RandomWOW/src/LightProgramGenerator.cpp
2019-03-31 21:22:36 +02:00

1100 lines
No EOL
38 KiB
C++

/*
Copyright (c) 2019 tevador
This file is part of RandomX.
RandomX is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RandomX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RandomX. If not, see<http://www.gnu.org/licenses/>.
*/
#include "blake2/blake2.h"
#include "configuration.h"
#include "Program.hpp"
#include "blake2/endian.h";
#include <iostream>
#include <vector>
#include <algorithm>
#include <stdexcept>
namespace RandomX {
// Intel Ivy Bridge reference
namespace LightInstructionType { //uOPs (decode) execution ports latency code size
constexpr int IADD_R = 0; //1 p015 1 3
constexpr int IADD_C = 1; //1 p015 1 7
constexpr int IADD_RC = 2; //1 p1 3 8
constexpr int ISUB_R = 3; //1 p015 1 3
constexpr int IMUL_9C = 4; //1 p1 3 8
constexpr int IMUL_R = 5; //1 p1 3 4
constexpr int IMUL_C = 6; //1 p1 3 7
constexpr int IMULH_R = 7; //1+2+1 0+(p1,p5)+0 3 3+3+3
constexpr int ISMULH_R = 8; //1+2+1 0+(p1,p5)+0 3 3+3+3
constexpr int IMUL_RCP = 9; //1+1 p015+p1 4 10+4
constexpr int IXOR_R = 10; //1 p015 1 3
constexpr int IXOR_C = 11; //1 p015 1 7
constexpr int IROR_R = 12; //1+2 0+(p0,p5) 1 3+3
constexpr int IROR_C = 13; //1 p05 1 4
constexpr int COND_R = 14; //1+1+1+1+1+1 p015+p5+0+p015+p05+p015 3 7+13+3+7+3+3
constexpr int COUNT = 15;
}
namespace LightInstructionOpcode {
constexpr int IADD_R = 0;
constexpr int IADD_RC = RANDOMX_FREQ_IADD_R + RANDOMX_FREQ_IADD_M;
constexpr int ISUB_R = IADD_RC + RANDOMX_FREQ_IADD_RC;
constexpr int IMUL_9C = ISUB_R + RANDOMX_FREQ_ISUB_R + RANDOMX_FREQ_ISUB_M;
constexpr int IMUL_R = IMUL_9C + RANDOMX_FREQ_IMUL_9C;
constexpr int IMULH_R = IMUL_R + RANDOMX_FREQ_IMUL_R + RANDOMX_FREQ_IMUL_M;
constexpr int ISMULH_R = IMULH_R + RANDOMX_FREQ_IMULH_R + RANDOMX_FREQ_IMULH_M;
constexpr int IMUL_RCP = ISMULH_R + RANDOMX_FREQ_ISMULH_R + RANDOMX_FREQ_ISMULH_M;
constexpr int IXOR_R = IMUL_RCP + RANDOMX_FREQ_IMUL_RCP + RANDOMX_FREQ_INEG_R;
constexpr int IROR_R = IXOR_R + RANDOMX_FREQ_IXOR_R + RANDOMX_FREQ_IXOR_M;
constexpr int COND_R = IROR_R + RANDOMX_FREQ_IROR_R + RANDOMX_FREQ_IROL_R + RANDOMX_FREQ_ISWAP_R + RANDOMX_FREQ_FSWAP_R + RANDOMX_FREQ_FADD_R + RANDOMX_FREQ_FADD_M + RANDOMX_FREQ_FSUB_R + RANDOMX_FREQ_FSUB_M + RANDOMX_FREQ_FSCAL_R + RANDOMX_FREQ_FMUL_R + RANDOMX_FREQ_FDIV_M + RANDOMX_FREQ_FSQRT_R;
}
const int lightInstructionOpcode[] = {
LightInstructionOpcode::IADD_R,
LightInstructionOpcode::IADD_R,
LightInstructionOpcode::IADD_RC,
LightInstructionOpcode::ISUB_R,
LightInstructionOpcode::IMUL_9C,
LightInstructionOpcode::IMUL_R,
LightInstructionOpcode::IMUL_R,
LightInstructionOpcode::IMULH_R,
LightInstructionOpcode::ISMULH_R,
LightInstructionOpcode::IMUL_RCP,
LightInstructionOpcode::IXOR_R,
LightInstructionOpcode::IXOR_R,
LightInstructionOpcode::IROR_R,
LightInstructionOpcode::IROR_R,
LightInstructionOpcode::COND_R
};
const int lightInstruction[] = {
LightInstructionType::IADD_R,
LightInstructionType::IADD_C,
LightInstructionType::IADD_RC,
LightInstructionType::ISUB_R,
LightInstructionType::IMUL_9C,
LightInstructionType::IMUL_R,
LightInstructionType::IMUL_R,
LightInstructionType::IMUL_C,
LightInstructionType::IMULH_R,
LightInstructionType::ISMULH_R,
LightInstructionType::IMUL_RCP,
LightInstructionType::IXOR_R,
LightInstructionType::IXOR_C,
LightInstructionType::IROR_R,
LightInstructionType::IROR_C,
LightInstructionType::COND_R
};
namespace ExecutionPort {
using type = int;
constexpr type Null = 0;
constexpr type P0 = 1;
constexpr type P1 = 2;
constexpr type P5 = 3;
constexpr type P05 = 4;
constexpr type P015 = 5;
}
class Blake2Generator {
public:
Blake2Generator(const void* seed) : dataIndex(sizeof(data)) {
memset(data, 0, sizeof(data));
memcpy(data, seed, SeedSize);
data[60] = 39;
}
uint8_t getByte() {
checkData(1);
return data[dataIndex++];
}
uint32_t getInt32() {
checkData(4);
auto ret = load32(&data[dataIndex]);
dataIndex += 4;
return ret;
}
private:
uint8_t data[64];
size_t dataIndex;
void checkData(const size_t bytesNeeded) {
if (dataIndex + bytesNeeded > sizeof(data)) {
blake2b(data, sizeof(data), data, sizeof(data), nullptr, 0);
dataIndex = 0;
}
}
};
class RegisterInfo {
public:
RegisterInfo() : lastOpGroup(-1), source(-1), value(0), latency(0) {}
int lastOpGroup;
int source;
int value;
int latency;
};
class MacroOp {
public:
MacroOp(const char* name, int size)
: name_(name), size_(size), latency_(0), uop1_(ExecutionPort::Null), uop2_(ExecutionPort::Null) {}
MacroOp(const char* name, int size, int latency, ExecutionPort::type uop)
: name_(name), size_(size), latency_(latency), uop1_(uop), uop2_(ExecutionPort::Null) {}
MacroOp(const char* name, int size, int latency, ExecutionPort::type uop1, ExecutionPort::type uop2)
: name_(name), size_(size), latency_(latency), uop1_(uop1), uop2_(uop2) {}
MacroOp(const MacroOp& parent, bool dependent)
: name_(parent.name_), size_(parent.size_), latency_(parent.latency_), uop1_(parent.uop1_), uop2_(parent.uop2_), dependent_(dependent) {}
const char* getName() const {
return name_;
}
int getSize() const {
return size_;
}
int getLatency() const {
return latency_;
}
ExecutionPort::type getUop1() const {
return uop1_;
}
ExecutionPort::type getUop2() const {
return uop2_;
}
bool isSimple() const {
return uop2_ == ExecutionPort::Null;
}
bool isEliminated() const {
return uop1_ == ExecutionPort::Null;
}
bool isDependent() const {
return dependent_;
}
int getCycle() const {
return cycle_;
}
void setCycle(int cycle) {
cycle_ = cycle;
}
MacroOp* getSrcDep() const {
return depSrc_;
}
void setSrcDep(MacroOp* src) {
depSrc_ = src;
}
MacroOp* getDstDep() const {
return depDst_;
}
void setDstDep(MacroOp* dst) {
depDst_ = dst;
}
static const MacroOp Add_rr;
static const MacroOp Add_ri;
static const MacroOp Lea_sib;
static const MacroOp Sub_rr;
static const MacroOp Imul_rr;
static const MacroOp Imul_rri;
static const MacroOp Imul_r;
static const MacroOp Mul_r;
static const MacroOp Mov_rr;
static const MacroOp Mov_ri64;
static const MacroOp Xor_rr;
static const MacroOp Xor_ri;
static const MacroOp Ror_rcl;
static const MacroOp Ror_ri;
static const MacroOp TestJmp_fused;
static const MacroOp Xor_self;
static const MacroOp Cmp_ri;
static const MacroOp Setcc_r;
private:
const char* name_;
int size_;
int latency_;
ExecutionPort::type uop1_;
ExecutionPort::type uop2_;
int cycle_;
bool dependent_ = false;
MacroOp* depDst_ = nullptr;
MacroOp* depSrc_ = nullptr;
};
const MacroOp MacroOp::Add_rr = MacroOp("add r,r", 3, 1, ExecutionPort::P015);
const MacroOp MacroOp::Add_ri = MacroOp("add r,i", 7, 1, ExecutionPort::P015);
const MacroOp MacroOp::Lea_sib = MacroOp("lea r,m", 8, 3, ExecutionPort::P1);
const MacroOp MacroOp::Sub_rr = MacroOp("sub r,r", 3, 1, ExecutionPort::P015);
const MacroOp MacroOp::Imul_rr = MacroOp("imul r,r", 4, 3, ExecutionPort::P1);
const MacroOp MacroOp::Imul_rri = MacroOp("imul r,r,i", 7, 3, ExecutionPort::P1);
const MacroOp MacroOp::Imul_r = MacroOp("imul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5);
const MacroOp MacroOp::Mul_r = MacroOp("mul r", 3, 3, ExecutionPort::P1, ExecutionPort::P5);
const MacroOp MacroOp::Mov_rr = MacroOp("mov r,r", 3);
const MacroOp MacroOp::Mov_ri64 = MacroOp("mov rax,i64", 10, 1, ExecutionPort::P015);
const MacroOp MacroOp::Xor_rr = MacroOp("xor r,r", 3, 1, ExecutionPort::P015);
const MacroOp MacroOp::Xor_ri = MacroOp("xor r,i", 7, 1, ExecutionPort::P015);
const MacroOp MacroOp::Ror_rcl = MacroOp("ror r,cl", 3, 1, ExecutionPort::P0, ExecutionPort::P5);
const MacroOp MacroOp::Ror_ri = MacroOp("ror r,i", 4, 1, ExecutionPort::P05);
const MacroOp MacroOp::Xor_self = MacroOp("xor rcx,rcx", 3);
const MacroOp MacroOp::Cmp_ri = MacroOp("cmp r,i", 7, 1, ExecutionPort::P015);
const MacroOp MacroOp::Setcc_r = MacroOp("setcc cl", 3, 1, ExecutionPort::P05);
const MacroOp MacroOp::TestJmp_fused = MacroOp("testjmp r,i", 13, 0, ExecutionPort::P5);
const MacroOp IMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Mul_r, MacroOp::Mov_rr };
const MacroOp ISMULH_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Imul_r, MacroOp::Mov_rr };
const MacroOp IMUL_RCP_ops_array[] = { MacroOp::Mov_ri64, MacroOp(MacroOp::Imul_rr, true) };
const MacroOp IROR_R_ops_array[] = { MacroOp::Mov_rr, MacroOp::Ror_rcl };
const MacroOp COND_R_ops_array[] = { MacroOp::Add_ri, MacroOp(MacroOp::TestJmp_fused, true), MacroOp::Xor_self, MacroOp::Cmp_ri, MacroOp(MacroOp::Setcc_r, true), MacroOp(MacroOp::Add_rr, true) };
class LightInstructionInfo {
public:
LightInstructionInfo(const char* name, int type, const MacroOp& op)
: name_(name), type_(type), latency_(op.getLatency()) {
ops_.push_back(MacroOp(op));
}
template <size_t N>
LightInstructionInfo(const char* name, int type, const MacroOp(&arr)[N])
: name_(name), type_(type), latency_(0) {
for (unsigned i = 0; i < N; ++i) {
ops_.push_back(MacroOp(arr[i]));
latency_ += ops_.back().getLatency();
}
static_assert(N > 1, "Invalid array size");
}
template <size_t N>
LightInstructionInfo(const char* name, int type, const MacroOp*(&arr)[N], int latency)
: name_(name), type_(type), latency_(latency) {
for (unsigned i = 0; i < N; ++i) {
ops_.push_back(MacroOp(arr[i]));
if (arr[i].isDependent()) {
ops_[i].setSrcDep(&ops_[i - 1]);
}
}
static_assert(N > 1, "Invalid array size");
}
const char* getName() const {
return name_;
}
int getSize() const {
return ops_.size();
}
bool isSimple() const {
return getSize() == 1;
}
int getLatency() const {
return latency_;
}
MacroOp& getOp(int index) {
return ops_[index];
}
int getType() const {
return type_;
}
static const LightInstructionInfo IADD_R;
static const LightInstructionInfo IADD_C;
static const LightInstructionInfo IADD_RC;
static const LightInstructionInfo ISUB_R;
static const LightInstructionInfo IMUL_9C;
static const LightInstructionInfo IMUL_R;
static const LightInstructionInfo IMUL_C;
static const LightInstructionInfo IMULH_R;
static const LightInstructionInfo ISMULH_R;
static const LightInstructionInfo IMUL_RCP;
static const LightInstructionInfo IXOR_R;
static const LightInstructionInfo IXOR_C;
static const LightInstructionInfo IROR_R;
static const LightInstructionInfo IROR_C;
static const LightInstructionInfo COND_R;
static const LightInstructionInfo NOP;
private:
const char* name_;
int type_;
std::vector<MacroOp> ops_;
int latency_;
LightInstructionInfo(const char* name)
: name_(name), type_(-1), latency_(0) {}
};
const LightInstructionInfo LightInstructionInfo::IADD_R = LightInstructionInfo("IADD_R", LightInstructionType::IADD_R, MacroOp::Add_rr);
const LightInstructionInfo LightInstructionInfo::IADD_C = LightInstructionInfo("IADD_C", LightInstructionType::IADD_C, MacroOp::Add_ri);
const LightInstructionInfo LightInstructionInfo::IADD_RC = LightInstructionInfo("IADD_RC", LightInstructionType::IADD_RC, MacroOp::Lea_sib);
const LightInstructionInfo LightInstructionInfo::ISUB_R = LightInstructionInfo("ISUB_R", LightInstructionType::ISUB_R, MacroOp::Sub_rr);
const LightInstructionInfo LightInstructionInfo::IMUL_9C = LightInstructionInfo("IMUL_9C", LightInstructionType::IMUL_9C, MacroOp::Lea_sib);
const LightInstructionInfo LightInstructionInfo::IMUL_R = LightInstructionInfo("IMUL_R", LightInstructionType::IMUL_R, MacroOp::Imul_rr);
const LightInstructionInfo LightInstructionInfo::IMUL_C = LightInstructionInfo("IMUL_C", LightInstructionType::IMUL_C, MacroOp::Imul_rri);
const LightInstructionInfo LightInstructionInfo::IMULH_R = LightInstructionInfo("IMULH_R", LightInstructionType::IMULH_R, IMULH_R_ops_array);
const LightInstructionInfo LightInstructionInfo::ISMULH_R = LightInstructionInfo("ISMULH_R", LightInstructionType::ISMULH_R, ISMULH_R_ops_array);
const LightInstructionInfo LightInstructionInfo::IMUL_RCP = LightInstructionInfo("IMUL_RCP", LightInstructionType::IMUL_RCP, IMUL_RCP_ops_array);
const LightInstructionInfo LightInstructionInfo::IXOR_R = LightInstructionInfo("IXOR_R", LightInstructionType::IXOR_R, MacroOp::Xor_rr);
const LightInstructionInfo LightInstructionInfo::IXOR_C = LightInstructionInfo("IXOR_C", LightInstructionType::IXOR_C, MacroOp::Xor_ri);
const LightInstructionInfo LightInstructionInfo::IROR_R = LightInstructionInfo("IROR_R", LightInstructionType::IROR_R, IROR_R_ops_array);
const LightInstructionInfo LightInstructionInfo::IROR_C = LightInstructionInfo("IROR_C", LightInstructionType::IROR_C, MacroOp::Ror_ri);
const LightInstructionInfo LightInstructionInfo::COND_R = LightInstructionInfo("COND_R", LightInstructionType::COND_R, COND_R_ops_array);
const LightInstructionInfo LightInstructionInfo::NOP = LightInstructionInfo("NOP");
const int buffer0[] = { 3, 3, 10 };
const int buffer1[] = { 7, 3, 3, 3 };
const int buffer2[] = { 3, 3, 3, 7 };
const int buffer3[] = { 4, 8, 4 };
const int buffer4[] = { 4, 4, 4, 4 };
const int buffer5[] = { 3, 7, 3, 3 };
const int buffer6[] = { 3, 3, 7, 3 };
const int buffer7[] = { 13, 3 };
class DecoderBuffer {
public:
static DecoderBuffer Default;
template <size_t N>
DecoderBuffer(const char* name, int index, const int(&arr)[N])
: name_(name), index_(index), counts_(arr), opsCount_(N) {}
const int* getCounts() const {
return counts_;
}
int getSize() const {
return opsCount_;
}
int getIndex() const {
return index_;
}
const char* getName() const {
return name_;
}
const DecoderBuffer& fetchNext(int prevType, Blake2Generator& gen) {
if (prevType == LightInstructionType::IMULH_R || prevType == LightInstructionType::ISMULH_R)
return decodeBuffers[0];
if (index_ == 0) {
if ((gen.getByte() % 2) == 0)
return decodeBuffers[3];
else
return decodeBuffers[4];
}
if (index_ == 2) {
return decodeBuffers[7];
}
if (index_ == 7) {
return decodeBuffers[1];
}
return fetchNextDefault(gen);
}
private:
const char* name_;
int index_;
const int* counts_;
int opsCount_;
DecoderBuffer() : index_(-1) {}
static const DecoderBuffer decodeBuffers[8];
const DecoderBuffer& fetchNextDefault(Blake2Generator& gen) {
int select;
do {
select = gen.getByte() & 7;
} while (select == 7);
return decodeBuffers[select];
}
};
const DecoderBuffer DecoderBuffer::decodeBuffers[8] = {
DecoderBuffer("3,3,10", 0, buffer0),
DecoderBuffer("7,3,3,3", 1, buffer1),
DecoderBuffer("3,3,3,7", 2, buffer2),
DecoderBuffer("4,8,4", 3, buffer3),
DecoderBuffer("4,4,4,4", 4, buffer4),
DecoderBuffer("3,7,3,3", 5, buffer5),
DecoderBuffer("3,3,7,3", 6, buffer6),
DecoderBuffer("13,3", 7, buffer7),
};
DecoderBuffer DecoderBuffer::Default = DecoderBuffer();
const LightInstructionInfo* slot_3[] = { &LightInstructionInfo::IADD_R, &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IADD_R };
const LightInstructionInfo* slot_3L[] = { &LightInstructionInfo::IADD_R, &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IMULH_R, &LightInstructionInfo::ISMULH_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IMULH_R, &LightInstructionInfo::ISMULH_R };
const LightInstructionInfo* slot_3F[] = { &LightInstructionInfo::IADD_R, &LightInstructionInfo::ISUB_R, &LightInstructionInfo::IXOR_R, &LightInstructionInfo::IROR_R };
const LightInstructionInfo* slot_4[] = { &LightInstructionInfo::IMUL_R, &LightInstructionInfo::IROR_C };
const LightInstructionInfo* slot_7[] = { &LightInstructionInfo::IADD_C, &LightInstructionInfo::IMUL_C, &LightInstructionInfo::IXOR_C, &LightInstructionInfo::IXOR_C };
const LightInstructionInfo* slot_7L = &LightInstructionInfo::COND_R;
const LightInstructionInfo* slot_8[] = { &LightInstructionInfo::IADD_RC, &LightInstructionInfo::IMUL_9C };
const LightInstructionInfo* slot_10 = &LightInstructionInfo::IMUL_RCP;
template<bool erase>
static int selectRegister(std::vector<int>& availableRegisters, Blake2Generator& gen) {
if (availableRegisters.size() == 0)
throw std::runtime_error("No avialable registers");
int index;
if (availableRegisters.size() > 1) {
index = gen.getInt32() % availableRegisters.size();
}
else {
index = 0;
}
int select = availableRegisters[index];
if (erase)
availableRegisters.erase(availableRegisters.begin() + index);
return select;
}
class LightInstruction {
public:
Instruction toInstr() {
Instruction instr;
instr.opcode = lightInstructionOpcode[getType()];
instr.dst = dst_;
instr.src = src_ >= 0 ? src_ : dst_;
instr.mod = mod_;
instr.setImm32(imm32_);
return instr;
}
static LightInstruction createForSlot(Blake2Generator& gen, int slotSize, std::vector<int>& availableRegisters, bool isLast = false, bool isFirst = false) {
switch (slotSize)
{
case 3:
if (isLast) {
return create(slot_3L[gen.getByte() & 7], availableRegisters, gen);
}
else if (isFirst) {
return create(slot_3F[gen.getByte() & 3], availableRegisters, gen);
}
else {
return create(slot_3[gen.getByte() & 3], availableRegisters, gen);
}
case 4:
return create(slot_4[gen.getByte() & 1], availableRegisters, gen);
case 7:
if (isLast) {
return create(slot_7L, availableRegisters, gen);
}
else {
return create(slot_7[gen.getByte() & 3], availableRegisters, gen);
}
case 8:
return create(slot_8[gen.getByte() & 1], availableRegisters, gen);
case 10:
return create(slot_10, availableRegisters, gen);
default:
break;
}
}
static LightInstruction create(const LightInstructionInfo* info, std::vector<int>& availableRegisters, Blake2Generator& gen) {
LightInstruction li(info);
switch (info->getType())
{
case LightInstructionType::IADD_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.opGroup_ = LightInstructionType::IADD_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IADD_C: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.opGroup_ = LightInstructionType::IADD_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IADD_RC: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.opGroup_ = LightInstructionType::IADD_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::ISUB_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.opGroup_ = LightInstructionType::IADD_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IMUL_9C: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.opGroup_ = LightInstructionType::IMUL_C;
li.opGroupPar_ = -1;
} break;
case LightInstructionType::IMUL_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.opGroup_ = LightInstructionType::IMUL_R;
li.opGroupPar_ = gen.getInt32();
} break;
case LightInstructionType::IMUL_C: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.opGroup_ = LightInstructionType::IMUL_C;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IMULH_R: {
li.dst_ = gen.getByte() & 7;
li.src_ = gen.getByte() & 7;
li.mod_ = 0;
li.imm32_ = 0;
li.opGroup_ = LightInstructionType::IMULH_R;
li.opGroupPar_ = gen.getInt32();
} break;
case LightInstructionType::ISMULH_R: {
li.dst_ = gen.getByte() & 7;
li.src_ = gen.getByte() & 7;
li.mod_ = 0;
li.imm32_ = 0;
li.opGroup_ = LightInstructionType::ISMULH_R;
li.opGroupPar_ = gen.getInt32();
} break;
case LightInstructionType::IMUL_RCP: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.opGroup_ = LightInstructionType::IMUL_C;
li.opGroupPar_ = -1;
} break;
case LightInstructionType::IXOR_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.opGroup_ = LightInstructionType::IXOR_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IXOR_C: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getInt32();
li.opGroup_ = LightInstructionType::IXOR_R;
li.opGroupPar_ = li.src_;
} break;
case LightInstructionType::IROR_R: {
li.dst_ = gen.getByte() & 7;
do {
li.src_ = gen.getByte() & 7;
} while (li.dst_ == li.src_);
li.mod_ = 0;
li.imm32_ = 0;
li.opGroup_ = LightInstructionType::IROR_R;
li.opGroupPar_ = -1;
} break;
case LightInstructionType::IROR_C: {
li.dst_ = gen.getByte() & 7;
li.src_ = -1;
li.mod_ = 0;
li.imm32_ = gen.getByte();
li.opGroup_ = LightInstructionType::IROR_R;
li.opGroupPar_ = -1;
} break;
case LightInstructionType::COND_R: {
li.dst_ = gen.getByte() & 7;
li.src_ = gen.getByte() & 7;
li.mod_ = gen.getByte();
li.imm32_ = gen.getInt32();
li.opGroup_ = LightInstructionType::COND_R;
li.opGroupPar_ = li.imm32_;
} break;
default:
break;
}
return li;
}
int getType() {
return info_.getType();
}
int getSource() {
return src_;
}
int getDestination() {
return dst_;
}
int getGroup() {
return opGroup_;
}
int getGroupPar() {
return opGroupPar_;
}
LightInstructionInfo& getInfo() {
return info_;
}
static const LightInstruction Null;
private:
LightInstructionInfo info_;
int src_;
int dst_;
int mod_;
uint32_t imm32_;
int opGroup_;
int opGroupPar_;
LightInstruction(const LightInstructionInfo* info) : info_(*info) {
for (unsigned i = 0; i < info_.getSize(); ++i) {
MacroOp& mop = info_.getOp(i);
if (mop.isDependent()) {
mop.setSrcDep(&info_.getOp(i - 1));
}
}
}
};
const LightInstruction LightInstruction::Null = LightInstruction(&LightInstructionInfo::NOP);
constexpr int ALU_COUNT_MUL = 1;
constexpr int ALU_COUNT = 4;
constexpr int LIGHT_OPCODE_BITS = 4;
constexpr int V4_SRC_INDEX_BITS = 3;
constexpr int V4_DST_INDEX_BITS = 3;
static int blakeCounter = 0;
static int scheduleUop(const MacroOp& mop, ExecutionPort::type(&portBusy)[RANDOMX_LPROG_LATENCY + 1][3], int cycle, int depCycle) {
if (mop.isDependent()) {
cycle = std::max(cycle, depCycle);
}
if (mop.isEliminated()) {
std::cout << "; (eliminated)" << std::endl;
return cycle;
}
else if (mop.isSimple()) {
if (mop.getUop1() <= ExecutionPort::P5) {
for (; cycle <= RANDOMX_LPROG_LATENCY; ++cycle) {
if (!portBusy[cycle][mop.getUop1() - 1]) {
std::cout << "; P" << mop.getUop1() - 1 << " at cycle " << cycle << std::endl;
portBusy[cycle][mop.getUop1() - 1] = mop.getUop1();
return cycle;
}
}
}
else if (mop.getUop1() == ExecutionPort::P05) {
for (; cycle <= RANDOMX_LPROG_LATENCY; ++cycle) {
if (!portBusy[cycle][0]) {
std::cout << "; P0 at cycle " << cycle << std::endl;
portBusy[cycle][0] = mop.getUop1();
return cycle;
}
if (!portBusy[cycle][2]) {
std::cout << "; P2 at cycle " << cycle << std::endl;
portBusy[cycle][2] = mop.getUop1();
return cycle;
}
}
}
else {
for (; cycle <= RANDOMX_LPROG_LATENCY; ++cycle) {
if (!portBusy[cycle][0]) {
std::cout << "; P0 at cycle " << cycle << std::endl;
portBusy[cycle][0] = mop.getUop1();
return cycle;
}
if (!portBusy[cycle][2]) {
std::cout << "; P2 at cycle " << cycle << std::endl;
portBusy[cycle][2] = mop.getUop1();
return cycle;
}
if (!portBusy[cycle][1]) {
std::cout << "; P1 at cycle " << cycle << std::endl;
portBusy[cycle][1] = mop.getUop1();
return cycle;
}
}
}
}
else {
for (; cycle <= RANDOMX_LPROG_LATENCY; ++cycle) {
if (!portBusy[cycle][mop.getUop1() - 1] && !portBusy[cycle][mop.getUop2() - 1]) {
std::cout << "; P" << mop.getUop1() - 1 << " P" << mop.getUop2() - 1 << " at cycle " << cycle << std::endl;
portBusy[cycle][mop.getUop1() - 1] = mop.getUop1();
portBusy[cycle][mop.getUop2() - 1] = mop.getUop2();
return cycle;
}
}
}
std::cout << "Unable to map operation '" << mop.getName() << "' to execution port";
return -1;
}
// If we don't have enough data available, generate more
static FORCE_INLINE void check_data(size_t& data_index, const size_t bytes_needed, uint8_t* data, const size_t data_size)
{
if (data_index + bytes_needed > data_size)
{
std::cout << "Calling Blake " << (++blakeCounter) << std::endl;
blake2b(data, data_size, data, data_size, nullptr, 0);
data_index = 0;
}
}
void generateLightProg2(LightProgram& prog, const void* seed, int indexRegister) {
ExecutionPort::type portBusy[RANDOMX_LPROG_LATENCY + 1][3];
memset(portBusy, 0, sizeof(portBusy));
RegisterInfo registers[8];
Blake2Generator gen(seed);
std::vector<LightInstruction> instructions;
std::vector<int> availableRegisters;
DecoderBuffer& fetchLine = DecoderBuffer::Default;
LightInstruction currentInstruction = LightInstruction::Null;
int instrIndex = 0;
int codeSize = 0;
int macroOpCount = 0;
int rxOpCount = 0;
int cycle = 0;
int depCycle = 0;
int mopIndex = 0;
bool portsSaturated = false;
while(!portsSaturated) {
fetchLine = fetchLine.fetchNext(currentInstruction.getType(), gen);
std::cout << "; ------------- fetch cycle " << cycle << " (" << fetchLine.getName() << ")" << std::endl;
availableRegisters.clear();
for (unsigned i = 0; i < 8; ++i) {
if (registers[i].latency <= cycle)
availableRegisters.push_back(i);
}
mopIndex = 0;
while (!portsSaturated && mopIndex < fetchLine.getSize()) {
if (instrIndex >= currentInstruction.getInfo().getSize()) {
currentInstruction = LightInstruction::createForSlot(gen, fetchLine.getCounts()[mopIndex], availableRegisters, fetchLine.getSize() == mopIndex + 1, fetchLine.getIndex() == 0 && mopIndex == 0);
instrIndex = 0;
std::cout << "; " << currentInstruction.getInfo().getName() << std::endl;
rxOpCount++;
}
MacroOp& mop = currentInstruction.getInfo().getOp(instrIndex);
if (fetchLine.getCounts()[mopIndex] != mop.getSize()) {
std::cout << "ERROR instruction " << mop.getName() << " doesn't fit into slot of size " << fetchLine.getCounts()[mopIndex] << std::endl;
return;
}
std::cout << mop.getName() << " ";
codeSize += mop.getSize();
mopIndex++;
instrIndex++;
macroOpCount++;
int scheduleCycle = scheduleUop(mop, portBusy, cycle, depCycle);
if (scheduleCycle >= RANDOMX_LPROG_LATENCY) {
portsSaturated = true;
}
mop.setCycle(scheduleCycle);
depCycle = scheduleCycle + mop.getLatency();
}
++cycle;
}
while (instrIndex < currentInstruction.getInfo().getSize()) {
if (mopIndex >= fetchLine.getSize()) {
fetchLine = fetchLine.fetchNext(currentInstruction.getType(), gen);
std::cout << "; cycle " << cycle++ << " buffer " << fetchLine.getName() << std::endl;
mopIndex = 0;
}
MacroOp& mop = currentInstruction.getInfo().getOp(instrIndex);
std::cout << mop.getName() << " ";
codeSize += mop.getSize();
mopIndex++;
instrIndex++;
macroOpCount++;
int scheduleCycle = scheduleUop(mop, portBusy, cycle, depCycle);
mop.setCycle(scheduleCycle);
depCycle = scheduleCycle + mop.getLatency();
}
std::cout << "; code size " << codeSize << std::endl;
std::cout << "; x86 macro-ops: " << macroOpCount << std::endl;
std::cout << "; RandomX instructions: " << rxOpCount << std::endl;
for (int i = 0; i < RANDOMX_LPROG_LATENCY + 1; ++i) {
for (int j = 0; j < 3; ++j) {
std::cout << (portBusy[i][j] ? '*' : '_');
}
std::cout << std::endl;
}
}
void generateLightProgram(LightProgram& prog, const void* seed, int indexRegister) {
// Source: https://www.agner.org/optimize/instruction_tables.pdf
const int op_latency[LightInstructionType::COUNT] = { 1, 2, 1, 2, 3, 5, 5, 4, 1, 2, 5 };
// Instruction latencies for theoretical ASIC implementation
const int asic_op_latency[LightInstructionType::COUNT] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
// Available ALUs for each instruction
const int op_ALUs[LightInstructionType::COUNT] = { ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT_MUL, ALU_COUNT, ALU_COUNT, ALU_COUNT };
uint8_t data[64];
memset(data, 0, sizeof(data));
memcpy(data, seed, SeedSize);
// Set data_index past the last byte in data
// to trigger full data update with blake hash
// before we start using it
size_t data_index = sizeof(data);
int code_size;
do {
uint8_t opcode;
uint8_t dst_index;
uint8_t src_index;
uint32_t imm32 = 0;
int latency[8];
int asic_latency[9];
// Tracks previous instruction and value of the source operand for registers R0-R3 throughout code execution
// byte 0: current value of the destination register
// byte 1: instruction opcode
// byte 2: current value of the source register
//
// Registers R4-R8 are constant and are treated as having the same value because when we do
// the same operation twice with two constant source registers, it can be optimized into a single operation
uint64_t inst_data[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
bool alu_busy[RANDOMX_LPROG_LATENCY + 1][ALU_COUNT];
bool is_rotation[LightInstructionType::COUNT];
bool rotated[8];
int rotate_count = 0;
memset(latency, 0, sizeof(latency));
memset(asic_latency, 0, sizeof(asic_latency));
memset(alu_busy, 0, sizeof(alu_busy));
memset(is_rotation, 0, sizeof(is_rotation));
memset(rotated, 0, sizeof(rotated));
is_rotation[LightInstructionType::IROR_R] = true;
int num_retries = 0;
code_size = 0;
int total_iterations = 0;
// Generate random code to achieve minimal required latency for our abstract CPU
// Try to get this latency for all 4 registers
while (((latency[0] < RANDOMX_LPROG_LATENCY) || (latency[1] < RANDOMX_LPROG_LATENCY) || (latency[2] < RANDOMX_LPROG_LATENCY) || (latency[3] < RANDOMX_LPROG_LATENCY)
|| (latency[4] < RANDOMX_LPROG_LATENCY) || (latency[5] < RANDOMX_LPROG_LATENCY) || (latency[6] < RANDOMX_LPROG_LATENCY) || (latency[7] < RANDOMX_LPROG_LATENCY)) && (num_retries < 64))
{
// Fail-safe to guarantee loop termination
++total_iterations;
if (total_iterations > 1024) {
std::cout << "total_iterations = " << total_iterations << std::endl;
break;
}
check_data(data_index, 1, data, sizeof(data));
const uint8_t b1 = data[data_index++];
int instrType = lightInstruction[b1 & ((1 << LIGHT_OPCODE_BITS) - 1)];
check_data(data_index, 1, data, sizeof(data));
const uint8_t b2 = data[data_index++];
dst_index = b2 & ((1 << V4_DST_INDEX_BITS) - 1);
src_index = (b2 >> (V4_DST_INDEX_BITS)) & ((1 << V4_SRC_INDEX_BITS) - 1);
const int a = dst_index;
int b = src_index;
// Don't do rotation with the same destination twice because it's equal to a single rotation
if (is_rotation[instrType] && rotated[a])
{
continue;
}
// Don't do the same instruction (except MUL) with the same source value twice because all other cases can be optimized:
// 2x IADD_RC(a, b, C) = IADD_RC(a, b*2, C1+C2)
// 2x ISUB_R(a, b) = ISUB_R(a, 2*b)
// 2x IMUL_R(a, b) = IMUL_R(a, b*b)
// 2x IMUL_9C(a, C) = 9 * (9 * a + C1) + C2 = 81 * a + (9 * C1 + C2)
// 2x IMUL_RCP(a, C) = a * (C * C)
// 2x IXOR_R = NOP
// 2x IROR_R(a, b) = IROR_R(a, 2*b)
if (instrType != LightInstructionType::IMULH_R && instrType != LightInstructionType::ISMULH_R && ((inst_data[a] & 0xFFFF00) == (instrType << 8) + ((inst_data[b] & 255) << 16)))
{
continue;
}
if ((instrType == LightInstructionType::IADD_RC) || (instrType == LightInstructionType::IMUL_9C) || (instrType == LightInstructionType::IMUL_RCP) || (instrType == LightInstructionType::COND_R) || ((instrType != LightInstructionType::IMULH_R) && (instrType != LightInstructionType::ISMULH_R) && (a == b)))
{
check_data(data_index, 4, data, sizeof(data));
imm32 = load32(&data[data_index++]);
}
// Find which ALU is available (and when) for this instruction
int next_latency = (latency[a] > latency[b]) ? latency[a] : latency[b];
int alu_index = -1;
while (next_latency < RANDOMX_LPROG_LATENCY)
{
for (int i = op_ALUs[instrType] - 1; i >= 0; --i)
{
if (!alu_busy[next_latency][i])
{
// ADD is implemented as two 1-cycle instructions on a real CPU, so do an additional availability check
if ((instrType == LightInstructionType::IADD_RC || instrType == LightInstructionType::IMUL_9C || instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R) && alu_busy[next_latency + 1][i])
{
continue;
}
// Rotation can only start when previous rotation is finished, so do an additional availability check
if (is_rotation[instrType] && (next_latency < rotate_count * op_latency[instrType]))
{
continue;
}
alu_index = i;
break;
}
}
if (alu_index >= 0)
{
break;
}
++next_latency;
}
// Don't generate instructions that leave some register unchanged for more than 15 cycles
if (next_latency > latency[a] + 15)
{
continue;
}
next_latency += op_latency[instrType];
if (next_latency <= RANDOMX_LPROG_LATENCY)
{
if (is_rotation[instrType])
{
++rotate_count;
}
// Mark ALU as busy only for the first cycle when it starts executing the instruction because ALUs are fully pipelined
alu_busy[next_latency - op_latency[instrType]][alu_index] = true;
latency[a] = next_latency;
// ASIC is supposed to have enough ALUs to run as many independent instructions per cycle as possible, so latency calculation for ASIC is simple
asic_latency[a] = ((asic_latency[a] > asic_latency[b]) ? asic_latency[a] : asic_latency[b]) + asic_op_latency[instrType];
rotated[a] = is_rotation[instrType];
inst_data[a] = code_size + (instrType << 8) + ((inst_data[b] & 255) << 16);
prog(code_size).opcode = lightInstructionOpcode[instrType];
prog(code_size).dst = dst_index;
prog(code_size).src = src_index;
prog(code_size).setImm32(imm32);
if (instrType == LightInstructionType::IADD_RC || instrType == LightInstructionType::IMUL_9C || instrType == LightInstructionType::IMULH_R || instrType == LightInstructionType::ISMULH_R)
{
// ADD instruction is implemented as two 1-cycle instructions on a real CPU, so mark ALU as busy for the next cycle too
alu_busy[next_latency - op_latency[instrType] + 1][alu_index] = true;
}
++code_size;
if (code_size >= RANDOMX_LPROG_MIN_SIZE)
{
break;
}
}
else
{
++num_retries;
std::cout << "Retry " << num_retries << " with code_size = " << code_size << ", next_latency = " << next_latency << std::endl;
}
}
// ASIC has more execution resources and can extract as much parallelism from the code as possible
// We need to add a few more MUL and ROR instructions to achieve minimal required latency for ASIC
// Get this latency for at least 1 of the 4 registers
const int prev_code_size = code_size;
if ((code_size < RANDOMX_LPROG_MAX_SIZE) && (asic_latency[indexRegister] < RANDOMX_LPROG_ASIC_LATENCY))
{
int min_idx = indexRegister;
int max_idx = 0;
for (int i = 1; i < 8; ++i)
{
//if (asic_latency[i] < asic_latency[min_idx]) min_idx = i;
if (asic_latency[i] > asic_latency[max_idx]) max_idx = i;
}
const int pattern[3] = { LightInstructionType::IMUL_R, LightInstructionType::IROR_R, LightInstructionType::IMUL_R };
const int instrType = pattern[(code_size - prev_code_size) % 3];
latency[min_idx] = latency[max_idx] + op_latency[instrType];
asic_latency[min_idx] = asic_latency[max_idx] + asic_op_latency[instrType];
prog(code_size).opcode = lightInstructionOpcode[instrType];
prog(code_size).dst = min_idx;
prog(code_size).src = max_idx;
++code_size;
}
for (int i = 0; i < 8; ++i) {
std::cout << "Latency " << i << " = " << latency[i] << std::endl;
}
std::cout << "Code size = " << code_size << std::endl;
std::cout << "ALUs:" << std::endl;
for (int i = 0; i < RANDOMX_LPROG_LATENCY + 1; ++i) {
for (int j = 0; j < ALU_COUNT; ++j) {
std::cout << (alu_busy[i][j] ? '*' : '_');
}
std::cout << std::endl;
}
// There is ~98.15% chance that loop condition is false, so this loop will execute only 1 iteration most of the time
// It never does more than 4 iterations for all block heights < 10,000,000
} while ((code_size < RANDOMX_LPROG_MIN_SIZE) || (code_size > RANDOMX_LPROG_MAX_SIZE));
prog.setSize(code_size);
}
}