mirror of
				https://git.wownero.com/wownero/wownero.git
				synced 2024-08-15 01:03:23 +00:00 
			
		
		
		
	Update slow-hash.c
1. Added huge pages support and optimized scratchpad twiddling. (credits to dga). 2. Added aes-ni key expansion support. 3. Minor speedup to scratchpad initialization/finalization.
This commit is contained in:
		
							parent
							
								
									8fc42a21fc
								
							
						
					
					
						commit
						72643c47da
					
				
					 1 changed files with 293 additions and 115 deletions
				
			
		| 
						 | 
				
			
			@ -13,8 +13,9 @@
 | 
			
		|||
 | 
			
		||||
#include <emmintrin.h>
 | 
			
		||||
 | 
			
		||||
#if defined(_MSC_VER) || defined(__INTEL_COMPILER)
 | 
			
		||||
#if defined(_MSC_VER)
 | 
			
		||||
#include <intrin.h>
 | 
			
		||||
#include <Windows.h>
 | 
			
		||||
#define STATIC
 | 
			
		||||
#define INLINE __inline
 | 
			
		||||
#if !defined(RDATA_ALIGN16)
 | 
			
		||||
| 
						 | 
				
			
			@ -22,6 +23,7 @@
 | 
			
		|||
#endif
 | 
			
		||||
#else
 | 
			
		||||
#include <wmmintrin.h>
 | 
			
		||||
#include <sys/mman.h>
 | 
			
		||||
#define STATIC static
 | 
			
		||||
#define INLINE inline
 | 
			
		||||
#if !defined(RDATA_ALIGN16)
 | 
			
		||||
| 
						 | 
				
			
			@ -29,15 +31,58 @@
 | 
			
		|||
#endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if defined(__INTEL_COMPILER)
 | 
			
		||||
#define ASM __asm__
 | 
			
		||||
#elif !defined(_MSC_VER)
 | 
			
		||||
#define ASM __asm__
 | 
			
		||||
#else
 | 
			
		||||
#define ASM __asm
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define MEMORY         (1 << 21) // 2MB scratchpad
 | 
			
		||||
#define ITER           (1 << 20)
 | 
			
		||||
#define AES_BLOCK_SIZE  16
 | 
			
		||||
#define AES_KEY_SIZE    32
 | 
			
		||||
#define INIT_SIZE_BLK   8
 | 
			
		||||
#define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE)
 | 
			
		||||
#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)
 | 
			
		||||
 | 
			
		||||
#define U64(x) ((uint64_t *) (x))
 | 
			
		||||
#define R128(x) ((__m128i *) (x))
 | 
			
		||||
#define SWAP(a, b) (((a) -= (b)), ((b) += (a)), ((a) = (b) - (a)))
 | 
			
		||||
 | 
			
		||||
#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
 | 
			
		||||
#if defined(_MSC_VER)
 | 
			
		||||
#define __mul() lo = _umul128(c[0], b[0], &hi);
 | 
			
		||||
#else
 | 
			
		||||
#define __mul() ASM("mulq %3\n\t" : "=d"(hi), "=a"(lo) : "%a" (c[0]), "rm" (b[0]) : "cc");
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#define pre_aes() \
 | 
			
		||||
    j = state_index(a); \
 | 
			
		||||
	_c = _mm_load_si128(R128(&hp_state[j])); \
 | 
			
		||||
	_a = _mm_load_si128(R128(a)); \
 | 
			
		||||
 
 | 
			
		||||
// dga's optimized scratchpad twiddling
 | 
			
		||||
#define post_aes() \
 | 
			
		||||
	_mm_store_si128(R128(c), _c); \
 | 
			
		||||
	_b = _mm_xor_si128(_b, _c); \
 | 
			
		||||
	_mm_store_si128(R128(&hp_state[j]), _b); \
 | 
			
		||||
	j = state_index(c); \
 | 
			
		||||
	p = U64(&hp_state[j]); \
 | 
			
		||||
	b[0] = p[0]; b[1] = p[1]; \
 | 
			
		||||
	__mul(); \
 | 
			
		||||
	a[0] += hi; a[1] += lo; \
 | 
			
		||||
	p = U64(&hp_state[j]); \
 | 
			
		||||
	p[0] = a[0];  p[1] = a[1]; \
 | 
			
		||||
	a[0] ^= b[0]; a[1] ^= b[1]; \
 | 
			
		||||
	_b = _c; \
 | 
			
		||||
 
 | 
			
		||||
#if defined(_MSC_VER)
 | 
			
		||||
#define THREADV __declspec(thread)
 | 
			
		||||
#else
 | 
			
		||||
#define THREADV __thread
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey);
 | 
			
		||||
extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
 | 
			
		||||
| 
						 | 
				
			
			@ -54,59 +99,26 @@ union cn_slow_hash_state
 | 
			
		|||
};
 | 
			
		||||
#pragma pack(pop)
 | 
			
		||||
 | 
			
		||||
#if defined(_MSC_VER) || defined(__INTEL_COMPILER)
 | 
			
		||||
THREADV uint8_t *hp_state = NULL;
 | 
			
		||||
THREADV int hp_allocated = 0;
 | 
			
		||||
 | 
			
		||||
#if defined(_MSC_VER)
 | 
			
		||||
#define cpuid(info,x)    __cpuidex(info,x,0)
 | 
			
		||||
#else
 | 
			
		||||
void cpuid(int CPUInfo[4], int InfoType)
 | 
			
		||||
{
 | 
			
		||||
    __asm__ __volatile__
 | 
			
		||||
    ASM __volatile__
 | 
			
		||||
    (
 | 
			
		||||
        "cpuid":
 | 
			
		||||
    "cpuid":
 | 
			
		||||
        "=a" (CPUInfo[0]),
 | 
			
		||||
        "=b" (CPUInfo[1]),
 | 
			
		||||
        "=c" (CPUInfo[2]),
 | 
			
		||||
        "=d" (CPUInfo[3]) :
 | 
			
		||||
        "a" (InfoType), "c" (0)
 | 
			
		||||
    );
 | 
			
		||||
            "a" (InfoType), "c" (0)
 | 
			
		||||
        );
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
STATIC INLINE void mul(const uint8_t *a, const uint8_t *b, uint8_t *res)
 | 
			
		||||
{
 | 
			
		||||
    uint64_t a0, b0;
 | 
			
		||||
    uint64_t hi, lo;
 | 
			
		||||
 | 
			
		||||
    a0 = U64(a)[0];
 | 
			
		||||
    b0 = U64(b)[0];
 | 
			
		||||
    lo = mul128(a0, b0, &hi);
 | 
			
		||||
    U64(res)[0] = hi;
 | 
			
		||||
    U64(res)[1] = lo;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
STATIC INLINE void sum_half_blocks(uint8_t *a, const uint8_t *b)
 | 
			
		||||
{
 | 
			
		||||
    uint64_t a0, a1, b0, b1;
 | 
			
		||||
    a0 = U64(a)[0];
 | 
			
		||||
    a1 = U64(a)[1];
 | 
			
		||||
    b0 = U64(b)[0];
 | 
			
		||||
    b1 = U64(b)[1];
 | 
			
		||||
    a0 += b0;
 | 
			
		||||
    a1 += b1;
 | 
			
		||||
    U64(a)[0] = a0;
 | 
			
		||||
    U64(a)[1] = a1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
STATIC INLINE void swap_blocks(uint8_t *a, uint8_t *b)
 | 
			
		||||
{
 | 
			
		||||
    uint64_t t[2];
 | 
			
		||||
    U64(t)[0] = U64(a)[0];
 | 
			
		||||
    U64(t)[1] = U64(a)[1];
 | 
			
		||||
    U64(a)[0] = U64(b)[0];
 | 
			
		||||
    U64(a)[1] = U64(b)[1];
 | 
			
		||||
    U64(b)[0] = U64(t)[0];
 | 
			
		||||
    U64(b)[1] = U64(t)[1];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
STATIC INLINE void xor_blocks(uint8_t *a, const uint8_t *b)
 | 
			
		||||
{
 | 
			
		||||
    U64(a)[0] ^= U64(b)[0];
 | 
			
		||||
| 
						 | 
				
			
			@ -125,74 +137,248 @@ STATIC INLINE int check_aes_hw(void)
 | 
			
		|||
    return supported = cpuid_results[2] & (1 << 25);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
STATIC INLINE void aesni_pseudo_round(const uint8_t *in, uint8_t *out,
 | 
			
		||||
                                      const uint8_t *expandedKey)
 | 
			
		||||
STATIC INLINE void aes_256_assist1(__m128i* t1, __m128i * t2)
 | 
			
		||||
{
 | 
			
		||||
    __m128i t4;
 | 
			
		||||
    *t2 = _mm_shuffle_epi32(*t2, 0xff);
 | 
			
		||||
    t4 = _mm_slli_si128(*t1, 0x04);
 | 
			
		||||
    *t1 = _mm_xor_si128(*t1, t4);
 | 
			
		||||
    t4 = _mm_slli_si128(t4, 0x04);
 | 
			
		||||
    *t1 = _mm_xor_si128(*t1, t4);
 | 
			
		||||
    t4 = _mm_slli_si128(t4, 0x04);
 | 
			
		||||
    *t1 = _mm_xor_si128(*t1, t4);
 | 
			
		||||
    *t1 = _mm_xor_si128(*t1, *t2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
STATIC INLINE void aes_256_assist2(__m128i* t1, __m128i * t3)
 | 
			
		||||
{
 | 
			
		||||
    __m128i t2, t4;
 | 
			
		||||
    t4 = _mm_aeskeygenassist_si128(*t1, 0x00);
 | 
			
		||||
    t2 = _mm_shuffle_epi32(t4, 0xaa);
 | 
			
		||||
    t4 = _mm_slli_si128(*t3, 0x04);
 | 
			
		||||
    *t3 = _mm_xor_si128(*t3, t4);
 | 
			
		||||
    t4 = _mm_slli_si128(t4, 0x04);
 | 
			
		||||
    *t3 = _mm_xor_si128(*t3, t4);
 | 
			
		||||
    t4 = _mm_slli_si128(t4, 0x04);
 | 
			
		||||
    *t3 = _mm_xor_si128(*t3, t4);
 | 
			
		||||
    *t3 = _mm_xor_si128(*t3, t2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
STATIC INLINE void aes_expand_key(const uint8_t *key, uint8_t *expandedKey)
 | 
			
		||||
{
 | 
			
		||||
    __m128i *ek = R128(expandedKey);
 | 
			
		||||
    __m128i t1, t2, t3;
 | 
			
		||||
 | 
			
		||||
    t1 = _mm_loadu_si128(R128(key));
 | 
			
		||||
    t3 = _mm_loadu_si128(R128(key + 16));
 | 
			
		||||
 | 
			
		||||
    ek[0] = t1;
 | 
			
		||||
    ek[1] = t3;
 | 
			
		||||
 | 
			
		||||
    t2 = _mm_aeskeygenassist_si128(t3, 0x01);
 | 
			
		||||
    aes_256_assist1(&t1, &t2);
 | 
			
		||||
    ek[2] = t1;
 | 
			
		||||
    aes_256_assist2(&t1, &t3);
 | 
			
		||||
    ek[3] = t3;
 | 
			
		||||
 | 
			
		||||
    t2 = _mm_aeskeygenassist_si128(t3, 0x02);
 | 
			
		||||
    aes_256_assist1(&t1, &t2);
 | 
			
		||||
    ek[4] = t1;
 | 
			
		||||
    aes_256_assist2(&t1, &t3);
 | 
			
		||||
    ek[5] = t3;
 | 
			
		||||
 | 
			
		||||
    t2 = _mm_aeskeygenassist_si128(t3, 0x04);
 | 
			
		||||
    aes_256_assist1(&t1, &t2);
 | 
			
		||||
    ek[6] = t1;
 | 
			
		||||
    aes_256_assist2(&t1, &t3);
 | 
			
		||||
    ek[7] = t3;
 | 
			
		||||
 | 
			
		||||
    t2 = _mm_aeskeygenassist_si128(t3, 0x08);
 | 
			
		||||
    aes_256_assist1(&t1, &t2);
 | 
			
		||||
    ek[8] = t1;
 | 
			
		||||
    aes_256_assist2(&t1, &t3);
 | 
			
		||||
    ek[9] = t3;
 | 
			
		||||
 | 
			
		||||
    t2 = _mm_aeskeygenassist_si128(t3, 0x10);
 | 
			
		||||
    aes_256_assist1(&t1, &t2);
 | 
			
		||||
    ek[10] = t1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out,
 | 
			
		||||
                                    const uint8_t *expandedKey, int nblocks)
 | 
			
		||||
{
 | 
			
		||||
    __m128i *k = R128(expandedKey);
 | 
			
		||||
    __m128i d;
 | 
			
		||||
    int i;
 | 
			
		||||
 | 
			
		||||
    d = _mm_loadu_si128(R128(in));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[0]));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[1]));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[2]));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[3]));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[4]));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[5]));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[6]));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[7]));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[8]));
 | 
			
		||||
    d = _mm_aesenc_si128(d, *R128(&k[9]));
 | 
			
		||||
    _mm_storeu_si128((R128(out)), d);
 | 
			
		||||
    for(i = 0; i < nblocks; i++)
 | 
			
		||||
    {
 | 
			
		||||
        d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[0]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[1]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[2]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[3]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[4]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[5]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[6]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[7]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[8]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[9]));
 | 
			
		||||
        _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out,
 | 
			
		||||
                                        const uint8_t *expandedKey, const uint8_t *xor, int nblocks)
 | 
			
		||||
{
 | 
			
		||||
    __m128i *k = R128(expandedKey);
 | 
			
		||||
    __m128i *x = R128(xor);
 | 
			
		||||
    __m128i d;
 | 
			
		||||
    int i;
 | 
			
		||||
 | 
			
		||||
    for(i = 0; i < nblocks; i++)
 | 
			
		||||
    {
 | 
			
		||||
        d = _mm_loadu_si128(R128(in + i * AES_BLOCK_SIZE));
 | 
			
		||||
        d = _mm_xor_si128(d, *R128(x++));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[0]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[1]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[2]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[3]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[4]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[5]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[6]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[7]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[8]));
 | 
			
		||||
        d = _mm_aesenc_si128(d, *R128(&k[9]));
 | 
			
		||||
        _mm_storeu_si128((R128(out + i * AES_BLOCK_SIZE)), d);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if defined(_MSC_VER)
 | 
			
		||||
BOOL SetLockPagesPrivilege(HANDLE hProcess, BOOL bEnable)
 | 
			
		||||
{
 | 
			
		||||
    struct
 | 
			
		||||
    {
 | 
			
		||||
        DWORD count;
 | 
			
		||||
        LUID_AND_ATTRIBUTES privilege[1];
 | 
			
		||||
    } info;
 | 
			
		||||
 | 
			
		||||
    HANDLE token;
 | 
			
		||||
    if(!OpenProcessToken(hProcess, TOKEN_ADJUST_PRIVILEGES, &token))
 | 
			
		||||
        return FALSE;
 | 
			
		||||
 | 
			
		||||
    info.count = 1;
 | 
			
		||||
    info.privilege[0].Attributes = bEnable ? SE_PRIVILEGE_ENABLED : 0;
 | 
			
		||||
 | 
			
		||||
    if(!LookupPrivilegeValue(NULL, SE_LOCK_MEMORY_NAME, &(info.privilege[0].Luid)))
 | 
			
		||||
        return FALSE;
 | 
			
		||||
 | 
			
		||||
    if(!AdjustTokenPrivileges(token, FALSE, (PTOKEN_PRIVILEGES) &info, 0, NULL, NULL))
 | 
			
		||||
        return FALSE;
 | 
			
		||||
 | 
			
		||||
    if (GetLastError() != ERROR_SUCCESS)
 | 
			
		||||
        return FALSE;
 | 
			
		||||
 | 
			
		||||
    CloseHandle(token);
 | 
			
		||||
 | 
			
		||||
    return TRUE;
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
void slow_hash_allocate_state(void)
 | 
			
		||||
{
 | 
			
		||||
    int state = 0;
 | 
			
		||||
    if(hp_state != NULL)
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
#if defined(_MSC_VER)
 | 
			
		||||
    SetLockPagesPrivilege(GetCurrentProcess(), TRUE);
 | 
			
		||||
    hp_state = (uint8_t *) VirtualAlloc(hp_state, MEMORY, MEM_LARGE_PAGES |
 | 
			
		||||
                                        MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
 | 
			
		||||
#else
 | 
			
		||||
    hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
 | 
			
		||||
                    MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0);
 | 
			
		||||
    if(hp_state == MAP_FAILED)
 | 
			
		||||
        hp_state = NULL;
 | 
			
		||||
#endif
 | 
			
		||||
    hp_allocated = 1;
 | 
			
		||||
    if(hp_state == NULL)
 | 
			
		||||
    {
 | 
			
		||||
        hp_allocated = 0;
 | 
			
		||||
        hp_state = (uint8_t *) malloc(MEMORY);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void slow_hash_free_state(void)
 | 
			
		||||
{
 | 
			
		||||
    if(hp_state == NULL)
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
    if(!hp_allocated)
 | 
			
		||||
        free(hp_state);
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
#if defined(_MSC_VER)
 | 
			
		||||
        VirtualFree(hp_state, MEMORY, MEM_RELEASE);
 | 
			
		||||
#else
 | 
			
		||||
        munmap(hp_state, MEMORY);
 | 
			
		||||
#endif
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    hp_state = NULL;
 | 
			
		||||
    hp_allocated = 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cn_slow_hash(const void *data, size_t length, char *hash)
 | 
			
		||||
{
 | 
			
		||||
    uint8_t long_state[MEMORY];
 | 
			
		||||
    uint8_t text[INIT_SIZE_BYTE];
 | 
			
		||||
    uint8_t a[AES_BLOCK_SIZE];
 | 
			
		||||
    uint8_t b[AES_BLOCK_SIZE];
 | 
			
		||||
    uint8_t d[AES_BLOCK_SIZE];
 | 
			
		||||
    uint8_t aes_key[AES_KEY_SIZE];
 | 
			
		||||
    RDATA_ALIGN16 uint8_t expandedKey[256];
 | 
			
		||||
    RDATA_ALIGN16 uint8_t expandedKey[240];
 | 
			
		||||
 | 
			
		||||
    uint8_t text[INIT_SIZE_BYTE];
 | 
			
		||||
    RDATA_ALIGN16 uint64_t a[2];
 | 
			
		||||
    RDATA_ALIGN16 uint64_t b[2];
 | 
			
		||||
    RDATA_ALIGN16 uint64_t c[2];
 | 
			
		||||
    RDATA_ALIGN16 uint8_t aes_key[AES_KEY_SIZE];
 | 
			
		||||
    union cn_slow_hash_state state;
 | 
			
		||||
    __m128i _a, _b, _c;
 | 
			
		||||
    uint64_t hi, lo;
 | 
			
		||||
 | 
			
		||||
    size_t i, j;
 | 
			
		||||
    uint8_t *p = NULL;
 | 
			
		||||
    uint64_t *p = NULL;
 | 
			
		||||
    oaes_ctx *aes_ctx;
 | 
			
		||||
 | 
			
		||||
    int useAes = check_aes_hw();
 | 
			
		||||
 | 
			
		||||
    static void (*const extra_hashes[4])(const void *, size_t, char *) =
 | 
			
		||||
    {
 | 
			
		||||
        hash_extra_blake, hash_extra_groestl, hash_extra_jh, hash_extra_skein
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    // this isn't supposed to happen, but guard against it for now.
 | 
			
		||||
    if(hp_state == NULL)
 | 
			
		||||
        slow_hash_allocate_state();
 | 
			
		||||
 | 
			
		||||
    hash_process(&state.hs, data, length);
 | 
			
		||||
    memcpy(text, state.init, INIT_SIZE_BYTE);
 | 
			
		||||
 | 
			
		||||
    aes_ctx = (oaes_ctx *) oaes_alloc();
 | 
			
		||||
    oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);
 | 
			
		||||
 | 
			
		||||
    // use aligned data
 | 
			
		||||
    memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
 | 
			
		||||
 | 
			
		||||
    if(useAes)
 | 
			
		||||
    {
 | 
			
		||||
        aes_expand_key(state.hs.b, expandedKey);
 | 
			
		||||
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
 | 
			
		||||
        {
 | 
			
		||||
            for(j = 0; j < INIT_SIZE_BLK; j++)
 | 
			
		||||
                aesni_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
 | 
			
		||||
            memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
 | 
			
		||||
            aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
 | 
			
		||||
            memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        aes_ctx = (oaes_ctx *) oaes_alloc();
 | 
			
		||||
        oaes_key_import_data(aes_ctx, state.hs.b, AES_KEY_SIZE);
 | 
			
		||||
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
 | 
			
		||||
        {
 | 
			
		||||
            for(j = 0; j < INIT_SIZE_BLK; j++)
 | 
			
		||||
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
 | 
			
		||||
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
 | 
			
		||||
 | 
			
		||||
            memcpy(&long_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
 | 
			
		||||
            memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -201,60 +387,52 @@ void cn_slow_hash(const void *data, size_t length, char *hash)
 | 
			
		|||
    U64(b)[0] = U64(&state.k[16])[0] ^ U64(&state.k[48])[0];
 | 
			
		||||
    U64(b)[1] = U64(&state.k[16])[1] ^ U64(&state.k[48])[1];
 | 
			
		||||
 | 
			
		||||
    for(i = 0; i < ITER / 2; i++)
 | 
			
		||||
    {
 | 
			
		||||
				#define TOTALBLOCKS (MEMORY / AES_BLOCK_SIZE)
 | 
			
		||||
				#define state_index(x) (((*((uint64_t *)x) >> 4) & (TOTALBLOCKS - 1)) << 4)
 | 
			
		||||
 | 
			
		||||
        // Iteration 1
 | 
			
		||||
        p = &long_state[state_index(a)];
 | 
			
		||||
 | 
			
		||||
        if(useAes)
 | 
			
		||||
            _mm_storeu_si128(R128(p), _mm_aesenc_si128(_mm_loadu_si128(R128(p)), _mm_loadu_si128(R128(a))));
 | 
			
		||||
        else
 | 
			
		||||
            aesb_single_round(p, p, a);
 | 
			
		||||
 | 
			
		||||
        xor_blocks(b, p);
 | 
			
		||||
        swap_blocks(b, p);
 | 
			
		||||
        swap_blocks(a, b);
 | 
			
		||||
 | 
			
		||||
        // Iteration 2
 | 
			
		||||
        p = &long_state[state_index(a)];
 | 
			
		||||
 | 
			
		||||
        mul(a, p, d);
 | 
			
		||||
        sum_half_blocks(b, d);
 | 
			
		||||
        swap_blocks(b, p);
 | 
			
		||||
        xor_blocks(b, p);
 | 
			
		||||
        swap_blocks(a, b);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    memcpy(text, state.init, INIT_SIZE_BYTE);
 | 
			
		||||
    oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
 | 
			
		||||
    memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
 | 
			
		||||
    _b = _mm_load_si128(R128(b));
 | 
			
		||||
    // this is ugly but the branching affects the loop somewhat so put it outside.
 | 
			
		||||
    if(useAes)
 | 
			
		||||
    {
 | 
			
		||||
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
 | 
			
		||||
        for(i = 0; i < ITER / 2; i++)
 | 
			
		||||
        {
 | 
			
		||||
            for(j = 0; j < INIT_SIZE_BLK; j++)
 | 
			
		||||
            {
 | 
			
		||||
                xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
 | 
			
		||||
                aesni_pseudo_round(&text[j * AES_BLOCK_SIZE], &text[j * AES_BLOCK_SIZE], expandedKey);
 | 
			
		||||
            }
 | 
			
		||||
            pre_aes();
 | 
			
		||||
            _c = _mm_aesenc_si128(_c, _a);
 | 
			
		||||
            // post_aes(), optimized scratchpad twiddling (credits to dga)
 | 
			
		||||
            post_aes();
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        for(i = 0; i < ITER / 2; i++)
 | 
			
		||||
        {
 | 
			
		||||
            pre_aes();
 | 
			
		||||
            aesb_single_round((uint8_t *) &_c, (uint8_t *) &_c, (uint8_t *) &_a);
 | 
			
		||||
            post_aes();
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    memcpy(text, state.init, INIT_SIZE_BYTE);
 | 
			
		||||
    if(useAes)
 | 
			
		||||
    {
 | 
			
		||||
        aes_expand_key(&state.hs.b[32], expandedKey);
 | 
			
		||||
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
 | 
			
		||||
        {
 | 
			
		||||
            // add the xor to the pseudo round
 | 
			
		||||
            aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
    {
 | 
			
		||||
        oaes_key_import_data(aes_ctx, &state.hs.b[32], AES_KEY_SIZE);
 | 
			
		||||
        for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
 | 
			
		||||
        {
 | 
			
		||||
            for(j = 0; j < INIT_SIZE_BLK; j++)
 | 
			
		||||
            {
 | 
			
		||||
                xor_blocks(&text[j * AES_BLOCK_SIZE], &long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
 | 
			
		||||
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], expandedKey);
 | 
			
		||||
                xor_blocks(&text[j * AES_BLOCK_SIZE], &hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
 | 
			
		||||
                aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        oaes_free((OAES_CTX **) &aes_ctx);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    oaes_free((OAES_CTX **) &aes_ctx);
 | 
			
		||||
    memcpy(state.init, text, INIT_SIZE_BYTE);
 | 
			
		||||
    hash_permutation(&state.hs);
 | 
			
		||||
    extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue