mirror of
https://git.wownero.com/wownero/wownero.git
synced 2024-08-15 01:03:23 +00:00
parent
802d58054f
commit
81cf5650c4
1 changed files with 123 additions and 409 deletions
|
@ -11,429 +11,143 @@
|
|||
#include "hash-ops.h"
|
||||
#include "oaes_lib.h"
|
||||
|
||||
#include <emmintrin.h>
|
||||
static void (*const extra_hashes[4])(const void *, size_t, char *) = {
|
||||
hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
|
||||
};
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#include <intrin.h>
|
||||
#include <Windows.h>
|
||||
#define STATIC
|
||||
#define INLINE __inline
|
||||
#if !defined(RDATA_ALIGN16)
|
||||
#define RDATA_ALIGN16 __declspec(align(16))
|
||||
#endif
|
||||
#else
|
||||
#include <wmmintrin.h>
|
||||
#include <sys/mman.h>
|
||||
#define STATIC static
|
||||
#define INLINE inline
|
||||
#if !defined(RDATA_ALIGN16)
|
||||
#define RDATA_ALIGN16 __attribute__ ((aligned(16)))
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(__INTEL_COMPILER)
|
||||
#define ASM __asm__
|
||||
#elif !defined(_MSC_VER)
|
||||
#define ASM __asm__
|
||||
#else
|
||||
#define ASM __asm
|
||||
#endif
|
||||
|
||||
#define MEMORY (1 << 21) // 2MB scratchpad
|
||||
#define MEMORY (1 << 21) /* 2 MiB */
|
||||
#define ITER (1 << 20)
|
||||
#define AES_BLOCK_SIZE 16
|
||||
#define AES_KEY_SIZE 32
|
||||
#define AES_KEY_SIZE 32 /*16*/
|
||||
#define INIT_SIZE_BLK 8
|
||||
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
|
||||
#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)
|
||||
|
||||
#define U64(x) ((uint64_t *) (x))
|
||||
#define R128(x) ((__m128i *) (x))
|
||||
#define SWAP(a, b) (((a) -= (b)), ((b) += (a)), ((a) = (b) - (a)))
|
||||
static size_t e2i(const uint8_t* a, size_t count) { return (*((uint64_t*)a) / AES_BLOCK_SIZE) & (count - 1); }
|
||||
|
||||
#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
|
||||
#if defined(_MSC_VER)
|
||||
#define __mul() lo = _umul128(c[0], b[0], &hi);
|
||||
#else
|
||||
#define __mul() ASM("mulq %3\n\t" : "=d"(hi), "=a"(lo) : "%a" (c[0]), "rm" (b[0]) : "cc");
|
||||
#endif
|
||||
static void mul(const uint8_t* a, const uint8_t* b, uint8_t* res) {
|
||||
uint64_t a0, b0;
|
||||
uint64_t hi, lo;
|
||||
|
||||
#define pre_aes() \
|
||||
j = state_index(a); \
|
||||
_c = _mm_load_si128(R128(&hp_state[j])); \
|
||||
_a = _mm_load_si128(R128(a)); \
|
||||
|
||||
// dga's optimized scratchpad twiddling
|
||||
#define post_aes() \
|
||||
_mm_store_si128(R128(c), _c); \
|
||||
_b = _mm_xor_si128(_b, _c); \
|
||||
_mm_store_si128(R128(&hp_state[j]), _b); \
|
||||
j = state_index(c); \
|
||||
p = U64(&hp_state[j]); \
|
||||
b[0] = p[0]; b[1] = p[1]; \
|
||||
__mul(); \
|
||||
a[0] += hi; a[1] += lo; \
|
||||
p = U64(&hp_state[j]); \
|
||||
p[0] = a[0]; p[1] = a[1]; \
|
||||
a[0] ^= b[0]; a[1] ^= b[1]; \
|
||||
_b = _c; \
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define THREADV __declspec(thread)
|
||||
#else
|
||||
#define THREADV __thread
|
||||
#endif
|
||||
a0 = SWAP64LE(((uint64_t*)a)[0]);
|
||||
b0 = SWAP64LE(((uint64_t*)b)[0]);
|
||||
lo = mul128(a0, b0, &hi);
|
||||
((uint64_t*)res)[0] = SWAP64LE(hi);
|
||||
((uint64_t*)res)[1] = SWAP64LE(lo);
|
||||
}
|
||||
|
||||
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
|
||||
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
|
||||
static void sum_half_blocks(uint8_t* a, const uint8_t* b) {
|
||||
uint64_t a0, a1, b0, b1;
|
||||
|
||||
a0 = SWAP64LE(((uint64_t*)a)[0]);
|
||||
a1 = SWAP64LE(((uint64_t*)a)[1]);
|
||||
b0 = SWAP64LE(((uint64_t*)b)[0]);
|
||||
b1 = SWAP64LE(((uint64_t*)b)[1]);
|
||||
a0 += b0;
|
||||
a1 += b1;
|
||||
((uint64_t*)a)[0] = SWAP64LE(a0);
|
||||
((uint64_t*)a)[1] = SWAP64LE(a1);
|
||||
}
|
||||
|
||||
static void copy_block(uint8_t* dst, const uint8_t* src) {
|
||||
memcpy(dst, src, AES_BLOCK_SIZE);
|
||||
}
|
||||
|
||||
static void swap_blocks(uint8_t* a, uint8_t* b) {
|
||||
size_t i;
|
||||
uint8_t t;
|
||||
for (i = 0; i < AES_BLOCK_SIZE; i++) {
|
||||
t = a[i];
|
||||
a[i] = b[i];
|
||||
b[i] = t;
|
||||
}
|
||||
}
|
||||
|
||||
static void xor_blocks(uint8_t* a, const uint8_t* b) {
|
||||
size_t i;
|
||||
for (i = 0; i < AES_BLOCK_SIZE; i++) {
|
||||
a[i] ^= b[i];
|
||||
}
|
||||
}
|
||||
|
||||
#pragma pack(push, 1)
|
||||
union cn_slow_hash_state
|
||||
{
|
||||
union hash_state hs;
|
||||
struct
|
||||
{
|
||||
uint8_t k[64];
|
||||
uint8_t init[INIT_SIZE_BYTE];
|
||||
};
|
||||
union cn_slow_hash_state {
|
||||
union hash_state hs;
|
||||
struct {
|
||||
uint8_t k[64];
|
||||
uint8_t init[INIT_SIZE_BYTE];
|
||||
};
|
||||
};
|
||||
#pragma pack(pop)
|
||||
|
||||
THREADV uint8_t *hp_state = NULL;
|
||||
THREADV int hp_allocated = 0;
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash) {
|
||||
uint8_t long_state[MEMORY];
|
||||
union cn_slow_hash_state state;
|
||||
uint8_t text[INIT_SIZE_BYTE];
|
||||
uint8_t a[AES_BLOCK_SIZE];
|
||||
uint8_t b[AES_BLOCK_SIZE];
|
||||
uint8_t c[AES_BLOCK_SIZE];
|
||||
uint8_t d[AES_BLOCK_SIZE];
|
||||
size_t i, j;
|
||||
uint8_t aes_key[AES_KEY_SIZE];
|
||||
OAES_CTX* aes_ctx;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define cpuid(info,x) __cpuidex(info,x,0)
|
||||
#else
|
||||
void cpuid(int CPUInfo[4], int InfoType)
|
||||
{
|
||||
ASM __volatile__
|
||||
(
|
||||
"cpuid":
|
||||
"=a" (CPUInfo[0]),
|
||||
"=b" (CPUInfo[1]),
|
||||
"=c" (CPUInfo[2]),
|
||||
"=d" (CPUInfo[3]) :
|
||||
"a" (InfoType), "c" (0)
|
||||
);
|
||||
}
|
||||
#endif
|
||||
|
||||
STATIC INLINE void xor_blocks(uint8_t *a, const uint8_t *b)
|
||||
{
|
||||
U64(a)[0] ^= U64(b)[0];
|
||||
U64(a)[1] ^= U64(b)[1];
|
||||
}
|
||||
|
||||
STATIC INLINE int check_aes_hw(void)
|
||||
{
|
||||
int cpuid_results[4];
|
||||
static int supported = -1;
|
||||
|
||||
if(supported >= 0)
|
||||
return supported;
|
||||
|
||||
cpuid(cpuid_results,1);
|
||||
return supported = cpuid_results[2] & (1 << 25);
|
||||
}
|
||||
|
||||
STATIC INLINE void aes_256_assist1(__m128i* t1, __m128i * t2)
|
||||
{
|
||||
__m128i t4;
|
||||
*t2 = _mm_shuffle_epi32(*t2, 0xff);
|
||||
t4 = _mm_slli_si128(*t1, 0x04);
|
||||
*t1 = _mm_xor_si128(*t1, t4);
|
||||
t4 = _mm_slli_si128(t4, 0x04);
|
||||
*t1 = _mm_xor_si128(*t1, t4);
|
||||
t4 = _mm_slli_si128(t4, 0x04);
|
||||
*t1 = _mm_xor_si128(*t1, t4);
|
||||
*t1 = _mm_xor_si128(*t1, *t2);
|
||||
}
|
||||
|
||||
STATIC INLINE void aes_256_assist2(__m128i* t1, __m128i * t3)
|
||||
{
|
||||
__m128i t2, t4;
|
||||
t4 = _mm_aeskeygenassist_si128(*t1, 0x00);
|
||||
t2 = _mm_shuffle_epi32(t4, 0xaa);
|
||||
t4 = _mm_slli_si128(*t3, 0x04);
|
||||
*t3 = _mm_xor_si128(*t3, t4);
|
||||
t4 = _mm_slli_si128(t4, 0x04);
|
||||
*t3 = _mm_xor_si128(*t3, t4);
|
||||
t4 = _mm_slli_si128(t4, 0x04);
|
||||
*t3 = _mm_xor_si128(*t3, t4);
|
||||
*t3 = _mm_xor_si128(*t3, t2);
|
||||
}
|
||||
|
||||
STATIC INLINE void aes_expand_key(const uint8_t *key, uint8_t *expandedKey)
|
||||
{
|
||||
__m128i *ek = R128(expandedKey);
|
||||
__m128i t1, t2, t3;
|
||||
|
||||
t1 = _mm_loadu_si128(R128(key));
|
||||
t3 = _mm_loadu_si128(R128(key + 16));
|
||||
|
||||
ek[0] = t1;
|
||||
ek[1] = t3;
|
||||
|
||||
t2 = _mm_aeskeygenassist_si128(t3, 0x01);
|
||||
aes_256_assist1(&t1, &t2);
|
||||
ek[2] = t1;
|
||||
aes_256_assist2(&t1, &t3);
|
||||
ek[3] = t3;
|
||||
|
||||
t2 = _mm_aeskeygenassist_si128(t3, 0x02);
|
||||
aes_256_assist1(&t1, &t2);
|
||||
ek[4] = t1;
|
||||
aes_256_assist2(&t1, &t3);
|
||||
ek[5] = t3;
|
||||
|
||||
t2 = _mm_aeskeygenassist_si128(t3, 0x04);
|
||||
aes_256_assist1(&t1, &t2);
|
||||
ek[6] = t1;
|
||||
aes_256_assist2(&t1, &t3);
|
||||
ek[7] = t3;
|
||||
|
||||
t2 = _mm_aeskeygenassist_si128(t3, 0x08);
|
||||
aes_256_assist1(&t1, &t2);
|
||||
ek[8] = t1;
|
||||
aes_256_assist2(&t1, &t3);
|
||||
ek[9] = t3;
|
||||
|
||||
t2 = _mm_aeskeygenassist_si128(t3, 0x10);
|
||||
aes_256_assist1(&t1, &t2);
|
||||
ek[10] = t1;
|
||||
}
|
||||
|
||||
STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out,
|
||||
const uint8_t *expandedKey, int nblocks)
|
||||
{
|
||||
__m128i *k = R128(expandedKey);
|
||||
__m128i d;
|
||||
int i;
|
||||
|
||||
for(i = 0; i < nblocks; i++)
|
||||
{
|
||||
d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[0]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[1]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[2]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[3]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[4]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[5]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[6]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[7]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[8]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[9]));
|
||||
_mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
|
||||
hash_process(&state.hs, data, length);
|
||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||
memcpy(aes_key, state.hs.b, AES_KEY_SIZE);
|
||||
aes_ctx = oaes_alloc();
|
||||
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
|
||||
for (j = 0; j < INIT_SIZE_BLK; j++) {
|
||||
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
|
||||
oaes_pseudo_encrypt_ecb(aes_ctx, &text[AES_BLOCK_SIZE * j]);
|
||||
/*memcpy(aes_key, &text[AES_BLOCK_SIZE * j], AES_KEY_SIZE);*/
|
||||
memcpy(aes_key, state.hs.b, AES_KEY_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out,
|
||||
const uint8_t *expandedKey, const uint8_t *xor, int nblocks)
|
||||
{
|
||||
__m128i *k = R128(expandedKey);
|
||||
__m128i *x = R128(xor);
|
||||
__m128i d;
|
||||
int i;
|
||||
|
||||
for(i = 0; i < nblocks; i++)
|
||||
{
|
||||
d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
|
||||
d = _mm_xor_si128(d, *R128(x++));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[0]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[1]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[2]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[3]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[4]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[5]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[6]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[7]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[8]));
|
||||
d = _mm_aesenc_si128(d, *R128(&k[9]));
|
||||
_mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
BOOL SetLockPagesPrivilege(HANDLE hProcess, BOOL bEnable)
|
||||
{
|
||||
struct
|
||||
{
|
||||
DWORD count;
|
||||
LUID_AND_ATTRIBUTES privilege[1];
|
||||
} info;
|
||||
|
||||
HANDLE token;
|
||||
if(!OpenProcessToken(hProcess, TOKEN_ADJUST_PRIVILEGES, &token))
|
||||
return FALSE;
|
||||
|
||||
info.count = 1;
|
||||
info.privilege[0].Attributes = bEnable ? SE_PRIVILEGE_ENABLED : 0;
|
||||
|
||||
if(!LookupPrivilegeValue(NULL, SE_LOCK_MEMORY_NAME, &(info.privilege[0].Luid)))
|
||||
return FALSE;
|
||||
|
||||
if(!AdjustTokenPrivileges(token, FALSE, (PTOKEN_PRIVILEGES) &info, 0, NULL, NULL))
|
||||
return FALSE;
|
||||
|
||||
if (GetLastError() != ERROR_SUCCESS)
|
||||
return FALSE;
|
||||
|
||||
CloseHandle(token);
|
||||
|
||||
return TRUE;
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
void slow_hash_allocate_state(void)
|
||||
{
|
||||
int state = 0;
|
||||
if(hp_state != NULL)
|
||||
return;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
SetLockPagesPrivilege(GetCurrentProcess(), TRUE);
|
||||
hp_state = (uint8_t *) VirtualAlloc(hp_state, MEMORY, MEM_LARGE_PAGES |
|
||||
MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
|
||||
#else
|
||||
hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
|
||||
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0);
|
||||
if(hp_state == MAP_FAILED)
|
||||
hp_state = NULL;
|
||||
#endif
|
||||
hp_allocated = 1;
|
||||
if(hp_state == NULL)
|
||||
{
|
||||
hp_allocated = 0;
|
||||
hp_state = (uint8_t *) malloc(MEMORY);
|
||||
}
|
||||
}
|
||||
|
||||
void slow_hash_free_state(void)
|
||||
{
|
||||
if(hp_state == NULL)
|
||||
return;
|
||||
|
||||
if(!hp_allocated)
|
||||
free(hp_state);
|
||||
else
|
||||
{
|
||||
#if defined(_MSC_VER)
|
||||
VirtualFree(hp_state, MEMORY, MEM_RELEASE);
|
||||
#else
|
||||
munmap(hp_state, MEMORY);
|
||||
#endif
|
||||
}
|
||||
|
||||
hp_state = NULL;
|
||||
hp_allocated = 0;
|
||||
}
|
||||
|
||||
void cn_slow_hash(const void *data, size_t length, char *hash)
|
||||
{
|
||||
RDATA_ALIGN16 uint8_t expandedKey[240];
|
||||
|
||||
uint8_t text[INIT_SIZE_BYTE];
|
||||
RDATA_ALIGN16 uint64_t a[2];
|
||||
RDATA_ALIGN16 uint64_t b[2];
|
||||
RDATA_ALIGN16 uint64_t c[2];
|
||||
RDATA_ALIGN16 uint8_t aes_key[AES_KEY_SIZE];
|
||||
union cn_slow_hash_state state;
|
||||
__m128i _a, _b, _c;
|
||||
uint64_t hi, lo;
|
||||
|
||||
size_t i, j;
|
||||
uint64_t *p = NULL;
|
||||
oaes_ctx *aes_ctx;
|
||||
int useAes = check_aes_hw();
|
||||
|
||||
static void (*const extra_hashes[4])(const void *, size_t, char *) =
|
||||
{
|
||||
hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
|
||||
};
|
||||
|
||||
// this isn't supposed to happen, but guard against it for now.
|
||||
if(hp_state == NULL)
|
||||
slow_hash_allocate_state();
|
||||
|
||||
hash_process(&state.hs, data, length);
|
||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||
|
||||
if(useAes)
|
||||
{
|
||||
aes_expand_key(state.hs.b, expandedKey);
|
||||
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||
{
|
||||
aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
|
||||
memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
aes_ctx = (oaes_ctx *) oaes_alloc();
|
||||
oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);
|
||||
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||
{
|
||||
for(j = 0; j < INIT_SIZE_BLK; j++)
|
||||
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
|
||||
|
||||
memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||
}
|
||||
}
|
||||
|
||||
U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
|
||||
U64(a)[1] = U64(&state.k[0])[1] ^ U64(&state.k[32])[1];
|
||||
U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
|
||||
U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];
|
||||
|
||||
_b = _mm_load_si128(R128(b));
|
||||
// this is ugly but the branching affects the loop somewhat so put it outside.
|
||||
if(useAes)
|
||||
{
|
||||
for(i = 0; i < ITER / 2; i++)
|
||||
{
|
||||
pre_aes();
|
||||
_c = _mm_aesenc_si128(_c, _a);
|
||||
// post_aes(), optimized scratchpad twiddling (credits to dga)
|
||||
post_aes();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for(i = 0; i < ITER / 2; i++)
|
||||
{
|
||||
pre_aes();
|
||||
aesb_single_round((uint8_t *) &_c, (uint8_t *) &_c, (uint8_t *) &_a);
|
||||
post_aes();
|
||||
}
|
||||
}
|
||||
|
||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||
if(useAes)
|
||||
{
|
||||
aes_expand_key(&state.hs.b[32], expandedKey);
|
||||
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||
{
|
||||
// add the xor to the pseudo round
|
||||
aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
|
||||
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
|
||||
{
|
||||
for(j = 0; j < INIT_SIZE_BLK; j++)
|
||||
{
|
||||
xor_blocks(&text[j * AES_BLOCK_SIZE], &hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
|
||||
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
|
||||
}
|
||||
}
|
||||
oaes_free((OAES_CTX **) &aes_ctx);
|
||||
}
|
||||
|
||||
memcpy(state.init, text, INIT_SIZE_BYTE);
|
||||
hash_permutation(&state.hs);
|
||||
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
|
||||
memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
|
||||
}
|
||||
|
||||
for (i = 0; i < 16; i++) {
|
||||
a[i] = state.k[ i] ^ state.k[32 + i];
|
||||
b[i] = state.k[16 + i] ^ state.k[48 + i];
|
||||
}
|
||||
|
||||
for (i = 0; i < ITER / 2; i++) {
|
||||
/* Dependency chain: address -> read value ------+
|
||||
* written value <-+ hard function (AES or MUL) <+
|
||||
* next address <-+
|
||||
*/
|
||||
/* Iteration 1 */
|
||||
j = e2i(a, MEMORY / AES_BLOCK_SIZE);
|
||||
copy_block(c, &long_state[j * AES_BLOCK_SIZE]);
|
||||
oaes_encryption_round(a, c);
|
||||
xor_blocks(b, c);
|
||||
swap_blocks(b, c);
|
||||
copy_block(&long_state[j * AES_BLOCK_SIZE], c);
|
||||
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE));
|
||||
swap_blocks(a, b);
|
||||
/* Iteration 2 */
|
||||
j = e2i(a, MEMORY / AES_BLOCK_SIZE);
|
||||
copy_block(c, &long_state[j * AES_BLOCK_SIZE]);
|
||||
mul(a, c, d);
|
||||
sum_half_blocks(b, d);
|
||||
swap_blocks(b, c);
|
||||
xor_blocks(b, c);
|
||||
copy_block(&long_state[j * AES_BLOCK_SIZE], c);
|
||||
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE));
|
||||
swap_blocks(a, b);
|
||||
}
|
||||
|
||||
memcpy(text, state.init, INIT_SIZE_BYTE);
|
||||
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
|
||||
for (j = 0; j < INIT_SIZE_BLK; j++) {
|
||||
/*oaes_key_import_data(aes_ctx, &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE], AES_KEY_SIZE);*/
|
||||
oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
|
||||
xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
|
||||
oaes_pseudo_encrypt_ecb(aes_ctx, &text[j * AES_BLOCK_SIZE]);
|
||||
}
|
||||
}
|
||||
memcpy(state.init, text, INIT_SIZE_BYTE);
|
||||
hash_permutation(&state.hs);
|
||||
/*memcpy(hash, &state, 32);*/
|
||||
extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
|
||||
oaes_free(&aes_ctx);
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue