mirror of
https://git.wownero.com/lza_menace/wownero-python.git
synced 2024-08-15 03:25:25 +00:00
Replace Ed25519 implementation with much faster pyca/ed25519
This commit is contained in:
parent
c5c53adb10
commit
9aee6564e7
3 changed files with 193 additions and 104 deletions
|
@ -37,12 +37,15 @@ Released under the BSD 3-Clause License. See `LICENSE.txt`_.
|
|||
Copyright (c) 2017-2018 Michał Sałaban <michal@salaban.info> and Contributors: `lalanza808`_, `cryptochangements34`_, `atward`_, `rooterkyberian`_, `brucexiu`_,
|
||||
`lialsoftlab`_, `moneroexamples`_.
|
||||
|
||||
Copyright (c) 2016 The MoneroPy Developers (``monero/base58.py`` and ``monero/ed25519.py`` taken from `MoneroPy`_)
|
||||
Copyright (c) 2016 The MoneroPy Developers (``monero/base58.py`` taken from `MoneroPy`_)
|
||||
|
||||
Copyright (c) 2011-2013 `pyca/ed25519`_ Developers (``monero/ed25519.py``)
|
||||
|
||||
Copyright (c) 2011 thomasv@gitorious (``monero/seed.py`` based on `Electrum`_)
|
||||
|
||||
.. _`LICENSE.txt`: LICENSE.txt
|
||||
.. _`MoneroPy`: https://github.com/bigreddmachine/MoneroPy
|
||||
.. _`pyca/ed25519`: https://github.com/pyca/ed25519
|
||||
.. _`Electrum`: https://github.com/spesmilo/electrum
|
||||
|
||||
.. _`lalanza808`: https://github.com/lalanza808
|
||||
|
|
|
@ -1,16 +1,46 @@
|
|||
# The reference Ed25519 software is in the public domain.
|
||||
# Source: https://ed25519.cr.yp.to/python/ed25519.py
|
||||
# ed25519.py - Optimized version of the reference implementation of Ed25519
|
||||
#
|
||||
# Parts Copyright (c) 2016 The MoneroPy Developers. Released under the BSD 3-Clause
|
||||
# Parts taken from https://github.com/monero-project/mininero/blob/master/ed25519ietf.py
|
||||
# Written in 2011? by Daniel J. Bernstein <djb@cr.yp.to>
|
||||
# 2013 by Donald Stufft <donald@stufft.io>
|
||||
# 2013 by Alex Gaynor <alex.gaynor@gmail.com>
|
||||
# 2013 by Greg Price <price@mit.edu>
|
||||
# 2019 by Michal Salaban <michal@salaban.info>
|
||||
#
|
||||
# To the extent possible under law, the author(s) have dedicated all copyright
|
||||
# and related and neighboring rights to this software to the public domain
|
||||
# worldwide. This software is distributed without any warranty.
|
||||
#
|
||||
# You should have received a copy of the CC0 Public Domain Dedication along
|
||||
# with this software. If not, see
|
||||
# <http://creativecommons.org/publicdomain/zero/1.0/>.
|
||||
|
||||
from binascii import hexlify, unhexlify
|
||||
import hashlib
|
||||
import operator as _oper
|
||||
import sys as _sys
|
||||
"""
|
||||
NB: This code is not safe for use with secret keys or secret data.
|
||||
The only safe use of this code is for verifying signatures on public messages.
|
||||
|
||||
# Set up byte handling for Python 2 or 3
|
||||
if _sys.version_info.major == 2: # pragma: no cover
|
||||
Functions for computing the public key of a secret key and for signing
|
||||
a message are included, namely publickey_unsafe and signature_unsafe,
|
||||
for testing purposes only.
|
||||
|
||||
The root of the problem is that Python's long-integer arithmetic is
|
||||
not designed for use in cryptography. Specifically, it may take more
|
||||
or less time to execute an operation depending on the values of the
|
||||
inputs, and its memory access patterns may also depend on the inputs.
|
||||
This opens it to timing and cache side-channel attacks which can
|
||||
disclose data to an attacker. We rely on Python's long-integer
|
||||
arithmetic, so we cannot handle secrets without risking their disclosure.
|
||||
"""
|
||||
|
||||
import binascii
|
||||
import operator
|
||||
import sys
|
||||
|
||||
|
||||
if sys.version_info >= (3,): # pragma: no cover
|
||||
indexbytes = operator.getitem
|
||||
intlist2bytes = bytes
|
||||
int2byte = operator.methodcaller("to_bytes", 1, "big")
|
||||
else: # pragma: no cover
|
||||
int2byte = chr
|
||||
range = xrange
|
||||
|
||||
|
@ -19,32 +49,51 @@ if _sys.version_info.major == 2: # pragma: no cover
|
|||
|
||||
def intlist2bytes(l):
|
||||
return b"".join(chr(c) for c in l)
|
||||
else: # pragma: no cover
|
||||
indexbytes = _oper.getitem
|
||||
intlist2bytes = bytes
|
||||
int2byte = _oper.methodcaller("to_bytes", 1, "big")
|
||||
|
||||
|
||||
b = 256
|
||||
q = 2**255 - 19
|
||||
l = 2**252 + 27742317777372353535851937790883648493
|
||||
q = 2 ** 255 - 19
|
||||
l = 2 ** 252 + 27742317777372353535851937790883648493
|
||||
|
||||
def expmod(b, e, m):
|
||||
if e == 0: return 1
|
||||
t = expmod(b, e//2, m)**2 % m
|
||||
if e & 1: t = (t*b) % m
|
||||
return t
|
||||
|
||||
def inv(x):
|
||||
return expmod(x, q-2, q)
|
||||
def pow2(x, p):
|
||||
"""== pow(x, 2**p, q)"""
|
||||
while p > 0:
|
||||
x = x * x % q
|
||||
p -= 1
|
||||
return x
|
||||
|
||||
|
||||
def inv(z):
|
||||
# Adapted from curve25519_athlon.c in djb's Curve25519.
|
||||
z2 = z * z % q # 2
|
||||
z9 = pow2(z2, 2) * z % q # 9
|
||||
z11 = z9 * z2 % q # 11
|
||||
z2_5_0 = (z11 * z11) % q * z9 % q # 31 == 2^5 - 2^0
|
||||
z2_10_0 = pow2(z2_5_0, 5) * z2_5_0 % q # 2^10 - 2^0
|
||||
z2_20_0 = pow2(z2_10_0, 10) * z2_10_0 % q # ...
|
||||
z2_40_0 = pow2(z2_20_0, 20) * z2_20_0 % q
|
||||
z2_50_0 = pow2(z2_40_0, 10) * z2_10_0 % q
|
||||
z2_100_0 = pow2(z2_50_0, 50) * z2_50_0 % q
|
||||
z2_200_0 = pow2(z2_100_0, 100) * z2_100_0 % q
|
||||
z2_250_0 = pow2(z2_200_0, 50) * z2_50_0 % q # 2^250 - 2^0
|
||||
return pow2(z2_250_0, 5) * z11 % q # 2^255 - 2^5 + 11 = q - 2
|
||||
|
||||
|
||||
d = -121665 * inv(121666) % q
|
||||
I = pow(2, (q - 1) // 4, q)
|
||||
|
||||
d = -121665 * inv(121666)
|
||||
I = expmod(2, (q-1)//4, q)
|
||||
|
||||
def xrecover(y):
|
||||
xx = (y*y-1) * inv(d*y*y+1)
|
||||
x = expmod(xx, (q+3)//8, q)
|
||||
if (x*x - xx) % q != 0: x = (x*I) % q
|
||||
if x % 2 != 0: x = q-x
|
||||
xx = (y * y - 1) * inv(d * y * y + 1)
|
||||
x = pow(xx, (q + 3) // 8, q)
|
||||
|
||||
if (x * x - xx) % q != 0:
|
||||
x = (x * I) % q
|
||||
|
||||
if x % 2 != 0:
|
||||
x = q-x
|
||||
|
||||
return x
|
||||
|
||||
def compress(P):
|
||||
|
@ -56,103 +105,140 @@ def decompress(P):
|
|||
|
||||
By = 4 * inv(5)
|
||||
Bx = xrecover(By)
|
||||
B = [Bx%q, By%q]
|
||||
B = (Bx % q, By % q, 1, (Bx * By) % q)
|
||||
ident = (0, 1, 1, 0)
|
||||
|
||||
def edwards(P, Q):
|
||||
x1 = P[0]
|
||||
y1 = P[1]
|
||||
x2 = Q[0]
|
||||
y2 = Q[1]
|
||||
x3 = (x1*y2+x2*y1) * inv(1+d*x1*x2*y1*y2)
|
||||
y3 = (y1*y2+x1*x2) * inv(1-d*x1*x2*y1*y2)
|
||||
return [x3%q, y3%q]
|
||||
|
||||
def add(P, Q):
|
||||
A = (P[1]-P[0])*(Q[1]-Q[0]) % q
|
||||
B = (P[1]+P[0])*(Q[1]+Q[0]) % q
|
||||
C = 2 * P[3] * Q[3] * d % q
|
||||
D = 2 * P[2] * Q[2] % q
|
||||
E = B-A
|
||||
F = D-C
|
||||
G = D+C
|
||||
H = B+A
|
||||
return (E*F, G*H, F*G, E*H)
|
||||
def edwards_add(P, Q):
|
||||
# This is formula sequence 'addition-add-2008-hwcd-3' from
|
||||
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
||||
(x1, y1, z1, t1) = P
|
||||
(x2, y2, z2, t2) = Q
|
||||
|
||||
a = (y1-x1)*(y2-x2) % q
|
||||
b = (y1+x1)*(y2+x2) % q
|
||||
c = t1*2*d*t2 % q
|
||||
dd = z1*2*z2 % q
|
||||
e = b - a
|
||||
f = dd - c
|
||||
g = dd + c
|
||||
h = b + a
|
||||
x3 = e*f
|
||||
y3 = g*h
|
||||
t3 = e*h
|
||||
z3 = f*g
|
||||
|
||||
return (x3 % q, y3 % q, z3 % q, t3 % q)
|
||||
|
||||
|
||||
def edwards_double(P):
|
||||
# This is formula sequence 'dbl-2008-hwcd' from
|
||||
# http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html
|
||||
(x1, y1, z1, t1) = P
|
||||
|
||||
a = x1*x1 % q
|
||||
b = y1*y1 % q
|
||||
c = 2*z1*z1 % q
|
||||
# dd = -a
|
||||
e = ((x1+y1)*(x1+y1) - a - b) % q
|
||||
g = -a + b # dd + b
|
||||
f = g - c
|
||||
h = -a - b # dd - b
|
||||
x3 = e*f
|
||||
y3 = g*h
|
||||
t3 = e*h
|
||||
z3 = f*g
|
||||
|
||||
return (x3 % q, y3 % q, z3 % q, t3 % q)
|
||||
|
||||
def add_compressed(P, Q):
|
||||
return compress(add(decompress(P), decompress(Q)))
|
||||
|
||||
def scalarmult(P, e):
|
||||
if e == 0: return [0, 1]
|
||||
Q = scalarmult(P, e//2)
|
||||
Q = edwards(Q, Q)
|
||||
if e & 1: Q = edwards(Q, P)
|
||||
if e == 0:
|
||||
return ident
|
||||
Q = scalarmult(P, e // 2)
|
||||
Q = edwards_double(Q)
|
||||
if e & 1:
|
||||
Q = edwards_add(Q, P)
|
||||
return Q
|
||||
|
||||
|
||||
# Bpow[i] == scalarmult(B, 2**i)
|
||||
Bpow = []
|
||||
|
||||
|
||||
def make_Bpow():
|
||||
P = B
|
||||
for i in range(253):
|
||||
Bpow.append(P)
|
||||
P = edwards_double(P)
|
||||
make_Bpow()
|
||||
|
||||
|
||||
def scalarmult_B(e):
|
||||
"""
|
||||
Implements scalarmult(B, e) more efficiently.
|
||||
"""
|
||||
# scalarmult(B, l) is the identity
|
||||
e = e % l
|
||||
P = ident
|
||||
for i in range(253):
|
||||
if e & 1:
|
||||
P = edwards_add(P, Bpow[i])
|
||||
e = e // 2
|
||||
assert e == 0, e
|
||||
return P
|
||||
|
||||
|
||||
def encodeint(y):
|
||||
bits = [(y >> i) & 1 for i in range(b)]
|
||||
return b''.join([int2byte(sum([bits[i*8 + j] << j for j in range(8)])) for i in range(b//8)])
|
||||
return b''.join([
|
||||
int2byte(sum([bits[i * 8 + j] << j for j in range(8)]))
|
||||
for i in range(b//8)
|
||||
])
|
||||
|
||||
|
||||
def encodepoint(P):
|
||||
x = P[0]
|
||||
y = P[1]
|
||||
bits = [(y >> i) & 1 for i in range(b-1)] + [x & 1]
|
||||
return b''.join([int2byte(sum([bits[i * 8 + j] << j for j in range(8)])) for i in range(b//8)])
|
||||
(x, y, z, t) = P
|
||||
zi = inv(z)
|
||||
x = (x * zi) % q
|
||||
y = (y * zi) % q
|
||||
bits = [(y >> i) & 1 for i in range(b - 1)] + [x & 1]
|
||||
return b''.join([
|
||||
int2byte(sum([bits[i * 8 + j] << j for j in range(8)]))
|
||||
for i in range(b // 8)
|
||||
])
|
||||
|
||||
|
||||
def bit(h, i):
|
||||
return (indexbytes(h, i//8) >> (i%8)) & 1
|
||||
return (indexbytes(h, i // 8) >> (i % 8)) & 1
|
||||
|
||||
|
||||
def isoncurve(P):
|
||||
x = P[0]
|
||||
y = P[1]
|
||||
return (-x*x + y*y - 1 - d*x*x*y*y) % q == 0
|
||||
(x, y, z, t) = P
|
||||
return (z % q != 0 and
|
||||
x*y % q == z*t % q and
|
||||
(y*y - x*x - z*z - d*t*t) % q == 0)
|
||||
|
||||
|
||||
def decodeint(s):
|
||||
return sum(2**i * bit(s, i) for i in range(0, b))
|
||||
return sum(2 ** i * bit(s, i) for i in range(0, b))
|
||||
|
||||
|
||||
def decodepoint(s):
|
||||
y = sum(2**i * bit(s, i) for i in range(0, b-1))
|
||||
y = sum(2 ** i * bit(s, i) for i in range(0, b - 1))
|
||||
x = xrecover(y)
|
||||
if x & 1 != bit(s, b-1): x = q - x
|
||||
P = [x, y]
|
||||
if not isoncurve(P): raise Exception("decoding point that is not on curve")
|
||||
if x & 1 != bit(s, b-1):
|
||||
x = q - x
|
||||
P = (x, y, 1, (x*y) % q)
|
||||
if not isoncurve(P):
|
||||
raise ValueError("decoding point that is not on curve")
|
||||
return P
|
||||
|
||||
# These are unused but let's keep them
|
||||
#def H(m):
|
||||
# return hashlib.sha512(m).digest()
|
||||
#
|
||||
#def Hint(m):
|
||||
# h = H(m)
|
||||
# return sum(2**i * bit(h, i) for i in range(2*b))
|
||||
#
|
||||
#def publickey(sk):
|
||||
# h = H(sk)
|
||||
# a = 2**(b-2) + sum(2**i * bit(h, i) for i in range(3, b-2))
|
||||
# A = scalarmult(B, a)
|
||||
# return encodepoint(A)
|
||||
#
|
||||
#def signature(m, sk, pk):
|
||||
# h = H(sk)
|
||||
# a = 2**(b-2) + sum(2**i * bit(h, i) for i in range(3, b-2))
|
||||
# r = Hint(intlist2bytes([indexbytes(h, j) for j in range(b//8, b//4)]) + m)
|
||||
# R = scalarmult(B, r)
|
||||
# S = (r + Hint(encodepoint(R)+pk+m) * a) % l
|
||||
# return encodepoint(R) + encodeint(S)
|
||||
#
|
||||
#def checkvalid(s, m, pk):
|
||||
# if len(s) != b//4: raise Exception("signature length is wrong")
|
||||
# if len(pk) != b//8: raise Exception("public-key length is wrong")
|
||||
# R = decodepoint(s[0:b//8])
|
||||
# A = decodepoint(pk)
|
||||
# S = decodeint(s[b//8:b//4])
|
||||
# h = Hint(encodepoint(R) + pk + m)
|
||||
# if scalarmult(B, S) != edwards(R, scalarmult(A, h)):
|
||||
# raise Exception("signature does not pass verification")
|
||||
|
||||
def public_from_secret(k):
|
||||
keyInt = decodeint(k)
|
||||
aB = scalarmult(B, keyInt)
|
||||
aB = scalarmult_B(keyInt)
|
||||
return encodepoint(aB)
|
||||
|
||||
def public_from_secret_hex(hk):
|
||||
return hexlify(public_from_secret(unhexlify(hk))).decode()
|
||||
return binascii.hexlify(public_from_secret(binascii.unhexlify(hk))).decode()
|
||||
|
|
|
@ -219,9 +219,9 @@ class Wallet(object):
|
|||
struct.pack('<I', major), struct.pack('<I', minor)])
|
||||
m = keccak_256(hsdata).digest()
|
||||
# D = master_psk + m * B
|
||||
D = ed25519.add_compressed(
|
||||
D = ed25519.edwards_add(
|
||||
ed25519.decodepoint(master_psk),
|
||||
ed25519.scalarmult(ed25519.B, ed25519.decodeint(m)))
|
||||
ed25519.scalarmult_B(ed25519.decodeint(m)))
|
||||
# C = master_svk * D
|
||||
C = ed25519.scalarmult(D, ed25519.decodeint(master_svk))
|
||||
netbyte = bytearray([
|
||||
|
|
Loading…
Reference in a new issue