/* Copyright (c) 2018-2019, tevador All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "soft_aes.h" /* Calculate a 512-bit hash of 'input' using 4 lanes of AES. The input is treated as a set of round keys for the encryption of the initial state. 'inputSize' must be a multiple of 64. For a 2 MiB input, this has the same security as 32768-round AES encryption. Hashing throughput: >20 GiB/s per CPU core with hardware AES */ template void hashAes1Rx4(const void *input, size_t inputSize, void *hash) { const uint8_t* inptr = (uint8_t*)input; const uint8_t* inputEnd = inptr + inputSize; rx_vec_i128 state0, state1, state2, state3; rx_vec_i128 in0, in1, in2, in3; //intial state state0 = rx_set_int_vec_i128(0x8d3126fd, 0x1146d167, 0x887af5ab, 0xc4778e00); state1 = rx_set_int_vec_i128(0x19fe9fa1, 0x58da632b, 0x1b95af89, 0xb834ef4b); state2 = rx_set_int_vec_i128(0x1bb2cd74, 0xc35ad744, 0xab283a00, 0x7742dd3a); state3 = rx_set_int_vec_i128(0xbb30a58a, 0x49593c57, 0xdc5d97cc, 0xe18b449a); //process 64 bytes at a time in 4 lanes while (inptr < inputEnd) { in0 = rx_load_vec_i128((rx_vec_i128*)inptr + 0); in1 = rx_load_vec_i128((rx_vec_i128*)inptr + 1); in2 = rx_load_vec_i128((rx_vec_i128*)inptr + 2); in3 = rx_load_vec_i128((rx_vec_i128*)inptr + 3); state0 = aesenc(state0, in0); state1 = aesdec(state1, in1); state2 = aesenc(state2, in2); state3 = aesdec(state3, in3); inptr += 64; } //two extra rounds to achieve full diffusion rx_vec_i128 xkey0 = rx_set_int_vec_i128(0x83951283, 0xe4c5593d, 0x2a5a929c, 0x11cbf247); rx_vec_i128 xkey1 = rx_set_int_vec_i128(0xff215bb2, 0xabbc2523, 0x477bef0b, 0xce816c95); state0 = aesenc(state0, xkey0); state1 = aesdec(state1, xkey0); state2 = aesenc(state2, xkey0); state3 = aesdec(state3, xkey0); state0 = aesenc(state0, xkey1); state1 = aesdec(state1, xkey1); state2 = aesenc(state2, xkey1); state3 = aesdec(state3, xkey1); //output hash rx_store_vec_i128((rx_vec_i128*)hash + 0, state0); rx_store_vec_i128((rx_vec_i128*)hash + 1, state1); rx_store_vec_i128((rx_vec_i128*)hash + 2, state2); rx_store_vec_i128((rx_vec_i128*)hash + 3, state3); } template void hashAes1Rx4(const void *input, size_t inputSize, void *hash); template void hashAes1Rx4(const void *input, size_t inputSize, void *hash); /* Fill 'buffer' with pseudorandom data based on 512-bit 'state'. The state is encrypted using a single AES round per 16 bytes of output in 4 lanes. 'outputSize' must be a multiple of 64. The modified state is written back to 'state' to allow multiple calls to this function. */ template void fillAes1Rx4(void *state, size_t outputSize, void *buffer) { const uint8_t* outptr = (uint8_t*)buffer; const uint8_t* outputEnd = outptr + outputSize; rx_vec_i128 state0, state1, state2, state3; rx_vec_i128 key0, key1, key2, key3; key0 = rx_set_int_vec_i128(0xdf20a2e3, 0xca329132, 0x454ff6d5, 0x84eeec2d); key1 = rx_set_int_vec_i128(0x1deb5971, 0xfed0387f, 0xf10fc578, 0x017b63d0); key2 = rx_set_int_vec_i128(0xdfc926b3, 0xa517ceb4, 0x2f2c70a1, 0x327d7a52); key3 = rx_set_int_vec_i128(0x341cf31c, 0xa0ece0a9, 0x3d17da5e, 0x5c8d77d3); state0 = rx_load_vec_i128((rx_vec_i128*)state + 0); state1 = rx_load_vec_i128((rx_vec_i128*)state + 1); state2 = rx_load_vec_i128((rx_vec_i128*)state + 2); state3 = rx_load_vec_i128((rx_vec_i128*)state + 3); while (outptr < outputEnd) { state0 = aesdec(state0, key0); state1 = aesenc(state1, key1); state2 = aesdec(state2, key2); state3 = aesenc(state3, key3); rx_store_vec_i128((rx_vec_i128*)outptr + 0, state0); rx_store_vec_i128((rx_vec_i128*)outptr + 1, state1); rx_store_vec_i128((rx_vec_i128*)outptr + 2, state2); rx_store_vec_i128((rx_vec_i128*)outptr + 3, state3); outptr += 64; } rx_store_vec_i128((rx_vec_i128*)state + 0, state0); rx_store_vec_i128((rx_vec_i128*)state + 1, state1); rx_store_vec_i128((rx_vec_i128*)state + 2, state2); rx_store_vec_i128((rx_vec_i128*)state + 3, state3); } template void fillAes1Rx4(void *state, size_t outputSize, void *buffer); template void fillAes1Rx4(void *state, size_t outputSize, void *buffer);