Cryptonight variant 4 aka cn/wow

This commit is contained in:
wowario 2019-04-23 12:04:21 +03:00
parent e89be7b80c
commit 6b1d4e67bc
No known key found for this signature in database
GPG key ID: 24DCBE762DE9C111
2 changed files with 194 additions and 349 deletions

View file

@ -40,9 +40,6 @@
#include "oaes_lib.h" #include "oaes_lib.h"
#include "variant2_int_sqrt.h" #include "variant2_int_sqrt.h"
#include "variant4_random_math.h" #include "variant4_random_math.h"
#include "CryptonightR_JIT.h"
#include <errno.h>
#define MEMORY (1 << 21) // 2MB scratchpad #define MEMORY (1 << 21) // 2MB scratchpad
#define ITER (1 << 20) #define ITER (1 << 20)
@ -54,41 +51,6 @@
extern void aesb_single_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey); extern void aesb_single_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey); extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey);
static void local_abort(const char *msg)
{
fprintf(stderr, "%s\n", msg);
#ifdef NDEBUG
_exit(1);
#else
abort();
#endif
}
volatile int use_v4_jit_flag = -1;
static inline int use_v4_jit(void)
{
#if defined(__x86_64__)
if (use_v4_jit_flag != -1)
return use_v4_jit_flag;
const char *env = getenv("MONERO_USE_CNV4_JIT");
if (!env) {
use_v4_jit_flag = 1;
}
else if (!strcmp(env, "0") || !strcmp(env, "no")) {
use_v4_jit_flag = 0;
}
else {
use_v4_jit_flag = 1;
}
return use_v4_jit_flag;
#else
return 0;
#endif
}
#define VARIANT1_1(p) \ #define VARIANT1_1(p) \
do if (variant == 1) \ do if (variant == 1) \
{ \ { \
@ -155,74 +117,48 @@ static inline int use_v4_jit(void)
#define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \ #define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \
do if (variant >= 2) \ do if (variant >= 2) \
{ \ { \
__m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \ const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \
const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \ const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \
const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \ const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \
if (variant >= 4) \
{ \
chunk1 = _mm_xor_si128(chunk1, chunk2); \
_c = _mm_xor_si128(_c, chunk3); \
_c = _mm_xor_si128(_c, chunk1); \
} \
} while (0) } while (0)
#define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \ #define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \
do if (variant >= 2) \ do if (variant >= 2) \
{ \ { \
uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \ const uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \
const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \ const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \
const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \ const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \ vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \ vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \ vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \
if (variant >= 4) \
{ \
chunk1 = veorq_u64(chunk1, chunk2); \
_c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk3)); \
_c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk1)); \
} \
} while (0) } while (0)
#define VARIANT2_PORTABLE_SHUFFLE_ADD(out, a_, base_ptr, offset) \ #define VARIANT2_PORTABLE_SHUFFLE_ADD(base_ptr, offset) \
do if (variant >= 2) \ do if (variant >= 2) \
{ \ { \
uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \ uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \
uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \ uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \
uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \ uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \
\ \
uint64_t chunk1_old[2] = { SWAP64LE(chunk1[0]), SWAP64LE(chunk1[1]) }; \ const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \
const uint64_t chunk2_old[2] = { SWAP64LE(chunk2[0]), SWAP64LE(chunk2[1]) }; \
const uint64_t chunk3_old[2] = { SWAP64LE(chunk3[0]), SWAP64LE(chunk3[1]) }; \
\ \
uint64_t b1[2]; \ uint64_t b1[2]; \
memcpy_swap64le(b1, b + 16, 2); \ memcpy_swap64le(b1, b + 16, 2); \
chunk1[0] = SWAP64LE(chunk3_old[0] + b1[0]); \ chunk1[0] = SWAP64LE(SWAP64LE(chunk3[0]) + b1[0]); \
chunk1[1] = SWAP64LE(chunk3_old[1] + b1[1]); \ chunk1[1] = SWAP64LE(SWAP64LE(chunk3[1]) + b1[1]); \
\ \
uint64_t a0[2]; \ uint64_t a0[2]; \
memcpy_swap64le(a0, a_, 2); \ memcpy_swap64le(a0, a, 2); \
chunk3[0] = SWAP64LE(chunk2_old[0] + a0[0]); \ chunk3[0] = SWAP64LE(SWAP64LE(chunk2[0]) + a0[0]); \
chunk3[1] = SWAP64LE(chunk2_old[1] + a0[1]); \ chunk3[1] = SWAP64LE(SWAP64LE(chunk2[1]) + a0[1]); \
\ \
uint64_t b0[2]; \ uint64_t b0[2]; \
memcpy_swap64le(b0, b, 2); \ memcpy_swap64le(b0, b, 2); \
chunk2[0] = SWAP64LE(chunk1_old[0] + b0[0]); \ chunk2[0] = SWAP64LE(SWAP64LE(chunk1_old[0]) + b0[0]); \
chunk2[1] = SWAP64LE(chunk1_old[1] + b0[1]); \ chunk2[1] = SWAP64LE(SWAP64LE(chunk1_old[1]) + b0[1]); \
if (variant >= 4) \
{ \
uint64_t out_copy[2]; \
memcpy_swap64le(out_copy, out, 2); \
chunk1_old[0] ^= chunk2_old[0]; \
chunk1_old[1] ^= chunk2_old[1]; \
out_copy[0] ^= chunk3_old[0]; \
out_copy[1] ^= chunk3_old[1]; \
out_copy[0] ^= chunk1_old[0]; \
out_copy[1] ^= chunk1_old[1]; \
memcpy_swap64le(out, out_copy, 2); \
} \
} while (0) } while (0)
#define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \ #define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \
@ -265,18 +201,18 @@ static inline int use_v4_jit(void)
#endif #endif
#define VARIANT2_2_PORTABLE() \ #define VARIANT2_2_PORTABLE() \
if (variant == 2 || variant == 3) { \ if (variant >= 2) { \
xor_blocks(long_state + (j ^ 0x10), d); \ xor_blocks(long_state + (j ^ 0x10), d); \
xor_blocks(d, long_state + (j ^ 0x20)); \ xor_blocks(d, long_state + (j ^ 0x20)); \
} }
#define VARIANT2_2() \ #define VARIANT2_2() \
do if (variant == 2 || variant == 3) \ do if (variant >= 2) \
{ \ { \
*U64(local_hp_state + (j ^ 0x10)) ^= SWAP64LE(hi); \ *U64(hp_state + (j ^ 0x10)) ^= SWAP64LE(hi); \
*(U64(local_hp_state + (j ^ 0x10)) + 1) ^= SWAP64LE(lo); \ *(U64(hp_state + (j ^ 0x10)) + 1) ^= SWAP64LE(lo); \
hi ^= SWAP64LE(*U64(local_hp_state + (j ^ 0x20))); \ hi ^= SWAP64LE(*U64(hp_state + (j ^ 0x20))); \
lo ^= SWAP64LE(*(U64(local_hp_state + (j ^ 0x20)) + 1)); \ lo ^= SWAP64LE(*(U64(hp_state + (j ^ 0x20)) + 1)); \
} while (0) } while (0)
#define V4_REG_LOAD(dst, src) \ #define V4_REG_LOAD(dst, src) \
@ -289,56 +225,34 @@ static inline int use_v4_jit(void)
} while (0) } while (0)
#define VARIANT4_RANDOM_MATH_INIT() \ #define VARIANT4_RANDOM_MATH_INIT() \
v4_reg r[9]; \ v4_reg r[8]; \
struct V4_Instruction code[NUM_INSTRUCTIONS_MAX + 1]; \ struct V4_Instruction code[TOTAL_LATENCY * ALU_COUNT + 1]; \
int jit = use_v4_jit(); \
do if (variant >= 4) \ do if (variant >= 4) \
{ \ { \
for (int i = 0; i < 4; ++i) \ for (int i = 0; i < 4; ++i) \
V4_REG_LOAD(r + i, (uint8_t*)(state.hs.w + 12) + sizeof(v4_reg) * i); \ V4_REG_LOAD(r + i, (uint8_t*)(state.hs.w + 12) + sizeof(v4_reg) * i); \
v4_random_math_init(code, height); \ v4_random_math_init(code, height); \
if (jit) \
{ \
int ret = v4_generate_JIT_code(code, hp_jitfunc, 4096); \
if (ret < 0) \
local_abort("Error generating CryptonightR code"); \
} \
} while (0) } while (0)
#define VARIANT4_RANDOM_MATH(a, b, r, _b, _b1) \ #define VARIANT4_RANDOM_MATH(a, b, r, _b, _b1) \
do if (variant >= 4) \ do if (variant >= 4) \
{ \ { \
uint64_t t[2]; \ uint64_t t; \
memcpy(t, b, sizeof(uint64_t)); \ memcpy(&t, b, sizeof(uint64_t)); \
\ \
if (sizeof(v4_reg) == sizeof(uint32_t)) \ if (sizeof(v4_reg) == sizeof(uint32_t)) \
t[0] ^= SWAP64LE((r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32)); \ t ^= SWAP64LE((r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32)); \
else \ else \
t[0] ^= SWAP64LE((r[0] + r[1]) ^ (r[2] + r[3])); \ t ^= SWAP64LE((r[0] + r[1]) ^ (r[2] + r[3])); \
\ \
memcpy(b, t, sizeof(uint64_t)); \ memcpy(b, &t, sizeof(uint64_t)); \
\ \
V4_REG_LOAD(r + 4, a); \ V4_REG_LOAD(r + 4, a); \
V4_REG_LOAD(r + 5, (uint64_t*)(a) + 1); \ V4_REG_LOAD(r + 5, (uint64_t*)(a) + 1); \
V4_REG_LOAD(r + 6, _b); \ V4_REG_LOAD(r + 6, _b); \
V4_REG_LOAD(r + 7, _b1); \ V4_REG_LOAD(r + 7, _b1); \
V4_REG_LOAD(r + 8, (uint64_t*)(_b1) + 1); \
\ \
if (jit) \ v4_random_math(code, r); \
(*hp_jitfunc)(r); \
else \
v4_random_math(code, r); \
\
memcpy(t, a, sizeof(uint64_t) * 2); \
\
if (sizeof(v4_reg) == sizeof(uint32_t)) { \
t[0] ^= SWAP64LE(r[2] | ((uint64_t)(r[3]) << 32)); \
t[1] ^= SWAP64LE(r[0] | ((uint64_t)(r[1]) << 32)); \
} else { \
t[0] ^= SWAP64LE(r[2] ^ r[3]); \
t[1] ^= SWAP64LE(r[0] ^ r[1]); \
} \
memcpy(a, t, sizeof(uint64_t) * 2); \
} while (0) } while (0)
@ -404,7 +318,7 @@ static inline int use_v4_jit(void)
#define pre_aes() \ #define pre_aes() \
j = state_index(a); \ j = state_index(a); \
_c = _mm_load_si128(R128(&local_hp_state[j])); \ _c = _mm_load_si128(R128(&hp_state[j])); \
_a = _mm_load_si128(R128(a)); \ _a = _mm_load_si128(R128(a)); \
/* /*
@ -417,20 +331,20 @@ static inline int use_v4_jit(void)
* This code is based upon an optimized implementation by dga. * This code is based upon an optimized implementation by dga.
*/ */
#define post_aes() \ #define post_aes() \
VARIANT2_SHUFFLE_ADD_SSE2(local_hp_state, j); \ VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
_mm_store_si128(R128(c), _c); \ _mm_store_si128(R128(c), _c); \
_mm_store_si128(R128(&local_hp_state[j]), _mm_xor_si128(_b, _c)); \ _mm_store_si128(R128(&hp_state[j]), _mm_xor_si128(_b, _c)); \
VARIANT1_1(&local_hp_state[j]); \ VARIANT1_1(&hp_state[j]); \
j = state_index(c); \ j = state_index(c); \
p = U64(&local_hp_state[j]); \ p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \ b[0] = p[0]; b[1] = p[1]; \
VARIANT2_INTEGER_MATH_SSE2(b, c); \ VARIANT2_INTEGER_MATH_SSE2(b, c); \
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \ VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
__mul(); \ __mul(); \
VARIANT2_2(); \ VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_SSE2(local_hp_state, j); \ VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
a[0] += hi; a[1] += lo; \ a[0] += hi; a[1] += lo; \
p = U64(&local_hp_state[j]); \ p = U64(&hp_state[j]); \
p[0] = a[0]; p[1] = a[1]; \ p[0] = a[0]; p[1] = a[1]; \
a[0] ^= b[0]; a[1] ^= b[1]; \ a[0] ^= b[0]; a[1] ^= b[1]; \
VARIANT1_2(p + 1); \ VARIANT1_2(p + 1); \
@ -457,9 +371,6 @@ union cn_slow_hash_state
THREADV uint8_t *hp_state = NULL; THREADV uint8_t *hp_state = NULL;
THREADV int hp_allocated = 0; THREADV int hp_allocated = 0;
THREADV v4_random_math_JIT_func hp_jitfunc = NULL;
THREADV uint8_t *hp_jitfunc_memory = NULL;
THREADV int hp_jitfunc_allocated = 0;
#if defined(_MSC_VER) #if defined(_MSC_VER)
#define cpuid(info,x) __cpuidex(info,x,0) #define cpuid(info,x) __cpuidex(info,x,0)
@ -755,10 +666,10 @@ void cn_slow_hash_allocate_state(void)
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || \ #if defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || \
defined(__DragonFly__) || defined(__NetBSD__) defined(__DragonFly__) || defined(__NetBSD__)
hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE, hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0); MAP_PRIVATE | MAP_ANON, 0, 0);
#else #else
hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE, hp_state = mmap(0, MEMORY, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0); MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, 0, 0);
#endif #endif
if(hp_state == MAP_FAILED) if(hp_state == MAP_FAILED)
hp_state = NULL; hp_state = NULL;
@ -769,35 +680,6 @@ void cn_slow_hash_allocate_state(void)
hp_allocated = 0; hp_allocated = 0;
hp_state = (uint8_t *) malloc(MEMORY); hp_state = (uint8_t *) malloc(MEMORY);
} }
#if defined(_MSC_VER) || defined(__MINGW32__)
hp_jitfunc_memory = (uint8_t *) VirtualAlloc(hp_jitfunc_memory, 4096 + 4095,
MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);
#else
#if defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || \
defined(__DragonFly__) || defined(__NetBSD__)
#ifdef __NetBSD__
#define RESERVED_FLAGS PROT_MPROTECT(PROT_EXEC)
#else
#define RESERVED_FLAGS 0
#endif
hp_jitfunc_memory = mmap(0, 4096 + 4096, PROT_READ | PROT_WRITE | RESERVED_FLAGS,
MAP_PRIVATE | MAP_ANON, -1, 0);
#else
hp_jitfunc_memory = mmap(0, 4096 + 4096, PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
#endif
if(hp_jitfunc_memory == MAP_FAILED)
hp_jitfunc_memory = NULL;
#endif
hp_jitfunc_allocated = 1;
if (hp_jitfunc_memory == NULL)
{
hp_jitfunc_allocated = 0;
hp_jitfunc_memory = malloc(4096 + 4095);
}
hp_jitfunc = (v4_random_math_JIT_func)((size_t)(hp_jitfunc_memory + 4095) & ~4095);
} }
/** /**
@ -820,22 +702,8 @@ void cn_slow_hash_free_state(void)
#endif #endif
} }
if(!hp_jitfunc_allocated)
free(hp_jitfunc_memory);
else
{
#if defined(_MSC_VER) || defined(__MINGW32__)
VirtualFree(hp_jitfunc_memory, 0, MEM_RELEASE);
#else
munmap(hp_jitfunc_memory, 4096 + 4095);
#endif
}
hp_state = NULL; hp_state = NULL;
hp_allocated = 0; hp_allocated = 0;
hp_jitfunc = NULL;
hp_jitfunc_memory = NULL;
hp_jitfunc_allocated = 0;
} }
/** /**
@ -919,7 +787,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{ {
aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK); aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
} }
} }
else else
@ -931,7 +799,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
for(j = 0; j < INIT_SIZE_BLK; j++) for(j = 0; j < INIT_SIZE_BLK; j++)
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data); aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
} }
} }
@ -979,7 +847,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{ {
// add the xor to the pseudo round // add the xor to the pseudo round
aes_pseudo_round_xor(text, text, expandedKey, &local_hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK); aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
} }
} }
else else
@ -989,7 +857,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
{ {
for(j = 0; j < INIT_SIZE_BLK; j++) for(j = 0; j < INIT_SIZE_BLK; j++)
{ {
xor_blocks(&text[j * AES_BLOCK_SIZE], &local_hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]); xor_blocks(&text[j * AES_BLOCK_SIZE], &hp_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]);
aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data); aesb_pseudo_round(&text[AES_BLOCK_SIZE * j], &text[AES_BLOCK_SIZE * j], aes_ctx->key->exp_data);
} }
} }
@ -1033,8 +901,6 @@ void cn_slow_hash_free_state(void)
#define U64(x) ((uint64_t *) (x)) #define U64(x) ((uint64_t *) (x))
#define hp_jitfunc ((v4_random_math_JIT_func)NULL)
STATIC INLINE void xor64(uint64_t *a, const uint64_t b) STATIC INLINE void xor64(uint64_t *a, const uint64_t b)
{ {
*a ^= b; *a ^= b;
@ -1069,24 +935,24 @@ union cn_slow_hash_state
#define pre_aes() \ #define pre_aes() \
j = state_index(a); \ j = state_index(a); \
_c = vld1q_u8(&local_hp_state[j]); \ _c = vld1q_u8(&hp_state[j]); \
_a = vld1q_u8((const uint8_t *)a); \ _a = vld1q_u8((const uint8_t *)a); \
#define post_aes() \ #define post_aes() \
VARIANT2_SHUFFLE_ADD_NEON(local_hp_state, j); \ VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
vst1q_u8((uint8_t *)c, _c); \ vst1q_u8((uint8_t *)c, _c); \
vst1q_u8(&local_hp_state[j], veorq_u8(_b, _c)); \ vst1q_u8(&hp_state[j], veorq_u8(_b, _c)); \
VARIANT1_1(&local_hp_state[j]); \ VARIANT1_1(&hp_state[j]); \
j = state_index(c); \ j = state_index(c); \
p = U64(&local_hp_state[j]); \ p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \ b[0] = p[0]; b[1] = p[1]; \
VARIANT2_PORTABLE_INTEGER_MATH(b, c); \ VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \ VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
__mul(); \ __mul(); \
VARIANT2_2(); \ VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_NEON(local_hp_state, j); \ VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
a[0] += hi; a[1] += lo; \ a[0] += hi; a[1] += lo; \
p = U64(&local_hp_state[j]); \ p = U64(&hp_state[j]); \
p[0] = a[0]; p[1] = a[1]; \ p[0] = a[0]; p[1] = a[1]; \
a[0] ^= b[0]; a[1] ^= b[1]; \ a[0] ^= b[0]; a[1] ^= b[1]; \
VARIANT1_2(p + 1); \ VARIANT1_2(p + 1); \
@ -1100,47 +966,47 @@ union cn_slow_hash_state
*/ */
static void aes_expand_key(const uint8_t *key, uint8_t *expandedKey) { static void aes_expand_key(const uint8_t *key, uint8_t *expandedKey) {
static const int rcon[] = { static const int rcon[] = {
0x01,0x01,0x01,0x01, 0x01,0x01,0x01,0x01,
0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d, // rotate-n-splat 0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d,0x0c0f0e0d, // rotate-n-splat
0x1b,0x1b,0x1b,0x1b }; 0x1b,0x1b,0x1b,0x1b };
__asm__( __asm__(
" eor v0.16b,v0.16b,v0.16b\n" " eor v0.16b,v0.16b,v0.16b\n"
" ld1 {v3.16b},[%0],#16\n" " ld1 {v3.16b},[%0],#16\n"
" ld1 {v1.4s,v2.4s},[%2],#32\n" " ld1 {v1.4s,v2.4s},[%2],#32\n"
" ld1 {v4.16b},[%0]\n" " ld1 {v4.16b},[%0]\n"
" mov w2,#5\n" " mov w2,#5\n"
" st1 {v3.4s},[%1],#16\n" " st1 {v3.4s},[%1],#16\n"
"\n" "\n"
"1:\n" "1:\n"
" tbl v6.16b,{v4.16b},v2.16b\n" " tbl v6.16b,{v4.16b},v2.16b\n"
" ext v5.16b,v0.16b,v3.16b,#12\n" " ext v5.16b,v0.16b,v3.16b,#12\n"
" st1 {v4.4s},[%1],#16\n" " st1 {v4.4s},[%1],#16\n"
" aese v6.16b,v0.16b\n" " aese v6.16b,v0.16b\n"
" subs w2,w2,#1\n" " subs w2,w2,#1\n"
"\n" "\n"
" eor v3.16b,v3.16b,v5.16b\n" " eor v3.16b,v3.16b,v5.16b\n"
" ext v5.16b,v0.16b,v5.16b,#12\n" " ext v5.16b,v0.16b,v5.16b,#12\n"
" eor v3.16b,v3.16b,v5.16b\n" " eor v3.16b,v3.16b,v5.16b\n"
" ext v5.16b,v0.16b,v5.16b,#12\n" " ext v5.16b,v0.16b,v5.16b,#12\n"
" eor v6.16b,v6.16b,v1.16b\n" " eor v6.16b,v6.16b,v1.16b\n"
" eor v3.16b,v3.16b,v5.16b\n" " eor v3.16b,v3.16b,v5.16b\n"
" shl v1.16b,v1.16b,#1\n" " shl v1.16b,v1.16b,#1\n"
" eor v3.16b,v3.16b,v6.16b\n" " eor v3.16b,v3.16b,v6.16b\n"
" st1 {v3.4s},[%1],#16\n" " st1 {v3.4s},[%1],#16\n"
" b.eq 2f\n" " b.eq 2f\n"
"\n" "\n"
" dup v6.4s,v3.s[3] // just splat\n" " dup v6.4s,v3.s[3] // just splat\n"
" ext v5.16b,v0.16b,v4.16b,#12\n" " ext v5.16b,v0.16b,v4.16b,#12\n"
" aese v6.16b,v0.16b\n" " aese v6.16b,v0.16b\n"
"\n" "\n"
" eor v4.16b,v4.16b,v5.16b\n" " eor v4.16b,v4.16b,v5.16b\n"
" ext v5.16b,v0.16b,v5.16b,#12\n" " ext v5.16b,v0.16b,v5.16b,#12\n"
" eor v4.16b,v4.16b,v5.16b\n" " eor v4.16b,v4.16b,v5.16b\n"
" ext v5.16b,v0.16b,v5.16b,#12\n" " ext v5.16b,v0.16b,v5.16b,#12\n"
" eor v4.16b,v4.16b,v5.16b\n" " eor v4.16b,v4.16b,v5.16b\n"
"\n" "\n"
" eor v4.16b,v4.16b,v6.16b\n" " eor v4.16b,v4.16b,v6.16b\n"
" b 1b\n" " b 1b\n"
"\n" "\n"
"2:\n" : : "r"(key), "r"(expandedKey), "r"(rcon)); "2:\n" : : "r"(key), "r"(expandedKey), "r"(rcon));
} }
@ -1155,71 +1021,71 @@ __asm__(
*/ */
STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks) STATIC INLINE void aes_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, int nblocks)
{ {
const uint8x16_t *k = (const uint8x16_t *)expandedKey, zero = {0}; const uint8x16_t *k = (const uint8x16_t *)expandedKey, zero = {0};
uint8x16_t tmp; uint8x16_t tmp;
int i; int i;
for (i=0; i<nblocks; i++) for (i=0; i<nblocks; i++)
{ {
uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE); uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE);
tmp = vaeseq_u8(tmp, zero); tmp = vaeseq_u8(tmp, zero);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[0]); tmp = vaeseq_u8(tmp, k[0]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[1]); tmp = vaeseq_u8(tmp, k[1]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[2]); tmp = vaeseq_u8(tmp, k[2]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[3]); tmp = vaeseq_u8(tmp, k[3]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[4]); tmp = vaeseq_u8(tmp, k[4]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[5]); tmp = vaeseq_u8(tmp, k[5]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[6]); tmp = vaeseq_u8(tmp, k[6]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[7]); tmp = vaeseq_u8(tmp, k[7]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[8]); tmp = vaeseq_u8(tmp, k[8]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = veorq_u8(tmp, k[9]); tmp = veorq_u8(tmp, k[9]);
vst1q_u8(out + i * AES_BLOCK_SIZE, tmp); vst1q_u8(out + i * AES_BLOCK_SIZE, tmp);
} }
} }
STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, const uint8_t *xor, int nblocks) STATIC INLINE void aes_pseudo_round_xor(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey, const uint8_t *xor, int nblocks)
{ {
const uint8x16_t *k = (const uint8x16_t *)expandedKey; const uint8x16_t *k = (const uint8x16_t *)expandedKey;
const uint8x16_t *x = (const uint8x16_t *)xor; const uint8x16_t *x = (const uint8x16_t *)xor;
uint8x16_t tmp; uint8x16_t tmp;
int i; int i;
for (i=0; i<nblocks; i++) for (i=0; i<nblocks; i++)
{ {
uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE); uint8x16_t tmp = vld1q_u8(in + i * AES_BLOCK_SIZE);
tmp = vaeseq_u8(tmp, x[i]); tmp = vaeseq_u8(tmp, x[i]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[0]); tmp = vaeseq_u8(tmp, k[0]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[1]); tmp = vaeseq_u8(tmp, k[1]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[2]); tmp = vaeseq_u8(tmp, k[2]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[3]); tmp = vaeseq_u8(tmp, k[3]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[4]); tmp = vaeseq_u8(tmp, k[4]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[5]); tmp = vaeseq_u8(tmp, k[5]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[6]); tmp = vaeseq_u8(tmp, k[6]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[7]); tmp = vaeseq_u8(tmp, k[7]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = vaeseq_u8(tmp, k[8]); tmp = vaeseq_u8(tmp, k[8]);
tmp = vaesmcq_u8(tmp); tmp = vaesmcq_u8(tmp);
tmp = veorq_u8(tmp, k[9]); tmp = veorq_u8(tmp, k[9]);
vst1q_u8(out + i * AES_BLOCK_SIZE, tmp); vst1q_u8(out + i * AES_BLOCK_SIZE, tmp);
} }
} }
#ifdef FORCE_USE_HEAP #ifdef FORCE_USE_HEAP
@ -1249,9 +1115,9 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
RDATA_ALIGN16 uint8_t expandedKey[240]; RDATA_ALIGN16 uint8_t expandedKey[240];
#ifndef FORCE_USE_HEAP #ifndef FORCE_USE_HEAP
RDATA_ALIGN16 uint8_t local_hp_state[MEMORY]; RDATA_ALIGN16 uint8_t hp_state[MEMORY];
#else #else
uint8_t *local_hp_state = (uint8_t *)aligned_malloc(MEMORY,16); uint8_t *hp_state = (uint8_t *)aligned_malloc(MEMORY,16);
#endif #endif
uint8_t text[INIT_SIZE_BYTE]; uint8_t text[INIT_SIZE_BYTE];
@ -1291,7 +1157,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{ {
aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK); aes_pseudo_round(text, text, expandedKey, INIT_SIZE_BLK);
memcpy(&local_hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE); memcpy(&hp_state[i * INIT_SIZE_BYTE], text, INIT_SIZE_BYTE);
} }
U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0]; U64(a)[0] = U64(&state.k[0])[0] ^ U64(&state.k[32])[0];
@ -1326,7 +1192,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) for(i = 0; i < MEMORY / INIT_SIZE_BYTE; i++)
{ {
// add the xor to the pseudo round // add the xor to the pseudo round
aes_pseudo_round_xor(text, text, expandedKey, &local_hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK); aes_pseudo_round_xor(text, text, expandedKey, &hp_state[i * INIT_SIZE_BYTE], INIT_SIZE_BLK);
} }
/* CryptoNight Step 5: Apply Keccak to the state again, and then /* CryptoNight Step 5: Apply Keccak to the state again, and then
@ -1341,7 +1207,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
extra_hashes[state.hs.b[0] & 3](&state, 200, hash); extra_hashes[state.hs.b[0] & 3](&state, 200, hash);
#ifdef FORCE_USE_HEAP #ifdef FORCE_USE_HEAP
aligned_free(local_hp_state); aligned_free(hp_state);
#endif #endif
} }
#else /* aarch64 && crypto */ #else /* aarch64 && crypto */
@ -1385,7 +1251,7 @@ void mul(const uint8_t *ca, const uint8_t *cb, uint8_t *cres) {
#else // !NO_OPTIMIZED_MULTIPLY_ON_ARM #else // !NO_OPTIMIZED_MULTIPLY_ON_ARM
#ifdef __aarch64__ /* ARM64, no crypto */ #ifdef __aarch64__ /* ARM64, no crypto */
#define mul(a, b, c) cn_mul128((const uint64_t *)a, (const uint64_t *)b, (uint64_t *)c) #define mul(a, b, c) cn_mul128((const uint64_t *)a, (const uint64_t *)b, (uint64_t *)c)
STATIC void cn_mul128(const uint64_t *a, const uint64_t *b, uint64_t *r) STATIC void cn_mul128(const uint64_t *a, const uint64_t *b, uint64_t *r)
{ {
uint64_t lo, hi; uint64_t lo, hi;
@ -1395,7 +1261,7 @@ STATIC void cn_mul128(const uint64_t *a, const uint64_t *b, uint64_t *r)
r[1] = lo; r[1] = lo;
} }
#else /* ARM32 */ #else /* ARM32 */
#define mul(a, b, c) cn_mul128((const uint32_t *)a, (const uint32_t *)b, (uint32_t *)c) #define mul(a, b, c) cn_mul128((const uint32_t *)a, (const uint32_t *)b, (uint32_t *)c)
STATIC void cn_mul128(const uint32_t *aa, const uint32_t *bb, uint32_t *r) STATIC void cn_mul128(const uint32_t *aa, const uint32_t *bb, uint32_t *r)
{ {
uint32_t t0, t1, t2=0, t3=0; uint32_t t0, t1, t2=0, t3=0;
@ -1464,7 +1330,6 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
{ {
uint8_t text[INIT_SIZE_BYTE]; uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE]; uint8_t a[AES_BLOCK_SIZE];
uint8_t a1[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE * 2]; uint8_t b[AES_BLOCK_SIZE * 2];
uint8_t c[AES_BLOCK_SIZE]; uint8_t c[AES_BLOCK_SIZE];
uint8_t c1[AES_BLOCK_SIZE]; uint8_t c1[AES_BLOCK_SIZE];
@ -1524,10 +1389,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
// Iteration 1 // Iteration 1
j = state_index(a); j = state_index(a);
p = &long_state[j]; p = &long_state[j];
aesb_single_round(p, c1, a); aesb_single_round(p, p, a);
copy_block(c1, p);
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j); VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
copy_block(p, c1);
xor_blocks(p, b); xor_blocks(p, b);
VARIANT1_1(p); VARIANT1_1(p);
@ -1536,15 +1401,14 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
p = &long_state[j]; p = &long_state[j];
copy_block(c, p); copy_block(c, p);
copy_block(a1, a);
VARIANT2_PORTABLE_INTEGER_MATH(c, c1); VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
VARIANT4_RANDOM_MATH(a1, c, r, b, b + AES_BLOCK_SIZE); VARIANT4_RANDOM_MATH(a, c, r, b, b + AES_BLOCK_SIZE);
mul(c1, c, d); mul(c1, c, d);
VARIANT2_2_PORTABLE(); VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j); VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
sum_half_blocks(a1, d); sum_half_blocks(a, d);
swap_blocks(a1, c); swap_blocks(a, c);
xor_blocks(a1, c); xor_blocks(a, c);
VARIANT1_2(U64(c) + 1); VARIANT1_2(U64(c) + 1);
copy_block(p, c); copy_block(p, c);
@ -1552,7 +1416,6 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
copy_block(b + AES_BLOCK_SIZE, b); copy_block(b + AES_BLOCK_SIZE, b);
} }
copy_block(b, c1); copy_block(b, c1);
copy_block(a, a1);
} }
memcpy(text, state.init, INIT_SIZE_BYTE); memcpy(text, state.init, INIT_SIZE_BYTE);
@ -1580,9 +1443,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
#else #else
// Portable implementation as a fallback // Portable implementation as a fallback
#define hp_jitfunc ((v4_random_math_JIT_func)NULL) void slow_hash_allocate_state(void)
void cn_slow_hash_allocate_state(void)
{ {
// Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c // Do nothing, this is just to maintain compatibility with the upgraded slow-hash.c
return; return;
@ -1675,7 +1536,6 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
union cn_slow_hash_state state; union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE]; uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE]; uint8_t a[AES_BLOCK_SIZE];
uint8_t a1[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE * 2]; uint8_t b[AES_BLOCK_SIZE * 2];
uint8_t c1[AES_BLOCK_SIZE]; uint8_t c1[AES_BLOCK_SIZE];
uint8_t c2[AES_BLOCK_SIZE]; uint8_t c2[AES_BLOCK_SIZE];
@ -1719,7 +1579,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
copy_block(c1, &long_state[j]); copy_block(c1, &long_state[j]);
aesb_single_round(c1, c1, a); aesb_single_round(c1, c1, a);
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j); VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
copy_block(&long_state[j], c1); copy_block(&long_state[j], c1);
xor_blocks(&long_state[j], b); xor_blocks(&long_state[j], b);
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE); assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
@ -1727,22 +1587,23 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
/* Iteration 2 */ /* Iteration 2 */
j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
copy_block(c2, &long_state[j]); copy_block(c2, &long_state[j]);
copy_block(a1, a);
VARIANT2_PORTABLE_INTEGER_MATH(c2, c1); VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
VARIANT4_RANDOM_MATH(a1, c2, r, b, b + AES_BLOCK_SIZE); VARIANT4_RANDOM_MATH(a, c2, r, b, b + AES_BLOCK_SIZE);
mul(c1, c2, d); mul(c1, c2, d);
VARIANT2_2_PORTABLE(); VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j); VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j);
sum_half_blocks(a1, d); swap_blocks(a, c1);
swap_blocks(a1, c2); sum_half_blocks(c1, d);
xor_blocks(a1, c2); swap_blocks(c1, c2);
xor_blocks(c1, c2);
VARIANT1_2(c2 + 8); VARIANT1_2(c2 + 8);
copy_block(&long_state[j], c2); copy_block(&long_state[j], c2);
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
if (variant >= 2) { if (variant >= 2) {
copy_block(b + AES_BLOCK_SIZE, b); copy_block(b + AES_BLOCK_SIZE, b);
} }
copy_block(b, c1); copy_block(b, a);
copy_block(a, a1); copy_block(a, c1);
} }
memcpy(text, state.init, INIT_SIZE_BYTE); memcpy(text, state.init, INIT_SIZE_BYTE);

View file

@ -10,11 +10,8 @@ enum V4_Settings
TOTAL_LATENCY = 15 * 3, TOTAL_LATENCY = 15 * 3,
// Always generate at least 60 instructions // Always generate at least 60 instructions
NUM_INSTRUCTIONS_MIN = 60, NUM_INSTRUCTIONS = 60,
// Never generate more than 70 instructions (final RET instruction doesn't count here)
NUM_INSTRUCTIONS_MAX = 70,
// Available ALUs for MUL // Available ALUs for MUL
// Modern CPUs typically have only 1 ALU which can do multiplications // Modern CPUs typically have only 1 ALU which can do multiplications
ALU_COUNT_MUL = 1, ALU_COUNT_MUL = 1,
@ -39,9 +36,10 @@ enum V4_InstructionList
// V4_InstructionDefinition is used to generate code from random data // V4_InstructionDefinition is used to generate code from random data
// Every random sequence of bytes is a valid code // Every random sequence of bytes is a valid code
// //
// There are 9 registers in total: // There are 8 registers in total:
// - 4 variable registers // - 4 variable registers
// - 5 constant registers initialized from loop variables // - 4 constant registers initialized from loop variables
//
// This is why dst_index is 2 bits // This is why dst_index is 2 bits
enum V4_InstructionDefinition enum V4_InstructionDefinition
{ {
@ -59,9 +57,9 @@ struct V4_Instruction
}; };
#ifndef FORCEINLINE #ifndef FORCEINLINE
#if defined(__GNUC__) #ifdef __GNUC__
#define FORCEINLINE __attribute__((always_inline)) inline #define FORCEINLINE __attribute__((always_inline)) inline
#elif defined(_MSC_VER) #elif _MSC_VER
#define FORCEINLINE __forceinline #define FORCEINLINE __forceinline
#else #else
#define FORCEINLINE inline #define FORCEINLINE inline
@ -69,9 +67,9 @@ struct V4_Instruction
#endif #endif
#ifndef UNREACHABLE_CODE #ifndef UNREACHABLE_CODE
#if defined(__GNUC__) #ifdef __GNUC__
#define UNREACHABLE_CODE __builtin_unreachable() #define UNREACHABLE_CODE __builtin_unreachable()
#elif defined(_MSC_VER) #elif _MSC_VER
#define UNREACHABLE_CODE __assume(false) #define UNREACHABLE_CODE __assume(false)
#else #else
#define UNREACHABLE_CODE #define UNREACHABLE_CODE
@ -143,16 +141,16 @@ static FORCEINLINE void v4_random_math(const struct V4_Instruction* code, v4_reg
// Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency // Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency
// I've checked all block heights < 10,000,000 and here is the distribution of program sizes: // I've checked all block heights < 10,000,000 and here is the distribution of program sizes:
// //
// 60 27960 // 60 28495
// 61 105054 // 61 106077
// 62 2452759 // 62 2455855
// 63 5115997 // 63 5114930
// 64 1022269 // 64 1020868
// 65 1109635 // 65 1109026
// 66 153145 // 66 151756
// 67 8550 // 67 8429
// 68 4529 // 68 4477
// 69 102 // 69 87
// Unroll 70 instructions here // Unroll 70 instructions here
V4_EXEC_10(0); // instructions 0-9 V4_EXEC_10(0); // instructions 0-9
@ -178,7 +176,6 @@ static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed
} }
// Generates as many random math operations as possible with given latency and ALU restrictions // Generates as many random math operations as possible with given latency and ALU restrictions
// "code" array must have space for NUM_INSTRUCTIONS_MAX+1 instructions
static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height) static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height)
{ {
// MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle // MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle
@ -200,7 +197,6 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
memset(data, 0, sizeof(data)); memset(data, 0, sizeof(data));
uint64_t tmp = SWAP64LE(height); uint64_t tmp = SWAP64LE(height);
memcpy(data, &tmp, sizeof(uint64_t)); memcpy(data, &tmp, sizeof(uint64_t));
data[20] = -38; // change seed
// Set data_index past the last byte in data // Set data_index past the last byte in data
// to trigger full data update with blake hash // to trigger full data update with blake hash
@ -208,22 +204,18 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
size_t data_index = sizeof(data); size_t data_index = sizeof(data);
int code_size; int code_size;
// There is a small chance (1.8%) that register R8 won't be used in the generated program
// So we keep track of it and try again if it's not used
bool r8_used;
do { do {
int latency[9]; int latency[8];
int asic_latency[9]; int asic_latency[8];
// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution // Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
// byte 0: current value of the destination register // byte 0: current value of the destination register
// byte 1: instruction opcode // byte 1: instruction opcode
// byte 2: current value of the source register // byte 2: current value of the source register
// //
// Registers R4-R8 are constant and are treated as having the same value because when we do // Registers R4-R7 are constant and are treated as having the same value because when we do
// the same operation twice with two constant source registers, it can be optimized into a single operation // the same operation twice with two constant source registers, it can be optimized into a single operation
uint32_t inst_data[9] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF }; uint32_t inst_data[8] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF };
bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT]; bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT];
bool is_rotation[V4_INSTRUCTION_COUNT]; bool is_rotation[V4_INSTRUCTION_COUNT];
@ -242,7 +234,6 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
code_size = 0; code_size = 0;
int total_iterations = 0; int total_iterations = 0;
r8_used = false;
// Generate random code to achieve minimal required latency for our abstract CPU // Generate random code to achieve minimal required latency for our abstract CPU
// Try to get this latency for all 4 registers // Try to get this latency for all 4 registers
@ -286,9 +277,9 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
// Don't do ADD/SUB/XOR with the same register // Don't do ADD/SUB/XOR with the same register
if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b)) if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b))
{ {
// Use register R8 as source instead // a is always < 4, so we don't need to check bounds here
b = 8; b = a + 4;
src_index = 8; src_index = b;
} }
// Don't do rotation with the same destination twice because it's equal to a single rotation // Don't do rotation with the same destination twice because it's equal to a single rotation
@ -368,11 +359,6 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
code[code_size].src_index = src_index; code[code_size].src_index = src_index;
code[code_size].C = 0; code[code_size].C = 0;
if (src_index == 8)
{
r8_used = true;
}
if (opcode == ADD) if (opcode == ADD)
{ {
// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too // ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
@ -387,7 +373,7 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
} }
++code_size; ++code_size;
if (code_size >= NUM_INSTRUCTIONS_MIN) if (code_size >= NUM_INSTRUCTIONS)
{ {
break; break;
} }
@ -402,7 +388,7 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC // We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
// Get this latency for at least 1 of the 4 registers // Get this latency for at least 1 of the 4 registers
const int prev_code_size = code_size; const int prev_code_size = code_size;
while ((code_size < NUM_INSTRUCTIONS_MAX) && (asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY)) while ((asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY))
{ {
int min_idx = 0; int min_idx = 0;
int max_idx = 0; int max_idx = 0;
@ -424,11 +410,9 @@ static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_
++code_size; ++code_size;
} }
// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time // There is ~99.8% chance that code_size >= NUM_INSTRUCTIONS here, so second iteration is required rarely
// It never does more than 4 iterations for all block heights < 10,000,000 } while (code_size < NUM_INSTRUCTIONS);
} while (!r8_used || (code_size < NUM_INSTRUCTIONS_MIN) || (code_size > NUM_INSTRUCTIONS_MAX));
// It's guaranteed that NUM_INSTRUCTIONS_MIN <= code_size <= NUM_INSTRUCTIONS_MAX here
// Add final instruction to stop the interpreter // Add final instruction to stop the interpreter
code[code_size].opcode = RET; code[code_size].opcode = RET;
code[code_size].dst_index = 0; code[code_size].dst_index = 0;