dot/config/mpv/shaders/Anime4K_Thin_HQ.glsl
2021-10-09 22:20:41 +01:00

222 lines
6 KiB
GLSL

// MIT License
// Copyright (c) 2019-2021 bloc97
// All rights reserved.
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//!DESC Anime4K-v3.2-Thin-(HQ)-Luma
//!HOOK MAIN
//!BIND HOOKED
//!SAVE LINELUMA
//!COMPONENTS 1
float get_luma(vec4 rgba) {
return dot(vec4(0.299, 0.587, 0.114, 0.0), rgba);
}
vec4 hook() {
return vec4(get_luma(HOOKED_tex(HOOKED_pos)), 0.0, 0.0, 0.0);
}
//!DESC Anime4K-v3.2-Thin-(HQ)-Sobel-X
//!HOOK MAIN
//!BIND LINELUMA
//!SAVE LINESOBEL
//!COMPONENTS 2
vec4 hook() {
float l = LINELUMA_texOff(vec2(-1.0, 0.0)).x;
float c = LINELUMA_tex(LINELUMA_pos).x;
float r = LINELUMA_texOff(vec2(1.0, 0.0)).x;
float xgrad = (-l + r);
float ygrad = (l + c + c + r);
return vec4(xgrad, ygrad, 0.0, 0.0);
}
//!DESC Anime4K-v3.2-Thin-(HQ)-Sobel-Y
//!HOOK MAIN
//!BIND LINESOBEL
//!SAVE LINESOBEL
//!COMPONENTS 1
vec4 hook() {
float tx = LINESOBEL_texOff(vec2(0.0, -1.0)).x;
float cx = LINESOBEL_tex(LINESOBEL_pos).x;
float bx = LINESOBEL_texOff(vec2(0.0, 1.0)).x;
float ty = LINESOBEL_texOff(vec2(0.0, -1.0)).y;
float by = LINESOBEL_texOff(vec2(0.0, 1.0)).y;
float xgrad = (tx + cx + cx + bx) / 8.0;
float ygrad = (-ty + by) / 8.0;
//Computes the luminance's gradient
float norm = sqrt(xgrad * xgrad + ygrad * ygrad);
return vec4(pow(norm, 0.7));
}
//!DESC Anime4K-v3.2-Thin-(HQ)-Gaussian-X
//!HOOK MAIN
//!BIND HOOKED
//!BIND LINESOBEL
//!SAVE LINESOBEL
//!COMPONENTS 1
#define SPATIAL_SIGMA (2.0 * float(HOOKED_size.y) / 1080.0) //Spatial window size, must be a positive real number.
#define KERNELSIZE (max(int(ceil(SPATIAL_SIGMA * 2.0)), 1) * 2 + 1) //Kernel size, must be an positive odd integer.
#define KERNELHALFSIZE (int(KERNELSIZE/2)) //Half of the kernel size without remainder. Must be equal to trunc(KERNELSIZE/2).
#define KERNELLEN (KERNELSIZE * KERNELSIZE) //Total area of kernel. Must be equal to KERNELSIZE * KERNELSIZE.
float gaussian(float x, float s, float m) {
float scaled = (x - m) / s;
return exp(-0.5 * scaled * scaled);
}
float comp_gaussian_x() {
float g = 0.0;
float gn = 0.0;
for (int i=0; i<KERNELSIZE; i++) {
float di = float(i - KERNELHALFSIZE);
float gf = gaussian(di, SPATIAL_SIGMA, 0.0);
g = g + LINESOBEL_texOff(vec2(di, 0.0)).x * gf;
gn = gn + gf;
}
return g / gn;
}
vec4 hook() {
return vec4(comp_gaussian_x(), 0.0, 0.0, 0.0);
}
//!DESC Anime4K-v3.2-Thin-(HQ)-Gaussian-Y
//!HOOK MAIN
//!BIND HOOKED
//!BIND LINESOBEL
//!SAVE LINESOBEL
//!COMPONENTS 1
#define SPATIAL_SIGMA (2.0 * float(HOOKED_size.y) / 1080.0) //Spatial window size, must be a positive real number.
#define KERNELSIZE (max(int(ceil(SPATIAL_SIGMA * 2.0)), 1) * 2 + 1) //Kernel size, must be an positive odd integer.
#define KERNELHALFSIZE (int(KERNELSIZE/2)) //Half of the kernel size without remainder. Must be equal to trunc(KERNELSIZE/2).
#define KERNELLEN (KERNELSIZE * KERNELSIZE) //Total area of kernel. Must be equal to KERNELSIZE * KERNELSIZE.
float gaussian(float x, float s, float m) {
float scaled = (x - m) / s;
return exp(-0.5 * scaled * scaled);
}
float comp_gaussian_y() {
float g = 0.0;
float gn = 0.0;
for (int i=0; i<KERNELSIZE; i++) {
float di = float(i - KERNELHALFSIZE);
float gf = gaussian(di, SPATIAL_SIGMA, 0.0);
g = g + LINESOBEL_texOff(vec2(0.0, di)).x * gf;
gn = gn + gf;
}
return g / gn;
}
vec4 hook() {
return vec4(comp_gaussian_y(), 0.0, 0.0, 0.0);
}
//!DESC Anime4K-v3.2-Thin-(HQ)-Kernel-X
//!HOOK MAIN
//!BIND LINESOBEL
//!SAVE LINESOBEL
//!COMPONENTS 2
vec4 hook() {
float l = LINESOBEL_texOff(vec2(-1.0, 0.0)).x;
float c = LINESOBEL_tex(LINESOBEL_pos).x;
float r = LINESOBEL_texOff(vec2(1.0, 0.0)).x;
float xgrad = (-l + r);
float ygrad = (l + c + c + r);
return vec4(xgrad, ygrad, 0.0, 0.0);
}
//!DESC Anime4K-v3.2-Thin-(HQ)-Kernel-Y
//!HOOK MAIN
//!BIND LINESOBEL
//!SAVE LINESOBEL
//!COMPONENTS 2
vec4 hook() {
float tx = LINESOBEL_texOff(vec2(0.0, -1.0)).x;
float cx = LINESOBEL_tex(LINESOBEL_pos).x;
float bx = LINESOBEL_texOff(vec2(0.0, 1.0)).x;
float ty = LINESOBEL_texOff(vec2(0.0, -1.0)).y;
float by = LINESOBEL_texOff(vec2(0.0, 1.0)).y;
float xgrad = (tx + cx + cx + bx) / 8.0;
float ygrad = (-ty + by) / 8.0;
//Computes the luminance's gradient
return vec4(xgrad, ygrad, 0.0, 0.0);
}
//!DESC Anime4K-v3.2-Thin-(HQ)-Warp
//!HOOK MAIN
//!BIND HOOKED
//!BIND LINESOBEL
#define STRENGTH 0.6 //Strength of warping for each iteration
#define ITERATIONS 1 //Number of iterations for the forwards solver, decreasing strength and increasing iterations improves quality at the cost of speed.
vec4 hook() {
vec2 d = HOOKED_pt;
float relstr = HOOKED_size.y / 1080.0 * STRENGTH;
vec2 pos = HOOKED_pos;
for (int i=0; i<ITERATIONS; i++) {
vec2 dn = LINESOBEL_tex(pos).xy;
vec2 dd = (dn / (length(dn) + 0.01)) * d * relstr; //Quasi-normalization for large vectors, avoids divide by zero
pos -= dd;
}
return HOOKED_tex(pos);
}