/*
Copyright (c) 2018 tevador
This file is part of RandomX.
RandomX is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RandomX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RandomX. If not, see.
*/
//#define TRACE
//#define FPUCHECK
#include "InterpretedVirtualMachine.hpp"
#include "dataset.hpp"
#include "Cache.hpp"
#include "LightClientAsyncWorker.hpp"
#include
#include
#include
#include
#include
#include
#include
#include
#include "intrinPortable.h"
#include "reciprocal.h"
#ifdef STATS
#include
#endif
#ifdef FPUCHECK
constexpr bool fpuCheck = true;
#else
constexpr bool fpuCheck = false;
#endif
namespace RandomX {
InterpretedVirtualMachine::~InterpretedVirtualMachine() {
if (asyncWorker) {
delete mem.ds.asyncWorker;
}
}
void InterpretedVirtualMachine::setDataset(dataset_t ds, uint64_t size) {
if (asyncWorker) {
if (softAes) {
mem.ds.asyncWorker = new LightClientAsyncWorker(ds.cache);
}
else {
mem.ds.asyncWorker = new LightClientAsyncWorker(ds.cache);
}
readDataset = &datasetReadLightAsync;
}
else {
mem.ds = ds;
readDataset = &datasetReadLight;
}
datasetRange = (size - RANDOMX_DATASET_SIZE + CacheLineSize) / CacheLineSize;
}
void InterpretedVirtualMachine::initialize() {
VirtualMachine::initialize();
for (unsigned i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) {
program(i).src %= RegistersCount;
program(i).dst %= RegistersCount;
}
}
template
void InterpretedVirtualMachine::executeBytecode(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) {
executeBytecode(N, r, f, e, a);
executeBytecode(r, f, e, a);
}
template<>
void InterpretedVirtualMachine::executeBytecode(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) {
}
static void print(int_reg_t r) {
std::cout << std::hex << std::setw(16) << std::setfill('0') << r << std::endl;
}
static void print(__m128d f) {
uint64_t lo = *(((uint64_t*)&f) + 0);
uint64_t hi = *(((uint64_t*)&f) + 1);
std::cout << std::hex << std::setw(16) << std::setfill('0') << hi << '-' << std::hex << std::setw(16) << std::setfill('0') << lo << std::endl;
}
static void printState(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) {
for (int i = 0; i < 8; ++i) {
std::cout << "r" << i << " = "; print(r[i]);
}
for (int i = 0; i < 4; ++i) {
std::cout << "f" << i << " = "; print(f[i]);
}
for (int i = 0; i < 4; ++i) {
std::cout << "e" << i << " = "; print(e[i]);
}
for (int i = 0; i < 4; ++i) {
std::cout << "a" << i << " = "; print(a[i]);
}
}
static bool isDenormal(double x) {
return std::fpclassify(x) == FP_SUBNORMAL;
}
FORCE_INLINE void InterpretedVirtualMachine::executeBytecode(int i, int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) {
auto& ibc = byteCode[i];
//if(trace) printState(r, f, e, a);
switch (ibc.type)
{
case InstructionType::IADD_R: {
*ibc.idst += *ibc.isrc;
} break;
case InstructionType::IADD_M: {
*ibc.idst += load64(scratchpad + (*ibc.isrc & ibc.memMask));
} break;
case InstructionType::IADD_RC: {
*ibc.idst += *ibc.isrc + ibc.imm;
} break;
case InstructionType::ISUB_R: {
*ibc.idst -= *ibc.isrc;
} break;
case InstructionType::ISUB_M: {
*ibc.idst -= load64(scratchpad + (*ibc.isrc & ibc.memMask));
} break;
case InstructionType::IMUL_9C: {
*ibc.idst += 8 * *ibc.idst + ibc.imm;
} break;
case InstructionType::IMUL_R: { //also handles IMUL_RCP
*ibc.idst *= *ibc.isrc;
} break;
case InstructionType::IMUL_M: {
*ibc.idst *= load64(scratchpad + (*ibc.isrc & ibc.memMask));
} break;
case InstructionType::IMULH_R: {
*ibc.idst = mulh(*ibc.idst, *ibc.isrc);
} break;
case InstructionType::IMULH_M: {
*ibc.idst = mulh(*ibc.idst, load64(scratchpad + (*ibc.isrc & ibc.memMask)));
} break;
case InstructionType::ISMULH_R: {
*ibc.idst = smulh(unsigned64ToSigned2sCompl(*ibc.idst), unsigned64ToSigned2sCompl(*ibc.isrc));
} break;
case InstructionType::ISMULH_M: {
*ibc.idst = smulh(unsigned64ToSigned2sCompl(*ibc.idst), unsigned64ToSigned2sCompl(load64(scratchpad + (*ibc.isrc & ibc.memMask))));
} break;
case InstructionType::INEG_R: {
*ibc.idst = ~(*ibc.idst) + 1; //two's complement negative
} break;
case InstructionType::IXOR_R: {
*ibc.idst ^= *ibc.isrc;
} break;
case InstructionType::IXOR_M: {
*ibc.idst ^= load64(scratchpad + (*ibc.isrc & ibc.memMask));
} break;
case InstructionType::IROR_R: {
*ibc.idst = rotr(*ibc.idst, *ibc.isrc & 63);
} break;
case InstructionType::IROL_R: {
*ibc.idst = rotl(*ibc.idst, *ibc.isrc & 63);
} break;
case InstructionType::ISWAP_R: {
int_reg_t temp = *ibc.isrc;
*ibc.isrc = *ibc.idst;
*ibc.idst = temp;
} break;
case InstructionType::FSWAP_R: {
*ibc.fdst = _mm_shuffle_pd(*ibc.fdst, *ibc.fdst, 1);
} break;
case InstructionType::FADD_R: {
*ibc.fdst = _mm_add_pd(*ibc.fdst, *ibc.fsrc);
} break;
case InstructionType::FADD_M: {
__m128d fsrc = load_cvt_i32x2(scratchpad + (*ibc.isrc & ibc.memMask));
*ibc.fdst = _mm_add_pd(*ibc.fdst, fsrc);
} break;
case InstructionType::FSUB_R: {
*ibc.fdst = _mm_sub_pd(*ibc.fdst, *ibc.fsrc);
} break;
case InstructionType::FSUB_M: {
__m128d fsrc = load_cvt_i32x2(scratchpad + (*ibc.isrc & ibc.memMask));
*ibc.fdst = _mm_sub_pd(*ibc.fdst, fsrc);
} break;
case InstructionType::FSCAL_R: {
const __m128d mask = _mm_castsi128_pd(_mm_set1_epi64x(0x81F0000000000000));
*ibc.fdst = _mm_xor_pd(*ibc.fdst, mask);
} break;
case InstructionType::FMUL_R: {
*ibc.fdst = _mm_mul_pd(*ibc.fdst, *ibc.fsrc);
} break;
case InstructionType::FDIV_M: {
__m128d fsrc = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + (*ibc.isrc & ibc.memMask)));
*ibc.fdst = _mm_div_pd(*ibc.fdst, fsrc);
} break;
case InstructionType::FSQRT_R: {
*ibc.fdst = _mm_sqrt_pd(*ibc.fdst);
} break;
case InstructionType::COND_R: {
*ibc.idst += condition(ibc.condition, *ibc.isrc, ibc.imm) ? 1 : 0;
} break;
case InstructionType::COND_M: {
*ibc.idst += condition(ibc.condition, load64(scratchpad + (*ibc.isrc & ibc.memMask)), ibc.imm) ? 1 : 0;
} break;
case InstructionType::CFROUND: {
setRoundMode(rotr(*ibc.isrc, ibc.imm) % 4);
} break;
case InstructionType::ISTORE: {
store64(scratchpad + (*ibc.idst & ibc.memMask), *ibc.isrc);
} break;
case InstructionType::NOP: {
//nothing
} break;
default:
UNREACHABLE;
}
if (trace) {
std::cout << program(i);
if(ibc.type < 20 || ibc.type == 31 || ibc.type == 32)
print(*ibc.idst);
else //if(ibc.type >= 20 && ibc.type <= 30)
print(0);
}
#ifdef FPUCHECK
if (ibc.type >= 26 && ibc.type <= 30) {
double lo = *(((double*)ibc.fdst) + 0);
double hi = *(((double*)ibc.fdst) + 1);
if (lo <= 0 || hi <= 0) {
std::stringstream ss;
ss << "Underflow in operation " << ibc.type;
printState(r, f, e, a);
throw std::runtime_error(ss.str());
}
}
#endif
}
void InterpretedVirtualMachine::execute() {
int_reg_t r[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
__m128d f[4];
__m128d e[4];
__m128d a[4];
a[0] = _mm_load_pd(®.a[0].lo);
a[1] = _mm_load_pd(®.a[1].lo);
a[2] = _mm_load_pd(®.a[2].lo);
a[3] = _mm_load_pd(®.a[3].lo);
precompileProgram(r, f, e, a);
uint32_t spAddr0 = mem.mx;
uint32_t spAddr1 = mem.ma;
if (trace) {
std::cout << "execute (reg: r" << readReg0 << ", r" << readReg1 << ", r" << readReg2 << ", r" << readReg3 << ")" << std::endl;
std::cout << "spAddr " << std::hex << std::setw(8) << std::setfill('0') << spAddr1 << " / " << std::setw(8) << std::setfill('0') << spAddr0 << std::endl;
std::cout << "ma/mx " << std::hex << std::setw(8) << std::setfill('0') << mem.ma << std::setw(8) << std::setfill('0') << mem.mx << std::endl;
printState(r, f, e, a);
}
for(unsigned ic = 0; ic < RANDOMX_PROGRAM_ITERATIONS; ++ic) {
//std::cout << "Iteration " << iter << std::endl;
uint64_t spMix = r[readReg0] ^ r[readReg1];
spAddr0 ^= spMix;
spAddr0 &= ScratchpadL3Mask64;
spAddr1 ^= spMix >> 32;
spAddr1 &= ScratchpadL3Mask64;
r[0] ^= load64(scratchpad + spAddr0 + 0);
r[1] ^= load64(scratchpad + spAddr0 + 8);
r[2] ^= load64(scratchpad + spAddr0 + 16);
r[3] ^= load64(scratchpad + spAddr0 + 24);
r[4] ^= load64(scratchpad + spAddr0 + 32);
r[5] ^= load64(scratchpad + spAddr0 + 40);
r[6] ^= load64(scratchpad + spAddr0 + 48);
r[7] ^= load64(scratchpad + spAddr0 + 56);
f[0] = load_cvt_i32x2(scratchpad + spAddr1 + 0);
f[1] = load_cvt_i32x2(scratchpad + spAddr1 + 8);
f[2] = load_cvt_i32x2(scratchpad + spAddr1 + 16);
f[3] = load_cvt_i32x2(scratchpad + spAddr1 + 24);
e[0] = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + spAddr1 + 32));
e[1] = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + spAddr1 + 40));
e[2] = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + spAddr1 + 48));
e[3] = ieee_set_exponent<-240>(load_cvt_i32x2(scratchpad + spAddr1 + 56));
if (trace) {
std::cout << "iteration " << std::dec << ic << std::endl;
std::cout << "spAddr " << std::hex << std::setw(8) << std::setfill('0') << spAddr1 << " / " << std::setw(8) << std::setfill('0') << spAddr0 << std::endl;
std::cout << "ma/mx " << std::hex << std::setw(8) << std::setfill('0') << mem.ma << std::setw(8) << std::setfill('0') << mem.mx << std::endl;
printState(r, f, e, a);
std::cout << "-----------------------------------" << std::endl;
}
executeBytecode<0>(r, f, e, a);
if (asyncWorker) {
ILightClientAsyncWorker* aw = mem.ds.asyncWorker;
const uint64_t* datasetLine = aw->getBlock(datasetBase + mem.ma);
for (int i = 0; i < RegistersCount; ++i)
r[i] ^= datasetLine[i];
mem.mx ^= r[readReg2] ^ r[readReg3];
mem.mx &= CacheLineAlignMask; //align to cache line
std::swap(mem.mx, mem.ma);
aw->prepareBlock(datasetBase + mem.ma);
}
else {
mem.mx ^= r[readReg2] ^ r[readReg3];
//mem.mx &= CacheLineAlignMask;
Cache& cache = mem.ds.cache;
uint64_t datasetLine[CacheLineSize / sizeof(uint64_t)];
initBlock(cache, (uint8_t*)datasetLine, datasetBase + mem.ma / CacheLineSize);
for (int i = 0; i < RegistersCount; ++i)
r[i] ^= datasetLine[i];
std::swap(mem.mx, mem.ma);
}
if (trace) {
std::cout << "iteration " << std::dec << ic << std::endl;
std::cout << "spAddr " << std::hex << std::setw(8) << std::setfill('0') << spAddr1 << " / " << std::setw(8) << std::setfill('0') << spAddr0 << std::endl;
std::cout << "ma/mx " << std::hex << std::setw(8) << std::setfill('0') << mem.ma << std::setw(8) << std::setfill('0') << mem.mx << std::endl;
printState(r, f, e, a);
std::cout << "===================================" << std::endl;
}
store64(scratchpad + spAddr1 + 0, r[0]);
store64(scratchpad + spAddr1 + 8, r[1]);
store64(scratchpad + spAddr1 + 16, r[2]);
store64(scratchpad + spAddr1 + 24, r[3]);
store64(scratchpad + spAddr1 + 32, r[4]);
store64(scratchpad + spAddr1 + 40, r[5]);
store64(scratchpad + spAddr1 + 48, r[6]);
store64(scratchpad + spAddr1 + 56, r[7]);
f[0] = _mm_xor_pd(f[0], e[0]);
f[1] = _mm_xor_pd(f[1], e[1]);
f[2] = _mm_xor_pd(f[2], e[2]);
f[3] = _mm_xor_pd(f[3], e[3]);
#ifdef FPUCHECK
for(int i = 0; i < 4; ++i) {
double lo = *(((double*)&f[i]) + 0);
double hi = *(((double*)&f[i]) + 1);
if (isDenormal(lo) || isDenormal(hi)) {
std::stringstream ss;
ss << "Denormal f" << i;
throw std::runtime_error(ss.str());
}
}
#endif
_mm_store_pd((double*)(scratchpad + spAddr0 + 0), f[0]);
_mm_store_pd((double*)(scratchpad + spAddr0 + 16), f[1]);
_mm_store_pd((double*)(scratchpad + spAddr0 + 32), f[2]);
_mm_store_pd((double*)(scratchpad + spAddr0 + 48), f[3]);
spAddr0 = 0;
spAddr1 = 0;
}
store64(®.r[0], r[0]);
store64(®.r[1], r[1]);
store64(®.r[2], r[2]);
store64(®.r[3], r[3]);
store64(®.r[4], r[4]);
store64(®.r[5], r[5]);
store64(®.r[6], r[6]);
store64(®.r[7], r[7]);
_mm_store_pd(®.f[0].lo, f[0]);
_mm_store_pd(®.f[1].lo, f[1]);
_mm_store_pd(®.f[2].lo, f[2]);
_mm_store_pd(®.f[3].lo, f[3]);
_mm_store_pd(®.e[0].lo, e[0]);
_mm_store_pd(®.e[1].lo, e[1]);
_mm_store_pd(®.e[2].lo, e[2]);
_mm_store_pd(®.e[3].lo, e[3]);
}
#include "instructionWeights.hpp"
void InterpretedVirtualMachine::precompileProgram(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) {
for (unsigned i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) {
auto& instr = program(i);
auto& ibc = byteCode[i];
switch (instr.opcode) {
CASE_REP(IADD_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IADD_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = signExtend2sCompl(instr.imm32);
ibc.isrc = &ibc.imm;
}
} break;
CASE_REP(IADD_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IADD_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.imm32;
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
} break;
CASE_REP(IADD_RC) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IADD_RC;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.imm = signExtend2sCompl(instr.imm32);
} break;
CASE_REP(ISUB_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISUB_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = signExtend2sCompl(instr.imm32);
ibc.isrc = &ibc.imm;
}
} break;
CASE_REP(ISUB_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISUB_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.imm32;
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
} break;
CASE_REP(IMUL_9C) {
auto dst = instr.dst % RegistersCount;
ibc.type = InstructionType::IMUL_9C;
ibc.idst = &r[dst];
ibc.imm = signExtend2sCompl(instr.imm32);
} break;
CASE_REP(IMUL_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IMUL_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = signExtend2sCompl(instr.imm32);
ibc.isrc = &ibc.imm;
}
} break;
CASE_REP(IMUL_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IMUL_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.imm32;
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
} break;
CASE_REP(IMULH_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IMULH_R;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
} break;
CASE_REP(IMULH_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IMULH_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.imm32;
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
} break;
CASE_REP(ISMULH_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISMULH_R;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
} break;
CASE_REP(ISMULH_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISMULH_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.imm32;
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
} break;
CASE_REP(IMUL_RCP) {
uint32_t divisor = instr.imm32;
if (divisor != 0) {
auto dst = instr.dst % RegistersCount;
ibc.type = InstructionType::IMUL_R;
ibc.idst = &r[dst];
ibc.imm = reciprocal(divisor);
ibc.isrc = &ibc.imm;
}
else {
ibc.type = InstructionType::NOP;
}
} break;
CASE_REP(INEG_R) {
auto dst = instr.dst % RegistersCount;
ibc.type = InstructionType::INEG_R;
ibc.idst = &r[dst];
} break;
CASE_REP(IXOR_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IXOR_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = signExtend2sCompl(instr.imm32);
ibc.isrc = &ibc.imm;
}
} break;
CASE_REP(IXOR_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IXOR_M;
ibc.idst = &r[dst];
if (instr.src != instr.dst) {
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
}
else {
ibc.imm = instr.imm32;
ibc.isrc = &ibc.imm;
ibc.memMask = ScratchpadL3Mask;
}
} break;
CASE_REP(IROR_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IROR_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = instr.imm32;
ibc.isrc = &ibc.imm;
}
} break;
CASE_REP(IROL_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::IROL_R;
ibc.idst = &r[dst];
if (src != dst) {
ibc.isrc = &r[src];
}
else {
ibc.imm = instr.imm32;
ibc.isrc = &ibc.imm;
}
} break;
CASE_REP(ISWAP_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
if (src != dst) {
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.type = InstructionType::ISWAP_R;
}
else {
ibc.type = InstructionType::NOP;
}
} break;
CASE_REP(FSWAP_R) {
auto dst = instr.dst % RegistersCount;
ibc.type = InstructionType::FSWAP_R;
if (dst < 4)
ibc.fdst = &f[dst];
else
ibc.fdst = &e[dst - 4];
} break;
CASE_REP(FADD_R) {
auto dst = instr.dst % 4;
auto src = instr.src % 4;
ibc.type = InstructionType::FADD_R;
ibc.fdst = &f[dst];
ibc.fsrc = &a[src];
} break;
CASE_REP(FADD_M) {
auto dst = instr.dst % 4;
auto src = instr.src % 8;
ibc.type = InstructionType::FADD_M;
ibc.fdst = &f[dst];
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
} break;
CASE_REP(FSUB_R) {
auto dst = instr.dst % 4;
auto src = instr.src % 4;
ibc.type = InstructionType::FSUB_R;
ibc.fdst = &f[dst];
ibc.fsrc = &a[src];
} break;
CASE_REP(FSUB_M) {
auto dst = instr.dst % 4;
auto src = instr.src % 8;
ibc.type = InstructionType::FSUB_M;
ibc.fdst = &f[dst];
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
} break;
CASE_REP(FSCAL_R) {
auto dst = instr.dst % 4;
ibc.fdst = &f[dst];
ibc.type = InstructionType::FSCAL_R;
} break;
CASE_REP(FMUL_R) {
auto dst = instr.dst % 4;
auto src = instr.src % 4;
ibc.type = InstructionType::FMUL_R;
ibc.fdst = &e[dst];
ibc.fsrc = &a[src];
} break;
CASE_REP(FDIV_M) {
auto dst = instr.dst % 4;
auto src = instr.src % 8;
ibc.type = InstructionType::FDIV_M;
ibc.fdst = &e[dst];
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
} break;
CASE_REP(FSQRT_R) {
auto dst = instr.dst % 4;
ibc.type = InstructionType::FSQRT_R;
ibc.fdst = &e[dst];
} break;
CASE_REP(COND_R) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::COND_R;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.condition = (instr.mod >> 2) & 7;
ibc.imm = instr.imm32;
} break;
CASE_REP(COND_M) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::COND_M;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.condition = (instr.mod >> 2) & 7;
ibc.imm = instr.imm32;
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
} break;
CASE_REP(CFROUND) {
auto src = instr.src % 8;
ibc.isrc = &r[src];
ibc.type = InstructionType::CFROUND;
ibc.imm = instr.imm32 & 63;
} break;
CASE_REP(ISTORE) {
auto dst = instr.dst % RegistersCount;
auto src = instr.src % RegistersCount;
ibc.type = InstructionType::ISTORE;
ibc.idst = &r[dst];
ibc.isrc = &r[src];
ibc.memMask = ((instr.mod % 4) ? ScratchpadL1Mask : ScratchpadL2Mask);
} break;
CASE_REP(NOP) {
ibc.type = InstructionType::NOP;
} break;
default:
UNREACHABLE;
}
}
}
}