wownero/tests/unit_tests/serialization.cpp
moneromooo-monero 20e50ec7f7
ringct: do not serialize what can be reconstructed
The mixRing (output keys and commitments) and II fields (key images)
can be reconstructed from vin data.
This saves some modest amount of space in the tx.
2016-08-28 21:28:55 +01:00

637 lines
19 KiB
C++

// Copyright (c) 2014-2016, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include <cstring>
#include <cstdint>
#include <cstdio>
#include <iostream>
#include <vector>
#include <boost/foreach.hpp>
#include "cryptonote_core/cryptonote_basic.h"
#include "cryptonote_core/cryptonote_basic_impl.h"
#include "ringct/rctSigs.h"
#include "serialization/serialization.h"
#include "serialization/binary_archive.h"
#include "serialization/json_archive.h"
#include "serialization/debug_archive.h"
#include "serialization/variant.h"
#include "serialization/vector.h"
#include "serialization/binary_utils.h"
#include "gtest/gtest.h"
using namespace std;
struct Struct
{
int32_t a;
int32_t b;
char blob[8];
};
template <class Archive>
struct serializer<Archive, Struct>
{
static bool serialize(Archive &ar, Struct &s) {
ar.begin_object();
ar.tag("a");
ar.serialize_int(s.a);
ar.tag("b");
ar.serialize_int(s.b);
ar.tag("blob");
ar.serialize_blob(s.blob, sizeof(s.blob));
ar.end_object();
return true;
}
};
struct Struct1
{
vector<boost::variant<Struct, int32_t>> si;
vector<int16_t> vi;
BEGIN_SERIALIZE_OBJECT()
FIELD(si)
FIELD(vi)
END_SERIALIZE()
/*template <bool W, template <bool> class Archive>
bool do_serialize(Archive<W> &ar)
{
ar.begin_object();
ar.tag("si");
::do_serialize(ar, si);
ar.tag("vi");
::do_serialize(ar, vi);
ar.end_object();
}*/
};
struct Blob
{
uint64_t a;
uint32_t b;
bool operator==(const Blob& rhs) const
{
return a == rhs.a;
}
};
VARIANT_TAG(binary_archive, Struct, 0xe0);
VARIANT_TAG(binary_archive, int, 0xe1);
VARIANT_TAG(json_archive, Struct, "struct");
VARIANT_TAG(json_archive, int, "int");
VARIANT_TAG(debug_archive, Struct1, "struct1");
VARIANT_TAG(debug_archive, Struct, "struct");
VARIANT_TAG(debug_archive, int, "int");
BLOB_SERIALIZER(Blob);
bool try_parse(const string &blob)
{
Struct1 s1;
return serialization::parse_binary(blob, s1);
}
TEST(Serialization, BinaryArchiveInts) {
uint64_t x = 0xff00000000, x1;
ostringstream oss;
binary_archive<true> oar(oss);
oar.serialize_int(x);
ASSERT_TRUE(oss.good());
ASSERT_EQ(8, oss.str().size());
ASSERT_EQ(string("\0\0\0\0\xff\0\0\0", 8), oss.str());
istringstream iss(oss.str());
binary_archive<false> iar(iss);
iar.serialize_int(x1);
ASSERT_EQ(8, iss.tellg());
ASSERT_TRUE(iss.good());
ASSERT_EQ(x, x1);
}
TEST(Serialization, BinaryArchiveVarInts) {
uint64_t x = 0xff00000000, x1;
ostringstream oss;
binary_archive<true> oar(oss);
oar.serialize_varint(x);
ASSERT_TRUE(oss.good());
ASSERT_EQ(6, oss.str().size());
ASSERT_EQ(string("\x80\x80\x80\x80\xF0\x1F", 6), oss.str());
istringstream iss(oss.str());
binary_archive<false> iar(iss);
iar.serialize_varint(x1);
ASSERT_TRUE(iss.good());
ASSERT_EQ(x, x1);
}
TEST(Serialization, Test1) {
ostringstream str;
binary_archive<true> ar(str);
Struct1 s1;
s1.si.push_back(0);
{
Struct s;
s.a = 5;
s.b = 65539;
std::memcpy(s.blob, "12345678", 8);
s1.si.push_back(s);
}
s1.si.push_back(1);
s1.vi.push_back(10);
s1.vi.push_back(22);
string blob;
ASSERT_TRUE(serialization::dump_binary(s1, blob));
ASSERT_TRUE(try_parse(blob));
ASSERT_EQ('\xE0', blob[6]);
blob[6] = '\xE1';
ASSERT_FALSE(try_parse(blob));
blob[6] = '\xE2';
ASSERT_FALSE(try_parse(blob));
}
TEST(Serialization, Overflow) {
Blob x = { 0xff00000000 };
Blob x1;
string blob;
ASSERT_TRUE(serialization::dump_binary(x, blob));
ASSERT_EQ(sizeof(Blob), blob.size());
ASSERT_TRUE(serialization::parse_binary(blob, x1));
ASSERT_EQ(x, x1);
vector<Blob> bigvector;
ASSERT_FALSE(serialization::parse_binary(blob, bigvector));
ASSERT_EQ(0, bigvector.size());
}
TEST(Serialization, serializes_vector_uint64_as_varint)
{
std::vector<uint64_t> v;
string blob;
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(1, blob.size());
// +1 byte
v.push_back(0);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(2, blob.size());
// +1 byte
v.push_back(1);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(3, blob.size());
// +2 bytes
v.push_back(0x80);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(5, blob.size());
// +2 bytes
v.push_back(0xFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(7, blob.size());
// +2 bytes
v.push_back(0x3FFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(9, blob.size());
// +3 bytes
v.push_back(0x40FF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(12, blob.size());
// +10 bytes
v.push_back(0xFFFFFFFFFFFFFFFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(22, blob.size());
}
TEST(Serialization, serializes_vector_int64_as_fixed_int)
{
std::vector<int64_t> v;
string blob;
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(1, blob.size());
// +8 bytes
v.push_back(0);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(9, blob.size());
// +8 bytes
v.push_back(1);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(17, blob.size());
// +8 bytes
v.push_back(0x80);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(25, blob.size());
// +8 bytes
v.push_back(0xFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(33, blob.size());
// +8 bytes
v.push_back(0x3FFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(41, blob.size());
// +8 bytes
v.push_back(0x40FF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(49, blob.size());
// +8 bytes
v.push_back(0xFFFFFFFFFFFFFFFF);
ASSERT_TRUE(serialization::dump_binary(v, blob));
ASSERT_EQ(57, blob.size());
}
namespace
{
template<typename T>
std::vector<T> linearize_vector2(const std::vector< std::vector<T> >& vec_vec)
{
std::vector<T> res;
BOOST_FOREACH(const auto& vec, vec_vec)
{
res.insert(res.end(), vec.begin(), vec.end());
}
return res;
}
}
TEST(Serialization, serializes_transacion_signatures_correctly)
{
using namespace cryptonote;
transaction tx;
transaction tx1;
string blob;
// Empty tx
tx.set_null();
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(5, blob.size()); // 5 bytes + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Miner tx without signatures
txin_gen txin_gen1;
txin_gen1.height = 0;
tx.set_null();
tx.vin.push_back(txin_gen1);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(7, blob.size()); // 5 bytes + 2 bytes vin[0] + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Miner tx with empty signatures 2nd vector
tx.signatures.resize(1);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(7, blob.size()); // 5 bytes + 2 bytes vin[0] + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Miner tx with one signature
tx.signatures[0].resize(1);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Miner tx with 2 empty vectors
tx.signatures.resize(2);
tx.signatures[0].resize(0);
tx.signatures[1].resize(0);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Miner tx with 2 signatures
tx.signatures[0].resize(1);
tx.signatures[1].resize(1);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Two txin_gen, no signatures
tx.vin.push_back(txin_gen1);
tx.signatures.resize(0);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(9, blob.size()); // 5 bytes + 2 * 2 bytes vins + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Two txin_gen, signatures vector contains only one empty element
tx.signatures.resize(1);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Two txin_gen, signatures vector contains two empty elements
tx.signatures.resize(2);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_EQ(9, blob.size()); // 5 bytes + 2 * 2 bytes vins + 0 bytes extra + 0 bytes signatures
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Two txin_gen, signatures vector contains three empty elements
tx.signatures.resize(3);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Two txin_gen, signatures vector contains two non empty elements
tx.signatures.resize(2);
tx.signatures[0].resize(1);
tx.signatures[1].resize(1);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// A few bytes instead of signature
tx.vin.clear();
tx.vin.push_back(txin_gen1);
tx.signatures.clear();
ASSERT_TRUE(serialization::dump_binary(tx, blob));
blob.append(std::string(sizeof(crypto::signature) / 2, 'x'));
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// blob contains one signature
blob.append(std::string(sizeof(crypto::signature) / 2, 'y'));
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// Not enough signature vectors for all inputs
txin_to_key txin_to_key1;
txin_to_key1.key_offsets.resize(2);
tx.vin.clear();
tx.vin.push_back(txin_to_key1);
tx.vin.push_back(txin_to_key1);
tx.signatures.resize(1);
tx.signatures[0].resize(2);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// Too much signatures for two inputs
tx.signatures.resize(3);
tx.signatures[0].resize(2);
tx.signatures[1].resize(2);
tx.signatures[2].resize(2);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// First signatures vector contains too little elements
tx.signatures.resize(2);
tx.signatures[0].resize(1);
tx.signatures[1].resize(2);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// First signatures vector contains too much elements
tx.signatures.resize(2);
tx.signatures[0].resize(3);
tx.signatures[1].resize(2);
ASSERT_FALSE(serialization::dump_binary(tx, blob));
// There are signatures for each input
tx.signatures.resize(2);
tx.signatures[0].resize(2);
tx.signatures[1].resize(2);
ASSERT_TRUE(serialization::dump_binary(tx, blob));
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx, tx1);
ASSERT_EQ(linearize_vector2(tx.signatures), linearize_vector2(tx1.signatures));
// Blob doesn't contain enough data
blob.resize(blob.size() - sizeof(crypto::signature) / 2);
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// Blob contains too much data
blob.resize(blob.size() + sizeof(crypto::signature));
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
// Blob contains one excess signature
blob.resize(blob.size() + sizeof(crypto::signature) / 2);
ASSERT_FALSE(serialization::parse_binary(blob, tx1));
}
TEST(Serialization, serializes_ringct_types)
{
string blob;
rct::key key0, key1;
rct::keyV keyv0, keyv1;
rct::keyM keym0, keym1;
rct::ctkey ctkey0, ctkey1;
rct::ctkeyV ctkeyv0, ctkeyv1;
rct::ctkeyM ctkeym0, ctkeym1;
rct::ecdhTuple ecdh0, ecdh1;
rct::asnlSig asnl0, asnl1;
rct::mgSig mg0, mg1;
rct::rangeSig rg0, rg1;
rct::rctSig s0, s1;
cryptonote::transaction tx0, tx1;
key0 = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(key0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, key1));
ASSERT_TRUE(key0 == key1);
keyv0 = rct::skvGen(30);
for (size_t n = 0; n < keyv0.size(); ++n)
keyv0[n] = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(keyv0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, keyv1));
ASSERT_TRUE(keyv0.size() == keyv1.size());
for (size_t n = 0; n < keyv0.size(); ++n)
{
ASSERT_TRUE(keyv0[n] == keyv1[n]);
}
keym0 = rct::keyMInit(9, 12);
for (size_t n = 0; n < keym0.size(); ++n)
for (size_t i = 0; i < keym0[n].size(); ++i)
keym0[n][i] = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(keym0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, keym1));
ASSERT_TRUE(keym0.size() == keym1.size());
for (size_t n = 0; n < keym0.size(); ++n)
{
ASSERT_TRUE(keym0[n].size() == keym1[n].size());
for (size_t i = 0; i < keym0[n].size(); ++i)
{
ASSERT_TRUE(keym0[n][i] == keym1[n][i]);
}
}
rct::skpkGen(ctkey0.dest, ctkey0.mask);
ASSERT_TRUE(serialization::dump_binary(ctkey0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ctkey1));
ASSERT_TRUE(!memcmp(&ctkey0, &ctkey1, sizeof(ctkey0)));
ctkeyv0 = std::vector<rct::ctkey>(14);
for (size_t n = 0; n < ctkeyv0.size(); ++n)
rct::skpkGen(ctkeyv0[n].dest, ctkeyv0[n].mask);
ASSERT_TRUE(serialization::dump_binary(ctkeyv0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ctkeyv1));
ASSERT_TRUE(ctkeyv0.size() == ctkeyv1.size());
for (size_t n = 0; n < ctkeyv0.size(); ++n)
{
ASSERT_TRUE(!memcmp(&ctkeyv0[n], &ctkeyv1[n], sizeof(ctkeyv0[n])));
}
ctkeym0 = std::vector<rct::ctkeyV>(9);
for (size_t n = 0; n < ctkeym0.size(); ++n)
{
ctkeym0[n] = std::vector<rct::ctkey>(11);
for (size_t i = 0; i < ctkeym0[n].size(); ++i)
rct::skpkGen(ctkeym0[n][i].dest, ctkeym0[n][i].mask);
}
ASSERT_TRUE(serialization::dump_binary(ctkeym0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ctkeym1));
ASSERT_TRUE(ctkeym0.size() == ctkeym1.size());
for (size_t n = 0; n < ctkeym0.size(); ++n)
{
ASSERT_TRUE(ctkeym0[n].size() == ctkeym1[n].size());
for (size_t i = 0; i < ctkeym0.size(); ++i)
{
ASSERT_TRUE(!memcmp(&ctkeym0[n][i], &ctkeym1[n][i], sizeof(ctkeym0[n][i])));
}
}
ecdh0.mask = rct::skGen();
ecdh0.amount = rct::skGen();
ecdh0.senderPk = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(ecdh0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, ecdh1));
ASSERT_TRUE(!memcmp(&ecdh0, &ecdh1, sizeof(ecdh0)));
for (size_t n = 0; n < 64; ++n)
{
asnl0.L1[n] = rct::skGen();
asnl0.s2[n] = rct::skGen();
}
asnl0.s = rct::skGen();
ASSERT_TRUE(serialization::dump_binary(asnl0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, asnl1));
ASSERT_TRUE(!memcmp(&asnl0, &asnl1, sizeof(asnl0)));
// create a full rct signature to use its innards
rct::ctkeyV sc, pc;
rct::ctkey sctmp, pctmp;
tie(sctmp, pctmp) = rct::ctskpkGen(6000);
sc.push_back(sctmp);
pc.push_back(pctmp);
tie(sctmp, pctmp) = rct::ctskpkGen(7000);
sc.push_back(sctmp);
pc.push_back(pctmp);
vector<uint64_t> amounts;
//add output 500
amounts.push_back(500);
rct::keyV destinations;
rct::key Sk, Pk;
rct::skpkGen(Sk, Pk);
destinations.push_back(Pk);
//add output for 12500
amounts.push_back(12500);
rct::skpkGen(Sk, Pk);
destinations.push_back(Pk);
//compute rct data with mixin 500
s0 = rct::genRct(sc, pc, destinations, amounts, 3);
mg0 = s0.MG;
ASSERT_TRUE(serialization::dump_binary(mg0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, mg1));
ASSERT_TRUE(mg0.ss.size() == mg1.ss.size());
for (size_t n = 0; n < mg0.ss.size(); ++n)
{
ASSERT_TRUE(mg0.ss[n] == mg1.ss[n]);
}
ASSERT_TRUE(mg0.cc == mg1.cc);
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(mg1.II.size() == 1);
ASSERT_TRUE(mg1.II[0] == mg0.II.back());
rg0 = s0.rangeSigs.front();
ASSERT_TRUE(serialization::dump_binary(rg0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, rg1));
ASSERT_TRUE(!memcmp(&rg0, &rg1, sizeof(rg0)));
ASSERT_TRUE(serialization::dump_binary(s0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, s1));
ASSERT_TRUE(s0.rangeSigs.size() == s1.rangeSigs.size());
for (size_t n = 0; n < s0.rangeSigs.size(); ++n)
{
ASSERT_TRUE(!memcmp(&s0.rangeSigs[n], &s1.rangeSigs[n], sizeof(s0.rangeSigs[n])));
}
ASSERT_TRUE(s0.MG.ss.size() == s1.MG.ss.size());
for (size_t n = 0; n < s0.MG.ss.size(); ++n)
{
ASSERT_TRUE(s0.MG.ss[n] == s1.MG.ss[n]);
}
ASSERT_TRUE(s0.MG.cc == s1.MG.cc);
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(s1.MG.II.size() == 1);
ASSERT_TRUE(s1.MG.II[0] == s0.MG.II.back());
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(s1.mixRing.size() == 0);
ASSERT_TRUE(s0.ecdhInfo.size() == s1.ecdhInfo.size());
for (size_t n = 0; n < s0.ecdhInfo.size(); ++n)
{
ASSERT_TRUE(!memcmp(&s0.ecdhInfo[n], &s1.ecdhInfo[n], sizeof(s0.ecdhInfo[n])));
}
ASSERT_TRUE(s0.outPk.size() == s1.outPk.size());
for (size_t n = 0; n < s0.outPk.size(); ++n)
{
ASSERT_TRUE(!memcmp(&s0.outPk[n], &s1.outPk[n], sizeof(s0.outPk[n])));
}
tx0.set_null();
tx0.version = 2;
cryptonote::txin_to_key txin_to_key1;
txin_to_key1.key_offsets.resize(2);
cryptonote::txin_to_key txin_to_key2;
txin_to_key2.key_offsets.resize(2);
tx0.vin.push_back(txin_to_key1);
tx0.vin.push_back(txin_to_key2);
tx0.vout.push_back(cryptonote::tx_out());
tx0.rct_signatures = s0;
ASSERT_EQ(tx0.rct_signatures.rangeSigs.size(), 2);
ASSERT_TRUE(serialization::dump_binary(tx0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx1.rct_signatures.rangeSigs.size(), 2);
std::string blob2;
ASSERT_TRUE(serialization::dump_binary(tx1, blob2));
ASSERT_TRUE(blob == blob2);
}