mirror of
https://git.wownero.com/wownero/wownero.git
synced 2024-08-15 01:03:23 +00:00
188 lines
8.5 KiB
C++
188 lines
8.5 KiB
C++
//#define DBG
|
|
// Copyright (c) 2016, Monero Research Labs
|
|
//
|
|
// Author: Shen Noether <shen.noether@gmx.com>
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#pragma once
|
|
|
|
#ifndef RCTOPS_H
|
|
#define RCTOPS_H
|
|
|
|
#include <cstddef>
|
|
#include <tuple>
|
|
|
|
#include "crypto/generic-ops.h"
|
|
|
|
extern "C" {
|
|
#include "crypto/random.h"
|
|
#include "crypto/keccak.h"
|
|
#include "rctCryptoOps.h"
|
|
}
|
|
#include "crypto/crypto.h"
|
|
|
|
#include "rctTypes.h"
|
|
|
|
//Define this flag when debugging to get additional info on the console
|
|
#ifdef DBG
|
|
#define DP(x) dp(x)
|
|
#else
|
|
#define DP(x)
|
|
#endif
|
|
|
|
namespace rct {
|
|
|
|
//Various key initialization functions
|
|
|
|
static const key Z = { {0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
|
|
static const key I = { {0x01, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
|
|
static const key L = { {0xed, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58, 0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10 } };
|
|
static const key G = { {0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66 } };
|
|
static const key EIGHT = { {0x08, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 , 0x00, 0x00, 0x00,0x00 } };
|
|
static const key INV_EIGHT = { { 0x79, 0x2f, 0xdc, 0xe2, 0x29, 0xe5, 0x06, 0x61, 0xd0, 0xda, 0x1c, 0x7d, 0xb3, 0x9d, 0xd3, 0x07, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x06 } };
|
|
|
|
//Creates a zero scalar
|
|
inline key zero() { return Z; }
|
|
inline void zero(key &z) { memset(&z, 0, 32); }
|
|
//Creates a zero elliptic curve point
|
|
inline key identity() { return I; }
|
|
inline void identity(key &Id) { memcpy(&Id, &I, 32); }
|
|
//Creates a key equal to the curve order
|
|
inline key curveOrder() { return L; }
|
|
inline void curveOrder(key &l) { l = L; }
|
|
//copies a scalar or point
|
|
inline void copy(key &AA, const key &A) { memcpy(&AA, &A, 32); }
|
|
inline key copy(const key & A) { key AA; memcpy(&AA, &A, 32); return AA; }
|
|
|
|
//initializes a key matrix;
|
|
//first parameter is rows,
|
|
//second is columns
|
|
keyM keyMInit(size_t rows, size_t cols);
|
|
|
|
//Various key generation functions
|
|
bool toPointCheckOrder(ge_p3 *P, const unsigned char *data);
|
|
|
|
//generates a random scalar which can be used as a secret key or mask
|
|
key skGen();
|
|
void skGen(key &);
|
|
|
|
//generates a vector of secret keys of size "int"
|
|
keyV skvGen(size_t rows );
|
|
|
|
//generates a random curve point (for testing)
|
|
key pkGen();
|
|
//generates a random secret and corresponding public key
|
|
void skpkGen(key &sk, key &pk);
|
|
std::tuple<key, key> skpkGen();
|
|
//generates a <secret , public> / Pedersen commitment to the amount
|
|
std::tuple<ctkey, ctkey> ctskpkGen(xmr_amount amount);
|
|
//generates C =aG + bH from b, a is random
|
|
void genC(key & C, const key & a, xmr_amount amount);
|
|
//this one is mainly for testing, can take arbitrary amounts..
|
|
std::tuple<ctkey, ctkey> ctskpkGen(const key &bH);
|
|
// make a pedersen commitment with given key
|
|
key commit(xmr_amount amount, const key &mask);
|
|
// make a pedersen commitment with zero key
|
|
key zeroCommit(xmr_amount amount);
|
|
//generates a random uint long long
|
|
xmr_amount randXmrAmount(xmr_amount upperlimit);
|
|
|
|
//Scalar multiplications of curve points
|
|
|
|
//does a * G where a is a scalar and G is the curve basepoint
|
|
void scalarmultBase(key & aG, const key &a);
|
|
key scalarmultBase(const key & a);
|
|
//does a * P where a is a scalar and P is an arbitrary point
|
|
void scalarmultKey(key &aP, const key &P, const key &a);
|
|
key scalarmultKey(const key &P, const key &a);
|
|
//Computes aH where H= toPoint(cn_fast_hash(G)), G the basepoint
|
|
key scalarmultH(const key & a);
|
|
// multiplies a point by 8
|
|
key scalarmult8(const key & P);
|
|
// checks a is in the main subgroup (ie, not a small one)
|
|
bool isInMainSubgroup(const key & a);
|
|
|
|
//Curve addition / subtractions
|
|
|
|
//for curve points: AB = A + B
|
|
void addKeys(key &AB, const key &A, const key &B);
|
|
rct::key addKeys(const key &A, const key &B);
|
|
rct::key addKeys(const keyV &A);
|
|
//aGB = aG + B where a is a scalar, G is the basepoint, and B is a point
|
|
void addKeys1(key &aGB, const key &a, const key & B);
|
|
//aGbB = aG + bB where a, b are scalars, G is the basepoint and B is a point
|
|
void addKeys2(key &aGbB, const key &a, const key &b, const key &B);
|
|
//Does some precomputation to make addKeys3 more efficient
|
|
// input B a curve point and output a ge_dsmp which has precomputation applied
|
|
void precomp(ge_dsmp rv, const key &B);
|
|
//aAbB = a*A + b*B where a, b are scalars, A, B are curve points
|
|
//B must be input after applying "precomp"
|
|
void addKeys3(key &aAbB, const key &a, const key &A, const key &b, const ge_dsmp B);
|
|
void addKeys3(key &aAbB, const key &a, const ge_dsmp A, const key &b, const ge_dsmp B);
|
|
//AB = A - B where A, B are curve points
|
|
void subKeys(key &AB, const key &A, const key &B);
|
|
//checks if A, B are equal as curve points
|
|
bool equalKeys(const key & A, const key & B);
|
|
|
|
//Hashing - cn_fast_hash
|
|
//be careful these are also in crypto namespace
|
|
//cn_fast_hash for arbitrary l multiples of 32 bytes
|
|
void cn_fast_hash(key &hash, const void * data, const size_t l);
|
|
void hash_to_scalar(key &hash, const void * data, const size_t l);
|
|
//cn_fast_hash for a 32 byte key
|
|
void cn_fast_hash(key &hash, const key &in);
|
|
void hash_to_scalar(key &hash, const key &in);
|
|
//cn_fast_hash for a 32 byte key
|
|
key cn_fast_hash(const key &in);
|
|
key hash_to_scalar(const key &in);
|
|
//for mg sigs
|
|
key cn_fast_hash128(const void * in);
|
|
key hash_to_scalar128(const void * in);
|
|
key cn_fast_hash(const ctkeyV &PC);
|
|
key hash_to_scalar(const ctkeyV &PC);
|
|
//for mg sigs
|
|
key cn_fast_hash(const keyV &keys);
|
|
key hash_to_scalar(const keyV &keys);
|
|
//for ANSL
|
|
key cn_fast_hash(const key64 keys);
|
|
key hash_to_scalar(const key64 keys);
|
|
|
|
//returns hashToPoint as described in https://github.com/ShenNoether/ge_fromfe_writeup
|
|
key hashToPointSimple(const key &in);
|
|
key hashToPoint(const key &in);
|
|
void hashToPoint(key &out, const key &in);
|
|
|
|
//sums a vector of curve points (for scalars use sc_add)
|
|
void sumKeys(key & Csum, const key &Cis);
|
|
|
|
//Elliptic Curve Diffie Helman: encodes and decodes the amount b and mask a
|
|
// where C= aG + bH
|
|
void ecdhEncode(ecdhTuple & unmasked, const key & sharedSec);
|
|
void ecdhDecode(ecdhTuple & masked, const key & sharedSec);
|
|
}
|
|
#endif /* RCTOPS_H */
|