/*
Copyright (c) 2018 tevador
This file is part of RandomX.
RandomX is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RandomX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RandomX. If not, see.
*/
#include
#include
#include
#include
#include "common.hpp"
#include "dataset.hpp"
#include "Pcg32.hpp"
#include "Cache.hpp"
#if defined(__SSE2__)
#include
#define PREFETCH(memory) _mm_prefetch((const char *)((memory).ds.dataset + (memory).ma), _MM_HINT_T0)
#else
#define PREFETCH(memory)
#endif
namespace RandomX {
template
static inline void shuffle(T* buffer, size_t bytes, Pcg32& gen) {
auto count = bytes / sizeof(T);
for (auto i = count - 1; i >= 1; --i) {
int j = gen.getUniform(0, i);
std::swap(buffer[j], buffer[i]);
}
}
template
static inline __m128i aesenc(__m128i in, __m128i key) {
return soft ? soft_aesenc(in, key) : _mm_aesenc_si128(in, key);
}
template
static inline __m128i aesdec(__m128i in, __m128i key) {
return soft ? soft_aesdec(in, key) : _mm_aesdec_si128(in, key);
}
template
void initBlock(const uint8_t* in, uint8_t* out, uint32_t blockNumber, const KeysContainer& keys) {
__m128i xin, xout;
//Initialization vector = block number extended to 128 bits
xout = _mm_cvtsi32_si128(blockNumber);
//Expand + AES
for (uint32_t i = 0; i < DatasetBlockSize / sizeof(__m128i); ++i) {
if ((i % 32) == 0) {
xin = _mm_set_epi64x(*(uint64_t*)(in + i / 4), 0);
xout = _mm_xor_si128(xin, xout);
}
if (enc) {
xout = aesenc(xout, keys[0]);
xout = aesenc(xout, keys[1]);
xout = aesenc(xout, keys[2]);
xout = aesenc(xout, keys[3]);
xout = aesenc(xout, keys[4]);
xout = aesenc(xout, keys[5]);
xout = aesenc(xout, keys[6]);
xout = aesenc(xout, keys[7]);
xout = aesenc(xout, keys[8]);
xout = aesenc(xout, keys[9]);
}
else {
xout = aesdec(xout, keys[0]);
xout = aesdec(xout, keys[1]);
xout = aesdec(xout, keys[2]);
xout = aesdec(xout, keys[3]);
xout = aesdec(xout, keys[4]);
xout = aesdec(xout, keys[5]);
xout = aesdec(xout, keys[6]);
xout = aesdec(xout, keys[7]);
xout = aesdec(xout, keys[8]);
xout = aesdec(xout, keys[9]);
}
_mm_store_si128((__m128i*)(out + i * sizeof(__m128i)), xout);
}
//Shuffle
Pcg32 gen(&xout);
shuffle((uint32_t*)out, DatasetBlockSize, gen);
}
template
void initBlock(const uint8_t*, uint8_t*, uint32_t, const KeysContainer&);
template
void initBlock(const uint8_t*, uint8_t*, uint32_t, const KeysContainer&);
template
void initBlock(const uint8_t*, uint8_t*, uint32_t, const KeysContainer&);
template
void initBlock(const uint8_t*, uint8_t*, uint32_t, const KeysContainer&);
convertible_t datasetRead(addr_t addr, MemoryRegisters& memory) {
convertible_t data;
data.u64 = *(uint64_t*)(memory.ds.dataset + memory.ma);
memory.ma += 8;
memory.mx ^= addr;
if ((memory.mx & 0xFFF8) == 0) {
memory.ma = memory.mx & ~7;
PREFETCH(memory);
}
return data;
}
template
void initBlock(const uint8_t* cache, uint8_t* block, uint32_t blockNumber, const KeysContainer& keys) {
if (blockNumber % 2 == 1) {
initBlock(cache + blockNumber * CacheBlockSize, block, blockNumber, keys);
}
else {
initBlock(cache + blockNumber * CacheBlockSize, block, blockNumber, keys);
}
}
template
void initBlock(const uint8_t*, uint8_t*, uint32_t, const KeysContainer&);
template
void initBlock(const uint8_t*, uint8_t*, uint32_t, const KeysContainer&);
template
convertible_t datasetReadLight(addr_t addr, MemoryRegisters& memory) {
convertible_t data;
LightClientDataset* lds = memory.ds.lightDataset;
auto blockNumber = memory.ma / DatasetBlockSize;
if (lds->blockNumber != blockNumber) {
initBlock(lds->cache->getCache(), (uint8_t*)lds->block, blockNumber, lds->cache->getKeys());
lds->blockNumber = blockNumber;
}
data.u64 = *(uint64_t*)(lds->block + (memory.ma % DatasetBlockSize));
memory.ma += 8;
memory.mx ^= addr;
if ((memory.mx & 0xFFF8) == 0) {
memory.ma = memory.mx & ~7;
}
return data;
}
template
convertible_t datasetReadLight(addr_t addr, MemoryRegisters& memory);
template
convertible_t datasetReadLight(addr_t addr, MemoryRegisters& memory);
void datasetAlloc(dataset_t& ds) {
if (sizeof(size_t) <= 4)
throw std::runtime_error("Platform doesn't support enough memory for the dataset");
ds.dataset = (uint8_t*)_mm_malloc(DatasetSize, /*sizeof(__m128i)*/ 64);
if (ds.dataset == nullptr) {
throw std::runtime_error("Dataset memory allocation failed. >4 GiB of free virtual memory is needed.");
}
}
template
void datasetInit(Cache* cache, dataset_t ds, uint32_t startBlock, uint32_t blockCount) {
for (uint32_t i = startBlock; i < startBlock + blockCount; ++i) {
initBlock(cache->getCache(), ds.dataset + i * DatasetBlockSize, i, cache->getKeys());
}
}
template
void datasetInit(Cache*, dataset_t, uint32_t, uint32_t);
template
void datasetInit(Cache*, dataset_t, uint32_t, uint32_t);
template
void datasetInitCache(const void* seed, dataset_t& ds) {
ds.cache = new Cache();
ds.cache->initialize(seed, SeedSize);
}
template
void datasetInitCache(const void*, dataset_t&);
template
void datasetInitCache(const void*, dataset_t&);
}