/* * validator/val_nsec.c - validator NSEC denial of existence functions. * * Copyright (c) 2007, NLnet Labs. All rights reserved. * * This software is open source. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the NLNET LABS nor the names of its contributors may * be used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * \file * * This file contains helper functions for the validator module. * The functions help with NSEC checking, the different NSEC proofs * for denial of existence, and proofs for presence of types. */ #include "config.h" #include "validator/val_nsec.h" #include "validator/val_utils.h" #include "util/data/msgreply.h" #include "util/data/dname.h" #include "util/net_help.h" #include "util/module.h" #include "services/cache/rrset.h" /** get ttl of rrset */ static uint32_t rrset_get_ttl(struct ub_packed_rrset_key* k) { struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data; return d->ttl; } int nsecbitmap_has_type_rdata(uint8_t* bitmap, size_t len, uint16_t type) { /* Check type present in NSEC typemap with bitmap arg */ /* bitmasks for determining type-lowerbits presence */ uint8_t masks[8] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}; uint8_t type_window = type>>8; uint8_t type_low = type&0xff; uint8_t win, winlen; /* read each of the type bitmap windows and see if the searched * type is amongst it */ while(len > 0) { if(len < 3) /* bad window, at least window# winlen bitmap */ return 0; win = *bitmap++; winlen = *bitmap++; len -= 2; if(len < winlen || winlen < 1 || winlen > 32) return 0; /* bad window length */ if(win == type_window) { /* search window bitmap for the correct byte */ /* mybyte is 0 if we need the first byte */ size_t mybyte = type_low>>3; if(winlen <= mybyte) return 0; /* window too short */ return (int)(bitmap[mybyte] & masks[type_low&0x7]); } else { /* not the window we are looking for */ bitmap += winlen; len -= winlen; } } /* end of bitmap reached, no type found */ return 0; } int nsec_has_type(struct ub_packed_rrset_key* nsec, uint16_t type) { struct packed_rrset_data* d = (struct packed_rrset_data*)nsec-> entry.data; size_t len; if(!d || d->count == 0 || d->rr_len[0] < 2+1) return 0; len = dname_valid(d->rr_data[0]+2, d->rr_len[0]-2); if(!len) return 0; return nsecbitmap_has_type_rdata(d->rr_data[0]+2+len, d->rr_len[0]-2-len, type); } /** * Get next owner name from nsec record * @param nsec: the nsec RRset. * If there are multiple RRs, then this will only return one of them. * @param nm: the next name is returned. * @param ln: length of nm is returned. * @return false on a bad NSEC RR (too short, malformed dname). */ static int nsec_get_next(struct ub_packed_rrset_key* nsec, uint8_t** nm, size_t* ln) { struct packed_rrset_data* d = (struct packed_rrset_data*)nsec-> entry.data; if(!d || d->count == 0 || d->rr_len[0] < 2+1) { *nm = 0; *ln = 0; return 0; } *nm = d->rr_data[0]+2; *ln = dname_valid(*nm, d->rr_len[0]-2); if(!*ln) { *nm = 0; *ln = 0; return 0; } return 1; } /** * For an NSEC that matches the DS queried for, check absence of DS type. * * @param nsec: NSEC for proof, must be trusted. * @param qinfo: what is queried for. * @return if secure the nsec proves that no DS is present, or * insecure if it proves it is not a delegation point. * or bogus if something was wrong. */ static enum sec_status val_nsec_proves_no_ds(struct ub_packed_rrset_key* nsec, struct query_info* qinfo) { log_assert(qinfo->qtype == LDNS_RR_TYPE_DS); log_assert(ntohs(nsec->rk.type) == LDNS_RR_TYPE_NSEC); if(nsec_has_type(nsec, LDNS_RR_TYPE_SOA) && qinfo->qname_len != 1) { /* SOA present means that this is the NSEC from the child, * not the parent (so it is the wrong one). */ return sec_status_bogus; } if(nsec_has_type(nsec, LDNS_RR_TYPE_DS)) { /* DS present means that there should have been a positive * response to the DS query, so there is something wrong. */ return sec_status_bogus; } if(!nsec_has_type(nsec, LDNS_RR_TYPE_NS)) { /* If there is no NS at this point at all, then this * doesn't prove anything one way or the other. */ return sec_status_insecure; } /* Otherwise, this proves no DS. */ return sec_status_secure; } /** check security status from cache or verify rrset, returns true if secure */ static int nsec_verify_rrset(struct module_env* env, struct val_env* ve, struct ub_packed_rrset_key* nsec, struct key_entry_key* kkey, char** reason) { struct packed_rrset_data* d = (struct packed_rrset_data*) nsec->entry.data; if(d->security == sec_status_secure) return 1; rrset_check_sec_status(env->rrset_cache, nsec, *env->now); if(d->security == sec_status_secure) return 1; d->security = val_verify_rrset_entry(env, ve, nsec, kkey, reason); if(d->security == sec_status_secure) { rrset_update_sec_status(env->rrset_cache, nsec, *env->now); return 1; } return 0; } enum sec_status val_nsec_prove_nodata_dsreply(struct module_env* env, struct val_env* ve, struct query_info* qinfo, struct reply_info* rep, struct key_entry_key* kkey, time_t* proof_ttl, char** reason) { struct ub_packed_rrset_key* nsec = reply_find_rrset_section_ns( rep, qinfo->qname, qinfo->qname_len, LDNS_RR_TYPE_NSEC, qinfo->qclass); enum sec_status sec; size_t i; uint8_t* wc = NULL, *ce = NULL; int valid_nsec = 0; struct ub_packed_rrset_key* wc_nsec = NULL; /* If we have a NSEC at the same name, it must prove one * of two things * -- * 1) this is a delegation point and there is no DS * 2) this is not a delegation point */ if(nsec) { if(!nsec_verify_rrset(env, ve, nsec, kkey, reason)) { verbose(VERB_ALGO, "NSEC RRset for the " "referral did not verify."); return sec_status_bogus; } sec = val_nsec_proves_no_ds(nsec, qinfo); if(sec == sec_status_bogus) { /* something was wrong. */ *reason = "NSEC does not prove absence of DS"; return sec; } else if(sec == sec_status_insecure) { /* this wasn't a delegation point. */ return sec; } else if(sec == sec_status_secure) { /* this proved no DS. */ *proof_ttl = ub_packed_rrset_ttl(nsec); return sec; } /* if unchecked, fall through to next proof */ } /* Otherwise, there is no NSEC at qname. This could be an ENT. * (ENT=empty non terminal). If not, this is broken. */ /* verify NSEC rrsets in auth section */ for(i=rep->an_numrrsets; i < rep->an_numrrsets+rep->ns_numrrsets; i++) { if(rep->rrsets[i]->rk.type != htons(LDNS_RR_TYPE_NSEC)) continue; if(!nsec_verify_rrset(env, ve, rep->rrsets[i], kkey, reason)) { verbose(VERB_ALGO, "NSEC for empty non-terminal " "did not verify."); return sec_status_bogus; } if(nsec_proves_nodata(rep->rrsets[i], qinfo, &wc)) { verbose(VERB_ALGO, "NSEC for empty non-terminal " "proved no DS."); *proof_ttl = rrset_get_ttl(rep->rrsets[i]); if(wc && dname_is_wild(rep->rrsets[i]->rk.dname)) wc_nsec = rep->rrsets[i]; valid_nsec = 1; } if(val_nsec_proves_name_error(rep->rrsets[i], qinfo->qname)) { ce = nsec_closest_encloser(qinfo->qname, rep->rrsets[i]); } } if(wc && !ce) valid_nsec = 0; else if(wc && ce) { /* ce and wc must match */ if(query_dname_compare(wc, ce) != 0) valid_nsec = 0; else if(!wc_nsec) valid_nsec = 0; } if(valid_nsec) { if(wc) { /* check if this is a delegation */ *reason = "NSEC for wildcard does not prove absence of DS"; return val_nsec_proves_no_ds(wc_nsec, qinfo); } /* valid nsec proves empty nonterminal */ return sec_status_insecure; } /* NSEC proof did not conclusively point to DS or no DS */ return sec_status_unchecked; } int nsec_proves_nodata(struct ub_packed_rrset_key* nsec, struct query_info* qinfo, uint8_t** wc) { log_assert(wc); if(query_dname_compare(nsec->rk.dname, qinfo->qname) != 0) { uint8_t* nm; size_t ln; /* empty-non-terminal checking. * Done before wildcard, because this is an exact match, * and would prevent a wildcard from matching. */ /* If the nsec is proving that qname is an ENT, the nsec owner * will be less than qname, and the next name will be a child * domain of the qname. */ if(!nsec_get_next(nsec, &nm, &ln)) return 0; /* bad nsec */ if(dname_strict_subdomain_c(nm, qinfo->qname) && dname_canonical_compare(nsec->rk.dname, qinfo->qname) < 0) { return 1; /* proves ENT */ } /* wildcard checking. */ /* If this is a wildcard NSEC, make sure that a) it was * possible to have generated qname from the wildcard and * b) the type map does not contain qtype. Note that this * does NOT prove that this wildcard was the applicable * wildcard. */ if(dname_is_wild(nsec->rk.dname)) { /* the purported closest encloser. */ uint8_t* ce = nsec->rk.dname; size_t ce_len = nsec->rk.dname_len; dname_remove_label(&ce, &ce_len); /* The qname must be a strict subdomain of the * closest encloser, for the wildcard to apply */ if(dname_strict_subdomain_c(qinfo->qname, ce)) { /* here we have a matching NSEC for the qname, * perform matching NSEC checks */ if(nsec_has_type(nsec, LDNS_RR_TYPE_CNAME)) { /* should have gotten the wildcard CNAME */ return 0; } if(nsec_has_type(nsec, LDNS_RR_TYPE_NS) && !nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) { /* wrong parentside (wildcard) NSEC used */ return 0; } if(nsec_has_type(nsec, qinfo->qtype)) { return 0; } *wc = ce; return 1; } } else { /* See if the next owner name covers a wildcard * empty non-terminal. */ while (dname_canonical_compare(nsec->rk.dname, nm) < 0) { /* wildcard does not apply if qname below * the name that exists under the '*' */ if (dname_subdomain_c(qinfo->qname, nm)) break; /* but if it is a wildcard and qname is below * it, then the wildcard applies. The wildcard * is an empty nonterminal. nodata proven. */ if (dname_is_wild(nm)) { size_t ce_len = ln; uint8_t* ce = nm; dname_remove_label(&ce, &ce_len); if(dname_strict_subdomain_c(qinfo->qname, ce)) { *wc = ce; return 1; } } dname_remove_label(&nm, &ln); } } /* Otherwise, this NSEC does not prove ENT and is not a * wildcard, so it does not prove NODATA. */ return 0; } /* If the qtype exists, then we should have gotten it. */ if(nsec_has_type(nsec, qinfo->qtype)) { return 0; } /* if the name is a CNAME node, then we should have gotten the CNAME*/ if(nsec_has_type(nsec, LDNS_RR_TYPE_CNAME)) { return 0; } /* If an NS set exists at this name, and NOT a SOA (so this is a * zone cut, not a zone apex), then we should have gotten a * referral (or we just got the wrong NSEC). * The reverse of this check is used when qtype is DS, since that * must use the NSEC from above the zone cut. */ if(qinfo->qtype != LDNS_RR_TYPE_DS && nsec_has_type(nsec, LDNS_RR_TYPE_NS) && !nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) { return 0; } else if(qinfo->qtype == LDNS_RR_TYPE_DS && nsec_has_type(nsec, LDNS_RR_TYPE_SOA) && !dname_is_root(qinfo->qname)) { return 0; } return 1; } int val_nsec_proves_name_error(struct ub_packed_rrset_key* nsec, uint8_t* qname) { uint8_t* owner = nsec->rk.dname; uint8_t* next; size_t nlen; if(!nsec_get_next(nsec, &next, &nlen)) return 0; /* If NSEC owner == qname, then this NSEC proves that qname exists. */ if(query_dname_compare(qname, owner) == 0) { return 0; } /* If NSEC is a parent of qname, we need to check the type map * If the parent name has a DNAME or is a delegation point, then * this NSEC is being misused. */ if(dname_subdomain_c(qname, owner) && (nsec_has_type(nsec, LDNS_RR_TYPE_DNAME) || (nsec_has_type(nsec, LDNS_RR_TYPE_NS) && !nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) )) { return 0; } if(query_dname_compare(owner, next) == 0) { /* this nsec is the only nsec */ /* zone.name NSEC zone.name, disproves everything else */ /* but only for subdomains of that zone */ if(dname_strict_subdomain_c(qname, next)) return 1; } else if(dname_canonical_compare(owner, next) > 0) { /* this is the last nsec, ....(bigger) NSEC zonename(smaller) */ /* the names after the last (owner) name do not exist * there are no names before the zone name in the zone * but the qname must be a subdomain of the zone name(next). */ if(dname_canonical_compare(owner, qname) < 0 && dname_strict_subdomain_c(qname, next)) return 1; } else { /* regular NSEC, (smaller) NSEC (larger) */ if(dname_canonical_compare(owner, qname) < 0 && dname_canonical_compare(qname, next) < 0) { return 1; } } return 0; } int val_nsec_proves_insecuredelegation(struct ub_packed_rrset_key* nsec, struct query_info* qinfo) { if(nsec_has_type(nsec, LDNS_RR_TYPE_NS) && !nsec_has_type(nsec, LDNS_RR_TYPE_DS) && !nsec_has_type(nsec, LDNS_RR_TYPE_SOA)) { /* see if nsec signals an insecure delegation */ if(qinfo->qtype == LDNS_RR_TYPE_DS) { /* if type is DS and qname is equal to nsec, then it * is an exact match nsec, result not insecure */ if(dname_strict_subdomain_c(qinfo->qname, nsec->rk.dname)) return 1; } else { if(dname_subdomain_c(qinfo->qname, nsec->rk.dname)) return 1; } } return 0; } uint8_t* nsec_closest_encloser(uint8_t* qname, struct ub_packed_rrset_key* nsec) { uint8_t* next; size_t nlen; uint8_t* common1, *common2; if(!nsec_get_next(nsec, &next, &nlen)) return NULL; /* longest common with owner or next name */ common1 = dname_get_shared_topdomain(nsec->rk.dname, qname); common2 = dname_get_shared_topdomain(next, qname); if(dname_count_labels(common1) > dname_count_labels(common2)) return common1; return common2; } int val_nsec_proves_positive_wildcard(struct ub_packed_rrset_key* nsec, struct query_info* qinf, uint8_t* wc) { uint8_t* ce; /* 1) prove that qname doesn't exist and * 2) that the correct wildcard was used * nsec has been verified already. */ if(!val_nsec_proves_name_error(nsec, qinf->qname)) return 0; /* check wildcard name */ ce = nsec_closest_encloser(qinf->qname, nsec); if(!ce) return 0; if(query_dname_compare(wc, ce) != 0) { return 0; } return 1; } int val_nsec_proves_no_wc(struct ub_packed_rrset_key* nsec, uint8_t* qname, size_t qnamelen) { /* Determine if a NSEC record proves the non-existence of a * wildcard that could have produced qname. */ int labs; int i; uint8_t* ce = nsec_closest_encloser(qname, nsec); uint8_t* strip; size_t striplen; uint8_t buf[LDNS_MAX_DOMAINLEN+3]; if(!ce) return 0; /* we can subtract the closest encloser count - since that is the * largest shared topdomain with owner and next NSEC name, * because the NSEC is no proof for names shorter than the owner * and next names. */ labs = dname_count_labels(qname) - dname_count_labels(ce); for(i=labs; i>0; i--) { /* i is number of labels to strip off qname, prepend * wild */ strip = qname; striplen = qnamelen; dname_remove_labels(&strip, &striplen, i); if(striplen > LDNS_MAX_DOMAINLEN-2) continue; /* too long to prepend wildcard */ buf[0] = 1; buf[1] = (uint8_t)'*'; memmove(buf+2, strip, striplen); if(val_nsec_proves_name_error(nsec, buf)) { return 1; } } return 0; } /** * Find shared topdomain that exists */ static void dlv_topdomain(struct ub_packed_rrset_key* nsec, uint8_t* qname, uint8_t** nm, size_t* nm_len) { /* make sure reply is part of nm */ /* take shared topdomain with left of NSEC. */ /* because, if empty nonterminal, then right is subdomain of qname. * and any shared topdomain would be empty nonterminals. * * If nxdomain, then the right is bigger, and could have an * interesting shared topdomain, but if it does have one, it is * an empty nonterminal. An empty nonterminal shared with the left * one. */ int n; uint8_t* common = dname_get_shared_topdomain(qname, nsec->rk.dname); n = dname_count_labels(*nm) - dname_count_labels(common); dname_remove_labels(nm, nm_len, n); } int val_nsec_check_dlv(struct query_info* qinfo, struct reply_info* rep, uint8_t** nm, size_t* nm_len) { uint8_t* next; size_t i, nlen; int c; /* we should now have a NOERROR/NODATA or NXDOMAIN message */ if(rep->an_numrrsets != 0) { return 0; } /* is this NOERROR ? */ if(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NOERROR) { /* it can be a plain NSEC match - go up one more level. */ /* or its an empty nonterminal - go up to nonempty level */ for(i=0; i<rep->ns_numrrsets; i++) { if(htons(rep->rrsets[i]->rk.type)!=LDNS_RR_TYPE_NSEC || !nsec_get_next(rep->rrsets[i], &next, &nlen)) continue; c = dname_canonical_compare( rep->rrsets[i]->rk.dname, qinfo->qname); if(c == 0) { /* plain match */ if(nsec_has_type(rep->rrsets[i], LDNS_RR_TYPE_DLV)) return 0; dname_remove_label(nm, nm_len); return 1; } else if(c < 0 && dname_strict_subdomain_c(next, qinfo->qname)) { /* ENT */ dlv_topdomain(rep->rrsets[i], qinfo->qname, nm, nm_len); return 1; } } return 0; } /* is this NXDOMAIN ? */ if(FLAGS_GET_RCODE(rep->flags) == LDNS_RCODE_NXDOMAIN) { /* find the qname denial NSEC record. It can tell us * a closest encloser name; or that we not need bother */ for(i=0; i<rep->ns_numrrsets; i++) { if(htons(rep->rrsets[i]->rk.type) != LDNS_RR_TYPE_NSEC) continue; if(val_nsec_proves_name_error(rep->rrsets[i], qinfo->qname)) { log_nametypeclass(VERB_ALGO, "topdomain on", rep->rrsets[i]->rk.dname, ntohs(rep->rrsets[i]->rk.type), 0); dlv_topdomain(rep->rrsets[i], qinfo->qname, nm, nm_len); return 1; } } return 0; } return 0; }