ringct: prevent use of full ringct signatures for more than one input

This commit is contained in:
moneromooo-monero 2019-04-11 18:41:41 +00:00
parent 9c77dbf376
commit 93bb2f48f7
No known key found for this signature in database
GPG key ID: 686F07454D6CEFC3
4 changed files with 60 additions and 142 deletions

View file

@ -695,6 +695,7 @@ namespace rct {
CHECK_AND_ASSERT_THROW_MES(mixRing[n].size() == inSk.size(), "Bad mixRing size"); CHECK_AND_ASSERT_THROW_MES(mixRing[n].size() == inSk.size(), "Bad mixRing size");
} }
CHECK_AND_ASSERT_THROW_MES((kLRki && msout) || (!kLRki && !msout), "Only one of kLRki/msout is present"); CHECK_AND_ASSERT_THROW_MES((kLRki && msout) || (!kLRki && !msout), "Only one of kLRki/msout is present");
CHECK_AND_ASSERT_THROW_MES(inSk.size() < 2, "genRct is not suitable for 2+ rings");
rctSig rv; rctSig rv;
rv.type = RCTTypeFull; rv.type = RCTTypeFull;

View file

@ -191,6 +191,8 @@ namespace rct {
Bulletproof(const rct::keyV &V, const rct::key &A, const rct::key &S, const rct::key &T1, const rct::key &T2, const rct::key &taux, const rct::key &mu, const rct::keyV &L, const rct::keyV &R, const rct::key &a, const rct::key &b, const rct::key &t): Bulletproof(const rct::keyV &V, const rct::key &A, const rct::key &S, const rct::key &T1, const rct::key &T2, const rct::key &taux, const rct::key &mu, const rct::keyV &L, const rct::keyV &R, const rct::key &a, const rct::key &b, const rct::key &t):
V(V), A(A), S(S), T1(T1), T2(T2), taux(taux), mu(mu), L(L), R(R), a(a), b(b), t(t) {} V(V), A(A), S(S), T1(T1), T2(T2), taux(taux), mu(mu), L(L), R(R), a(a), b(b), t(t) {}
bool operator==(const Bulletproof &other) const { return V == other.V && A == other.A && S == other.S && T1 == other.T1 && T2 == other.T2 && taux == other.taux && mu == other.mu && L == other.L && R == other.R && a == other.a && b == other.b && t == other.t; }
BEGIN_SERIALIZE_OBJECT() BEGIN_SERIALIZE_OBJECT()
// Commitments aren't saved, they're restored via outPk // Commitments aren't saved, they're restored via outPk
// FIELD(V) // FIELD(V)

View file

@ -143,13 +143,16 @@ TEST(ringct, range_proofs)
//ct range proofs //ct range proofs
ctkeyV sc, pc; ctkeyV sc, pc;
ctkey sctmp, pctmp; ctkey sctmp, pctmp;
//add fake input 5000 std::vector<uint64_t> inamounts;
tie(sctmp, pctmp) = ctskpkGen(6000); //add fake input 6000
inamounts.push_back(6000);
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
sc.push_back(sctmp); sc.push_back(sctmp);
pc.push_back(pctmp); pc.push_back(pctmp);
tie(sctmp, pctmp) = ctskpkGen(7000); inamounts.push_back(7000);
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
sc.push_back(sctmp); sc.push_back(sctmp);
pc.push_back(pctmp); pc.push_back(pctmp);
vector<xmr_amount >amounts; vector<xmr_amount >amounts;
@ -173,14 +176,20 @@ TEST(ringct, range_proofs)
const rct::RCTConfig rct_config { RangeProofBorromean, 0 }; const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
//compute rct data with mixin 500 //compute rct data with mixin 3 - should fail since full type with > 1 input
rctSig s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, rct_config, hw::get_device("default")); bool ok = false;
try { genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, rct_config, hw::get_device("default")); }
catch(...) { ok = true; }
ASSERT_TRUE(ok);
//compute rct data with mixin 3
rctSig s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, NULL, NULL, 0, 3, rct_config, hw::get_device("default"));
//verify rct data //verify rct data
ASSERT_TRUE(verRct(s)); ASSERT_TRUE(verRctSimple(s));
//decode received amount //decode received amount
decodeRct(s, amount_keys[1], 1, mask, hw::get_device("default")); decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
// Ring CT with failing MG sig part should not verify! // Ring CT with failing MG sig part should not verify!
// Since sum of inputs != outputs // Since sum of inputs != outputs
@ -190,14 +199,14 @@ TEST(ringct, range_proofs)
destinations[1] = Pk; destinations[1] = Pk;
//compute rct data with mixin 500 //compute rct data with mixin 3
s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, rct_config, hw::get_device("default")); s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, NULL, NULL, 0, 3, rct_config, hw::get_device("default"));
//verify rct data //verify rct data
ASSERT_FALSE(verRct(s)); ASSERT_FALSE(verRctSimple(s));
//decode received amount //decode received amount
decodeRct(s, amount_keys[1], 1, mask, hw::get_device("default")); decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
} }
TEST(ringct, range_proofs_with_fee) TEST(ringct, range_proofs_with_fee)
@ -206,13 +215,16 @@ TEST(ringct, range_proofs_with_fee)
//ct range proofs //ct range proofs
ctkeyV sc, pc; ctkeyV sc, pc;
ctkey sctmp, pctmp; ctkey sctmp, pctmp;
//add fake input 5000 std::vector<uint64_t> inamounts;
tie(sctmp, pctmp) = ctskpkGen(6001); //add fake input 6001
inamounts.push_back(6001);
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
sc.push_back(sctmp); sc.push_back(sctmp);
pc.push_back(pctmp); pc.push_back(pctmp);
tie(sctmp, pctmp) = ctskpkGen(7000); inamounts.push_back(7000);
tie(sctmp, pctmp) = ctskpkGen(inamounts.back());
sc.push_back(sctmp); sc.push_back(sctmp);
pc.push_back(pctmp); pc.push_back(pctmp);
vector<xmr_amount >amounts; vector<xmr_amount >amounts;
@ -227,10 +239,6 @@ TEST(ringct, range_proofs_with_fee)
skpkGen(Sk, Pk); skpkGen(Sk, Pk);
destinations.push_back(Pk); destinations.push_back(Pk);
//add txn fee for 1
//has no corresponding destination..
amounts.push_back(1);
//add output for 12500 //add output for 12500
amounts.push_back(12500); amounts.push_back(12500);
amount_keys.push_back(hash_to_scalar(zero())); amount_keys.push_back(hash_to_scalar(zero()));
@ -239,14 +247,14 @@ TEST(ringct, range_proofs_with_fee)
const rct::RCTConfig rct_config { RangeProofBorromean, 0 }; const rct::RCTConfig rct_config { RangeProofBorromean, 0 };
//compute rct data with mixin 500 //compute rct data with mixin 3
rctSig s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, rct_config, hw::get_device("default")); rctSig s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, NULL, NULL, 1, 3, rct_config, hw::get_device("default"));
//verify rct data //verify rct data
ASSERT_TRUE(verRct(s)); ASSERT_TRUE(verRctSimple(s));
//decode received amount //decode received amount
decodeRct(s, amount_keys[1], 1, mask, hw::get_device("default")); decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
// Ring CT with failing MG sig part should not verify! // Ring CT with failing MG sig part should not verify!
// Since sum of inputs != outputs // Since sum of inputs != outputs
@ -256,14 +264,14 @@ TEST(ringct, range_proofs_with_fee)
destinations[1] = Pk; destinations[1] = Pk;
//compute rct data with mixin 500 //compute rct data with mixin 3
s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, rct_config, hw::get_device("default")); s = genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, NULL, NULL, 500, 3, rct_config, hw::get_device("default"));
//verify rct data //verify rct data
ASSERT_FALSE(verRct(s)); ASSERT_FALSE(verRctSimple(s));
//decode received amount //decode received amount
decodeRct(s, amount_keys[1], 1, mask, hw::get_device("default")); decodeRctSimple(s, amount_keys[1], 1, mask, hw::get_device("default"));
} }
TEST(ringct, simple) TEST(ringct, simple)
@ -538,10 +546,10 @@ TEST(ringct, range_proofs_accept_zero_out_middle_simple)
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
} }
TEST(ringct, range_proofs_accept_zero_in_first) TEST(ringct, range_proofs_accept_zero)
{ {
const uint64_t inputs[] = {0, 5000}; const uint64_t inputs[] = {0};
const uint64_t outputs[] = {5000}; const uint64_t outputs[] = {0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
} }
@ -552,13 +560,6 @@ TEST(ringct, range_proofs_accept_zero_in_first_simple)
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
} }
TEST(ringct, range_proofs_accept_zero_in_last)
{
const uint64_t inputs[] = {5000, 0};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_in_last_simple) TEST(ringct, range_proofs_accept_zero_in_last_simple)
{ {
const uint64_t inputs[] = {5000, 0}; const uint64_t inputs[] = {5000, 0};
@ -566,13 +567,6 @@ TEST(ringct, range_proofs_accept_zero_in_last_simple)
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
} }
TEST(ringct, range_proofs_accept_zero_in_middle)
{
const uint64_t inputs[] = {2500, 0, 2500};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_zero_in_middle_simple) TEST(ringct, range_proofs_accept_zero_in_middle_simple)
{ {
const uint64_t inputs[] = {2500, 0, 2500}; const uint64_t inputs[] = {2500, 0, 2500};
@ -762,13 +756,6 @@ TEST(ringct, range_proofs_accept_1_to_N_simple)
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false,true)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false,true));
} }
TEST(ringct, range_proofs_accept_N_to_1)
{
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
const uint64_t outputs[] = {5000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_N_to_1_simple) TEST(ringct, range_proofs_accept_N_to_1_simple)
{ {
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000}; const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
@ -776,13 +763,6 @@ TEST(ringct, range_proofs_accept_N_to_1_simple)
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
} }
TEST(ringct, range_proofs_accept_N_to_N)
{
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_N_to_N_simple) TEST(ringct, range_proofs_accept_N_to_N_simple)
{ {
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000}; const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
@ -790,20 +770,6 @@ TEST(ringct, range_proofs_accept_N_to_N_simple)
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
} }
TEST(ringct, range_proofs_accept_very_long)
{
const size_t N=12;
uint64_t inputs[N];
uint64_t outputs[N];
for (size_t n = 0; n < N; ++n) {
inputs[n] = n;
outputs[n] = n;
}
std::random_shuffle(inputs, inputs + N);
std::random_shuffle(outputs, outputs + N);
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
}
TEST(ringct, range_proofs_accept_very_long_simple) TEST(ringct, range_proofs_accept_very_long_simple)
{ {
const size_t N=12; const size_t N=12;
@ -861,7 +827,7 @@ TEST(ringct, prooveRange_is_non_deterministic)
TEST(ringct, fee_0_valid) TEST(ringct, fee_0_valid)
{ {
const uint64_t inputs[] = {1000, 1000}; const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {2000, 0}; const uint64_t outputs[] = {2000, 0};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
} }
@ -875,7 +841,7 @@ TEST(ringct, fee_0_valid_simple)
TEST(ringct, fee_non_0_valid) TEST(ringct, fee_non_0_valid)
{ {
const uint64_t inputs[] = {1000, 1000}; const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {1900, 100}; const uint64_t outputs[] = {1900, 100};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
} }
@ -917,7 +883,7 @@ TEST(ringct, fee_non_0_invalid_lower_simple)
TEST(ringct, fee_burn_valid_one_out) TEST(ringct, fee_burn_valid_one_out)
{ {
const uint64_t inputs[] = {1000, 1000}; const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {0, 2000}; const uint64_t outputs[] = {0, 2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
} }
@ -931,7 +897,7 @@ TEST(ringct, fee_burn_valid_one_out_simple)
TEST(ringct, fee_burn_valid_zero_out) TEST(ringct, fee_burn_valid_zero_out)
{ {
const uint64_t inputs[] = {1000, 1000}; const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {2000}; const uint64_t outputs[] = {2000};
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false)); EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
} }
@ -945,7 +911,7 @@ TEST(ringct, fee_burn_valid_zero_out_simple)
static rctSig make_sig() static rctSig make_sig()
{ {
static const uint64_t inputs[] = {1000, 1000}; static const uint64_t inputs[] = {2000};
static const uint64_t outputs[] = {1000, 1000}; static const uint64_t outputs[] = {1000, 1000};
static rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true); static rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true);
return sig; return sig;
@ -1044,7 +1010,7 @@ TEST(ringct, reject_gen_simple_ver_non_simple)
TEST(ringct, reject_gen_non_simple_ver_simple) TEST(ringct, reject_gen_non_simple_ver_simple)
{ {
const uint64_t inputs[] = {1000, 1000}; const uint64_t inputs[] = {2000};
const uint64_t outputs[] = {1000, 1000}; const uint64_t outputs[] = {1000, 1000};
rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true); rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true);
ASSERT_FALSE(rct::verRctSimple(sig)); ASSERT_FALSE(rct::verRctSimple(sig));

View file

@ -477,7 +477,7 @@ TEST(Serialization, serializes_ringct_types)
rct::ecdhTuple ecdh0, ecdh1; rct::ecdhTuple ecdh0, ecdh1;
rct::boroSig boro0, boro1; rct::boroSig boro0, boro1;
rct::mgSig mg0, mg1; rct::mgSig mg0, mg1;
rct::rangeSig rg0, rg1; rct::Bulletproof bp0, bp1;
rct::rctSig s0, s1; rct::rctSig s0, s1;
cryptonote::transaction tx0, tx1; cryptonote::transaction tx0, tx1;
@ -566,12 +566,15 @@ TEST(Serialization, serializes_ringct_types)
ASSERT_TRUE(!memcmp(&boro0, &boro1, sizeof(boro0))); ASSERT_TRUE(!memcmp(&boro0, &boro1, sizeof(boro0)));
// create a full rct signature to use its innards // create a full rct signature to use its innards
vector<uint64_t> inamounts;
rct::ctkeyV sc, pc; rct::ctkeyV sc, pc;
rct::ctkey sctmp, pctmp; rct::ctkey sctmp, pctmp;
tie(sctmp, pctmp) = rct::ctskpkGen(6000); inamounts.push_back(6000);
tie(sctmp, pctmp) = rct::ctskpkGen(inamounts.back());
sc.push_back(sctmp); sc.push_back(sctmp);
pc.push_back(pctmp); pc.push_back(pctmp);
tie(sctmp, pctmp) = rct::ctskpkGen(7000); inamounts.push_back(7000);
tie(sctmp, pctmp) = rct::ctskpkGen(inamounts.back());
sc.push_back(sctmp); sc.push_back(sctmp);
pc.push_back(pctmp); pc.push_back(pctmp);
vector<uint64_t> amounts; vector<uint64_t> amounts;
@ -588,9 +591,9 @@ TEST(Serialization, serializes_ringct_types)
amount_keys.push_back(rct::hash_to_scalar(rct::zero())); amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
rct::skpkGen(Sk, Pk); rct::skpkGen(Sk, Pk);
destinations.push_back(Pk); destinations.push_back(Pk);
//compute rct data with mixin 500 //compute rct data with mixin 3
const rct::RCTConfig rct_config{ rct::RangeProofPaddedBulletproof, 0 }; const rct::RCTConfig rct_config{ rct::RangeProofPaddedBulletproof, 0 };
s0 = rct::genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3, rct_config, hw::get_device("default")); s0 = rct::genRctSimple(rct::zero(), sc, pc, destinations, inamounts, amounts, amount_keys, NULL, NULL, 0, 3, rct_config, hw::get_device("default"));
mg0 = s0.p.MGs[0]; mg0 = s0.p.MGs[0];
ASSERT_TRUE(serialization::dump_binary(mg0, blob)); ASSERT_TRUE(serialization::dump_binary(mg0, blob));
@ -605,66 +608,12 @@ TEST(Serialization, serializes_ringct_types)
// mixRing and II are not serialized, they are meant to be reconstructed // mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(mg1.II.empty()); ASSERT_TRUE(mg1.II.empty());
rg0 = s0.p.rangeSigs.front(); ASSERT_FALSE(s0.p.bulletproofs.empty());
ASSERT_TRUE(serialization::dump_binary(rg0, blob)); bp0 = s0.p.bulletproofs.front();
ASSERT_TRUE(serialization::parse_binary(blob, rg1)); ASSERT_TRUE(serialization::dump_binary(bp0, blob));
ASSERT_TRUE(!memcmp(&rg0, &rg1, sizeof(rg0))); ASSERT_TRUE(serialization::parse_binary(blob, bp1));
bp1.V = bp0.V; // this is not saved, as it is reconstructed from other tx data
#if 0 ASSERT_EQ(bp0, bp1);
ASSERT_TRUE(serialization::dump_binary(s0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, s1));
ASSERT_TRUE(s0.type == s1.type);
ASSERT_TRUE(s0.p.rangeSigs.size() == s1.p.rangeSigs.size());
for (size_t n = 0; n < s0.p.rangeSigs.size(); ++n)
{
ASSERT_TRUE(!memcmp(&s0.p.rangeSigs[n], &s1.p.rangeSigs[n], sizeof(s0.p.rangeSigs[n])));
}
ASSERT_TRUE(s0.p.MGs.size() == s1.p.MGs.size());
ASSERT_TRUE(s0.p.MGs[0].ss.size() == s1.p.MGs[0].ss.size());
for (size_t n = 0; n < s0.p.MGs[0].ss.size(); ++n)
{
ASSERT_TRUE(s0.p.MGs[0].ss[n] == s1.p.MGs[0].ss[n]);
}
ASSERT_TRUE(s0.p.MGs[0].cc == s1.p.MGs[0].cc);
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(s1.p.MGs[0].II.empty());
// mixRing and II are not serialized, they are meant to be reconstructed
ASSERT_TRUE(s1.mixRing.size() == 0);
ASSERT_TRUE(s0.ecdhInfo.size() == s1.ecdhInfo.size());
for (size_t n = 0; n < s0.ecdhInfo.size(); ++n)
{
ASSERT_TRUE(!memcmp(&s0.ecdhInfo[n], &s1.ecdhInfo[n], sizeof(s0.ecdhInfo[n])));
}
ASSERT_TRUE(s0.outPk.size() == s1.outPk.size());
for (size_t n = 0; n < s0.outPk.size(); ++n)
{
// serialization only does the mask
ASSERT_TRUE(!memcmp(&s0.outPk[n].mask, &s1.outPk[n].mask, sizeof(s0.outPk[n].mask)));
}
#endif
tx0.set_null();
tx0.version = 2;
cryptonote::txin_to_key txin_to_key1{};
txin_to_key1.amount = 100;
txin_to_key1.key_offsets.resize(4);
cryptonote::txin_to_key txin_to_key2{};
txin_to_key2.amount = 200;
txin_to_key2.key_offsets.resize(4);
tx0.vin.push_back(txin_to_key1);
tx0.vin.push_back(txin_to_key2);
tx0.vout.push_back(cryptonote::tx_out());
tx0.vout.push_back(cryptonote::tx_out());
tx0.rct_signatures = s0;
ASSERT_EQ(tx0.rct_signatures.p.rangeSigs.size(), 2);
ASSERT_TRUE(serialization::dump_binary(tx0, blob));
ASSERT_TRUE(serialization::parse_binary(blob, tx1));
ASSERT_EQ(tx1.rct_signatures.p.rangeSigs.size(), 2);
std::string blob2;
ASSERT_TRUE(serialization::dump_binary(tx1, blob2));
ASSERT_TRUE(blob == blob2);
} }
TEST(Serialization, portability_wallet) TEST(Serialization, portability_wallet)