/*
Copyright (c) 2018 tevador
This file is part of RandomX.
RandomX is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RandomX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RandomX. If not, see.
*/
//#define TRACE
#include "InterpretedVirtualMachine.hpp"
#include "CompiledVirtualMachine.hpp"
#include "CompiledLightVirtualMachine.hpp"
#include "AssemblyGeneratorX86.hpp"
#include "Stopwatch.hpp"
#include "blake2/blake2.h"
#include "blake2/endian.h"
#include
#include
#include
#include
#include
#include "Program.hpp"
#include
#include
#include
#include "dataset.hpp"
#include "Cache.hpp"
#include "hashAes1Rx4.hpp"
const uint8_t seed[32] = { 191, 182, 222, 175, 249, 89, 134, 104, 241, 68, 191, 62, 162, 166, 61, 64, 123, 191, 227, 193, 118, 60, 188, 53, 223, 133, 175, 24, 123, 230, 55, 74 };
const uint8_t blockTemplate__[] = {
0x07, 0x07, 0xf7, 0xa4, 0xf0, 0xd6, 0x05, 0xb3, 0x03, 0x26, 0x08, 0x16, 0xba, 0x3f, 0x10, 0x90, 0x2e, 0x1a, 0x14,
0x5a, 0xc5, 0xfa, 0xd3, 0xaa, 0x3a, 0xf6, 0xea, 0x44, 0xc1, 0x18, 0x69, 0xdc, 0x4f, 0x85, 0x3f, 0x00, 0x2b, 0x2e,
0xea, 0x00, 0x00, 0x00, 0x00, 0x77, 0xb2, 0x06, 0xa0, 0x2c, 0xa5, 0xb1, 0xd4, 0xce, 0x6b, 0xbf, 0xdf, 0x0a, 0xca,
0xc3, 0x8b, 0xde, 0xd3, 0x4d, 0x2d, 0xcd, 0xee, 0xf9, 0x5c, 0xd2, 0x0c, 0xef, 0xc1, 0x2f, 0x61, 0xd5, 0x61, 0x09
};
void dump(const char* buffer, uint64_t count, const char* name) {
std::ofstream fout(name, std::ios::out | std::ios::binary);
fout.write(buffer, count);
fout.close();
}
constexpr char hexmap[] = "0123456789abcdef";
void outputHex(std::ostream& os, const char* data, int length) {
for (int i = 0; i < length; ++i) {
os << hexmap[(data[i] & 0xF0) >> 4];
os << hexmap[data[i] & 0x0F];
}
}
void readOption(const char* option, int argc, char** argv, bool& out) {
for (int i = 0; i < argc; ++i) {
if (strcmp(argv[i], option) == 0) {
out = true;
return;
}
}
out = false;
}
void readIntOption(const char* option, int argc, char** argv, int& out, int defaultValue) {
for (int i = 0; i < argc - 1; ++i) {
if (strcmp(argv[i], option) == 0 && (out = atoi(argv[i + 1])) > 0) {
return;
}
}
out = defaultValue;
}
void readInt(int argc, char** argv, int& out, int defaultValue) {
for (int i = 0; i < argc; ++i) {
if (*argv[i] != '-' && (out = atoi(argv[i])) > 0) {
return;
}
}
out = defaultValue;
}
class AtomicHash {
public:
AtomicHash() {
for (int i = 0; i < 4; ++i)
hash[i].store(0);
}
void xorWith(uint64_t update[4]) {
for (int i = 0; i < 4; ++i)
hash[i].fetch_xor(update[i]);
}
void print(std::ostream& os) {
for (int i = 0; i < 4; ++i)
print(hash[i], os);
os << std::endl;
}
private:
static void print(std::atomic& hash, std::ostream& os) {
auto h = hash.load();
outputHex(std::cout, (char*)&h, sizeof(h));
}
std::atomic hash[4];
};
void printUsage(const char* executable) {
std::cout << "Usage: " << executable << " [OPTIONS]" << std::endl;
std::cout << "Supported options:" << std::endl;
std::cout << " --help shows this message" << std::endl;
std::cout << " --mine mining mode: 4 GiB, x86-64 compiled VM" << std::endl;
std::cout << " --verify verification mode: 256 MiB, portable VM" << std::endl;
std::cout << " --largePages use large pages" << std::endl;
std::cout << " --softAes use software AES (default: x86 AES-NI)" << std::endl;
std::cout << " --threads T use T threads (default: 1)" << std::endl;
std::cout << " --init Q initialize dataset with Q threads (default: 1)" << std::endl;
std::cout << " --nonces N run N nonces (default: 1000)" << std::endl;
std::cout << " --genAsm generate x86-64 asm code for nonce N" << std::endl;
std::cout << " --genNative generate RandomX code for nonce N" << std::endl;
}
template
void generateAsm(uint32_t nonce) {
alignas(16) uint64_t hash[8];
uint8_t blockTemplate[sizeof(blockTemplate__)];
memcpy(blockTemplate, blockTemplate__, sizeof(blockTemplate));
store32(blockTemplate + 39, nonce);
blake2b(hash, sizeof(hash), blockTemplate, sizeof(blockTemplate), nullptr, 0);
uint8_t scratchpad[RANDOMX_SCRATCHPAD_L3];
fillAes1Rx4((void*)hash, RANDOMX_SCRATCHPAD_L3, scratchpad);
RandomX::AssemblyGeneratorX86 asmX86;
RandomX::Program p;
fillAes1Rx4(hash, sizeof(p), &p);
asmX86.generateProgram(p);
asmX86.printCode(std::cout);
}
template
void generateNative(uint32_t nonce) {
alignas(16) uint64_t hash[8];
uint8_t blockTemplate[sizeof(blockTemplate__)];
memcpy(blockTemplate, blockTemplate__, sizeof(blockTemplate));
store32(blockTemplate + 39, nonce);
blake2b(hash, sizeof(hash), blockTemplate, sizeof(blockTemplate), nullptr, 0);
uint8_t scratchpad[RANDOMX_SCRATCHPAD_L3];
fillAes1Rx4((void*)hash, RANDOMX_SCRATCHPAD_L3, scratchpad);
alignas(16) RandomX::Program prog;
fillAes1Rx4((void*)hash, sizeof(prog), &prog);
for (int i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) {
prog(i).dst %= 8;
prog(i).src %= 8;
}
std::cout << prog << std::endl;
}
template
void mine(RandomX::VirtualMachine* vm, std::atomic& atomicNonce, AtomicHash& result, uint32_t noncesCount, int thread, uint8_t* scratchpad) {
alignas(16) uint64_t hash[8];
uint8_t blockTemplate[sizeof(blockTemplate__)];
memcpy(blockTemplate, blockTemplate__, sizeof(blockTemplate));
void* noncePtr = blockTemplate + 39;
auto nonce = atomicNonce.fetch_add(1);
while (nonce < noncesCount) {
//std::cout << "Thread " << thread << " nonce " << nonce << std::endl;
store32(noncePtr, nonce);
blake2b(hash, sizeof(hash), blockTemplate, sizeof(blockTemplate), nullptr, 0);
fillAes1Rx4((void*)hash, RANDOMX_SCRATCHPAD_L3, scratchpad);
vm->resetRoundingMode();
vm->setScratchpad(scratchpad);
//dump((char*)scratchpad, RandomX::ScratchpadSize, "spad-before.txt");
for (int chain = 0; chain < RANDOMX_PROGRAM_COUNT - 1; ++chain) {
fillAes1Rx4((void*)hash, sizeof(RandomX::Program), vm->getProgramBuffer());
vm->initialize();
vm->execute();
vm->getResult(nullptr, 0, hash);
}
fillAes1Rx4((void*)hash, sizeof(RandomX::Program), vm->getProgramBuffer());
vm->initialize();
vm->execute();
/*if (RandomX::trace) {
for (int j = 0; j < RandomX::ProgramLength; ++j) {
uint64_t res = *(uint64_t*)(scratchpad + 8 * (RandomX::ProgramLength - 1 - j));
std::cout << std::hex << std::setw(16) << std::setfill('0') << res << std::endl;
}
}*/
vm->getResult(scratchpad, RANDOMX_SCRATCHPAD_L3, hash);
result.xorWith(hash);
if (RandomX::trace) {
std::cout << "Nonce: " << nonce << " ";
outputHex(std::cout, (char*)hash, 16);
std::cout << std::endl;
}
nonce = atomicNonce.fetch_add(1);
}
}
int main(int argc, char** argv) {
bool softAes, genAsm, miningMode, verificationMode, help, largePages, async, genNative, jit;
int programCount, threadCount, initThreadCount, epoch;
readOption("--softAes", argc, argv, softAes);
readOption("--genAsm", argc, argv, genAsm);
readOption("--mine", argc, argv, miningMode);
readOption("--verify", argc, argv, verificationMode);
readIntOption("--threads", argc, argv, threadCount, 1);
readIntOption("--nonces", argc, argv, programCount, 1000);
readIntOption("--init", argc, argv, initThreadCount, 1);
readIntOption("--epoch", argc, argv, epoch, 0);
readOption("--largePages", argc, argv, largePages);
readOption("--jit", argc, argv, jit);
readOption("--genNative", argc, argv, genNative);
readOption("--help", argc, argv, help);
if (genAsm) {
if (softAes)
generateAsm(programCount);
else
generateAsm(programCount);
return 0;
}
if (genNative) {
if (softAes)
generateNative(programCount);
else
generateNative(programCount);
return 0;
}
if (help || (!miningMode && !verificationMode)) {
printUsage(argv[0]);
return 0;
}
if (softAes)
std::cout << "Using software AES." << std::endl;
std::atomic atomicNonce(0);
AtomicHash result;
std::vector vms;
std::vector threads;
RandomX::dataset_t dataset;
const uint64_t cacheSize = (RANDOMX_ARGON_MEMORY + RANDOMX_ARGON_GROWTH * epoch) * RandomX::ArgonBlockSize;
const uint64_t datasetSize = (RANDOMX_DATASET_SIZE + RANDOMX_DS_GROWTH * epoch);
dataset.cache.size = cacheSize;
std::cout << "RandomX - " << (miningMode ? "mining" : "verification") << " mode" << std::endl;
std::cout << "Initializing";
if(miningMode)
std::cout << " (" << initThreadCount << " thread" << (initThreadCount > 1 ? "s)" : ")");
std::cout << " ..." << std::endl;
try {
Stopwatch sw(true);
RandomX::datasetInitCache(seed, dataset, largePages);
if (RandomX::trace) {
std::cout << "Cache: " << std::endl;
outputHex(std::cout, (char*)dataset.cache.memory, sizeof(__m128i));
std::cout << std::endl;
}
if (!miningMode) {
std::cout << "Cache (" << cacheSize << " bytes) initialized in " << sw.getElapsed() << " s" << std::endl;
}
else {
auto cache = dataset.cache;
dataset.dataset.size = datasetSize;
RandomX::datasetAlloc(dataset, largePages);
const uint64_t datasetBlockCount = datasetSize / RandomX::CacheLineSize;
if (initThreadCount > 1) {
auto perThread = datasetBlockCount / initThreadCount;
auto remainder = datasetBlockCount % initThreadCount;
for (int i = 0; i < initThreadCount; ++i) {
auto count = perThread + (i == initThreadCount - 1 ? remainder : 0);
threads.push_back(std::thread(&RandomX::datasetInit, std::ref(cache), std::ref(dataset.dataset), i * perThread, count));
}
for (unsigned i = 0; i < threads.size(); ++i) {
threads[i].join();
}
}
else {
RandomX::datasetInit(cache, dataset.dataset, 0, datasetBlockCount);
}
RandomX::deallocCache(cache, largePages);
threads.clear();
std::cout << "Dataset (" << datasetSize << " bytes) initialized in " << sw.getElapsed() << " s" << std::endl;
}
std::cout << "Initializing " << threadCount << " virtual machine(s) ..." << std::endl;
for (int i = 0; i < threadCount; ++i) {
RandomX::VirtualMachine* vm;
if (miningMode) {
vm = new RandomX::CompiledVirtualMachine();
}
else {
if (jit)
vm = new RandomX::CompiledLightVirtualMachine();
else
vm = new RandomX::InterpretedVirtualMachine(softAes, async);
}
vm->setDataset(dataset, datasetSize);
vms.push_back(vm);
}
uint8_t* scratchpadMem;
if (largePages) {
scratchpadMem = (uint8_t*)allocLargePagesMemory(threadCount * RANDOMX_SCRATCHPAD_L3);
}
else {
scratchpadMem = (uint8_t*)_mm_malloc(threadCount * RANDOMX_SCRATCHPAD_L3, RandomX::CacheLineSize);
}
std::cout << "Running benchmark (" << programCount << " nonces) ..." << std::endl;
sw.restart();
if (threadCount > 1) {
for (unsigned i = 0; i < vms.size(); ++i) {
if (softAes)
threads.push_back(std::thread(&mine, vms[i], std::ref(atomicNonce), std::ref(result), programCount, i, scratchpadMem + RANDOMX_SCRATCHPAD_L3 * i));
else
threads.push_back(std::thread(&mine, vms[i], std::ref(atomicNonce), std::ref(result), programCount, i, scratchpadMem + RANDOMX_SCRATCHPAD_L3 * i));
}
for (unsigned i = 0; i < threads.size(); ++i) {
threads[i].join();
}
}
else {
if(softAes)
mine(vms[0], std::ref(atomicNonce), std::ref(result), programCount, 0, scratchpadMem);
else
mine(vms[0], std::ref(atomicNonce), std::ref(result), programCount, 0, scratchpadMem);
/*if (miningMode)
std::cout << "Average program size: " << ((RandomX::CompiledVirtualMachine*)vms[0])->getTotalSize() / programCount / RandomX::ChainLength << std::endl;*/
}
double elapsed = sw.getElapsed();
std::cout << "Calculated result: ";
result.print(std::cout);
if(programCount == 1000)
std::cout << "Reference result: 84f37cc43cb21eabf1d5b9def462060cd24218290678dd80a8ea2f663892629e" << std::endl;
if (!miningMode) {
std::cout << "Performance: " << 1000 * elapsed / programCount << " ms per hash" << std::endl;
}
else {
std::cout << "Performance: " << programCount / elapsed << " hashes per second" << std::endl;
}
}
catch (std::exception& e) {
std::cout << "ERROR: " << e.what() << std::endl;
return 1;
}
return 0;
}