wownero/tests/unit_tests/ringct.cpp
cslashm e745c1e38d Code modifications to integrate Ledger HW device into monero-wallet-cli.
The basic approach it to delegate all sensitive data (master key, secret
ephemeral key, key derivation, ....) and related operations to the device.
As device has low memory, it does not keep itself the values
(except for view/spend keys) but once computed there are encrypted (with AES
are equivalent) and return back to monero-wallet-cli. When they need to be
manipulated by the device, they are decrypted on receive.

Moreover, using the client for storing the value in encrypted form limits
the modification in the client code. Those values are transfered from one
C-structure to another one as previously.

The code modification has been done with the wishes to be open to any
other hardware wallet. To achieve that a C++ class hw::Device has been
introduced. Two initial implementations are provided: the "default", which
remaps all calls to initial Monero code, and  the "Ledger", which delegates
all calls to Ledger device.
2018-03-04 12:54:53 +01:00

1064 lines
36 KiB
C++

// Copyright (c) 2014-2018, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include "gtest/gtest.h"
#include <cstdint>
#include <algorithm>
#include <sstream>
#include "ringct/rctTypes.h"
#include "ringct/rctSigs.h"
#include "ringct/rctOps.h"
#include "device/device.hpp"
using namespace std;
using namespace crypto;
using namespace rct;
TEST(ringct, Borromean)
{
int j = 0;
//Tests for Borromean signatures
//#boro true one, false one, C != sum Ci, and one out of the range..
int N = 64;
key64 xv;
key64 P1v;
key64 P2v;
bits indi;
for (j = 0 ; j < N ; j++) {
indi[j] = (int)randXmrAmount(2);
xv[j] = skGen();
if ( (int)indi[j] == 0 ) {
scalarmultBase(P1v[j], xv[j]);
} else {
addKeys1(P1v[j], xv[j], H2[j]);
}
subKeys(P2v[j], P1v[j], H2[j]);
}
//#true one
boroSig bb = genBorromean(xv, P1v, P2v, indi);
ASSERT_TRUE(verifyBorromean(bb, P1v, P2v));
//#false one
indi[3] = (indi[3] + 1) % 2;
bb = genBorromean(xv, P1v, P2v, indi);
ASSERT_FALSE(verifyBorromean(bb, P1v, P2v));
//#true one again
indi[3] = (indi[3] + 1) % 2;
bb = genBorromean(xv, P1v, P2v, indi);
ASSERT_TRUE(verifyBorromean(bb, P1v, P2v));
//#false one
bb = genBorromean(xv, P2v, P1v, indi);
ASSERT_FALSE(verifyBorromean(bb, P1v, P2v));
}
TEST(ringct, MG_sigs)
{
int j = 0;
int N = 0;
//Tests for MG Sigs
//#MG sig: true one
N = 3;// #cols
int R = 3;// #rows
keyV xtmp = skvGen(R);
keyM xm = keyMInit(R, N);// = [[None]*N] #just used to generate test public keys
keyV sk = skvGen(R);
keyM P = keyMInit(R, N);// = keyM[[None]*N] #stores the public keys;
int ind = 2;
int i = 0;
for (j = 0 ; j < R ; j++) {
for (i = 0 ; i < N ; i++)
{
xm[i][j] = skGen();
P[i][j] = scalarmultBase(xm[i][j]);
}
}
for (j = 0 ; j < R ; j++) {
sk[j] = xm[ind][j];
}
key message = identity();
mgSig IIccss = MLSAG_Gen(message, P, sk, NULL, NULL, ind, R, hw::get_device("default"));
ASSERT_TRUE(MLSAG_Ver(message, P, IIccss, R));
//#MG sig: false one
N = 3;// #cols
R = 3;// #rows
xtmp = skvGen(R);
keyM xx(N, xtmp);// = [[None]*N] #just used to generate test public keys
sk = skvGen(R);
//P (N, xtmp);// = keyM[[None]*N] #stores the public keys;
ind = 2;
for (j = 0 ; j < R ; j++) {
for (i = 0 ; i < N ; i++)
{
xx[i][j] = skGen();
P[i][j] = scalarmultBase(xx[i][j]);
}
sk[j] = xx[ind][j];
}
sk[2] = skGen();//asume we don't know one of the private keys..
IIccss = MLSAG_Gen(message, P, sk, NULL, NULL, ind, R, hw::get_device("default"));
ASSERT_FALSE(MLSAG_Ver(message, P, IIccss, R));
}
TEST(ringct, range_proofs)
{
//Ring CT Stuff
//ct range proofs
ctkeyV sc, pc;
ctkey sctmp, pctmp;
//add fake input 5000
tie(sctmp, pctmp) = ctskpkGen(6000);
sc.push_back(sctmp);
pc.push_back(pctmp);
tie(sctmp, pctmp) = ctskpkGen(7000);
sc.push_back(sctmp);
pc.push_back(pctmp);
vector<xmr_amount >amounts;
rct::keyV amount_keys;
key mask;
//add output 500
amounts.push_back(500);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
keyV destinations;
key Sk, Pk;
skpkGen(Sk, Pk);
destinations.push_back(Pk);
//add output for 12500
amounts.push_back(12500);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
skpkGen(Sk, Pk);
destinations.push_back(Pk);
//compute rct data with mixin 500
rctSig s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, hw::get_device("default"));
//verify rct data
ASSERT_TRUE(verRct(s));
//decode received amount
decodeRct(s, amount_keys[1], 1, mask, hw::get_device("default"));
// Ring CT with failing MG sig part should not verify!
// Since sum of inputs != outputs
amounts[1] = 12501;
skpkGen(Sk, Pk);
destinations[1] = Pk;
//compute rct data with mixin 500
s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, hw::get_device("default"));
//verify rct data
ASSERT_FALSE(verRct(s));
//decode received amount
decodeRct(s, amount_keys[1], 1, mask, hw::get_device("default"));
}
TEST(ringct, range_proofs_with_fee)
{
//Ring CT Stuff
//ct range proofs
ctkeyV sc, pc;
ctkey sctmp, pctmp;
//add fake input 5000
tie(sctmp, pctmp) = ctskpkGen(6001);
sc.push_back(sctmp);
pc.push_back(pctmp);
tie(sctmp, pctmp) = ctskpkGen(7000);
sc.push_back(sctmp);
pc.push_back(pctmp);
vector<xmr_amount >amounts;
keyV amount_keys;
key mask;
//add output 500
amounts.push_back(500);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
keyV destinations;
key Sk, Pk;
skpkGen(Sk, Pk);
destinations.push_back(Pk);
//add txn fee for 1
//has no corresponding destination..
amounts.push_back(1);
//add output for 12500
amounts.push_back(12500);
amount_keys.push_back(hash_to_scalar(zero()));
skpkGen(Sk, Pk);
destinations.push_back(Pk);
//compute rct data with mixin 500
rctSig s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, hw::get_device("default"));
//verify rct data
ASSERT_TRUE(verRct(s));
//decode received amount
decodeRct(s, amount_keys[1], 1, mask, hw::get_device("default"));
// Ring CT with failing MG sig part should not verify!
// Since sum of inputs != outputs
amounts[1] = 12501;
skpkGen(Sk, Pk);
destinations[1] = Pk;
//compute rct data with mixin 500
s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, hw::get_device("default"));
//verify rct data
ASSERT_FALSE(verRct(s));
//decode received amount
decodeRct(s, amount_keys[1], 1, mask, hw::get_device("default"));
}
TEST(ringct, simple)
{
ctkeyV sc, pc;
ctkey sctmp, pctmp;
//this vector corresponds to output amounts
vector<xmr_amount>outamounts;
//this vector corresponds to input amounts
vector<xmr_amount>inamounts;
//this keyV corresponds to destination pubkeys
keyV destinations;
keyV amount_keys;
key mask;
//add fake input 3000
//the sc is secret data
//pc is public data
tie(sctmp, pctmp) = ctskpkGen(3000);
sc.push_back(sctmp);
pc.push_back(pctmp);
inamounts.push_back(3000);
//add fake input 3000
//the sc is secret data
//pc is public data
tie(sctmp, pctmp) = ctskpkGen(3000);
sc.push_back(sctmp);
pc.push_back(pctmp);
inamounts.push_back(3000);
//add output 5000
outamounts.push_back(5000);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
//add the corresponding destination pubkey
key Sk, Pk;
skpkGen(Sk, Pk);
destinations.push_back(Pk);
//add output 999
outamounts.push_back(999);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
//add the corresponding destination pubkey
skpkGen(Sk, Pk);
destinations.push_back(Pk);
key message = skGen(); //real message later (hash of txn..)
//compute sig with mixin 2
xmr_amount txnfee = 1;
rctSig s = genRctSimple(message, sc, pc, destinations,inamounts, outamounts, amount_keys, NULL, NULL, txnfee, 2, hw::get_device("default"));
//verify ring ct signature
ASSERT_TRUE(verRctSimple(s));
//decode received amount corresponding to output pubkey index 1
decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
}
static rct::rctSig make_sample_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee)
{
ctkeyV sc, pc;
ctkey sctmp, pctmp;
vector<xmr_amount >amounts;
keyV destinations;
keyV amount_keys;
key Sk, Pk;
for (int n = 0; n < n_inputs; ++n) {
tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]);
sc.push_back(sctmp);
pc.push_back(pctmp);
}
for (int n = 0; n < n_outputs; ++n) {
amounts.push_back(output_amounts[n]);
skpkGen(Sk, Pk);
if (n < n_outputs - 1 || !last_is_fee)
{
destinations.push_back(Pk);
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
}
}
return genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, hw::get_device("default"));
}
static rct::rctSig make_sample_simple_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], uint64_t fee)
{
ctkeyV sc, pc;
ctkey sctmp, pctmp;
vector<xmr_amount> inamounts, outamounts;
keyV destinations;
keyV amount_keys;
key Sk, Pk;
for (int n = 0; n < n_inputs; ++n) {
inamounts.push_back(input_amounts[n]);
tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]);
sc.push_back(sctmp);
pc.push_back(pctmp);
}
for (int n = 0; n < n_outputs; ++n) {
outamounts.push_back(output_amounts[n]);
amount_keys.push_back(hash_to_scalar(zero()));
skpkGen(Sk, Pk);
destinations.push_back(Pk);
}
return genRctSimple(rct::zero(), sc, pc, destinations, inamounts, outamounts, amount_keys, NULL, NULL, fee, 3, hw::get_device("default"));
}
static bool range_proof_test(bool expected_valid,
int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee, bool simple)
{
//compute rct data
bool valid;
try {
rctSig s;
// simple takes fee as a parameter, non-simple takes it as an extra element to output amounts
if (simple) {
s = make_sample_simple_rct_sig(n_inputs, input_amounts, last_is_fee ? n_outputs - 1 : n_outputs, output_amounts, last_is_fee ? output_amounts[n_outputs - 1] : 0);
valid = verRctSimple(s);
}
else {
s = make_sample_rct_sig(n_inputs, input_amounts, n_outputs, output_amounts, last_is_fee);
valid = verRct(s);
}
}
catch (const std::exception &e) {
valid = false;
}
if (valid == expected_valid) {
return testing::AssertionSuccess();
}
else {
return testing::AssertionFailure();
}
}
#define NELTS(array) (sizeof(array)/sizeof(array[0]))
TEST(ringct, range_proofs_reject_empty_outs)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_empty_outs_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_empty_ins)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_empty_ins_simple)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_all_empty)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_all_empty_simple)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_zero_empty)
{
const uint64_t inputs[] = {0};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_empty_simple)
{
const uint64_t inputs[] = {0};
const uint64_t outputs[] = {};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_empty_zero)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_empty_zero_simple)
{
const uint64_t inputs[] = {};
const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_zero_zero)
{
const uint64_t inputs[] = {0};
const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_zero_simple)
{
const uint64_t inputs[] = {0};
const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_zero_out_first)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {0, 5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_out_first_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {0, 5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_zero_out_last)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5000, 0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_out_last_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5000, 0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_zero_out_middle)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {2500, 0, 2500};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_out_middle_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {2500, 0, 2500};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_zero_in_first)
{
const uint64_t inputs[] = {0, 5000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_in_first_simple)
{
const uint64_t inputs[] = {0, 5000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_zero_in_last)
{
const uint64_t inputs[] = {5000, 0};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_in_last_simple)
{
const uint64_t inputs[] = {5000, 0};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_zero_in_middle)
{
const uint64_t inputs[] = {2500, 0, 2500};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_in_middle_simple)
{
const uint64_t inputs[] = {2500, 0, 2500};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_single_lower)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_single_lower_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_single_higher)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5001};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_single_higher_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5001};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_single_out_negative)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {(uint64_t)-1000ll};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_single_out_negative_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {(uint64_t)-1000ll};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_out_negative_first)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {(uint64_t)-1000ll, 6000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_out_negative_first_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {(uint64_t)-1000ll, 6000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_out_negative_last)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {6000, (uint64_t)-1000ll};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_out_negative_last_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {6000, (uint64_t)-1000ll};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_out_negative_middle)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_out_negative_middle_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_single_in_negative)
{
const uint64_t inputs[] = {(uint64_t)-1000ll};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_single_in_negative_simple)
{
const uint64_t inputs[] = {(uint64_t)-1000ll};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_in_negative_first)
{
const uint64_t inputs[] = {(uint64_t)-1000ll, 6000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_in_negative_first_simple)
{
const uint64_t inputs[] = {(uint64_t)-1000ll, 6000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_in_negative_last)
{
const uint64_t inputs[] = {6000, (uint64_t)-1000ll};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_in_negative_last_simple)
{
const uint64_t inputs[] = {6000, (uint64_t)-1000ll};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_in_negative_middle)
{
const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_in_negative_middle_simple)
{
const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_reject_higher_list)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_reject_higher_list_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_1_to_1)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_1_to_1_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_1_to_N)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_1_to_N_simple)
{
const uint64_t inputs[] = {5000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false,true));
}
TEST(ringct, range_proofs_accept_N_to_1)
{
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_N_to_1_simple)
{
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_N_to_N)
{
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_N_to_N_simple)
{
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, range_proofs_accept_very_long)
{
const size_t N=12;
uint64_t inputs[N];
uint64_t outputs[N];
for (size_t n = 0; n < N; ++n) {
inputs[n] = n;
outputs[n] = n;
}
std::random_shuffle(inputs, inputs + N);
std::random_shuffle(outputs, outputs + N);
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_very_long_simple)
{
const size_t N=12;
uint64_t inputs[N];
uint64_t outputs[N];
for (size_t n = 0; n < N; ++n) {
inputs[n] = n;
outputs[n] = n;
}
std::random_shuffle(inputs, inputs + N);
std::random_shuffle(outputs, outputs + N);
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
}
TEST(ringct, HPow2)
{
key G = scalarmultBase(d2h(1));
key H = hashToPointSimple(G);
for (int j = 0 ; j < ATOMS ; j++) {
ASSERT_TRUE(equalKeys(H, H2[j]));
addKeys(H, H, H);
}
}
static const xmr_amount test_amounts[]={0, 1, 2, 3, 4, 5, 10000, 10000000000000000000ull, 10203040506070809000ull, 123456789123456789};
TEST(ringct, ecdh_roundtrip)
{
key k;
ecdhTuple t0, t1;
for (auto amount: test_amounts) {
skGen(k);
t0.mask = skGen();
t0.amount = d2h(amount);
t1 = t0;
ecdhEncode(t1, k);
ecdhDecode(t1, k);
ASSERT_TRUE(t0.mask == t1.mask);
ASSERT_TRUE(equalKeys(t0.mask, t1.mask));
ASSERT_TRUE(t0.amount == t1.amount);
ASSERT_TRUE(equalKeys(t0.amount, t1.amount));
}
}
TEST(ringct, d2h)
{
key k, P1;
skpkGen(k, P1);
for (auto amount: test_amounts) {
d2h(k, amount);
ASSERT_TRUE(amount == h2d(k));
}
}
TEST(ringct, d2b)
{
for (auto amount: test_amounts) {
bits b;
d2b(b, amount);
ASSERT_TRUE(amount == b2d(b));
}
}
TEST(ringct, prooveRange_is_non_deterministic)
{
key C[2], mask[2];
for (int n = 0; n < 2; ++n)
proveRange(C[n], mask[n], 80);
ASSERT_TRUE(memcmp(C[0].bytes, C[1].bytes, sizeof(C[0].bytes)));
ASSERT_TRUE(memcmp(mask[0].bytes, mask[1].bytes, sizeof(mask[0].bytes)));
}
TEST(ringct, fee_0_valid)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {2000, 0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_0_valid_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {2000, 0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_non_0_valid)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1900, 100};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_non_0_valid_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1900, 100};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_non_0_invalid_higher)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1990, 100};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_non_0_invalid_higher_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1990, 100};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_non_0_invalid_lower)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1000, 100};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_non_0_invalid_lower_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1000, 100};
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_burn_valid_one_out)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {0, 2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_burn_valid_one_out_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {0, 2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
TEST(ringct, fee_burn_valid_zero_out)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
}
TEST(ringct, fee_burn_valid_zero_out_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
}
#define TEST_rctSig_elements(name, op) \
TEST(ringct, rctSig_##name) \
{ \
const uint64_t inputs[] = {1000, 1000}; \
const uint64_t outputs[] = {1000, 1000}; \
rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true); \
ASSERT_TRUE(rct::verRct(sig)); \
op; \
ASSERT_FALSE(rct::verRct(sig)); \
}
TEST_rctSig_elements(rangeSigs_empty, sig.p.rangeSigs.resize(0));
TEST_rctSig_elements(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back()));
TEST_rctSig_elements(rangeSigs_too_few, sig.p.rangeSigs.pop_back());
TEST_rctSig_elements(mgSig_MG_empty, sig.p.MGs.resize(0));
TEST_rctSig_elements(mgSig_ss_empty, sig.p.MGs[0].ss.resize(0));
TEST_rctSig_elements(mgSig_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back()));
TEST_rctSig_elements(mgSig_ss_too_few, sig.p.MGs[0].ss.pop_back());
TEST_rctSig_elements(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0));
TEST_rctSig_elements(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back()));
TEST_rctSig_elements(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back());
TEST_rctSig_elements(mgSig_II_empty, sig.p.MGs[0].II.resize(0));
TEST_rctSig_elements(mgSig_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back()));
TEST_rctSig_elements(mgSig_II_too_few, sig.p.MGs[0].II.pop_back());
TEST_rctSig_elements(mixRing_empty, sig.mixRing.resize(0));
TEST_rctSig_elements(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back()));
TEST_rctSig_elements(mixRing_too_few, sig.mixRing.pop_back());
TEST_rctSig_elements(mixRing0_empty, sig.mixRing[0].resize(0));
TEST_rctSig_elements(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back()));
TEST_rctSig_elements(mixRing0_too_few, sig.mixRing[0].pop_back());
TEST_rctSig_elements(ecdhInfo_empty, sig.ecdhInfo.resize(0));
TEST_rctSig_elements(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back()));
TEST_rctSig_elements(ecdhInfo_too_few, sig.ecdhInfo.pop_back());
TEST_rctSig_elements(outPk_empty, sig.outPk.resize(0));
TEST_rctSig_elements(outPk_too_many, sig.outPk.push_back(sig.outPk.back()));
TEST_rctSig_elements(outPk_too_few, sig.outPk.pop_back());
#define TEST_rctSig_elements_simple(name, op) \
TEST(ringct, rctSig_##name##_simple) \
{ \
const uint64_t inputs[] = {1000, 1000}; \
const uint64_t outputs[] = {1000}; \
rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000); \
ASSERT_TRUE(rct::verRctSimple(sig)); \
op; \
ASSERT_FALSE(rct::verRctSimple(sig)); \
}
TEST_rctSig_elements_simple(rangeSigs_empty, sig.p.rangeSigs.resize(0));
TEST_rctSig_elements_simple(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back()));
TEST_rctSig_elements_simple(rangeSigs_too_few, sig.p.rangeSigs.pop_back());
TEST_rctSig_elements_simple(mgSig_empty, sig.p.MGs.resize(0));
TEST_rctSig_elements_simple(mgSig_too_many, sig.p.MGs.push_back(sig.p.MGs.back()));
TEST_rctSig_elements_simple(mgSig_too_few, sig.p.MGs.pop_back());
TEST_rctSig_elements_simple(mgSig0_ss_empty, sig.p.MGs[0].ss.resize(0));
TEST_rctSig_elements_simple(mgSig0_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back()));
TEST_rctSig_elements_simple(mgSig0_ss_too_few, sig.p.MGs[0].ss.pop_back());
TEST_rctSig_elements_simple(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0));
TEST_rctSig_elements_simple(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back()));
TEST_rctSig_elements_simple(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back());
TEST_rctSig_elements_simple(mgSig0_II_empty, sig.p.MGs[0].II.resize(0));
TEST_rctSig_elements_simple(mgSig0_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back()));
TEST_rctSig_elements_simple(mgSig0_II_too_few, sig.p.MGs[0].II.pop_back());
TEST_rctSig_elements_simple(mixRing_empty, sig.mixRing.resize(0));
TEST_rctSig_elements_simple(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back()));
TEST_rctSig_elements_simple(mixRing_too_few, sig.mixRing.pop_back());
TEST_rctSig_elements_simple(mixRing0_empty, sig.mixRing[0].resize(0));
TEST_rctSig_elements_simple(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back()));
TEST_rctSig_elements_simple(mixRing0_too_few, sig.mixRing[0].pop_back());
TEST_rctSig_elements_simple(pseudoOuts_empty, sig.pseudoOuts.resize(0));
TEST_rctSig_elements_simple(pseudoOuts_too_many, sig.pseudoOuts.push_back(sig.pseudoOuts.back()));
TEST_rctSig_elements_simple(pseudoOuts_too_few, sig.pseudoOuts.pop_back());
TEST_rctSig_elements_simple(ecdhInfo_empty, sig.ecdhInfo.resize(0));
TEST_rctSig_elements_simple(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back()));
TEST_rctSig_elements_simple(ecdhInfo_too_few, sig.ecdhInfo.pop_back());
TEST_rctSig_elements_simple(outPk_empty, sig.outPk.resize(0));
TEST_rctSig_elements_simple(outPk_too_many, sig.outPk.push_back(sig.outPk.back()));
TEST_rctSig_elements_simple(outPk_too_few, sig.outPk.pop_back());
TEST(ringct, reject_gen_simple_ver_non_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1000};
rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000);
ASSERT_FALSE(rct::verRct(sig));
}
TEST(ringct, reject_gen_non_simple_ver_simple)
{
const uint64_t inputs[] = {1000, 1000};
const uint64_t outputs[] = {1000, 1000};
rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true);
ASSERT_FALSE(rct::verRctSimple(sig));
}
TEST(ringct, key_ostream)
{
std::stringstream out;
out << "BEGIN" << rct::H << "END";
EXPECT_EQ(
std::string{"BEGIN<8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94>END"},
out.str()
);
}