mirror of
https://git.wownero.com/wownero/RandomWOW.git
synced 2024-08-15 00:23:14 +00:00
2756bcdcfe
New B operand selection rules
169 lines
5.3 KiB
C
169 lines
5.3 KiB
C
/*
|
|
Reference implementations of computing and using the "magic number" approach to dividing
|
|
by constants, including codegen instructions. The unsigned division incorporates the
|
|
"round down" optimization per ridiculous_fish.
|
|
|
|
This is free and unencumbered software. Any copyright is dedicated to the Public Domain.
|
|
*/
|
|
|
|
#include <limits.h> //for CHAR_BIT
|
|
#include <assert.h>
|
|
|
|
#include "divideByConstantCodegen.h"
|
|
|
|
struct magicu_info compute_unsigned_magic_info(unsigned_type D, unsigned num_bits) {
|
|
|
|
//The numerator must fit in a unsigned_type
|
|
assert(num_bits > 0 && num_bits <= sizeof(unsigned_type) * CHAR_BIT);
|
|
|
|
// D must be larger than zero and not a power of 2
|
|
assert(D & (D - 1));
|
|
|
|
// The eventual result
|
|
struct magicu_info result;
|
|
|
|
// Bits in a unsigned_type
|
|
const unsigned UINT_BITS = sizeof(unsigned_type) * CHAR_BIT;
|
|
|
|
// The extra shift implicit in the difference between UINT_BITS and num_bits
|
|
const unsigned extra_shift = UINT_BITS - num_bits;
|
|
|
|
// The initial power of 2 is one less than the first one that can possibly work
|
|
const unsigned_type initial_power_of_2 = (unsigned_type)1 << (UINT_BITS - 1);
|
|
|
|
// The remainder and quotient of our power of 2 divided by d
|
|
unsigned_type quotient = initial_power_of_2 / D, remainder = initial_power_of_2 % D;
|
|
|
|
// ceil(log_2 D)
|
|
unsigned ceil_log_2_D;
|
|
|
|
// The magic info for the variant "round down" algorithm
|
|
unsigned_type down_multiplier = 0;
|
|
unsigned down_exponent = 0;
|
|
int has_magic_down = 0;
|
|
|
|
// Compute ceil(log_2 D)
|
|
ceil_log_2_D = 0;
|
|
unsigned_type tmp;
|
|
for (tmp = D; tmp > 0; tmp >>= 1)
|
|
ceil_log_2_D += 1;
|
|
|
|
|
|
// Begin a loop that increments the exponent, until we find a power of 2 that works.
|
|
unsigned exponent;
|
|
for (exponent = 0; ; exponent++) {
|
|
// Quotient and remainder is from previous exponent; compute it for this exponent.
|
|
if (remainder >= D - remainder) {
|
|
// Doubling remainder will wrap around D
|
|
quotient = quotient * 2 + 1;
|
|
remainder = remainder * 2 - D;
|
|
}
|
|
else {
|
|
// Remainder will not wrap
|
|
quotient = quotient * 2;
|
|
remainder = remainder * 2;
|
|
}
|
|
|
|
// We're done if this exponent works for the round_up algorithm.
|
|
// Note that exponent may be larger than the maximum shift supported,
|
|
// so the check for >= ceil_log_2_D is critical.
|
|
if ((exponent + extra_shift >= ceil_log_2_D) || (D - remainder) <= ((unsigned_type)1 << (exponent + extra_shift)))
|
|
break;
|
|
|
|
// Set magic_down if we have not set it yet and this exponent works for the round_down algorithm
|
|
if (!has_magic_down && remainder <= ((unsigned_type)1 << (exponent + extra_shift))) {
|
|
has_magic_down = 1;
|
|
down_multiplier = quotient;
|
|
down_exponent = exponent;
|
|
}
|
|
}
|
|
|
|
if (exponent < ceil_log_2_D) {
|
|
// magic_up is efficient
|
|
result.multiplier = quotient + 1;
|
|
result.pre_shift = 0;
|
|
result.post_shift = exponent;
|
|
result.increment = 0;
|
|
}
|
|
else if (D & 1) {
|
|
// Odd divisor, so use magic_down, which must have been set
|
|
assert(has_magic_down);
|
|
result.multiplier = down_multiplier;
|
|
result.pre_shift = 0;
|
|
result.post_shift = down_exponent;
|
|
result.increment = 1;
|
|
}
|
|
else {
|
|
// Even divisor, so use a prefix-shifted dividend
|
|
unsigned pre_shift = 0;
|
|
unsigned_type shifted_D = D;
|
|
while ((shifted_D & 1) == 0) {
|
|
shifted_D >>= 1;
|
|
pre_shift += 1;
|
|
}
|
|
result = compute_unsigned_magic_info(shifted_D, num_bits - pre_shift);
|
|
assert(result.increment == 0 && result.pre_shift == 0); //expect no increment or pre_shift in this path
|
|
result.pre_shift = pre_shift;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
struct magics_info compute_signed_magic_info(signed_type D) {
|
|
// D must not be zero and must not be a power of 2 (or its negative)
|
|
assert(D != 0 && (D & -D) != D && (D & -D) != -D);
|
|
|
|
// Our result
|
|
struct magics_info result;
|
|
|
|
// Bits in an signed_type
|
|
const unsigned SINT_BITS = sizeof(signed_type) * CHAR_BIT;
|
|
|
|
// Absolute value of D (we know D is not the most negative value since that's a power of 2)
|
|
const unsigned_type abs_d = (D < 0 ? -D : D);
|
|
|
|
// The initial power of 2 is one less than the first one that can possibly work
|
|
// "two31" in Warren
|
|
unsigned exponent = SINT_BITS - 1;
|
|
const unsigned_type initial_power_of_2 = (unsigned_type)1 << exponent;
|
|
|
|
// Compute the absolute value of our "test numerator,"
|
|
// which is the largest dividend whose remainder with d is d-1.
|
|
// This is called anc in Warren.
|
|
const unsigned_type tmp = initial_power_of_2 + (D < 0);
|
|
const unsigned_type abs_test_numer = tmp - 1 - tmp % abs_d;
|
|
|
|
// Initialize our quotients and remainders (q1, r1, q2, r2 in Warren)
|
|
unsigned_type quotient1 = initial_power_of_2 / abs_test_numer, remainder1 = initial_power_of_2 % abs_test_numer;
|
|
unsigned_type quotient2 = initial_power_of_2 / abs_d, remainder2 = initial_power_of_2 % abs_d;
|
|
unsigned_type delta;
|
|
|
|
// Begin our loop
|
|
do {
|
|
// Update the exponent
|
|
exponent++;
|
|
|
|
// Update quotient1 and remainder1
|
|
quotient1 *= 2;
|
|
remainder1 *= 2;
|
|
if (remainder1 >= abs_test_numer) {
|
|
quotient1 += 1;
|
|
remainder1 -= abs_test_numer;
|
|
}
|
|
|
|
// Update quotient2 and remainder2
|
|
quotient2 *= 2;
|
|
remainder2 *= 2;
|
|
if (remainder2 >= abs_d) {
|
|
quotient2 += 1;
|
|
remainder2 -= abs_d;
|
|
}
|
|
|
|
// Keep going as long as (2**exponent) / abs_d <= delta
|
|
delta = abs_d - remainder2;
|
|
} while (quotient1 < delta || (quotient1 == delta && remainder1 == 0));
|
|
|
|
result.multiplier = quotient2 + 1;
|
|
if (D < 0) result.multiplier = -result.multiplier;
|
|
result.shift = exponent - SINT_BITS;
|
|
return result;
|
|
}
|