x800 * 2]; // 2 because stereo
size_t subframes = MIN(0x800, frames_total - frames_done);
memset(mix_buffer, 0, subframes * sizeof(long) * 2);
MixSoundsAndUpdateOrganya(mix_buffer, subframes);
#ifdef EXTRA_SOUND_FORMATS
ExtraSound_Mix(mix_buffer, subframes);
#endif
for (size_t i = 0; i < subframes * 2; ++i)
{
if (mix_buffer[i] > 0x7FFF)
*stream++ = 0x7FFF;
else if (mix_buffer[i] < -0x7FFF)
*stream++ = -0x7FFF;
else
*stream++ = mix_buffer[i];
}
frames_done += subframes;
}
}
bool AudioBackend_Init(void)
{
if (SDL_InitSubSystem(SDL_INIT_AUDIO) < 0)
{
std::string errorMessage = std::string("'SDL_InitSubSystem(SDL_INIT_AUDIO)' failed: ") + SDL_GetError();
Backend_ShowMessageBox("Fatal error (SDL2 audio backend)", errorMessage.c_str());
return false;
}
Backend_PrintInfo("Available SDL audio drivers:");
for (int i = 0; i < SDL_GetNumAudioDrivers(); ++i)
Backend_PrintInfo("%s", SDL_GetAudioDriver(i));
SDL_AudioSpec specification;
specification.freq = 48000;
specification.format = AUDIO_S16;
specification.channels = 2;
specification.samples = 0x400; // Roughly 10 milliseconds for 48000Hz
specification.callback = Callback;
specification.userdata = NULL;
SDL_AudioSpec obtained_specification;
device_id = SDL_OpenAudioDevice(NULL, 0, &specification, &obtained_specification, SDL_AUDIO_ALLOW_FREQUENCY_CHANGE);
if (device_id == 0)
{
std::string error_message = std::string("'SDL_OpenAudioDevice' failed: ") + SDL_GetError();
Backend_ShowMessageBox("Fatal error (SDL2 audio backend)", error_message.c_str());
return false;
}
output_frequency = obtained_specification.freq;
Mixer_Init(obtained_specification.freq);
#ifdef EXTRA_SOUND_FORMATS
ExtraSound_Init(output_frequency);
#endif
SDL_PauseAudioDevice(device_id, 0);
Backend_PrintInfo("Selected SDL audio driver: %s", SDL_GetCurrentAudioDriver());
return true;
}
void AudioBackend_Deinit(void)
{
#ifdef EXTRA_SOUND_FORMATS
ExtraSound_Deinit();
#endif
SDL_CloseAudioDevice(device_id);
SDL_QuitSubSystem(SDL_INIT_AUDIO);
}
AudioBackend_Sound* AudioBackend_CreateSound(unsigned int frequency, const unsigned char *samples, size_t length)
{
SDL_LockAudioDevice(device_id);
Mixer_Sound *sound = Mixer_CreateSound(frequency, samples, length);
SDL_UnlockAudioDevice(device_id);
return (AudioBackend_Sound*)sound;
}
void AudioBackend_DestroySound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
SDL_LockAudioDevice(device_id);
Mixer_DestroySound((Mixer_Sound*)sound);
SDL_UnlockAudioDevice(device_id);
}
void AudioBackend_PlaySound(AudioBackend_Sound *sound, bool looping)
{
if (sound == NULL)
return;
SDL_LockAudioDevice(device_id);
Mixer_PlaySound((Mixer_Sound*)sound, looping);
SDL_UnlockAudioDevice(device_id);
}
void AudioBackend_StopSound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
SDL_LockAudioDevice(device_id);
Mixer_StopSound((Mixer_Sound*)sound);
SDL_UnlockAudioDevice(device_id);
}
void AudioBackend_RewindSound(AudioBackend_Sound *sound)
{
if (sound == NULL)
return;
SDL_LockAudioDevice(device_id);
Mixer_RewindSound((Mixer_Sound*)sound);
SDL_UnlockAudioDevice(device_id);
}
void AudioBackend_SetSoundFrequency(AudioBackend_Sound *sound, unsigned int frequency)
{
if (sound == NULL)
return;
SDL_LockAudioDevice(device_id);
Mixer_SetSoundFrequency((Mixer_Sound*)sound, frequency);
SDL_UnlockAudioDevice(device_id);
}
void AudioBackend_SetSoundVolume(AudioBackend_Sound *sound, long volume)
{
if (sound == NULL)
return;
SDL_LockAudioDevice(device_id);
Mixer_SetSoundVolume((Mixer_Sound*)sound, volume);
SDL_UnlockAudioDevice(device_id);
}
void AudioBackend_SetSoundPan(AudioBackend_Sound *sound, long pan)
{
if (sound == NULL)
return;
SDL_LockAudioDevice(device_id);
Mixer_SetSoundPan((Mixer_Sound*)sound, pan);
SDL_UnlockAudioDevice(device_id);
}
void AudioBackend_SetOrganyaCallback(void (*callback)(void))
{
SDL_LockAudioDevice(device_id);
organya_callback = callback;
SDL_UnlockAudioDevice(device_id);
}
void AudioBackend_SetOrganyaTimer(unsigned int milliseconds)
{
SDL_LockAudioDevice(device_id);
organya_callback_milliseconds = milliseconds;
SDL_UnlockAudioDevice(device_id);
}
void AudioBackend_Lock(void)
{
SDL_LockAudioDevice(device_id);
}
void AudioBackend_Unlock(void)
{
SDL_UnlockAudioDevice(device_id);
}