/*
Copyright (c) 2018 tevador
This file is part of RandomX.
RandomX is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
RandomX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with RandomX. If not, see.
*/
//#define TRACE
#include "InterpretedVirtualMachine.hpp"
#include "CompiledVirtualMachine.hpp"
#include "AssemblyGeneratorX86.hpp"
#include "Stopwatch.hpp"
#include "blake2/blake2.h"
#include
#include
#include
#include
#include
#include "Program.hpp"
#include
#include "instructions.hpp"
#include
#include
#include "dataset.hpp"
#include "Cache.hpp"
#include "Pcg32.hpp"
const uint8_t seed[32] = { 191, 182, 222, 175, 249, 89, 134, 104, 241, 68, 191, 62, 162, 166, 61, 64, 123, 191, 227, 193, 118, 60, 188, 53, 223, 133, 175, 24, 123, 230, 55, 74 };
void dump(const char* buffer, uint64_t count, const char* name) {
std::ofstream fout(name, std::ios::out | std::ios::binary);
fout.write(buffer, count);
fout.close();
}
constexpr char hexmap[] = "0123456789abcdef";
void outputHex(std::ostream& os, const char* data, int length) {
for (int i = 0; i < length; ++i) {
os << hexmap[(data[i] & 0xF0) >> 4];
os << hexmap[data[i] & 0x0F];
}
}
void readOption(const char* option, int argc, char** argv, bool& out) {
for (int i = 0; i < argc; ++i) {
if (strcmp(argv[i], option) == 0) {
out = true;
return;
}
}
out = false;
}
void readIntOption(const char* option, int argc, char** argv, int& out, int defaultValue) {
for (int i = 0; i < argc - 1; ++i) {
if (strcmp(argv[i], option) == 0 && (out = atoi(argv[i + 1])) > 0) {
return;
}
}
out = defaultValue;
}
void readInt(int argc, char** argv, int& out, int defaultValue) {
for (int i = 0; i < argc; ++i) {
if (*argv[i] != '-' && (out = atoi(argv[i])) > 0) {
return;
}
}
out = defaultValue;
}
class AtomicHash {
public:
AtomicHash() {
for (int i = 0; i < 4; ++i)
hash[i].store(0);
}
void xorWith(uint64_t update[4]) {
for (int i = 0; i < 4; ++i)
hash[i].fetch_xor(update[i]);
}
void print(std::ostream& os) {
for (int i = 0; i < 4; ++i)
print(hash[i], os);
os << std::endl;
}
private:
void print(std::atomic& hash, std::ostream& os) {
auto h = hash.load();
outputHex(std::cout, (char*)&h, sizeof(h));
}
std::atomic hash[4];
};
void printUsage(const char* executable) {
std::cout << "Usage: " << executable << " [OPTIONS]" << std::endl;
std::cout << "Supported options:" << std::endl;
std::cout << "\t--help\t\t\tshows this message" << std::endl;
std::cout << "\t--compiled\t\tuse x86-64 JIT-compiled VM (default: interpreted VM)" << std::endl;
std::cout << "\t--lightClient\t\tuse 'light-client' mode (default: full dataset mode)" << std::endl;
std::cout << "\t--softAes\t\tuse software AES (default: x86 AES-NI)" << std::endl;
std::cout << "\t--threads T\t\tuse T threads (default: 1)" << std::endl;
std::cout << "\t--nonces N\t\trun N nonces (default: 1000)" << std::endl;
std::cout << "\t--genAsm\t\tgenerate x86 asm code for nonce N" << std::endl;
}
void generateAsm(int nonce) {
uint64_t hash[4];
unsigned char blockTemplate[] = {
0x07, 0x07, 0xf7, 0xa4, 0xf0, 0xd6, 0x05, 0xb3, 0x03, 0x26, 0x08, 0x16, 0xba, 0x3f, 0x10, 0x90, 0x2e, 0x1a, 0x14,
0x5a, 0xc5, 0xfa, 0xd3, 0xaa, 0x3a, 0xf6, 0xea, 0x44, 0xc1, 0x18, 0x69, 0xdc, 0x4f, 0x85, 0x3f, 0x00, 0x2b, 0x2e,
0xea, 0x00, 0x00, 0x00, 0x00, 0x77, 0xb2, 0x06, 0xa0, 0x2c, 0xa5, 0xb1, 0xd4, 0xce, 0x6b, 0xbf, 0xdf, 0x0a, 0xca,
0xc3, 0x8b, 0xde, 0xd3, 0x4d, 0x2d, 0xcd, 0xee, 0xf9, 0x5c, 0xd2, 0x0c, 0xef, 0xc1, 0x2f, 0x61, 0xd5, 0x61, 0x09
};
int* noncePtr = (int*)(blockTemplate + 39);
*noncePtr = nonce;
blake2b(hash, sizeof(hash), blockTemplate, sizeof(blockTemplate), nullptr, 0);
RandomX::AssemblyGeneratorX86 asmX86;
asmX86.generateProgram(hash);
asmX86.printCode(std::cout);
}
void generateNative(int nonce) {
uint64_t hash[4];
unsigned char blockTemplate[] = {
0x07, 0x07, 0xf7, 0xa4, 0xf0, 0xd6, 0x05, 0xb3, 0x03, 0x26, 0x08, 0x16, 0xba, 0x3f, 0x10, 0x90, 0x2e, 0x1a, 0x14,
0x5a, 0xc5, 0xfa, 0xd3, 0xaa, 0x3a, 0xf6, 0xea, 0x44, 0xc1, 0x18, 0x69, 0xdc, 0x4f, 0x85, 0x3f, 0x00, 0x2b, 0x2e,
0xea, 0x00, 0x00, 0x00, 0x00, 0x77, 0xb2, 0x06, 0xa0, 0x2c, 0xa5, 0xb1, 0xd4, 0xce, 0x6b, 0xbf, 0xdf, 0x0a, 0xca,
0xc3, 0x8b, 0xde, 0xd3, 0x4d, 0x2d, 0xcd, 0xee, 0xf9, 0x5c, 0xd2, 0x0c, 0xef, 0xc1, 0x2f, 0x61, 0xd5, 0x61, 0x09
};
int* noncePtr = (int*)(blockTemplate + 39);
*noncePtr = nonce;
blake2b(hash, sizeof(hash), blockTemplate, sizeof(blockTemplate), nullptr, 0);
RandomX::Program prog;
Pcg32 gen(hash);
prog.initialize(gen);
for (int i = 0; i < RandomX::ProgramLength; ++i) {
prog(i).dst %= 8;
prog(i).src %= 8;
}
std::cout << prog << std::endl;
}
void mine(RandomX::VirtualMachine* vm, std::atomic& atomicNonce, AtomicHash& result, int noncesCount, int thread, uint8_t* scratchpad) {
uint64_t hash[4];
unsigned char blockTemplate[] = {
0x07, 0x07, 0xf7, 0xa4, 0xf0, 0xd6, 0x05, 0xb3, 0x03, 0x26, 0x08, 0x16, 0xba, 0x3f, 0x10, 0x90, 0x2e, 0x1a, 0x14,
0x5a, 0xc5, 0xfa, 0xd3, 0xaa, 0x3a, 0xf6, 0xea, 0x44, 0xc1, 0x18, 0x69, 0xdc, 0x4f, 0x85, 0x3f, 0x00, 0x2b, 0x2e,
0xea, 0x00, 0x00, 0x00, 0x00, 0x77, 0xb2, 0x06, 0xa0, 0x2c, 0xa5, 0xb1, 0xd4, 0xce, 0x6b, 0xbf, 0xdf, 0x0a, 0xca,
0xc3, 0x8b, 0xde, 0xd3, 0x4d, 0x2d, 0xcd, 0xee, 0xf9, 0x5c, 0xd2, 0x0c, 0xef, 0xc1, 0x2f, 0x61, 0xd5, 0x61, 0x09
};
int* noncePtr = (int*)(blockTemplate + 39);
int nonce = atomicNonce.fetch_add(1);
while (nonce < noncesCount) {
//std::cout << "Thread " << thread << " nonce " << nonce << std::endl;
*noncePtr = nonce;
blake2b(hash, sizeof(hash), blockTemplate, sizeof(blockTemplate), nullptr, 0);
int spIndex = ((uint8_t*)hash)[24] | ((((uint8_t*)hash)[25] & 15) << 8);
vm->initializeScratchpad(scratchpad, spIndex);
vm->setScratchpad(scratchpad);
//dump((char*)((RandomX::CompiledVirtualMachine*)vm)->getProgram(), RandomX::CodeSize, "code-1337-jmp.txt");
for (int chain = 0; chain < 16; ++chain) {
vm->initializeProgram(hash);
vm->execute();
vm->getResult(nullptr, 0, hash);
}
//vm->initializeProgram(hash);
vm->getResult(scratchpad, RandomX::ScratchpadSize, hash);
result.xorWith(hash);
if (RandomX::trace) {
std::cout << "Nonce: " << nonce << " ";
outputHex(std::cout, (char*)hash, sizeof(hash));
std::cout << std::endl;
}
nonce = atomicNonce.fetch_add(1);
}
}
int main(int argc, char** argv) {
bool softAes, lightClient, genAsm, compiled, help, largePages, async, aesBench, genNative;
int programCount, threadCount;
readOption("--help", argc, argv, help);
if (help) {
printUsage(argv[0]);
return 0;
}
readOption("--softAes", argc, argv, softAes);
readOption("--lightClient", argc, argv, lightClient);
readOption("--genAsm", argc, argv, genAsm);
readOption("--compiled", argc, argv, compiled);
readIntOption("--threads", argc, argv, threadCount, 1);
readIntOption("--nonces", argc, argv, programCount, 1000);
readOption("--largePages", argc, argv, largePages);
readOption("--async", argc, argv, async);
readOption("--aesBench", argc, argv, aesBench);
readOption("--genNative", argc, argv, genNative);
if (genAsm) {
generateAsm(programCount);
return 0;
}
if (genNative) {
generateNative(programCount);
return 0;
}
if (softAes)
std::cout << "Using software AES." << std::endl;
if(aesBench) {
programCount *= 10;
Stopwatch sw(true);
if (softAes) {
RandomX::aesBench(programCount);
}
else {
RandomX::aesBench(programCount);
}
sw.stop();
std::cout << "AES performance: " << programCount / sw.getElapsed() << " blocks/s" << std::endl;
return 0;
}
std::atomic atomicNonce(0);
AtomicHash result;
std::vector vms;
std::vector threads;
RandomX::dataset_t dataset;
std::cout << "Initializing..." << std::endl;
try {
Stopwatch sw(true);
if (softAes) {
RandomX::datasetInitCache(seed, dataset, largePages);
}
else {
RandomX::datasetInitCache(seed, dataset, largePages);
}
if (RandomX::trace) {
std::cout << "Keys: " << std::endl;
for (int i = 0; i < dataset.cache->getKeys().size(); ++i) {
outputHex(std::cout, (char*)&dataset.cache->getKeys()[i], sizeof(__m128i));
}
std::cout << std::endl;
std::cout << "Cache: " << std::endl;
outputHex(std::cout, (char*)dataset.cache->getCache(), sizeof(__m128i));
std::cout << std::endl;
}
if (lightClient) {
std::cout << "Cache (256 MiB) initialized in " << sw.getElapsed() << " s" << std::endl;
}
else {
RandomX::Cache* cache = dataset.cache;
RandomX::datasetAlloc(dataset, largePages);
if (threadCount > 1) {
auto perThread = RandomX::DatasetBlockCount / threadCount;
auto remainder = RandomX::DatasetBlockCount % threadCount;
for (int i = 0; i < threadCount; ++i) {
auto count = perThread + (i == threadCount - 1 ? remainder : 0);
if (softAes) {
threads.push_back(std::thread(&RandomX::datasetInit, cache, dataset, i * perThread, count));
}
else {
threads.push_back(std::thread(&RandomX::datasetInit, cache, dataset, i * perThread, count));
}
}
for (int i = 0; i < threads.size(); ++i) {
threads[i].join();
}
}
else {
if (softAes) {
RandomX::datasetInit(cache, dataset, 0, RandomX::DatasetBlockCount);
}
else {
RandomX::datasetInit(cache, dataset, 0, RandomX::DatasetBlockCount);
}
}
RandomX::Cache::dealloc(cache, largePages);
threads.clear();
std::cout << "Dataset (4 GiB) initialized in " << sw.getElapsed() << " s" << std::endl;
}
std::cout << "Initializing " << threadCount << " virtual machine(s)..." << std::endl;
for (int i = 0; i < threadCount; ++i) {
RandomX::VirtualMachine* vm;
if (compiled) {
vm = new RandomX::CompiledVirtualMachine();
}
else {
vm = new RandomX::InterpretedVirtualMachine(softAes, async);
}
vm->setDataset(dataset);
vms.push_back(vm);
}
uint8_t* scratchpadMem;
if (largePages) {
scratchpadMem = (uint8_t*)allocLargePagesMemory(RandomX::ScratchpadSize * (threadCount + 1) / 2);
}
else {
scratchpadMem = (uint8_t*)_mm_malloc(threadCount * RandomX::ScratchpadSize, RandomX::CacheLineSize);
}
std::cout << "Running benchmark (" << programCount << " programs) ..." << std::endl;
sw.restart();
if (threadCount > 1) {
for (int i = 0; i < vms.size(); ++i) {
threads.push_back(std::thread(&mine, vms[i], std::ref(atomicNonce), std::ref(result), programCount, i, scratchpadMem + RandomX::ScratchpadSize * i));
}
for (int i = 0; i < threads.size(); ++i) {
threads[i].join();
}
}
else {
mine(vms[0], std::ref(atomicNonce), std::ref(result), programCount, 0, scratchpadMem);
if (compiled)
std::cout << "Average program size: " << ((RandomX::CompiledVirtualMachine*)vms[0])->getTotalSize() / programCount << std::endl;
}
double elapsed = sw.getElapsed();
std::cout << "Calculated result: ";
result.print(std::cout);
if(programCount == 1000)
std::cout << "Reference result: 3e1c5f9b9d0bf8ffa250f860bf5f7ab76ac823b206ddee6a592660119a3640c6" << std::endl;
if (lightClient) {
std::cout << "Performance: " << 1000 * elapsed / programCount << " ms per program" << std::endl;
}
else {
std::cout << "Performance: " << programCount / elapsed << " programs per second" << std::endl;
}
}
catch (std::exception& e) {
std::cout << "ERROR: " << e.what() << std::endl;
return 1;
}
return 0;
}