//RandomX ALU + FPU test //https://github.com/tevador/RandomX //License: GPL v3 #include #include #include #include "Instructions.h" using namespace RandomX; typedef void(*VmOperation)(convertible_t&, convertible_t&, convertible_t&); double rxRound(uint32_t mode, int64_t x, int64_t y, VmOperation op) { convertible_t a, b, c; a.u64 = mode; FROUND(a, b, c); a.i64 = x; b.i64 = y; op(a, b, c); return c.f64; } #define CATCH_CONFIG_MAIN #include "catch.hpp" #define RX_EXECUTE_U64(va, vb, INST) do { \ a.u64 = va; \ b.u64 = vb; \ INST(a, b, c); \ } while(false) #define RX_EXECUTE_I64(va, vb, INST) do { \ a.i64 = va; \ b.i64 = vb; \ INST(a, b, c); \ } while(false) TEST_CASE("Integer addition (64-bit)", "[ADD_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0xFFFFFFFF, 0x1, ADD_64); REQUIRE(c.u64 == 0x100000000); RX_EXECUTE_U64(0x8000000000000000, 0x8000000000000000, ADD_64); REQUIRE(c.u64 == 0x0); } TEST_CASE("Integer addition (32-bit)", "[ADD_32]") { convertible_t a, b, c; RX_EXECUTE_U64(0xFFFFFFFF, 0x1, ADD_32); REQUIRE(c.u64 == 0); RX_EXECUTE_U64(0xFF00000000000001, 0x0000000100000001, ADD_32); REQUIRE(c.u64 == 2); } TEST_CASE("Integer subtraction (64-bit)", "[SUB_64]") { convertible_t a, b, c; RX_EXECUTE_U64(1, 0xFFFFFFFF, SUB_64); REQUIRE(c.u64 == 0xFFFFFFFF00000002); } TEST_CASE("Integer subtraction (32-bit)", "[SUB_32]") { convertible_t a, b, c; RX_EXECUTE_U64(1, 0xFFFFFFFF, SUB_32); REQUIRE(c.u64 == 2); } TEST_CASE("Unsigned multiplication (64-bit, low half)", "[MUL_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0xBC550E96BA88A72B, 0xF5391FA9F18D6273, MUL_64); REQUIRE(c.u64 == 0x28723424A9108E51); } TEST_CASE("Unsigned multiplication (64-bit, high half)", "[MULH_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0xBC550E96BA88A72B, 0xF5391FA9F18D6273, MULH_64); REQUIRE(c.u64 == 0xB4676D31D2B34883); } TEST_CASE("Unsigned multiplication (32-bit x 32-bit -> 64-bit)", "[MUL_32]") { convertible_t a, b, c; RX_EXECUTE_U64(0xBC550E96BA88A72B, 0xF5391FA9F18D6273, MUL_32); REQUIRE(c.u64 == 0xB001AA5FA9108E51); } TEST_CASE("Signed multiplication (32-bit x 32-bit -> 64-bit)", "[IMUL_32]") { convertible_t a, b, c; RX_EXECUTE_U64(0xBC550E96BA88A72B, 0xF5391FA9F18D6273, IMUL_32); REQUIRE(c.u64 == 0x03EBA0C1A9108E51); } TEST_CASE("Signed multiplication (64-bit, high half)", "[IMULH_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0xBC550E96BA88A72B, 0xF5391FA9F18D6273, IMULH_64); REQUIRE(c.u64 == 0x02D93EF1269D3EE5); } TEST_CASE("Unsigned division (64-bit / 32-bit -> 32-bit)", "[DIV_64]") { convertible_t a, b, c; RX_EXECUTE_U64(8774217225983458895, 3014068202, DIV_64); REQUIRE(c.u64 == 2911087818); RX_EXECUTE_U64(8774217225983458895, 0, DIV_64); REQUIRE(c.u64 == 8774217225983458895); RX_EXECUTE_U64(3014068202, 8774217225983458895, DIV_64); REQUIRE(c.u64 == 2); } TEST_CASE("Signed division (64-bit / 32-bit -> 32-bit)", "[IDIV_64]") { convertible_t a, b, c; RX_EXECUTE_U64(8774217225983458895, 3014068202, IDIV_64); REQUIRE(c.u64 == 0xFFFFFFFE67B4994E); RX_EXECUTE_U64(8774217225983458895, 0, IDIV_64); REQUIRE(c.u64 == 8774217225983458895); RX_EXECUTE_U64(0x8000000000000000, 0xFFFFFFFFFFFFFFFF, IDIV_64); REQUIRE(c.u64 == 0x8000000000000000); RX_EXECUTE_U64(0xFFFFFFFFB3A707EA, 8774217225983458895, IDIV_64); REQUIRE(c.u64 == 0xFFFFFFFFFFFFFFFF); } TEST_CASE("Bitwise AND (64-bit)", "[AND_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0xCCCCCCCCCCCCCCCC, 0xAAAAAAAAAAAAAAAA, AND_64); REQUIRE(c.u64 == 0x8888888888888888); } TEST_CASE("Bitwise AND (32-bit)", "[AND_32]") { convertible_t a, b, c; RX_EXECUTE_U64(0xCCCCCCCCCCCCCCCC, 0xAAAAAAAAAAAAAAAA, AND_32); REQUIRE(c.u64 == 0x88888888); } TEST_CASE("Bitwise OR (64-bit)", "[OR_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0x4444444444444444, 0xAAAAAAAAAAAAAAAA, OR_64); REQUIRE(c.u64 == 0xEEEEEEEEEEEEEEEE); } TEST_CASE("Bitwise OR (32-bit)", "[OR_32]") { convertible_t a, b, c; RX_EXECUTE_U64(0x4444444444444444, 0xAAAAAAAAAAAAAAAA, OR_32); REQUIRE(c.u64 == 0xEEEEEEEE); } TEST_CASE("Bitwise XOR (64-bit)", "[XOR_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0x8888888888888888, 0xAAAAAAAAAAAAAAAA, XOR_64); REQUIRE(c.u64 == 0x2222222222222222); } TEST_CASE("Bitwise XOR (32-bit)", "[XOR_32]") { convertible_t a, b, c; RX_EXECUTE_U64(0x8888888888888888, 0xAAAAAAAAAAAAAAAA, XOR_32); REQUIRE(c.u64 == 0x22222222); } TEST_CASE("Logical left shift (64-bit)", "[SHL_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0x3, 52, SHL_64); REQUIRE(c.u64 == 0x30000000000000); RX_EXECUTE_U64(953360005391419562, 4569451684712230561, SHL_64); REQUIRE(c.u64 == 6978065200108797952); RX_EXECUTE_U64(0x8000000000000000, 1, SHL_64); REQUIRE(c.u64 == 0); } TEST_CASE("Logical right shift (64-bit)", "[SHR_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0x3, 52, SHR_64); REQUIRE(c.u64 == 0); RX_EXECUTE_U64(953360005391419562, 4569451684712230561, SHR_64); REQUIRE(c.u64 == 110985711); RX_EXECUTE_U64(0x8000000000000000, 1, SHR_64); REQUIRE(c.u64 == 0x4000000000000000); } TEST_CASE("Arithmetic right shift (64-bit)", "[SAR_64]") { convertible_t a, b, c; RX_EXECUTE_I64(-9, 2, SAR_64); REQUIRE(c.i64 == -3); RX_EXECUTE_I64(INT64_MIN, 63, SAR_64); REQUIRE(c.i64 == -1); RX_EXECUTE_I64(INT64_MAX, 163768499474606398, SAR_64); REQUIRE(c.i64 == 1); } TEST_CASE("Circular left shift (64-bit)", "[ROL_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0x3, 52, ROL_64); REQUIRE(c.u64 == 0x30000000000000); RX_EXECUTE_U64(953360005391419562, 4569451684712230561, ROL_64); REQUIRE(c.u64 == 6978065200552740799); RX_EXECUTE_U64(0x8000000000000000, 1, ROL_64); REQUIRE(c.u64 == 1); } TEST_CASE("Circular right shift (64-bit)", "[ROR_64]") { convertible_t a, b, c; RX_EXECUTE_U64(0x3, 52, ROR_64); REQUIRE(c.u64 == 12288); RX_EXECUTE_U64(953360005391419562, 4569451684712230561, ROR_64); REQUIRE(c.u64 == 0xD835C455069D81EF); RX_EXECUTE_U64(0x8000000000000000, 1, ROR_64); REQUIRE(c.u64 == 0x4000000000000000); } TEST_CASE("Denormal numbers are flushed to zero", "[FTZ]") { FPINIT(); convertible_t a, c; a.i64 = 1; FDIV_64(a, std::numeric_limits::max(), c); REQUIRE(c.f64 == 0.0); } TEST_CASE("IEEE-754 compliance", "[FPU]") { FPINIT(); convertible_t a, c; a.i64 = 1; FDIV_64(a, 0, c); REQUIRE(c.f64 == std::numeric_limits::infinity()); a.i64 = -1; FDIV_64(a, 0, c); REQUIRE(c.f64 == -std::numeric_limits::infinity()); REQUIRE(rxRound(RoundToNearest, 33073499373184121, -37713516328519941, &FADD) == -4640016955335824.0); REQUIRE(rxRound(RoundDown, 33073499373184121, -37713516328519941, &FADD) == -4640016955335824.0); REQUIRE(rxRound(RoundUp, 33073499373184121, -37713516328519941, &FADD) == -4640016955335812.0); REQUIRE(rxRound(RoundToZero, 33073499373184121, -37713516328519941, &FADD) == -4640016955335816.0); REQUIRE(rxRound(RoundToNearest, -8570200862721897289, -1111111111111111119, &FSUB) == -7.4590897516107858e+18); REQUIRE(rxRound(RoundDown, -8570200862721897289, -1111111111111111119, &FSUB) == -7.4590897516107868e+18); REQUIRE(rxRound(RoundUp, -8570200862721897289, -1111111111111111119, &FSUB) == -7.4590897516107848e+18); REQUIRE(rxRound(RoundToZero, -8570200862721897289, -1111111111111111119, &FSUB) == -7.4590897516107848e+18); REQUIRE(rxRound(RoundToNearest, 1, -10, &FDIV) == -0.10000000000000001); REQUIRE(rxRound(RoundDown, 1, -10, &FDIV) == -0.10000000000000001); REQUIRE(rxRound(RoundUp, 1, -10, &FDIV) == -0.099999999999999992); REQUIRE(rxRound(RoundToZero, 1, -10, &FDIV) == -0.099999999999999992); REQUIRE(rxRound(RoundToNearest, -2, 0, &FABSQRT) == 1.4142135623730951); REQUIRE(rxRound(RoundDown, -2, 0, &FABSQRT) == 1.4142135623730949); REQUIRE(rxRound(RoundUp, -2, 0, &FABSQRT) == 1.4142135623730951); REQUIRE(rxRound(RoundToZero, -2, 0, &FABSQRT) == 1.4142135623730949); }