#include #include #include #include "cryptonote_core/cryptonote_core.h" namespace cryptonote { namespace rpc { namespace { output_distribution_data process_distribution(bool cumulative, std::uint64_t start_height, std::vector distribution, std::uint64_t base) { if (!cumulative && !distribution.empty()) { for (std::size_t n = distribution.size() - 1; 0 < n; --n) distribution[n] -= distribution[n - 1]; distribution[0] -= base; } return {std::move(distribution), start_height, base}; } } boost::optional RpcHandler::get_output_distribution(const std::function&, uint64_t&)> &f, uint64_t amount, uint64_t from_height, uint64_t to_height, const std::function &get_hash, bool cumulative, uint64_t blockchain_height) { static struct D { boost::mutex mutex; std::vector cached_distribution; std::uint64_t cached_from, cached_to, cached_start_height, cached_base; crypto::hash cached_m10_hash; crypto::hash cached_top_hash; bool cached; D(): cached_from(0), cached_to(0), cached_start_height(0), cached_base(0), cached_m10_hash(crypto::null_hash), cached_top_hash(crypto::null_hash), cached(false) {} } d; const boost::unique_lock lock(d.mutex); crypto::hash top_hash = crypto::null_hash; if (d.cached_to < blockchain_height) top_hash = get_hash(d.cached_to); if (d.cached && amount == 0 && d.cached_from == from_height && d.cached_to == to_height && d.cached_top_hash == top_hash) return process_distribution(cumulative, d.cached_start_height, d.cached_distribution, d.cached_base); std::vector distribution; std::uint64_t start_height, base; // see if we can extend the cache - a common case bool can_extend = d.cached && amount == 0 && d.cached_from == from_height && to_height > d.cached_to && top_hash == d.cached_top_hash; if (!can_extend) { // we kept track of the hash 10 blocks below, if it exists, so if it matches, // we can still pop the last 10 cached slots and try again if (d.cached && amount == 0 && d.cached_from == from_height && d.cached_to - d.cached_from >= 10 && to_height > d.cached_to - 10) { crypto::hash hash10 = get_hash(d.cached_to - 10); if (hash10 == d.cached_m10_hash) { d.cached_to -= 10; d.cached_top_hash = hash10; d.cached_m10_hash = crypto::null_hash; CHECK_AND_ASSERT_MES(d.cached_distribution.size() >= 10, boost::none, "Cached distribution size does not match cached bounds"); for (int p = 0; p < 10; ++p) d.cached_distribution.pop_back(); can_extend = true; } } } if (can_extend) { std::vector new_distribution; if (!f(amount, d.cached_to + 1, to_height, start_height, new_distribution, base)) return boost::none; distribution = d.cached_distribution; distribution.reserve(distribution.size() + new_distribution.size()); for (const auto &e: new_distribution) distribution.push_back(e); start_height = d.cached_start_height; base = d.cached_base; } else { if (!f(amount, from_height, to_height, start_height, distribution, base)) return boost::none; } if (to_height > 0 && to_height >= from_height) { const std::uint64_t offset = std::max(from_height, start_height); if (offset <= to_height && to_height - offset + 1 < distribution.size()) distribution.resize(to_height - offset + 1); } if (amount == 0) { d.cached_from = from_height; d.cached_to = to_height; d.cached_top_hash = get_hash(d.cached_to); d.cached_m10_hash = d.cached_to >= 10 ? get_hash(d.cached_to - 10) : crypto::null_hash; d.cached_distribution = distribution; d.cached_start_height = start_height; d.cached_base = base; d.cached = true; } return process_distribution(cumulative, start_height, std::move(distribution), base); } } // rpc } // cryptonote