Merge pull request #5126

f1fb06b1 Fixed path to int-util.h (SChernykh)
9da0892b Adding cnv4-2 tweaks (SChernykh)
f51397b3 Cryptonight variant 4 aka CryptonightR (SChernykh)
This commit is contained in:
Riccardo Spagni 2019-03-04 12:10:16 +02:00
commit 1b4fa00d7c
No known key found for this signature in database
GPG key ID: 55432DF31CCD4FCD
9 changed files with 611 additions and 51 deletions

View file

@ -73,18 +73,18 @@ namespace crypto {
inline void generate_chacha_key(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) { inline void generate_chacha_key(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key"); static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash; epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/); crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
for (uint64_t n = 1; n < kdf_rounds; ++n) for (uint64_t n = 1; n < kdf_rounds; ++n)
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/); crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key)); memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
} }
inline void generate_chacha_key_prehashed(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) { inline void generate_chacha_key_prehashed(const void *data, size_t size, chacha_key& key, uint64_t kdf_rounds) {
static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key"); static_assert(sizeof(chacha_key) <= sizeof(hash), "Size of hash must be at least that of chacha_key");
epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash; epee::mlocked<tools::scrubbed_arr<char, HASH_SIZE>> pwd_hash;
crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/); crypto::cn_slow_hash(data, size, pwd_hash.data(), 0/*variant*/, 1/*prehashed*/, 0/*height*/);
for (uint64_t n = 1; n < kdf_rounds; ++n) for (uint64_t n = 1; n < kdf_rounds; ++n)
crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/); crypto::cn_slow_hash(pwd_hash.data(), pwd_hash.size(), pwd_hash.data(), 0/*variant*/, 0/*prehashed*/, 0/*height*/);
memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key)); memcpy(&unwrap(unwrap(key)), pwd_hash.data(), sizeof(key));
} }

View file

@ -79,7 +79,7 @@ enum {
}; };
void cn_fast_hash(const void *data, size_t length, char *hash); void cn_fast_hash(const void *data, size_t length, char *hash);
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed); void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height);
void hash_extra_blake(const void *data, size_t length, char *hash); void hash_extra_blake(const void *data, size_t length, char *hash);
void hash_extra_groestl(const void *data, size_t length, char *hash); void hash_extra_groestl(const void *data, size_t length, char *hash);

View file

@ -71,12 +71,12 @@ namespace crypto {
return h; return h;
} }
inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0) { inline void cn_slow_hash(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/); cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 0/*prehashed*/, height);
} }
inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0) { inline void cn_slow_hash_prehashed(const void *data, std::size_t length, hash &hash, int variant = 0, uint64_t height = 0) {
cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/); cn_slow_hash(data, length, reinterpret_cast<char *>(&hash), variant, 1/*prehashed*/, height);
} }
inline void tree_hash(const hash *hashes, std::size_t count, hash &root_hash) { inline void tree_hash(const hash *hashes, std::size_t count, hash &root_hash) {

View file

@ -39,6 +39,7 @@
#include "hash-ops.h" #include "hash-ops.h"
#include "oaes_lib.h" #include "oaes_lib.h"
#include "variant2_int_sqrt.h" #include "variant2_int_sqrt.h"
#include "variant4_random_math.h"
#define MEMORY (1 << 21) // 2MB scratchpad #define MEMORY (1 << 21) // 2MB scratchpad
#define ITER (1 << 20) #define ITER (1 << 20)
@ -116,48 +117,74 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
#define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \ #define VARIANT2_SHUFFLE_ADD_SSE2(base_ptr, offset) \
do if (variant >= 2) \ do if (variant >= 2) \
{ \ { \
const __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \ __m128i chunk1 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10))); \
const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \ const __m128i chunk2 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20))); \
const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \ const __m128i chunk3 = _mm_load_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30))); \
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x10)), _mm_add_epi64(chunk3, _b1)); \
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x20)), _mm_add_epi64(chunk1, _b)); \
_mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \ _mm_store_si128((__m128i *)((base_ptr) + ((offset) ^ 0x30)), _mm_add_epi64(chunk2, _a)); \
if (variant >= 4) \
{ \
chunk1 = _mm_xor_si128(chunk1, chunk2); \
_c = _mm_xor_si128(_c, chunk3); \
_c = _mm_xor_si128(_c, chunk1); \
} \
} while (0) } while (0)
#define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \ #define VARIANT2_SHUFFLE_ADD_NEON(base_ptr, offset) \
do if (variant >= 2) \ do if (variant >= 2) \
{ \ { \
const uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \ uint64x2_t chunk1 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x10))); \
const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \ const uint64x2_t chunk2 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x20))); \
const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \ const uint64x2_t chunk3 = vld1q_u64(U64((base_ptr) + ((offset) ^ 0x30))); \
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \ vst1q_u64(U64((base_ptr) + ((offset) ^ 0x10)), vaddq_u64(chunk3, vreinterpretq_u64_u8(_b1))); \
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \ vst1q_u64(U64((base_ptr) + ((offset) ^ 0x20)), vaddq_u64(chunk1, vreinterpretq_u64_u8(_b))); \
vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \ vst1q_u64(U64((base_ptr) + ((offset) ^ 0x30)), vaddq_u64(chunk2, vreinterpretq_u64_u8(_a))); \
if (variant >= 4) \
{ \
chunk1 = veorq_u64(chunk1, chunk2); \
_c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk3)); \
_c = vreinterpretq_u8_u64(veorq_u64(vreinterpretq_u64_u8(_c), chunk1)); \
} \
} while (0) } while (0)
#define VARIANT2_PORTABLE_SHUFFLE_ADD(base_ptr, offset) \ #define VARIANT2_PORTABLE_SHUFFLE_ADD(out, a_, base_ptr, offset) \
do if (variant >= 2) \ do if (variant >= 2) \
{ \ { \
uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \ uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \
uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \ uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \
uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \ uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \
\ \
const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \ uint64_t chunk1_old[2] = { SWAP64LE(chunk1[0]), SWAP64LE(chunk1[1]) }; \
const uint64_t chunk2_old[2] = { SWAP64LE(chunk2[0]), SWAP64LE(chunk2[1]) }; \
const uint64_t chunk3_old[2] = { SWAP64LE(chunk3[0]), SWAP64LE(chunk3[1]) }; \
\ \
uint64_t b1[2]; \ uint64_t b1[2]; \
memcpy_swap64le(b1, b + 16, 2); \ memcpy_swap64le(b1, b + 16, 2); \
chunk1[0] = SWAP64LE(SWAP64LE(chunk3[0]) + b1[0]); \ chunk1[0] = SWAP64LE(chunk3_old[0] + b1[0]); \
chunk1[1] = SWAP64LE(SWAP64LE(chunk3[1]) + b1[1]); \ chunk1[1] = SWAP64LE(chunk3_old[1] + b1[1]); \
\ \
uint64_t a0[2]; \ uint64_t a0[2]; \
memcpy_swap64le(a0, a, 2); \ memcpy_swap64le(a0, a_, 2); \
chunk3[0] = SWAP64LE(SWAP64LE(chunk2[0]) + a0[0]); \ chunk3[0] = SWAP64LE(chunk2_old[0] + a0[0]); \
chunk3[1] = SWAP64LE(SWAP64LE(chunk2[1]) + a0[1]); \ chunk3[1] = SWAP64LE(chunk2_old[1] + a0[1]); \
\ \
uint64_t b0[2]; \ uint64_t b0[2]; \
memcpy_swap64le(b0, b, 2); \ memcpy_swap64le(b0, b, 2); \
chunk2[0] = SWAP64LE(SWAP64LE(chunk1_old[0]) + b0[0]); \ chunk2[0] = SWAP64LE(chunk1_old[0] + b0[0]); \
chunk2[1] = SWAP64LE(SWAP64LE(chunk1_old[1]) + b0[1]); \ chunk2[1] = SWAP64LE(SWAP64LE(chunk1_old[1]) + b0[1]); \
if (variant >= 4) \
{ \
uint64_t out_copy[2]; \
memcpy_swap64le(out_copy, out, 2); \
chunk1_old[0] ^= chunk2_old[0]; \
chunk1_old[1] ^= chunk2_old[1]; \
out_copy[0] ^= chunk3_old[0]; \
out_copy[1] ^= chunk3_old[1]; \
out_copy[0] ^= chunk1_old[0]; \
out_copy[1] ^= chunk1_old[1]; \
memcpy_swap64le(out, out_copy, 2); \
} \
} while (0) } while (0)
#define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \ #define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \
@ -172,7 +199,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
const uint64_t sqrt_input = SWAP64LE(((uint64_t*)(ptr))[0]) + division_result const uint64_t sqrt_input = SWAP64LE(((uint64_t*)(ptr))[0]) + division_result
#define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \ #define VARIANT2_INTEGER_MATH_SSE2(b, ptr) \
do if (variant >= 2) \ do if ((variant == 2) || (variant == 3)) \
{ \ { \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \ VARIANT2_INTEGER_MATH_SQRT_STEP_SSE2(); \
@ -182,7 +209,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
#if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50) #if defined DBL_MANT_DIG && (DBL_MANT_DIG >= 50)
// double precision floating point type has enough bits of precision on current platform // double precision floating point type has enough bits of precision on current platform
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \ #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
do if (variant >= 2) \ do if ((variant == 2) || (variant == 3)) \
{ \ { \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \ VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \
@ -192,7 +219,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
// double precision floating point type is not good enough on current platform // double precision floating point type is not good enough on current platform
// fall back to the reference code (integer only) // fall back to the reference code (integer only)
#define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \ #define VARIANT2_PORTABLE_INTEGER_MATH(b, ptr) \
do if (variant >= 2) \ do if ((variant == 2) || (variant == 3)) \
{ \ { \
VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \
VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \ VARIANT2_INTEGER_MATH_SQRT_STEP_REF(); \
@ -200,13 +227,13 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
#endif #endif
#define VARIANT2_2_PORTABLE() \ #define VARIANT2_2_PORTABLE() \
if (variant >= 2) { \ if (variant == 2 || variant == 3) { \
xor_blocks(long_state + (j ^ 0x10), d); \ xor_blocks(long_state + (j ^ 0x10), d); \
xor_blocks(d, long_state + (j ^ 0x20)); \ xor_blocks(d, long_state + (j ^ 0x20)); \
} }
#define VARIANT2_2() \ #define VARIANT2_2() \
do if (variant >= 2) \ do if (variant == 2 || variant == 3) \
{ \ { \
*U64(hp_state + (j ^ 0x10)) ^= SWAP64LE(hi); \ *U64(hp_state + (j ^ 0x10)) ^= SWAP64LE(hi); \
*(U64(hp_state + (j ^ 0x10)) + 1) ^= SWAP64LE(lo); \ *(U64(hp_state + (j ^ 0x10)) + 1) ^= SWAP64LE(lo); \
@ -214,6 +241,58 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
lo ^= SWAP64LE(*(U64(hp_state + (j ^ 0x20)) + 1)); \ lo ^= SWAP64LE(*(U64(hp_state + (j ^ 0x20)) + 1)); \
} while (0) } while (0)
#define V4_REG_LOAD(dst, src) \
do { \
memcpy((dst), (src), sizeof(v4_reg)); \
if (sizeof(v4_reg) == sizeof(uint32_t)) \
*(dst) = SWAP32LE(*(dst)); \
else \
*(dst) = SWAP64LE(*(dst)); \
} while (0)
#define VARIANT4_RANDOM_MATH_INIT() \
v4_reg r[9]; \
struct V4_Instruction code[NUM_INSTRUCTIONS_MAX + 1]; \
do if (variant >= 4) \
{ \
for (int i = 0; i < 4; ++i) \
V4_REG_LOAD(r + i, (uint8_t*)(state.hs.w + 12) + sizeof(v4_reg) * i); \
v4_random_math_init(code, height); \
} while (0)
#define VARIANT4_RANDOM_MATH(a, b, r, _b, _b1) \
do if (variant >= 4) \
{ \
uint64_t t[2]; \
memcpy(t, b, sizeof(uint64_t)); \
\
if (sizeof(v4_reg) == sizeof(uint32_t)) \
t[0] ^= SWAP64LE((r[0] + r[1]) | ((uint64_t)(r[2] + r[3]) << 32)); \
else \
t[0] ^= SWAP64LE((r[0] + r[1]) ^ (r[2] + r[3])); \
\
memcpy(b, t, sizeof(uint64_t)); \
\
V4_REG_LOAD(r + 4, a); \
V4_REG_LOAD(r + 5, (uint64_t*)(a) + 1); \
V4_REG_LOAD(r + 6, _b); \
V4_REG_LOAD(r + 7, _b1); \
V4_REG_LOAD(r + 8, (uint64_t*)(_b1) + 1); \
\
v4_random_math(code, r); \
\
memcpy(t, a, sizeof(uint64_t) * 2); \
\
if (sizeof(v4_reg) == sizeof(uint32_t)) { \
t[0] ^= SWAP64LE(r[2] | ((uint64_t)(r[3]) << 32)); \
t[1] ^= SWAP64LE(r[0] | ((uint64_t)(r[1]) << 32)); \
} else { \
t[0] ^= SWAP64LE(r[2] ^ r[3]); \
t[1] ^= SWAP64LE(r[0] ^ r[1]); \
} \
memcpy(a, t, sizeof(uint64_t) * 2); \
} while (0)
#if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64))) #if !defined NO_AES && (defined(__x86_64__) || (defined(_MSC_VER) && defined(_WIN64)))
// Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI // Optimised code below, uses x86-specific intrinsics, SSE2, AES-NI
@ -298,6 +377,7 @@ extern void aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *ex
p = U64(&hp_state[j]); \ p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \ b[0] = p[0]; b[1] = p[1]; \
VARIANT2_INTEGER_MATH_SSE2(b, c); \ VARIANT2_INTEGER_MATH_SSE2(b, c); \
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
__mul(); \ __mul(); \
VARIANT2_2(); \ VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \ VARIANT2_SHUFFLE_ADD_SSE2(hp_state, j); \
@ -694,7 +774,7 @@ void slow_hash_free_state(void)
* @param length the length in bytes of the data * @param length the length in bytes of the data
* @param hash a pointer to a buffer in which the final 256 bit hash will be stored * @param hash a pointer to a buffer in which the final 256 bit hash will be stored
*/ */
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{ {
RDATA_ALIGN16 uint8_t expandedKey[240]; /* These buffers are aligned to use later with SSE functions */ RDATA_ALIGN16 uint8_t expandedKey[240]; /* These buffers are aligned to use later with SSE functions */
@ -730,6 +810,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_INIT64(); VARIANT1_INIT64();
VARIANT2_INIT64(); VARIANT2_INIT64();
VARIANT4_RANDOM_MATH_INIT();
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill /* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
* the 2MB large random access buffer. * the 2MB large random access buffer.
@ -901,6 +982,7 @@ union cn_slow_hash_state
p = U64(&hp_state[j]); \ p = U64(&hp_state[j]); \
b[0] = p[0]; b[1] = p[1]; \ b[0] = p[0]; b[1] = p[1]; \
VARIANT2_PORTABLE_INTEGER_MATH(b, c); \ VARIANT2_PORTABLE_INTEGER_MATH(b, c); \
VARIANT4_RANDOM_MATH(a, b, r, &_b, &_b1); \
__mul(); \ __mul(); \
VARIANT2_2(); \ VARIANT2_2(); \
VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \ VARIANT2_SHUFFLE_ADD_NEON(hp_state, j); \
@ -1063,7 +1145,7 @@ STATIC INLINE void aligned_free(void *ptr)
} }
#endif /* FORCE_USE_HEAP */ #endif /* FORCE_USE_HEAP */
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{ {
RDATA_ALIGN16 uint8_t expandedKey[240]; RDATA_ALIGN16 uint8_t expandedKey[240];
@ -1100,6 +1182,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_INIT64(); VARIANT1_INIT64();
VARIANT2_INIT64(); VARIANT2_INIT64();
VARIANT4_RANDOM_MATH_INIT();
/* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill /* CryptoNight Step 2: Iteratively encrypt the results from Keccak to fill
* the 2MB large random access buffer. * the 2MB large random access buffer.
@ -1278,10 +1361,11 @@ STATIC INLINE void xor_blocks(uint8_t* a, const uint8_t* b)
U64(a)[1] ^= U64(b)[1]; U64(a)[1] ^= U64(b)[1];
} }
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height)
{ {
uint8_t text[INIT_SIZE_BYTE]; uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE]; uint8_t a[AES_BLOCK_SIZE];
uint8_t a1[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE * 2]; uint8_t b[AES_BLOCK_SIZE * 2];
uint8_t c[AES_BLOCK_SIZE]; uint8_t c[AES_BLOCK_SIZE];
uint8_t c1[AES_BLOCK_SIZE]; uint8_t c1[AES_BLOCK_SIZE];
@ -1317,6 +1401,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_INIT64(); VARIANT1_INIT64();
VARIANT2_INIT64(); VARIANT2_INIT64();
VARIANT4_RANDOM_MATH_INIT();
// use aligned data // use aligned data
memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len); memcpy(expandedKey, aes_ctx->key->exp_data, aes_ctx->key->exp_data_len);
@ -1340,10 +1425,10 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
// Iteration 1 // Iteration 1
j = state_index(a); j = state_index(a);
p = &long_state[j]; p = &long_state[j];
aesb_single_round(p, p, a); aesb_single_round(p, c1, a);
copy_block(c1, p);
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
copy_block(p, c1);
xor_blocks(p, b); xor_blocks(p, b);
VARIANT1_1(p); VARIANT1_1(p);
@ -1352,13 +1437,15 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
p = &long_state[j]; p = &long_state[j];
copy_block(c, p); copy_block(c, p);
copy_block(a1, a);
VARIANT2_PORTABLE_INTEGER_MATH(c, c1); VARIANT2_PORTABLE_INTEGER_MATH(c, c1);
VARIANT4_RANDOM_MATH(a1, c, r, b, b + AES_BLOCK_SIZE);
mul(c1, c, d); mul(c1, c, d);
VARIANT2_2_PORTABLE(); VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
sum_half_blocks(a, d); sum_half_blocks(a1, d);
swap_blocks(a, c); swap_blocks(a1, c);
xor_blocks(a, c); xor_blocks(a1, c);
VARIANT1_2(U64(c) + 1); VARIANT1_2(U64(c) + 1);
copy_block(p, c); copy_block(p, c);
@ -1366,6 +1453,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
copy_block(b + AES_BLOCK_SIZE, b); copy_block(b + AES_BLOCK_SIZE, b);
} }
copy_block(b, c1); copy_block(b, c1);
copy_block(a, a1);
} }
memcpy(text, state.init, INIT_SIZE_BYTE); memcpy(text, state.init, INIT_SIZE_BYTE);
@ -1476,7 +1564,7 @@ union cn_slow_hash_state {
}; };
#pragma pack(pop) #pragma pack(pop)
void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed) { void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int prehashed, uint64_t height) {
#ifndef FORCE_USE_HEAP #ifndef FORCE_USE_HEAP
uint8_t long_state[MEMORY]; uint8_t long_state[MEMORY];
#else #else
@ -1486,6 +1574,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
union cn_slow_hash_state state; union cn_slow_hash_state state;
uint8_t text[INIT_SIZE_BYTE]; uint8_t text[INIT_SIZE_BYTE];
uint8_t a[AES_BLOCK_SIZE]; uint8_t a[AES_BLOCK_SIZE];
uint8_t a1[AES_BLOCK_SIZE];
uint8_t b[AES_BLOCK_SIZE * 2]; uint8_t b[AES_BLOCK_SIZE * 2];
uint8_t c1[AES_BLOCK_SIZE]; uint8_t c1[AES_BLOCK_SIZE];
uint8_t c2[AES_BLOCK_SIZE]; uint8_t c2[AES_BLOCK_SIZE];
@ -1505,6 +1594,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
VARIANT1_PORTABLE_INIT(); VARIANT1_PORTABLE_INIT();
VARIANT2_PORTABLE_INIT(); VARIANT2_PORTABLE_INIT();
VARIANT4_RANDOM_MATH_INIT();
oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE); oaes_key_import_data(aes_ctx, aes_key, AES_KEY_SIZE);
for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) { for (i = 0; i < MEMORY / INIT_SIZE_BYTE; i++) {
@ -1528,7 +1618,7 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; j = e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
copy_block(c1, &long_state[j]); copy_block(c1, &long_state[j]);
aesb_single_round(c1, c1, a); aesb_single_round(c1, c1, a);
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
copy_block(&long_state[j], c1); copy_block(&long_state[j], c1);
xor_blocks(&long_state[j], b); xor_blocks(&long_state[j], b);
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE); assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
@ -1536,22 +1626,22 @@ void cn_slow_hash(const void *data, size_t length, char *hash, int variant, int
/* Iteration 2 */ /* Iteration 2 */
j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE; j = e2i(c1, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE;
copy_block(c2, &long_state[j]); copy_block(c2, &long_state[j]);
copy_block(a1, a);
VARIANT2_PORTABLE_INTEGER_MATH(c2, c1); VARIANT2_PORTABLE_INTEGER_MATH(c2, c1);
VARIANT4_RANDOM_MATH(a1, c2, r, b, b + AES_BLOCK_SIZE);
mul(c1, c2, d); mul(c1, c2, d);
VARIANT2_2_PORTABLE(); VARIANT2_2_PORTABLE();
VARIANT2_PORTABLE_SHUFFLE_ADD(long_state, j); VARIANT2_PORTABLE_SHUFFLE_ADD(c1, a, long_state, j);
swap_blocks(a, c1); sum_half_blocks(a1, d);
sum_half_blocks(c1, d); swap_blocks(a1, c2);
swap_blocks(c1, c2); xor_blocks(a1, c2);
xor_blocks(c1, c2);
VARIANT1_2(c2 + 8); VARIANT1_2(c2 + 8);
copy_block(&long_state[j], c2); copy_block(&long_state[j], c2);
assert(j == e2i(a, MEMORY / AES_BLOCK_SIZE) * AES_BLOCK_SIZE);
if (variant >= 2) { if (variant >= 2) {
copy_block(b + AES_BLOCK_SIZE, b); copy_block(b + AES_BLOCK_SIZE, b);
} }
copy_block(b, a); copy_block(b, c1);
copy_block(a, c1); copy_block(a, a1);
} }
memcpy(text, state.init, INIT_SIZE_BYTE); memcpy(text, state.init, INIT_SIZE_BYTE);

View file

@ -0,0 +1,441 @@
#ifndef VARIANT4_RANDOM_MATH_H
#define VARIANT4_RANDOM_MATH_H
// Register size can be configured to either 32 bit (uint32_t) or 64 bit (uint64_t)
typedef uint32_t v4_reg;
enum V4_Settings
{
// Generate code with minimal theoretical latency = 45 cycles, which is equivalent to 15 multiplications
TOTAL_LATENCY = 15 * 3,
// Always generate at least 60 instructions
NUM_INSTRUCTIONS_MIN = 60,
// Never generate more than 70 instructions (final RET instruction doesn't count here)
NUM_INSTRUCTIONS_MAX = 70,
// Available ALUs for MUL
// Modern CPUs typically have only 1 ALU which can do multiplications
ALU_COUNT_MUL = 1,
// Total available ALUs
// Modern CPUs have 4 ALUs, but we use only 3 because random math executes together with other main loop code
ALU_COUNT = 3,
};
enum V4_InstructionList
{
MUL, // a*b
ADD, // a+b + C, C is an unsigned 32-bit constant
SUB, // a-b
ROR, // rotate right "a" by "b & 31" bits
ROL, // rotate left "a" by "b & 31" bits
XOR, // a^b
RET, // finish execution
V4_INSTRUCTION_COUNT = RET,
};
// V4_InstructionDefinition is used to generate code from random data
// Every random sequence of bytes is a valid code
//
// There are 9 registers in total:
// - 4 variable registers
// - 5 constant registers initialized from loop variables
// This is why dst_index is 2 bits
enum V4_InstructionDefinition
{
V4_OPCODE_BITS = 3,
V4_DST_INDEX_BITS = 2,
V4_SRC_INDEX_BITS = 3,
};
struct V4_Instruction
{
uint8_t opcode;
uint8_t dst_index;
uint8_t src_index;
uint32_t C;
};
#ifndef FORCEINLINE
#if defined(__GNUC__)
#define FORCEINLINE __attribute__((always_inline)) inline
#elif defined(_MSC_VER)
#define FORCEINLINE __forceinline
#else
#define FORCEINLINE inline
#endif
#endif
#ifndef UNREACHABLE_CODE
#if defined(__GNUC__)
#define UNREACHABLE_CODE __builtin_unreachable()
#elif defined(_MSC_VER)
#define UNREACHABLE_CODE __assume(false)
#else
#define UNREACHABLE_CODE
#endif
#endif
// Random math interpreter's loop is fully unrolled and inlined to achieve 100% branch prediction on CPU:
// every switch-case will point to the same destination on every iteration of Cryptonight main loop
//
// This is about as fast as it can get without using low-level machine code generation
static FORCEINLINE void v4_random_math(const struct V4_Instruction* code, v4_reg* r)
{
enum
{
REG_BITS = sizeof(v4_reg) * 8,
};
#define V4_EXEC(i) \
{ \
const struct V4_Instruction* op = code + i; \
const v4_reg src = r[op->src_index]; \
v4_reg* dst = r + op->dst_index; \
switch (op->opcode) \
{ \
case MUL: \
*dst *= src; \
break; \
case ADD: \
*dst += src + op->C; \
break; \
case SUB: \
*dst -= src; \
break; \
case ROR: \
{ \
const uint32_t shift = src % REG_BITS; \
*dst = (*dst >> shift) | (*dst << ((REG_BITS - shift) % REG_BITS)); \
} \
break; \
case ROL: \
{ \
const uint32_t shift = src % REG_BITS; \
*dst = (*dst << shift) | (*dst >> ((REG_BITS - shift) % REG_BITS)); \
} \
break; \
case XOR: \
*dst ^= src; \
break; \
case RET: \
return; \
default: \
UNREACHABLE_CODE; \
break; \
} \
}
#define V4_EXEC_10(j) \
V4_EXEC(j + 0) \
V4_EXEC(j + 1) \
V4_EXEC(j + 2) \
V4_EXEC(j + 3) \
V4_EXEC(j + 4) \
V4_EXEC(j + 5) \
V4_EXEC(j + 6) \
V4_EXEC(j + 7) \
V4_EXEC(j + 8) \
V4_EXEC(j + 9)
// Generated program can have 60 + a few more (usually 2-3) instructions to achieve required latency
// I've checked all block heights < 10,000,000 and here is the distribution of program sizes:
//
// 60 27960
// 61 105054
// 62 2452759
// 63 5115997
// 64 1022269
// 65 1109635
// 66 153145
// 67 8550
// 68 4529
// 69 102
// Unroll 70 instructions here
V4_EXEC_10(0); // instructions 0-9
V4_EXEC_10(10); // instructions 10-19
V4_EXEC_10(20); // instructions 20-29
V4_EXEC_10(30); // instructions 30-39
V4_EXEC_10(40); // instructions 40-49
V4_EXEC_10(50); // instructions 50-59
V4_EXEC_10(60); // instructions 60-69
#undef V4_EXEC_10
#undef V4_EXEC
}
// If we don't have enough data available, generate more
static FORCEINLINE void check_data(size_t* data_index, const size_t bytes_needed, int8_t* data, const size_t data_size)
{
if (*data_index + bytes_needed > data_size)
{
hash_extra_blake(data, data_size, (char*) data);
*data_index = 0;
}
}
// Generates as many random math operations as possible with given latency and ALU restrictions
// "code" array must have space for NUM_INSTRUCTIONS_MAX+1 instructions
static inline int v4_random_math_init(struct V4_Instruction* code, const uint64_t height)
{
// MUL is 3 cycles, 3-way addition and rotations are 2 cycles, SUB/XOR are 1 cycle
// These latencies match real-life instruction latencies for Intel CPUs starting from Sandy Bridge and up to Skylake/Coffee lake
//
// AMD Ryzen has the same latencies except 1-cycle ROR/ROL, so it'll be a bit faster than Intel Sandy Bridge and newer processors
// Surprisingly, Intel Nehalem also has 1-cycle ROR/ROL, so it'll also be faster than Intel Sandy Bridge and newer processors
// AMD Bulldozer has 4 cycles latency for MUL (slower than Intel) and 1 cycle for ROR/ROL (faster than Intel), so average performance will be the same
// Source: https://www.agner.org/optimize/instruction_tables.pdf
const int op_latency[V4_INSTRUCTION_COUNT] = { 3, 2, 1, 2, 2, 1 };
// Instruction latencies for theoretical ASIC implementation
const int asic_op_latency[V4_INSTRUCTION_COUNT] = { 3, 1, 1, 1, 1, 1 };
// Available ALUs for each instruction
const int op_ALUs[V4_INSTRUCTION_COUNT] = { ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT };
int8_t data[32];
memset(data, 0, sizeof(data));
uint64_t tmp = SWAP64LE(height);
memcpy(data, &tmp, sizeof(uint64_t));
data[20] = -38; // change seed
// Set data_index past the last byte in data
// to trigger full data update with blake hash
// before we start using it
size_t data_index = sizeof(data);
int code_size;
// There is a small chance (1.8%) that register R8 won't be used in the generated program
// So we keep track of it and try again if it's not used
bool r8_used;
do {
int latency[9];
int asic_latency[9];
// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
// byte 0: current value of the destination register
// byte 1: instruction opcode
// byte 2: current value of the source register
//
// Registers R4-R8 are constant and are treated as having the same value because when we do
// the same operation twice with two constant source registers, it can be optimized into a single operation
uint32_t inst_data[9] = { 0, 1, 2, 3, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF, 0xFFFFFF };
bool alu_busy[TOTAL_LATENCY + 1][ALU_COUNT];
bool is_rotation[V4_INSTRUCTION_COUNT];
bool rotated[4];
int rotate_count = 0;
memset(latency, 0, sizeof(latency));
memset(asic_latency, 0, sizeof(asic_latency));
memset(alu_busy, 0, sizeof(alu_busy));
memset(is_rotation, 0, sizeof(is_rotation));
memset(rotated, 0, sizeof(rotated));
is_rotation[ROR] = true;
is_rotation[ROL] = true;
int num_retries = 0;
code_size = 0;
int total_iterations = 0;
r8_used = false;
// Generate random code to achieve minimal required latency for our abstract CPU
// Try to get this latency for all 4 registers
while (((latency[0] < TOTAL_LATENCY) || (latency[1] < TOTAL_LATENCY) || (latency[2] < TOTAL_LATENCY) || (latency[3] < TOTAL_LATENCY)) && (num_retries < 64))
{
// Fail-safe to guarantee loop termination
++total_iterations;
if (total_iterations > 256)
break;
check_data(&data_index, 1, data, sizeof(data));
const uint8_t c = ((uint8_t*)data)[data_index++];
// MUL = opcodes 0-2
// ADD = opcode 3
// SUB = opcode 4
// ROR/ROL = opcode 5, shift direction is selected randomly
// XOR = opcodes 6-7
uint8_t opcode = c & ((1 << V4_OPCODE_BITS) - 1);
if (opcode == 5)
{
check_data(&data_index, 1, data, sizeof(data));
opcode = (data[data_index++] >= 0) ? ROR : ROL;
}
else if (opcode >= 6)
{
opcode = XOR;
}
else
{
opcode = (opcode <= 2) ? MUL : (opcode - 2);
}
uint8_t dst_index = (c >> V4_OPCODE_BITS) & ((1 << V4_DST_INDEX_BITS) - 1);
uint8_t src_index = (c >> (V4_OPCODE_BITS + V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1);
const int a = dst_index;
int b = src_index;
// Don't do ADD/SUB/XOR with the same register
if (((opcode == ADD) || (opcode == SUB) || (opcode == XOR)) && (a == b))
{
// Use register R8 as source instead
b = 8;
src_index = 8;
}
// Don't do rotation with the same destination twice because it's equal to a single rotation
if (is_rotation[opcode] && rotated[a])
{
continue;
}
// Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
// 2xADD(a, b, C) = ADD(a, b*2, C1+C2), same for SUB and rotations
// 2xXOR(a, b) = NOP
if ((opcode != MUL) && ((inst_data[a] & 0xFFFF00) == (opcode << 8) + ((inst_data[b] & 255) << 16)))
{
continue;
}
// Find which ALU is available (and when) for this instruction
int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b];
int alu_index = -1;
while (next_latency < TOTAL_LATENCY)
{
for (int i = op_ALUs[opcode] - 1; i >= 0; --i)
{
if (!alu_busy[next_latency][i])
{
// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
if ((opcode == ADD) && alu_busy[next_latency + 1][i])
{
continue;
}
// Rotation can only start when previous rotation is finished, so do an additional availability check
if (is_rotation[opcode] && (next_latency < rotate_count * op_latency[opcode]))
{
continue;
}
alu_index = i;
break;
}
}
if (alu_index >= 0)
{
break;
}
++next_latency;
}
// Don't generate instructions that leave some register unchanged for more than 7 cycles
if (next_latency > latency[a] + 7)
{
continue;
}
next_latency += op_latency[opcode];
if (next_latency <= TOTAL_LATENCY)
{
if (is_rotation[opcode])
{
++rotate_count;
}
// Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
alu_busy[next_latency - op_latency[opcode]][alu_index] = true;
latency[a] = next_latency;
// ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[opcode];
rotated[a] = is_rotation[opcode];
inst_data[a] = code_size + (opcode << 8) + ((inst_data[b] & 255) << 16);
code[code_size].opcode = opcode;
code[code_size].dst_index = dst_index;
code[code_size].src_index = src_index;
code[code_size].C = 0;
if (src_index == 8)
{
r8_used = true;
}
if (opcode == ADD)
{
// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
alu_busy[next_latency - op_latency[opcode] + 1][alu_index] = true;
// ADD instruction requires 4 more random bytes for 32-bit constant "C" in "a = a + b + C"
check_data(&data_index, sizeof(uint32_t), data, sizeof(data));
uint32_t t;
memcpy(&t, data + data_index, sizeof(uint32_t));
code[code_size].C = SWAP32LE(t);
data_index += sizeof(uint32_t);
}
++code_size;
if (code_size >= NUM_INSTRUCTIONS_MIN)
{
break;
}
}
else
{
++num_retries;
}
}
// ASIC has more execution resources and can extract as much parallelism from the code as possible
// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
// Get this latency for at least 1 of the 4 registers
const int prev_code_size = code_size;
while ((code_size < NUM_INSTRUCTIONS_MAX) && (asic_latency[0] < TOTAL_LATENCY) && (asic_latency[1] < TOTAL_LATENCY) && (asic_latency[2] < TOTAL_LATENCY) && (asic_latency[3] < TOTAL_LATENCY))
{
int min_idx = 0;
int max_idx = 0;
for (int i = 1; i < 4; ++i)
{
if (asic_latency[i] < asic_latency[min_idx]) min_idx = i;
if (asic_latency[i] > asic_latency[max_idx]) max_idx = i;
}
const uint8_t pattern[3] = { ROR, MUL, MUL };
const uint8_t opcode = pattern[(code_size - prev_code_size) % 3];
latency[min_idx] = latency[max_idx] + op_latency[opcode];
asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[opcode];
code[code_size].opcode = opcode;
code[code_size].dst_index = min_idx;
code[code_size].src_index = max_idx;
code[code_size].C = 0;
++code_size;
}
// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
// It never does more than 4 iterations for all block heights < 10,000,000
} while (!r8_used || (code_size < NUM_INSTRUCTIONS_MIN) || (code_size > NUM_INSTRUCTIONS_MAX));
// It's guaranteed that NUM_INSTRUCTIONS_MIN <= code_size <= NUM_INSTRUCTIONS_MAX here
// Add final instruction to stop the interpreter
code[code_size].opcode = RET;
code[code_size].dst_index = 0;
code[code_size].src_index = 0;
code[code_size].C = 0;
return code_size;
}
#endif

View file

@ -1174,7 +1174,7 @@ namespace cryptonote
} }
blobdata bd = get_block_hashing_blob(b); blobdata bd = get_block_hashing_blob(b);
const int cn_variant = b.major_version >= 7 ? b.major_version - 6 : 0; const int cn_variant = b.major_version >= 7 ? b.major_version - 6 : 0;
crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant); crypto::cn_slow_hash(bd.data(), bd.size(), res, cn_variant, height);
return true; return true;
} }
//--------------------------------------------------------------- //---------------------------------------------------------------

View file

@ -43,7 +43,7 @@ set_property(TARGET hash-tests
PROPERTY PROPERTY
FOLDER "tests") FOLDER "tests")
foreach (hash IN ITEMS fast slow slow-1 slow-2 tree extra-blake extra-groestl extra-jh extra-skein) foreach (hash IN ITEMS fast slow slow-1 slow-2 slow-4 tree extra-blake extra-groestl extra-jh extra-skein)
add_test( add_test(
NAME "hash-${hash}" NAME "hash-${hash}"
COMMAND hash-tests "${hash}" "${CMAKE_CURRENT_SOURCE_DIR}/tests-${hash}.txt") COMMAND hash-tests "${hash}" "${CMAKE_CURRENT_SOURCE_DIR}/tests-${hash}.txt")

View file

@ -44,6 +44,13 @@ using namespace std;
using namespace crypto; using namespace crypto;
typedef crypto::hash chash; typedef crypto::hash chash;
struct V4_Data
{
const void* data;
size_t length;
uint64_t height;
};
PUSH_WARNINGS PUSH_WARNINGS
DISABLE_VS_WARNINGS(4297) DISABLE_VS_WARNINGS(4297)
extern "C" { extern "C" {
@ -54,13 +61,17 @@ extern "C" {
tree_hash((const char (*)[crypto::HASH_SIZE]) data, length >> 5, hash); tree_hash((const char (*)[crypto::HASH_SIZE]) data, length >> 5, hash);
} }
static void cn_slow_hash_0(const void *data, size_t length, char *hash) { static void cn_slow_hash_0(const void *data, size_t length, char *hash) {
return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/); return cn_slow_hash(data, length, hash, 0/*variant*/, 0/*prehashed*/, 0/*height*/);
} }
static void cn_slow_hash_1(const void *data, size_t length, char *hash) { static void cn_slow_hash_1(const void *data, size_t length, char *hash) {
return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/); return cn_slow_hash(data, length, hash, 1/*variant*/, 0/*prehashed*/, 0/*height*/);
} }
static void cn_slow_hash_2(const void *data, size_t length, char *hash) { static void cn_slow_hash_2(const void *data, size_t length, char *hash) {
return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/); return cn_slow_hash(data, length, hash, 2/*variant*/, 0/*prehashed*/, 0/*height*/);
}
static void cn_slow_hash_4(const void *data, size_t, char *hash) {
const V4_Data* p = reinterpret_cast<const V4_Data*>(data);
return cn_slow_hash(p->data, p->length, hash, 4/*variant*/, 0/*prehashed*/, p->height);
} }
} }
POP_WARNINGS POP_WARNINGS
@ -72,7 +83,7 @@ struct hash_func {
} hashes[] = {{"fast", cn_fast_hash}, {"slow", cn_slow_hash_0}, {"tree", hash_tree}, } hashes[] = {{"fast", cn_fast_hash}, {"slow", cn_slow_hash_0}, {"tree", hash_tree},
{"extra-blake", hash_extra_blake}, {"extra-groestl", hash_extra_groestl}, {"extra-blake", hash_extra_blake}, {"extra-groestl", hash_extra_groestl},
{"extra-jh", hash_extra_jh}, {"extra-skein", hash_extra_skein}, {"extra-jh", hash_extra_jh}, {"extra-skein", hash_extra_skein},
{"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}}; {"slow-1", cn_slow_hash_1}, {"slow-2", cn_slow_hash_2}, {"slow-4", cn_slow_hash_4}};
int test_variant2_int_sqrt(); int test_variant2_int_sqrt();
int test_variant2_int_sqrt_ref(); int test_variant2_int_sqrt_ref();
@ -140,7 +151,15 @@ int main(int argc, char *argv[]) {
input.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit); input.exceptions(ios_base::badbit | ios_base::failbit | ios_base::eofbit);
input.clear(input.rdstate()); input.clear(input.rdstate());
get(input, data); get(input, data);
if (f == cn_slow_hash_4) {
V4_Data d;
d.data = data.data();
d.length = data.size();
get(input, d.height);
f(&d, 0, (char *) &actual);
} else {
f(data.data(), data.size(), (char *) &actual); f(data.data(), data.size(), (char *) &actual);
}
if (expected != actual) { if (expected != actual) {
size_t i; size_t i;
cerr << "Hash mismatch on test " << test << endl << "Input: "; cerr << "Hash mismatch on test " << test << endl << "Input: ";

View file

@ -0,0 +1,10 @@
f759588ad57e758467295443a9bd71490abff8e9dad1b95b6bf2f5d0d78387bc 5468697320697320612074657374205468697320697320612074657374205468697320697320612074657374 1806260
5bb833deca2bdd7252a9ccd7b4ce0b6a4854515794b56c207262f7a5b9bdb566 4c6f72656d20697073756d20646f6c6f722073697420616d65742c20636f6e73656374657475722061646970697363696e67 1806261
1ee6728da60fbd8d7d55b2b1ade487a3cf52a2c3ac6f520db12c27d8921f6cab 656c69742c2073656420646f20656975736d6f642074656d706f7220696e6369646964756e74207574206c61626f7265 1806262
6969fe2ddfb758438d48049f302fc2108a4fcc93e37669170e6db4b0b9b4c4cb 657420646f6c6f7265206d61676e6120616c697175612e20557420656e696d206164206d696e696d2076656e69616d2c 1806263
7f3048b4e90d0cbe7a57c0394f37338a01fae3adfdc0e5126d863a895eb04e02 71756973206e6f737472756420657865726369746174696f6e20756c6c616d636f206c61626f726973206e697369 1806264
1d290443a4b542af04a82f6b2494a6ee7f20f2754c58e0849032483a56e8e2ef 757420616c697175697020657820656120636f6d6d6f646f20636f6e7365717561742e20447569732061757465 1806265
c43cc6567436a86afbd6aa9eaa7c276e9806830334b614b2bee23cc76634f6fd 697275726520646f6c6f7220696e20726570726568656e646572697420696e20766f6c7570746174652076656c6974 1806266
87be2479c0c4e8edfdfaa5603e93f4265b3f8224c1c5946feb424819d18990a4 657373652063696c6c756d20646f6c6f726520657520667567696174206e756c6c612070617269617475722e 1806267
dd9d6a6d8e47465cceac0877ef889b93e7eba979557e3935d7f86dce11b070f3 4578636570746575722073696e74206f6363616563617420637570696461746174206e6f6e2070726f6964656e742c 1806268
75c6f2ae49a20521de97285b431e717125847fb8935ed84a61e7f8d36a2c3d8e 73756e7420696e2063756c706120717569206f666669636961206465736572756e74206d6f6c6c697420616e696d20696420657374206c61626f72756d2e 1806269