wownero/src/cryptonote_protocol/block_queue.cpp
moneromooo-monero 8330e772f1
monerod can now sync from pruned blocks
If the peer (whether pruned or not itself) supports sending pruned blocks
to syncing nodes, the pruned version will be sent along with the hash
of the pruned data and the block weight. The original tx hashes can be
reconstructed from the pruned txes and theur prunable data hash. Those
hashes and the block weights are hashes and checked against the set of
precompiled hashes, ensuring the data we received is the original data.
It is currently not possible to use this system when not using the set
of precompiled hashes, since block weights can not otherwise be checked
for validity.

This is off by default for now, and is enabled by --sync-pruned-blocks
2019-09-27 00:10:37 +00:00

542 lines
19 KiB
C++

// Copyright (c) 2017-2019, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
#include <vector>
#include <unordered_map>
#include <boost/uuid/nil_generator.hpp>
#include <boost/uuid/uuid_io.hpp>
#include "string_tools.h"
#include "cryptonote_protocol_defs.h"
#include "common/pruning.h"
#include "block_queue.h"
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "cn.block_queue"
namespace std {
static_assert(sizeof(size_t) <= sizeof(boost::uuids::uuid), "boost::uuids::uuid too small");
template<> struct hash<boost::uuids::uuid> {
std::size_t operator()(const boost::uuids::uuid &_v) const {
return reinterpret_cast<const std::size_t &>(_v);
}
};
}
namespace cryptonote
{
void block_queue::add_blocks(uint64_t height, std::vector<cryptonote::block_complete_entry> bcel, const boost::uuids::uuid &connection_id, float rate, size_t size)
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
std::vector<crypto::hash> hashes;
bool has_hashes = remove_span(height, &hashes);
blocks.insert(span(height, std::move(bcel), connection_id, rate, size));
if (has_hashes)
{
for (const crypto::hash &h: hashes)
{
requested_hashes.insert(h);
have_blocks.insert(h);
}
set_span_hashes(height, connection_id, hashes);
}
}
void block_queue::add_blocks(uint64_t height, uint64_t nblocks, const boost::uuids::uuid &connection_id, boost::posix_time::ptime time)
{
CHECK_AND_ASSERT_THROW_MES(nblocks > 0, "Empty span");
boost::unique_lock<boost::recursive_mutex> lock(mutex);
blocks.insert(span(height, nblocks, connection_id, time));
}
void block_queue::flush_spans(const boost::uuids::uuid &connection_id, bool all)
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
block_map::iterator i = blocks.begin();
while (i != blocks.end())
{
block_map::iterator j = i++;
if (j->connection_id == connection_id && (all || j->blocks.size() == 0))
{
erase_block(j);
}
}
}
void block_queue::erase_block(block_map::iterator j)
{
CHECK_AND_ASSERT_THROW_MES(j != blocks.end(), "Invalid iterator");
for (const crypto::hash &h: j->hashes)
{
requested_hashes.erase(h);
have_blocks.erase(h);
}
blocks.erase(j);
}
void block_queue::flush_stale_spans(const std::set<boost::uuids::uuid> &live_connections)
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
block_map::iterator i = blocks.begin();
while (i != blocks.end())
{
block_map::iterator j = i++;
if (j->blocks.empty() && live_connections.find(j->connection_id) == live_connections.end())
{
erase_block(j);
}
}
}
bool block_queue::remove_span(uint64_t start_block_height, std::vector<crypto::hash> *hashes)
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
for (block_map::iterator i = blocks.begin(); i != blocks.end(); ++i)
{
if (i->start_block_height == start_block_height)
{
if (hashes)
*hashes = std::move(i->hashes);
erase_block(i);
return true;
}
}
return false;
}
void block_queue::remove_spans(const boost::uuids::uuid &connection_id, uint64_t start_block_height)
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
for (block_map::iterator i = blocks.begin(); i != blocks.end(); )
{
block_map::iterator j = i++;
if (j->connection_id == connection_id && j->start_block_height <= start_block_height)
{
erase_block(j);
}
}
}
uint64_t block_queue::get_max_block_height() const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
uint64_t height = 0;
for (const auto &span: blocks)
{
const uint64_t h = span.start_block_height + span.nblocks - 1;
if (h > height)
height = h;
}
return height;
}
uint64_t block_queue::get_next_needed_height(uint64_t blockchain_height) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
if (blocks.empty())
return blockchain_height;
uint64_t last_needed_height = blockchain_height;
bool first = true;
for (const auto &span: blocks)
{
if (span.start_block_height + span.nblocks - 1 < blockchain_height)
continue;
if (span.start_block_height != last_needed_height || (first && span.blocks.empty()))
return last_needed_height;
last_needed_height = span.start_block_height + span.nblocks;
first = false;
}
return last_needed_height;
}
void block_queue::print() const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
MDEBUG("Block queue has " << blocks.size() << " spans");
for (const auto &span: blocks)
MDEBUG(" " << span.start_block_height << " - " << (span.start_block_height+span.nblocks-1) << " (" << span.nblocks << ") - " << (span.blocks.empty() ? "scheduled" : "filled ") << " " << span.connection_id << " (" << ((unsigned)(span.rate*10/1024.f))/10.f << " kB/s)");
}
std::string block_queue::get_overview(uint64_t blockchain_height) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
if (blocks.empty())
return "[]";
block_map::const_iterator i = blocks.begin();
std::string s = std::string("[");
uint64_t expected = blockchain_height;
while (i != blocks.end())
{
if (expected > i->start_block_height)
{
s += "<";
}
else
{
if (expected < i->start_block_height)
s += std::string(std::max((uint64_t)1, (i->start_block_height - expected) / (i->nblocks ? i->nblocks : 1)), '_');
s += i->blocks.empty() ? "." : i->start_block_height == blockchain_height ? "m" : "o";
expected = i->start_block_height + i->nblocks;
}
++i;
}
s += "]";
return s;
}
inline bool block_queue::requested_internal(const crypto::hash &hash) const
{
return requested_hashes.find(hash) != requested_hashes.end();
}
bool block_queue::requested(const crypto::hash &hash) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
return requested_internal(hash);
}
bool block_queue::have(const crypto::hash &hash) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
return have_blocks.find(hash) != have_blocks.end();
}
std::pair<uint64_t, uint64_t> block_queue::reserve_span(uint64_t first_block_height, uint64_t last_block_height, uint64_t max_blocks, const boost::uuids::uuid &connection_id, bool sync_pruned_blocks, uint32_t local_pruning_seed, uint32_t pruning_seed, uint64_t blockchain_height, const std::vector<std::pair<crypto::hash, uint64_t>> &block_hashes, boost::posix_time::ptime time)
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
MDEBUG("reserve_span: first_block_height " << first_block_height << ", last_block_height " << last_block_height
<< ", max " << max_blocks << ", peer seed " << epee::string_tools::to_string_hex(pruning_seed) << ", blockchain_height " <<
blockchain_height << ", block hashes size " << block_hashes.size() << ", local seed " << epee::string_tools::to_string_hex(local_pruning_seed)
<< ", sync_pruned_blocks " << sync_pruned_blocks);
if (last_block_height < first_block_height || max_blocks == 0)
{
MDEBUG("reserve_span: early out: first_block_height " << first_block_height << ", last_block_height " << last_block_height << ", max_blocks " << max_blocks);
return std::make_pair(0, 0);
}
if (block_hashes.size() > last_block_height)
{
MDEBUG("reserve_span: more block hashes than fit within last_block_height: " << block_hashes.size() << " and " << last_block_height);
return std::make_pair(0, 0);
}
// skip everything we've already requested
uint64_t span_start_height = last_block_height - block_hashes.size() + 1;
std::vector<std::pair<crypto::hash, uint64_t>>::const_iterator i = block_hashes.begin();
while (i != block_hashes.end() && requested_internal((*i).first))
{
++i;
++span_start_height;
}
if (!sync_pruned_blocks)
{
// if the peer's pruned for the starting block and its unpruned stripe comes next, start downloading from there
const uint32_t next_unpruned_height = tools::get_next_unpruned_block_height(span_start_height, blockchain_height, pruning_seed);
MDEBUG("reserve_span: next_unpruned_height " << next_unpruned_height << " from " << span_start_height << " and seed "
<< epee::string_tools::to_string_hex(pruning_seed) << ", limit " << span_start_height + CRYPTONOTE_PRUNING_STRIPE_SIZE);
if (next_unpruned_height > span_start_height && next_unpruned_height < span_start_height + CRYPTONOTE_PRUNING_STRIPE_SIZE)
{
MDEBUG("We can download from next span: ideal height " << span_start_height << ", next unpruned height " << next_unpruned_height <<
"(+" << next_unpruned_height - span_start_height << "), current seed " << pruning_seed);
span_start_height = next_unpruned_height;
}
}
MDEBUG("span_start_height: " <<span_start_height);
const uint64_t block_hashes_start_height = last_block_height - block_hashes.size() + 1;
if (span_start_height >= block_hashes.size() + block_hashes_start_height)
{
MDEBUG("Out of hashes, cannot reserve");
return std::make_pair(0, 0);
}
i = block_hashes.begin() + span_start_height - block_hashes_start_height;
while (i != block_hashes.end() && requested_internal((*i).first))
{
++i;
++span_start_height;
}
uint64_t span_length = 0;
std::vector<crypto::hash> hashes;
bool first_is_pruned = sync_pruned_blocks && !tools::has_unpruned_block(span_start_height + span_length, blockchain_height, local_pruning_seed);
while (i != block_hashes.end() && span_length < max_blocks && (sync_pruned_blocks || tools::has_unpruned_block(span_start_height + span_length, blockchain_height, pruning_seed)))
{
// if we want to sync pruned blocks, stop at the first block for which we need full data
if (sync_pruned_blocks && first_is_pruned == tools::has_unpruned_block(span_start_height + span_length, blockchain_height, local_pruning_seed))
{
MDEBUG("Stopping at " << span_start_height + span_length << " for peer on stripe " << tools::get_pruning_stripe(pruning_seed) << " as we need full data for " << tools::get_pruning_stripe(local_pruning_seed));
break;
}
hashes.push_back((*i).first);
++i;
++span_length;
}
if (span_length == 0)
{
MDEBUG("span_length 0, cannot reserve");
return std::make_pair(0, 0);
}
MDEBUG("Reserving span " << span_start_height << " - " << (span_start_height + span_length - 1) << " for " << connection_id);
add_blocks(span_start_height, span_length, connection_id, time);
set_span_hashes(span_start_height, connection_id, hashes);
return std::make_pair(span_start_height, span_length);
}
std::pair<uint64_t, uint64_t> block_queue::get_next_span_if_scheduled(std::vector<crypto::hash> &hashes, boost::uuids::uuid &connection_id, boost::posix_time::ptime &time) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
if (blocks.empty())
return std::make_pair(0, 0);
block_map::const_iterator i = blocks.begin();
if (i == blocks.end())
return std::make_pair(0, 0);
if (!i->blocks.empty())
return std::make_pair(0, 0);
hashes = i->hashes;
connection_id = i->connection_id;
time = i->time;
return std::make_pair(i->start_block_height, i->nblocks);
}
void block_queue::reset_next_span_time(boost::posix_time::ptime t)
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
CHECK_AND_ASSERT_THROW_MES(!blocks.empty(), "No next span to reset time");
block_map::iterator i = blocks.begin();
CHECK_AND_ASSERT_THROW_MES(i != blocks.end(), "No next span to reset time");
CHECK_AND_ASSERT_THROW_MES(i->blocks.empty(), "Next span is not empty");
(boost::posix_time::ptime&)i->time = t; // sod off, time doesn't influence sorting
}
void block_queue::set_span_hashes(uint64_t start_height, const boost::uuids::uuid &connection_id, std::vector<crypto::hash> hashes)
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
for (block_map::iterator i = blocks.begin(); i != blocks.end(); ++i)
{
if (i->start_block_height == start_height && i->connection_id == connection_id)
{
span s = *i;
erase_block(i);
s.hashes = std::move(hashes);
for (const crypto::hash &h: s.hashes)
requested_hashes.insert(h);
blocks.insert(s);
return;
}
}
}
bool block_queue::get_next_span(uint64_t &height, std::vector<cryptonote::block_complete_entry> &bcel, boost::uuids::uuid &connection_id, bool filled) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
if (blocks.empty())
return false;
block_map::const_iterator i = blocks.begin();
for (; i != blocks.end(); ++i)
{
if (!filled || !i->blocks.empty())
{
height = i->start_block_height;
bcel = i->blocks;
connection_id = i->connection_id;
return true;
}
}
return false;
}
bool block_queue::has_next_span(const boost::uuids::uuid &connection_id, bool &filled, boost::posix_time::ptime &time) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
if (blocks.empty())
return false;
block_map::const_iterator i = blocks.begin();
if (i == blocks.end())
return false;
if (i->connection_id != connection_id)
return false;
filled = !i->blocks.empty();
time = i->time;
return true;
}
bool block_queue::has_next_span(uint64_t height, bool &filled, boost::posix_time::ptime &time, boost::uuids::uuid &connection_id) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
if (blocks.empty())
return false;
block_map::const_iterator i = blocks.begin();
if (i == blocks.end())
return false;
if (i->start_block_height > height)
return false;
filled = !i->blocks.empty();
time = i->time;
connection_id = i->connection_id;
return true;
}
size_t block_queue::get_data_size() const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
size_t size = 0;
for (const auto &span: blocks)
size += span.size;
return size;
}
size_t block_queue::get_num_filled_spans_prefix() const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
if (blocks.empty())
return 0;
block_map::const_iterator i = blocks.begin();
size_t size = 0;
while (i != blocks.end() && !i->blocks.empty())
{
++i;
++size;
}
return size;
}
size_t block_queue::get_num_filled_spans() const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
size_t size = 0;
for (const auto &span: blocks)
if (!span.blocks.empty())
++size;
return size;
}
crypto::hash block_queue::get_last_known_hash(const boost::uuids::uuid &connection_id) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
crypto::hash hash = crypto::null_hash;
uint64_t highest_height = 0;
for (const auto &span: blocks)
{
if (span.connection_id != connection_id)
continue;
uint64_t h = span.start_block_height + span.nblocks - 1;
if (h > highest_height && span.hashes.size() == span.nblocks)
{
hash = span.hashes.back();
highest_height = h;
}
}
return hash;
}
bool block_queue::has_spans(const boost::uuids::uuid &connection_id) const
{
for (const auto &span: blocks)
{
if (span.connection_id == connection_id)
return true;
}
return false;
}
float block_queue::get_speed(const boost::uuids::uuid &connection_id) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
std::unordered_map<boost::uuids::uuid, float> speeds;
for (const auto &span: blocks)
{
if (span.blocks.empty())
continue;
// note that the average below does not average over the whole set, but over the
// previous pseudo average and the latest rate: this gives much more importance
// to the latest measurements, which is fine here
std::unordered_map<boost::uuids::uuid, float>::iterator i = speeds.find(span.connection_id);
if (i == speeds.end())
speeds.insert(std::make_pair(span.connection_id, span.rate));
else
i->second = (i->second + span.rate) / 2;
}
float conn_rate = -1, best_rate = 0;
for (const auto &i: speeds)
{
if (i.first == connection_id)
conn_rate = i.second;
if (i.second > best_rate)
best_rate = i.second;
}
if (conn_rate <= 0)
return 1.0f; // not found, assume good speed
if (best_rate == 0)
return 1.0f; // everything dead ? Can't happen, but let's trap anyway
const float speed = conn_rate / best_rate;
MTRACE(" Relative speed for " << connection_id << ": " << speed << " (" << conn_rate << "/" << best_rate);
return speed;
}
float block_queue::get_download_rate(const boost::uuids::uuid &connection_id) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
float conn_rate = -1.f;
for (const auto &span: blocks)
{
if (span.blocks.empty())
continue;
if (span.connection_id != connection_id)
continue;
// note that the average below does not average over the whole set, but over the
// previous pseudo average and the latest rate: this gives much more importance
// to the latest measurements, which is fine here
if (conn_rate < 0.f)
conn_rate = span.rate;
else
conn_rate = (conn_rate + span.rate) / 2;
}
if (conn_rate < 0)
conn_rate = 0.0f;
MTRACE("Download rate for " << connection_id << ": " << conn_rate << " b/s");
return conn_rate;
}
bool block_queue::foreach(std::function<bool(const span&)> f) const
{
boost::unique_lock<boost::recursive_mutex> lock(mutex);
block_map::const_iterator i = blocks.begin();
while (i != blocks.end())
if (!f(*i++))
return false;
return true;
}
}