/* Copyright (c) 2018 tevador This file is part of RandomX. RandomX is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. RandomX is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with RandomX. If not, see. */ //#define TRACE //#define FPUCHECK #define RANDOMX_JUMP #include #include #include #include #include #include #include #include "vm_interpreted.hpp" #include "dataset.hpp" #include "intrin_portable.h" #include "reciprocal.h" #ifdef FPUCHECK constexpr bool fpuCheck = true; #else constexpr bool fpuCheck = false; #endif namespace randomx { static int_reg_t Zero = 0; template void InterpretedVm::setDataset(randomx_dataset* dataset) { datasetPtr = dataset; mem.memory = dataset->memory; } template void InterpretedVm::run(void* seed) { VmBase::generateProgram(seed); randomx_vm::initialize(); for (unsigned i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) { program(i).src %= RegistersCount; program(i).dst %= RegistersCount; } execute(); } template void InterpretedVm::executeBytecode(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) { for (int ic = 0; ic < RANDOMX_PROGRAM_SIZE; ++ic) { executeBytecode(ic, r, f, e, a); } } static void print(int_reg_t r) { std::cout << std::hex << std::setw(16) << std::setfill('0') << r << std::endl; } static void print(__m128d f) { uint64_t lo = *(((uint64_t*)&f) + 0); uint64_t hi = *(((uint64_t*)&f) + 1); std::cout << std::hex << std::setw(16) << std::setfill('0') << hi << '-' << std::hex << std::setw(16) << std::setfill('0') << lo << std::endl; } static void printState(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) { for (int i = 0; i < 8; ++i) { std::cout << "r" << i << " = "; print(r[i]); } for (int i = 0; i < 4; ++i) { std::cout << "f" << i << " = "; print(f[i]); } for (int i = 0; i < 4; ++i) { std::cout << "e" << i << " = "; print(e[i]); } for (int i = 0; i < 4; ++i) { std::cout << "a" << i << " = "; print(a[i]); } } static bool isDenormal(double x) { return std::fpclassify(x) == FP_SUBNORMAL; } template FORCE_INLINE void* InterpretedVm::getScratchpadAddress(InstructionByteCode& ibc) { uint32_t addr = (*ibc.isrc + ibc.imm) & ibc.memMask; return scratchpad + addr; } template FORCE_INLINE __m128d InterpretedVm::maskRegisterExponentMantissa(__m128d x) { constexpr uint64_t mantissaMask64 = (1ULL << 52) - 1; const __m128d mantissaMask = _mm_castsi128_pd(_mm_set_epi64x(mantissaMask64, mantissaMask64)); const __m128d exponentMask = _mm_load_pd((const double*)&config.eMask); x = _mm_and_pd(x, mantissaMask); x = _mm_or_pd(x, exponentMask); return x; } template void InterpretedVm::executeBytecode(int& ic, int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) { auto& ibc = byteCode[ic]; if (trace && ibc.type != InstructionType::NOP) std::cout << std::dec << std::setw(3) << ic << " " << program(ic); switch (ibc.type) { case InstructionType::IADD_RS: { *ibc.idst += (*ibc.isrc << ibc.shift) + ibc.imm; } break; case InstructionType::IADD_M: { *ibc.idst += load64(getScratchpadAddress(ibc)); } break; case InstructionType::ISUB_R: { *ibc.idst -= *ibc.isrc; } break; case InstructionType::ISUB_M: { *ibc.idst -= load64(getScratchpadAddress(ibc)); } break; case InstructionType::IMUL_R: { //also handles IMUL_RCP *ibc.idst *= *ibc.isrc; } break; case InstructionType::IMUL_M: { *ibc.idst *= load64(getScratchpadAddress(ibc)); } break; case InstructionType::IMULH_R: { *ibc.idst = mulh(*ibc.idst, *ibc.isrc); } break; case InstructionType::IMULH_M: { *ibc.idst = mulh(*ibc.idst, load64(getScratchpadAddress(ibc))); } break; case InstructionType::ISMULH_R: { *ibc.idst = smulh(unsigned64ToSigned2sCompl(*ibc.idst), unsigned64ToSigned2sCompl(*ibc.isrc)); } break; case InstructionType::ISMULH_M: { *ibc.idst = smulh(unsigned64ToSigned2sCompl(*ibc.idst), unsigned64ToSigned2sCompl(load64(getScratchpadAddress(ibc)))); } break; case InstructionType::INEG_R: { *ibc.idst = ~(*ibc.idst) + 1; //two's complement negative } break; case InstructionType::IXOR_R: { *ibc.idst ^= *ibc.isrc; } break; case InstructionType::IXOR_M: { *ibc.idst ^= load64(getScratchpadAddress(ibc)); } break; case InstructionType::IROR_R: { *ibc.idst = rotr(*ibc.idst, *ibc.isrc & 63); } break; case InstructionType::IROL_R: { *ibc.idst = rotl(*ibc.idst, *ibc.isrc & 63); } break; case InstructionType::ISWAP_R: { int_reg_t temp = *ibc.isrc; *ibc.isrc = *ibc.idst; *ibc.idst = temp; } break; case InstructionType::FSWAP_R: { *ibc.fdst = _mm_shuffle_pd(*ibc.fdst, *ibc.fdst, 1); } break; case InstructionType::FADD_R: { *ibc.fdst = _mm_add_pd(*ibc.fdst, *ibc.fsrc); } break; case InstructionType::FADD_M: { __m128d fsrc = load_cvt_i32x2(getScratchpadAddress(ibc)); *ibc.fdst = _mm_add_pd(*ibc.fdst, fsrc); } break; case InstructionType::FSUB_R: { *ibc.fdst = _mm_sub_pd(*ibc.fdst, *ibc.fsrc); } break; case InstructionType::FSUB_M: { __m128d fsrc = load_cvt_i32x2(getScratchpadAddress(ibc)); *ibc.fdst = _mm_sub_pd(*ibc.fdst, fsrc); } break; case InstructionType::FSCAL_R: { const __m128d mask = _mm_castsi128_pd(_mm_set1_epi64x(0x81F0000000000000)); *ibc.fdst = _mm_xor_pd(*ibc.fdst, mask); } break; case InstructionType::FMUL_R: { *ibc.fdst = _mm_mul_pd(*ibc.fdst, *ibc.fsrc); } break; case InstructionType::FDIV_M: { __m128d fsrc = maskRegisterExponentMantissa(load_cvt_i32x2(getScratchpadAddress(ibc))); *ibc.fdst = _mm_div_pd(*ibc.fdst, fsrc); } break; case InstructionType::FSQRT_R: { *ibc.fdst = _mm_sqrt_pd(*ibc.fdst); } break; case InstructionType::COND_R: { #ifdef RANDOMX_JUMP *ibc.creg += (1 << ibc.shift); const uint64_t conditionMask = ((1ULL << RANDOMX_CONDITION_BITS) - 1) << ibc.shift; if ((*ibc.creg & conditionMask) == 0) { ic = ibc.target; break; } #endif *ibc.idst += condition(ibc.condition, *ibc.isrc, ibc.imm) ? 1 : 0; } break; case InstructionType::CFROUND: { setRoundMode(rotr(*ibc.isrc, ibc.imm) % 4); } break; case InstructionType::ISTORE: { store64(scratchpad + ((*ibc.idst + ibc.imm) & ibc.memMask), *ibc.isrc); } break; case InstructionType::NOP: { //nothing } break; default: UNREACHABLE; } if (trace && ibc.type != InstructionType::NOP) { if(ibc.type < 20 || ibc.type == 31 || ibc.type == 32) print(*ibc.idst); else //if(ibc.type >= 20 && ibc.type <= 30) print(0); } #ifdef FPUCHECK if (ibc.type >= 26 && ibc.type <= 30) { double lo = *(((double*)ibc.fdst) + 0); double hi = *(((double*)ibc.fdst) + 1); if (lo <= 0 || hi <= 0) { std::stringstream ss; ss << "Underflow in operation " << ibc.type; printState(r, f, e, a); throw std::runtime_error(ss.str()); } } #endif } template void InterpretedVm::execute() { int_reg_t r[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; __m128d f[4]; __m128d e[4]; __m128d a[4]; a[0] = _mm_load_pd(®.a[0].lo); a[1] = _mm_load_pd(®.a[1].lo); a[2] = _mm_load_pd(®.a[2].lo); a[3] = _mm_load_pd(®.a[3].lo); precompileProgram(r, f, e, a); uint32_t spAddr0 = mem.mx; uint32_t spAddr1 = mem.ma; if (trace) { std::cout << "execute (reg: r" << config.readReg0 << ", r" << config.readReg1 << ", r" << config.readReg2 << ", r" << config.readReg3 << ")" << std::endl; std::cout << "spAddr " << std::hex << std::setw(8) << std::setfill('0') << spAddr1 << " / " << std::setw(8) << std::setfill('0') << spAddr0 << std::endl; std::cout << "ma/mx " << std::hex << std::setw(8) << std::setfill('0') << mem.ma << std::setw(8) << std::setfill('0') << mem.mx << std::endl; printState(r, f, e, a); } for(unsigned ic = 0; ic < RANDOMX_PROGRAM_ITERATIONS; ++ic) { uint64_t spMix = r[config.readReg0] ^ r[config.readReg1]; spAddr0 ^= spMix; spAddr0 &= ScratchpadL3Mask64; spAddr1 ^= spMix >> 32; spAddr1 &= ScratchpadL3Mask64; r[0] ^= load64(scratchpad + spAddr0 + 0); r[1] ^= load64(scratchpad + spAddr0 + 8); r[2] ^= load64(scratchpad + spAddr0 + 16); r[3] ^= load64(scratchpad + spAddr0 + 24); r[4] ^= load64(scratchpad + spAddr0 + 32); r[5] ^= load64(scratchpad + spAddr0 + 40); r[6] ^= load64(scratchpad + spAddr0 + 48); r[7] ^= load64(scratchpad + spAddr0 + 56); f[0] = load_cvt_i32x2(scratchpad + spAddr1 + 0); f[1] = load_cvt_i32x2(scratchpad + spAddr1 + 8); f[2] = load_cvt_i32x2(scratchpad + spAddr1 + 16); f[3] = load_cvt_i32x2(scratchpad + spAddr1 + 24); e[0] = maskRegisterExponentMantissa(load_cvt_i32x2(scratchpad + spAddr1 + 32)); e[1] = maskRegisterExponentMantissa(load_cvt_i32x2(scratchpad + spAddr1 + 40)); e[2] = maskRegisterExponentMantissa(load_cvt_i32x2(scratchpad + spAddr1 + 48)); e[3] = maskRegisterExponentMantissa(load_cvt_i32x2(scratchpad + spAddr1 + 56)); if (trace) { std::cout << "iteration " << std::dec << ic << std::endl; std::cout << "spAddr " << std::hex << std::setw(8) << std::setfill('0') << spAddr1 << " / " << std::setw(8) << std::setfill('0') << spAddr0 << std::endl; std::cout << "ma/mx " << std::hex << std::setw(8) << std::setfill('0') << mem.ma << std::setw(8) << std::setfill('0') << mem.mx << std::endl; printState(r, f, e, a); std::cout << "-----------------------------------" << std::endl; } executeBytecode(r, f, e, a); mem.mx ^= r[config.readReg2] ^ r[config.readReg3]; mem.mx &= CacheLineAlignMask; datasetRead(datasetOffset + mem.ma, r); std::swap(mem.mx, mem.ma); if (trace) { std::cout << "iteration " << std::dec << ic << std::endl; std::cout << "spAddr " << std::hex << std::setw(8) << std::setfill('0') << spAddr1 << " / " << std::setw(8) << std::setfill('0') << spAddr0 << std::endl; std::cout << "ma/mx " << std::hex << std::setw(8) << std::setfill('0') << mem.ma << std::setw(8) << std::setfill('0') << mem.mx << std::endl; printState(r, f, e, a); std::cout << "===================================" << std::endl; } store64(scratchpad + spAddr1 + 0, r[0]); store64(scratchpad + spAddr1 + 8, r[1]); store64(scratchpad + spAddr1 + 16, r[2]); store64(scratchpad + spAddr1 + 24, r[3]); store64(scratchpad + spAddr1 + 32, r[4]); store64(scratchpad + spAddr1 + 40, r[5]); store64(scratchpad + spAddr1 + 48, r[6]); store64(scratchpad + spAddr1 + 56, r[7]); f[0] = _mm_xor_pd(f[0], e[0]); f[1] = _mm_xor_pd(f[1], e[1]); f[2] = _mm_xor_pd(f[2], e[2]); f[3] = _mm_xor_pd(f[3], e[3]); #ifdef FPUCHECK for(int i = 0; i < 4; ++i) { double lo = *(((double*)&f[i]) + 0); double hi = *(((double*)&f[i]) + 1); if (isDenormal(lo) || isDenormal(hi)) { std::stringstream ss; ss << "Denormal f" << i; throw std::runtime_error(ss.str()); } } #endif _mm_store_pd((double*)(scratchpad + spAddr0 + 0), f[0]); _mm_store_pd((double*)(scratchpad + spAddr0 + 16), f[1]); _mm_store_pd((double*)(scratchpad + spAddr0 + 32), f[2]); _mm_store_pd((double*)(scratchpad + spAddr0 + 48), f[3]); spAddr0 = 0; spAddr1 = 0; } store64(®.r[0], r[0]); store64(®.r[1], r[1]); store64(®.r[2], r[2]); store64(®.r[3], r[3]); store64(®.r[4], r[4]); store64(®.r[5], r[5]); store64(®.r[6], r[6]); store64(®.r[7], r[7]); _mm_store_pd(®.f[0].lo, f[0]); _mm_store_pd(®.f[1].lo, f[1]); _mm_store_pd(®.f[2].lo, f[2]); _mm_store_pd(®.f[3].lo, f[3]); _mm_store_pd(®.e[0].lo, e[0]); _mm_store_pd(®.e[1].lo, e[1]); _mm_store_pd(®.e[2].lo, e[2]); _mm_store_pd(®.e[3].lo, e[3]); } static int getConditionRegister(int(®isterUsage)[8]) { int min = INT_MAX; int minIndex; for (unsigned i = 0; i < 8; ++i) { if (registerUsage[i] < min) { min = registerUsage[i]; minIndex = i; } } return minIndex; } template void InterpretedVm::datasetRead(uint32_t address, int_reg_t(&r)[8]) { uint64_t* datasetLine = (uint64_t*)(mem.memory + address); for (int i = 0; i < RegistersCount; ++i) r[i] ^= datasetLine[i]; } #include "instruction_weights.hpp" template void InterpretedVm::precompileProgram(int_reg_t(&r)[8], __m128d (&f)[4], __m128d (&e)[4], __m128d (&a)[4]) { int registerUsage[8]; for (unsigned i = 0; i < 8; ++i) { registerUsage[i] = -1; } for (unsigned i = 0; i < RANDOMX_PROGRAM_SIZE; ++i) { auto& instr = program(i); auto& ibc = byteCode[i]; switch (instr.opcode) { CASE_REP(IADD_RS) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IADD_RS; ibc.idst = &r[dst]; if (dst != RegisterNeedsDisplacement) { ibc.isrc = &r[src]; ibc.shift = instr.getModMem(); ibc.imm = 0; } else { ibc.isrc = &r[src]; ibc.shift = instr.getModMem(); ibc.imm = signExtend2sCompl(instr.getImm32()); } registerUsage[instr.dst] = i; } break; CASE_REP(IADD_M) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IADD_M; ibc.idst = &r[dst]; ibc.imm = signExtend2sCompl(instr.getImm32()); if (instr.src != instr.dst) { ibc.isrc = &r[src]; ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); } else { ibc.isrc = &Zero; ibc.memMask = ScratchpadL3Mask; } registerUsage[instr.dst] = i; } break; CASE_REP(ISUB_R) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::ISUB_R; ibc.idst = &r[dst]; if (src != dst) { ibc.isrc = &r[src]; } else { ibc.imm = signExtend2sCompl(instr.getImm32()); ibc.isrc = &ibc.imm; } registerUsage[instr.dst] = i; } break; CASE_REP(ISUB_M) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::ISUB_M; ibc.idst = &r[dst]; ibc.imm = signExtend2sCompl(instr.getImm32()); if (instr.src != instr.dst) { ibc.isrc = &r[src]; ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); } else { ibc.isrc = &Zero; ibc.memMask = ScratchpadL3Mask; } registerUsage[instr.dst] = i; } break; CASE_REP(IMUL_R) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IMUL_R; ibc.idst = &r[dst]; if (src != dst) { ibc.isrc = &r[src]; } else { ibc.imm = signExtend2sCompl(instr.getImm32()); ibc.isrc = &ibc.imm; } registerUsage[instr.dst] = i; } break; CASE_REP(IMUL_M) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IMUL_M; ibc.idst = &r[dst]; ibc.imm = signExtend2sCompl(instr.getImm32()); if (instr.src != instr.dst) { ibc.isrc = &r[src]; ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); } else { ibc.isrc = &Zero; ibc.memMask = ScratchpadL3Mask; } registerUsage[instr.dst] = i; } break; CASE_REP(IMULH_R) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IMULH_R; ibc.idst = &r[dst]; ibc.isrc = &r[src]; registerUsage[instr.dst] = i; } break; CASE_REP(IMULH_M) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IMULH_M; ibc.idst = &r[dst]; ibc.imm = signExtend2sCompl(instr.getImm32()); if (instr.src != instr.dst) { ibc.isrc = &r[src]; ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); } else { ibc.isrc = &Zero; ibc.memMask = ScratchpadL3Mask; } registerUsage[instr.dst] = i; } break; CASE_REP(ISMULH_R) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::ISMULH_R; ibc.idst = &r[dst]; ibc.isrc = &r[src]; registerUsage[instr.dst] = i; } break; CASE_REP(ISMULH_M) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::ISMULH_M; ibc.idst = &r[dst]; ibc.imm = signExtend2sCompl(instr.getImm32()); if (instr.src != instr.dst) { ibc.isrc = &r[src]; ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); } else { ibc.isrc = &Zero; ibc.memMask = ScratchpadL3Mask; } registerUsage[instr.dst] = i; } break; CASE_REP(IMUL_RCP) { uint32_t divisor = instr.getImm32(); if (divisor != 0) { auto dst = instr.dst % RegistersCount; ibc.type = InstructionType::IMUL_R; ibc.idst = &r[dst]; ibc.imm = randomx_reciprocal(divisor); ibc.isrc = &ibc.imm; registerUsage[instr.dst] = i; } else { ibc.type = InstructionType::NOP; } } break; CASE_REP(INEG_R) { auto dst = instr.dst % RegistersCount; ibc.type = InstructionType::INEG_R; ibc.idst = &r[dst]; registerUsage[instr.dst] = i; } break; CASE_REP(IXOR_R) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IXOR_R; ibc.idst = &r[dst]; if (src != dst) { ibc.isrc = &r[src]; } else { ibc.imm = signExtend2sCompl(instr.getImm32()); ibc.isrc = &ibc.imm; } registerUsage[instr.dst] = i; } break; CASE_REP(IXOR_M) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IXOR_M; ibc.idst = &r[dst]; ibc.imm = signExtend2sCompl(instr.getImm32()); if (instr.src != instr.dst) { ibc.isrc = &r[src]; ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); } else { ibc.isrc = &Zero; ibc.memMask = ScratchpadL3Mask; } registerUsage[instr.dst] = i; } break; CASE_REP(IROR_R) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IROR_R; ibc.idst = &r[dst]; if (src != dst) { ibc.isrc = &r[src]; } else { ibc.imm = instr.getImm32(); ibc.isrc = &ibc.imm; } registerUsage[instr.dst] = i; } break; CASE_REP(IROL_R) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::IROL_R; ibc.idst = &r[dst]; if (src != dst) { ibc.isrc = &r[src]; } else { ibc.imm = instr.getImm32(); ibc.isrc = &ibc.imm; } registerUsage[instr.dst] = i; } break; CASE_REP(ISWAP_R) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; if (src != dst) { ibc.idst = &r[dst]; ibc.isrc = &r[src]; ibc.type = InstructionType::ISWAP_R; registerUsage[instr.dst] = i; registerUsage[instr.src] = i; } else { ibc.type = InstructionType::NOP; } } break; CASE_REP(FSWAP_R) { auto dst = instr.dst % RegistersCount; ibc.type = InstructionType::FSWAP_R; if (dst < 4) ibc.fdst = &f[dst]; else ibc.fdst = &e[dst - 4]; } break; CASE_REP(FADD_R) { auto dst = instr.dst % 4; auto src = instr.src % 4; ibc.type = InstructionType::FADD_R; ibc.fdst = &f[dst]; ibc.fsrc = &a[src]; } break; CASE_REP(FADD_M) { auto dst = instr.dst % 4; auto src = instr.src % 8; ibc.type = InstructionType::FADD_M; ibc.fdst = &f[dst]; ibc.isrc = &r[src]; ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); ibc.imm = signExtend2sCompl(instr.getImm32()); } break; CASE_REP(FSUB_R) { auto dst = instr.dst % 4; auto src = instr.src % 4; ibc.type = InstructionType::FSUB_R; ibc.fdst = &f[dst]; ibc.fsrc = &a[src]; } break; CASE_REP(FSUB_M) { auto dst = instr.dst % 4; auto src = instr.src % 8; ibc.type = InstructionType::FSUB_M; ibc.fdst = &f[dst]; ibc.isrc = &r[src]; ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); ibc.imm = signExtend2sCompl(instr.getImm32()); } break; CASE_REP(FSCAL_R) { auto dst = instr.dst % 4; ibc.fdst = &f[dst]; ibc.type = InstructionType::FSCAL_R; } break; CASE_REP(FMUL_R) { auto dst = instr.dst % 4; auto src = instr.src % 4; ibc.type = InstructionType::FMUL_R; ibc.fdst = &e[dst]; ibc.fsrc = &a[src]; } break; CASE_REP(FDIV_M) { auto dst = instr.dst % 4; auto src = instr.src % 8; ibc.type = InstructionType::FDIV_M; ibc.fdst = &e[dst]; ibc.isrc = &r[src]; ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); ibc.imm = signExtend2sCompl(instr.getImm32()); } break; CASE_REP(FSQRT_R) { auto dst = instr.dst % 4; ibc.type = InstructionType::FSQRT_R; ibc.fdst = &e[dst]; } break; CASE_REP(COND_R) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::COND_R; ibc.idst = &r[dst]; ibc.isrc = &r[src]; ibc.condition = instr.getModCond(); ibc.imm = instr.getImm32(); //jump condition int reg = getConditionRegister(registerUsage); ibc.target = registerUsage[reg]; ibc.shift = instr.getModShift(); ibc.creg = &r[reg]; for (unsigned j = 0; j < 8; ++j) { //mark all registers as used registerUsage[j] = i; } } break; CASE_REP(CFROUND) { auto src = instr.src % 8; ibc.isrc = &r[src]; ibc.type = InstructionType::CFROUND; ibc.imm = instr.getImm32() & 63; } break; CASE_REP(ISTORE) { auto dst = instr.dst % RegistersCount; auto src = instr.src % RegistersCount; ibc.type = InstructionType::ISTORE; ibc.idst = &r[dst]; ibc.isrc = &r[src]; ibc.imm = signExtend2sCompl(instr.getImm32()); if (instr.getModCond()) ibc.memMask = (instr.getModMem() ? ScratchpadL1Mask : ScratchpadL2Mask); else ibc.memMask = ScratchpadL3Mask; } break; CASE_REP(NOP) { ibc.type = InstructionType::NOP; } break; default: UNREACHABLE; } } } template class InterpretedVm, false>; template class InterpretedVm, true>; template class InterpretedVm; template class InterpretedVm; }