/* Reference implementations of computing and using the "magic number" approach to dividing by constants, including codegen instructions. The unsigned division incorporates the "round down" optimization per ridiculous_fish. This is free and unencumbered software. Any copyright is dedicated to the Public Domain. */ #include //for CHAR_BIT #include #include "divideByConstantCodegen.h" struct magicu_info compute_unsigned_magic_info(uint D, unsigned num_bits) { //The numerator must fit in a uint assert(num_bits > 0 && num_bits <= sizeof(uint) * CHAR_BIT); // D must be larger than zero and not a power of 2 assert(D & (D - 1)); // The eventual result struct magicu_info result; // Bits in a uint const unsigned UINT_BITS = sizeof(uint) * CHAR_BIT; // The extra shift implicit in the difference between UINT_BITS and num_bits const unsigned extra_shift = UINT_BITS - num_bits; // The initial power of 2 is one less than the first one that can possibly work const uint initial_power_of_2 = (uint)1 << (UINT_BITS - 1); // The remainder and quotient of our power of 2 divided by d uint quotient = initial_power_of_2 / D, remainder = initial_power_of_2 % D; // ceil(log_2 D) unsigned ceil_log_2_D; // The magic info for the variant "round down" algorithm uint down_multiplier = 0; unsigned down_exponent = 0; int has_magic_down = 0; // Compute ceil(log_2 D) ceil_log_2_D = 0; uint tmp; for (tmp = D; tmp > 0; tmp >>= 1) ceil_log_2_D += 1; // Begin a loop that increments the exponent, until we find a power of 2 that works. unsigned exponent; for (exponent = 0; ; exponent++) { // Quotient and remainder is from previous exponent; compute it for this exponent. if (remainder >= D - remainder) { // Doubling remainder will wrap around D quotient = quotient * 2 + 1; remainder = remainder * 2 - D; } else { // Remainder will not wrap quotient = quotient * 2; remainder = remainder * 2; } // We're done if this exponent works for the round_up algorithm. // Note that exponent may be larger than the maximum shift supported, // so the check for >= ceil_log_2_D is critical. if ((exponent + extra_shift >= ceil_log_2_D) || (D - remainder) <= ((uint)1 << (exponent + extra_shift))) break; // Set magic_down if we have not set it yet and this exponent works for the round_down algorithm if (!has_magic_down && remainder <= ((uint)1 << (exponent + extra_shift))) { has_magic_down = 1; down_multiplier = quotient; down_exponent = exponent; } } if (exponent < ceil_log_2_D) { // magic_up is efficient result.multiplier = quotient + 1; result.pre_shift = 0; result.post_shift = exponent; result.increment = 0; } else if (D & 1) { // Odd divisor, so use magic_down, which must have been set assert(has_magic_down); result.multiplier = down_multiplier; result.pre_shift = 0; result.post_shift = down_exponent; result.increment = 1; } else { // Even divisor, so use a prefix-shifted dividend unsigned pre_shift = 0; uint shifted_D = D; while ((shifted_D & 1) == 0) { shifted_D >>= 1; pre_shift += 1; } result = compute_unsigned_magic_info(shifted_D, num_bits - pre_shift); assert(result.increment == 0 && result.pre_shift == 0); //expect no increment or pre_shift in this path result.pre_shift = pre_shift; } return result; } struct magics_info compute_signed_magic_info(sint D) { // D must not be zero and must not be a power of 2 (or its negative) assert(D != 0 && (D & -D) != D && (D & -D) != -D); // Our result struct magics_info result; // Bits in an sint const unsigned SINT_BITS = sizeof(sint) * CHAR_BIT; // Absolute value of D (we know D is not the most negative value since that's a power of 2) const uint abs_d = (D < 0 ? -D : D); // The initial power of 2 is one less than the first one that can possibly work // "two31" in Warren unsigned exponent = SINT_BITS - 1; const uint initial_power_of_2 = (uint)1 << exponent; // Compute the absolute value of our "test numerator," // which is the largest dividend whose remainder with d is d-1. // This is called anc in Warren. const uint tmp = initial_power_of_2 + (D < 0); const uint abs_test_numer = tmp - 1 - tmp % abs_d; // Initialize our quotients and remainders (q1, r1, q2, r2 in Warren) uint quotient1 = initial_power_of_2 / abs_test_numer, remainder1 = initial_power_of_2 % abs_test_numer; uint quotient2 = initial_power_of_2 / abs_d, remainder2 = initial_power_of_2 % abs_d; uint delta; // Begin our loop do { // Update the exponent exponent++; // Update quotient1 and remainder1 quotient1 *= 2; remainder1 *= 2; if (remainder1 >= abs_test_numer) { quotient1 += 1; remainder1 -= abs_test_numer; } // Update quotient2 and remainder2 quotient2 *= 2; remainder2 *= 2; if (remainder2 >= abs_d) { quotient2 += 1; remainder2 -= abs_d; } // Keep going as long as (2**exponent) / abs_d <= delta delta = abs_d - remainder2; } while (quotient1 < delta || (quotient1 == delta && remainder1 == 0)); result.multiplier = quotient2 + 1; if (D < 0) result.multiplier = -result.multiplier; result.shift = exponent - SINT_BITS; return result; }