// MIT License // Copyright (c) 2019-2021 bloc97 // All rights reserved. // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //!DESC Anime4K-v3.2-Upscale-DTD-x2-Luma //!HOOK MAIN //!BIND HOOKED //!SAVE LINELUMA //!COMPONENTS 1 float get_luma(vec4 rgba) { return dot(vec4(0.299, 0.587, 0.114, 0.0), rgba); } vec4 hook() { return vec4(get_luma(HOOKED_tex(HOOKED_pos)), 0.0, 0.0, 0.0); } //!DESC Anime4K-v3.2-Upscale-DTD-x2-Kernel-X //!WHEN OUTPUT.w MAIN.w / 1.200 > OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND LINELUMA //!SAVE MMKERNEL //!COMPONENTS 1 #define L_tex LINELUMA_tex #define SIGMA 1.0 float gaussian(float x, float s, float m) { return (1.0 / (s * sqrt(2.0 * 3.14159))) * exp(-0.5 * pow(abs(x - m) / s, 2.0)); } float lumGaussian(vec2 pos, vec2 d) { float s = SIGMA * HOOKED_size.y / 1080.0; float kernel_size = s * 2.0 + 1.0; float g = (L_tex(pos).x) * gaussian(0.0, s, 0.0); float gn = gaussian(0.0, s, 0.0); g += (L_tex(pos - d).x + L_tex(pos + d).x) * gaussian(1.0, s, 0.0); gn += gaussian(1.0, s, 0.0) * 2.0; for (int i=2; float(i) OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND LINELUMA //!BIND MMKERNEL //!SAVE MMKERNEL //!COMPONENTS 1 #define L_tex MMKERNEL_tex #define SIGMA 1.0 float gaussian(float x, float s, float m) { return (1.0 / (s * sqrt(2.0 * 3.14159))) * exp(-0.5 * pow(abs(x - m) / s, 2.0)); } float lumGaussian(vec2 pos, vec2 d) { float s = SIGMA * HOOKED_size.y / 1080.0; float kernel_size = s * 2.0 + 1.0; float g = (L_tex(pos).x) * gaussian(0.0, s, 0.0); float gn = gaussian(0.0, s, 0.0); g += (L_tex(pos - d).x + L_tex(pos + d).x) * gaussian(1.0, s, 0.0); gn += gaussian(1.0, s, 0.0) * 2.0; for (int i=2; float(i) OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND MMKERNEL //!SAVE MMKERNEL //!COMPONENTS 1 #define L_tex MMKERNEL_tex #define SIGMA 0.4 float gaussian(float x, float s, float m) { return (1.0 / (s * sqrt(2.0 * 3.14159))) * exp(-0.5 * pow(abs(x - m) / s, 2.0)); } float lumGaussian(vec2 pos, vec2 d) { float s = SIGMA * HOOKED_size.y / 1080.0; float kernel_size = s * 2.0 + 1.0; float g = (L_tex(pos).x) * gaussian(0.0, s, 0.0); float gn = gaussian(0.0, s, 0.0); g += (L_tex(pos - d).x + L_tex(pos + d).x) * gaussian(1.0, s, 0.0); gn += gaussian(1.0, s, 0.0) * 2.0; for (int i=2; float(i) OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND MMKERNEL //!SAVE MMKERNEL //!COMPONENTS 1 #define L_tex MMKERNEL_tex #define SIGMA 0.4 float gaussian(float x, float s, float m) { return (1.0 / (s * sqrt(2.0 * 3.14159))) * exp(-0.5 * pow(abs(x - m) / s, 2.0)); } float lumGaussian(vec2 pos, vec2 d) { float s = SIGMA * HOOKED_size.y / 1080.0; float kernel_size = s * 2.0 + 1.0; float g = (L_tex(pos).x) * gaussian(0.0, s, 0.0); float gn = gaussian(0.0, s, 0.0); g += (L_tex(pos - d).x + L_tex(pos + d).x) * gaussian(1.0, s, 0.0); gn += gaussian(1.0, s, 0.0) * 2.0; for (int i=2; float(i) OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND MMKERNEL #define STRENGTH 1.8 //Line darken proportional strength, higher is darker. vec4 hook() { float c = (MMKERNEL_tex(HOOKED_pos).x) * STRENGTH; //This trick is only possible if the inverse Y->RGB matrix has 1 for every row... (which is the case for BT.709) //Otherwise we would need to convert RGB to YUV, modify Y then convert back to RGB. return HOOKED_tex(HOOKED_pos) + c; } //!DESC Anime4K-v3.2-Upscale-DTD-x2-Luma //!HOOK MAIN //!BIND HOOKED //!SAVE LINELUMA //!COMPONENTS 1 float get_luma(vec4 rgba) { return dot(vec4(0.299, 0.587, 0.114, 0.0), rgba); } vec4 hook() { return vec4(get_luma(HOOKED_tex(HOOKED_pos)), 0.0, 0.0, 0.0); } //!DESC Anime4K-v3.2-Upscale-DTD-x2-Kernel-X //!WHEN OUTPUT.w MAIN.w / 1.200 > OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND LINELUMA //!SAVE LUMAD //!COMPONENTS 2 #define L_tex LINELUMA_tex vec4 hook() { vec2 d = HOOKED_pt; //[tl t tr] //[ l c r] //[bl b br] float l = L_tex(HOOKED_pos + vec2(-d.x, 0)).x; float c = L_tex(HOOKED_pos).x; float r = L_tex(HOOKED_pos + vec2(d.x, 0)).x; //Horizontal Gradient //[-1 0 1] //[-2 0 2] //[-1 0 1] float xgrad = (-l + r); //Vertical Gradient //[-1 -2 -1] //[ 0 0 0] //[ 1 2 1] float ygrad = (l + c + c + r); //Computes the luminance's gradient return vec4(xgrad, ygrad, 0, 0); } //!DESC Anime4K-v3.2-Upscale-DTD-x2-Kernel-Y //!WHEN OUTPUT.w MAIN.w / 1.200 > OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND LUMAD //!SAVE LUMAD //!COMPONENTS 1 vec4 hook() { vec2 d = HOOKED_pt; //[tl t tr] //[ l cc r] //[bl b br] float tx = LUMAD_tex(HOOKED_pos + vec2(0, -d.y)).x; float cx = LUMAD_tex(HOOKED_pos).x; float bx = LUMAD_tex(HOOKED_pos + vec2(0, d.y)).x; float ty = LUMAD_tex(HOOKED_pos + vec2(0, -d.y)).y; //float cy = LUMAD_tex(HOOKED_pos).y; float by = LUMAD_tex(HOOKED_pos + vec2(0, d.y)).y; //Horizontal Gradient //[-1 0 1] //[-2 0 2] //[-1 0 1] float xgrad = (tx + cx + cx + bx) / 8.0; //Vertical Gradient //[-1 -2 -1] //[ 0 0 0] //[ 1 2 1] float ygrad = (-ty + by) / 8.0; //Computes the luminance's gradient float norm = sqrt(xgrad * xgrad + ygrad * ygrad); return vec4(pow(norm, 0.7)); } //!DESC Anime4K-v3.2-Upscale-DTD-x2-Kernel-X //!WHEN OUTPUT.w MAIN.w / 1.200 > OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND LUMAD //!SAVE LUMADG //!COMPONENTS 1 #define L_tex LUMAD_tex #define SIGMA (HOOKED_size.y / 1080.0) * 2.0 #define KERNELSIZE (SIGMA * 2.0 + 1.0) float gaussian(float x, float s, float m) { return (1.0 / (s * sqrt(2.0 * 3.14159))) * exp(-0.5 * pow(abs(x - m) / s, 2.0)); } float lumGaussian(vec2 pos, vec2 d) { float g = (L_tex(pos).x) * gaussian(0.0, SIGMA, 0.0); g = g + (L_tex(pos - d).x + L_tex(pos + d).x) * gaussian(1.0, SIGMA, 0.0); for (int i=2; float(i) OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND LUMAD //!BIND LUMADG //!SAVE LUMAD //!COMPONENTS 1 #define L_tex LUMADG_tex #define SIGMA (HOOKED_size.y / 1080.0) * 2.0 #define KERNELSIZE (SIGMA * 2.0 + 1.0) float gaussian(float x, float s, float m) { return (1.0 / (s * sqrt(2.0 * 3.14159))) * exp(-0.5 * pow(abs(x - m) / s, 2.0)); } float lumGaussian(vec2 pos, vec2 d) { float g = (L_tex(pos).x) * gaussian(0.0, SIGMA, 0.0); g = g + (L_tex(pos - d).x + L_tex(pos + d).x) * gaussian(1.0, SIGMA, 0.0); for (int i=2; float(i) OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND LUMAD //!SAVE LUMAD2 //!COMPONENTS 2 vec4 hook() { vec2 d = HOOKED_pt; //[tl t tr] //[ l c r] //[bl b br] float l = LUMAD_tex(HOOKED_pos + vec2(-d.x, 0)).x; float c = LUMAD_tex(HOOKED_pos).x; float r = LUMAD_tex(HOOKED_pos + vec2(d.x, 0)).x; //Horizontal Gradient //[-1 0 1] //[-2 0 2] //[-1 0 1] float xgrad = (-l + r); //Vertical Gradient //[-1 -2 -1] //[ 0 0 0] //[ 1 2 1] float ygrad = (l + c + c + r); //Computes the luminance's gradient return vec4(xgrad, ygrad, 0, 0); } //!DESC Anime4K-v3.2-Upscale-DTD-x2-Kernel-Y //!WHEN OUTPUT.w MAIN.w / 1.200 > OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND LUMAD2 //!SAVE LUMAD2 //!COMPONENTS 2 vec4 hook() { vec2 d = HOOKED_pt; //[tl t tr] //[ l cc r] //[bl b br] float tx = LUMAD2_tex(HOOKED_pos + vec2(0, -d.y)).x; float cx = LUMAD2_tex(HOOKED_pos).x; float bx = LUMAD2_tex(HOOKED_pos + vec2(0, d.y)).x; float ty = LUMAD2_tex(HOOKED_pos + vec2(0, -d.y)).y; //float cy = LUMAD2_tex(HOOKED_pos).y; float by = LUMAD2_tex(HOOKED_pos + vec2(0, d.y)).y; //Horizontal Gradient //[-1 0 1] //[-2 0 2] //[-1 0 1] float xgrad = (tx + cx + cx + bx) / 8.0; //Vertical Gradient //[-1 -2 -1] //[ 0 0 0] //[ 1 2 1] float ygrad = (-ty + by) / 8.0; //Computes the luminance's gradient return vec4(xgrad, ygrad, 0, 0); } //!DESC Anime4K-v3.2-Upscale-DTD-x2 //!WHEN OUTPUT.w MAIN.w / 1.200 > OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND LUMAD //!BIND LUMAD2 //!SAVE MAINTEMPTHIN //!WIDTH MAIN.w 2 * //!HEIGHT MAIN.h 2 * #define STRENGTH 0.4 //Strength of warping for each iteration #define ITERATIONS 1 //Number of iterations for the forwards solver, decreasing strength and increasing iterations improves quality at the cost of speed. #define L_tex HOOKED_tex vec4 hook() { vec2 d = HOOKED_pt; float relstr = HOOKED_size.y / 1080.0 * STRENGTH; vec2 pos = HOOKED_pos; for (int i=0; i OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND MAINTEMP //!SAVE MMKERNEL //!COMPONENTS 3 #define L_tex MAINTEMP_tex float max3v(float a, float b, float c) { return max(max(a, b), c); } float min3v(float a, float b, float c) { return min(min(a, b), c); } vec2 minmax3(vec2 pos, vec2 d) { float a = L_tex(pos - d).x; float b = L_tex(pos).x; float c = L_tex(pos + d).x; return vec2(min3v(a, b, c), max3v(a, b, c)); } float lumGaussian7(vec2 pos, vec2 d) { float g = (L_tex(pos - (d + d)).x + L_tex(pos + (d + d)).x) * 0.06136; g = g + (L_tex(pos - d).x + L_tex(pos + d).x) * 0.24477; g = g + (L_tex(pos).x) * 0.38774; return g; } vec4 hook() { return vec4(lumGaussian7(HOOKED_pos, vec2(HOOKED_pt.x, 0)), minmax3(HOOKED_pos, vec2(HOOKED_pt.x, 0)), 0); } //!DESC Anime4K-v3.2-Upscale-DTD-x2-Kernel-Y //!WHEN OUTPUT.w MAIN.w / 1.200 > OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND MMKERNEL //!SAVE MMKERNEL //!COMPONENTS 3 #define L_tex MMKERNEL_tex float max3v(float a, float b, float c) { return max(max(a, b), c); } float min3v(float a, float b, float c) { return min(min(a, b), c); } vec2 minmax3(vec2 pos, vec2 d) { float a0 = L_tex(pos - d).y; float b0 = L_tex(pos).y; float c0 = L_tex(pos + d).y; float a1 = L_tex(pos - d).z; float b1 = L_tex(pos).z; float c1 = L_tex(pos + d).z; return vec2(min3v(a0, b0, c0), max3v(a1, b1, c1)); } float lumGaussian7(vec2 pos, vec2 d) { float g = (L_tex(pos - (d + d)).x + L_tex(pos + (d + d)).x) * 0.06136; g = g + (L_tex(pos - d).x + L_tex(pos + d).x) * 0.24477; g = g + (L_tex(pos).x) * 0.38774; return g; } vec4 hook() { return vec4(lumGaussian7(HOOKED_pos, vec2(0, HOOKED_pt.y)), minmax3(HOOKED_pos, vec2(0, HOOKED_pt.y)), 0); } //!DESC Anime4K-v3.2-Upscale-DTD-x2 //!WHEN OUTPUT.w MAIN.w / 1.200 > OUTPUT.h MAIN.h / 1.200 > * //!HOOK MAIN //!BIND HOOKED //!BIND MAINTEMPTHIN //!BIND MAINTEMP //!BIND MMKERNEL //!WIDTH MAIN.w 2 * //!HEIGHT MAIN.h 2 * #define STRENGTH 0.5 //De-blur proportional strength, higher is sharper. However, it is better to tweak BLUR_CURVE instead to avoid ringing. #define BLUR_CURVE 0.8 //De-blur power curve, lower is sharper. Good values are between 0.3 - 1. Values greater than 1 softens the image; #define BLUR_THRESHOLD 0.1 //Value where curve kicks in, used to not de-blur already sharp edges. Only de-blur values that fall below this threshold. #define NOISE_THRESHOLD 0.004 //Value where curve stops, used to not sharpen noise. Only de-blur values that fall above this threshold. #define L_tex MAINTEMP_tex vec4 hook() { float c = (L_tex(HOOKED_pos).x - MMKERNEL_tex(HOOKED_pos).x) * STRENGTH; float t_range = BLUR_THRESHOLD - NOISE_THRESHOLD; float c_t = abs(c); if (c_t > NOISE_THRESHOLD) { c_t = (c_t - NOISE_THRESHOLD) / t_range; c_t = pow(c_t, BLUR_CURVE); c_t = c_t * t_range + NOISE_THRESHOLD; c_t = c_t * sign(c); } else { c_t = c; } float cc = clamp(c_t + L_tex(HOOKED_pos).x, MMKERNEL_tex(HOOKED_pos).y, MMKERNEL_tex(HOOKED_pos).z) - L_tex(HOOKED_pos).x; //This trick is only possible if the inverse Y->RGB matrix has 1 for every row... (which is the case for BT.709) //Otherwise we would need to convert RGB to YUV, modify Y then convert back to RGB. return MAINTEMPTHIN_tex(HOOKED_pos) + cc; }