324 lines
12 KiB
Python
324 lines
12 KiB
Python
# -*- coding: utf-8 -*-
|
|
#
|
|
# SelfTest/PublicKey/test_RSA.py: Self-test for the RSA primitive
|
|
#
|
|
# Written in 2008 by Dwayne C. Litzenberger <dlitz@dlitz.net>
|
|
#
|
|
# ===================================================================
|
|
# The contents of this file are dedicated to the public domain. To
|
|
# the extent that dedication to the public domain is not available,
|
|
# everyone is granted a worldwide, perpetual, royalty-free,
|
|
# non-exclusive license to exercise all rights associated with the
|
|
# contents of this file for any purpose whatsoever.
|
|
# No rights are reserved.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
# ===================================================================
|
|
|
|
"""Self-test suite for Cryptodome.PublicKey.RSA"""
|
|
|
|
__revision__ = "$Id$"
|
|
|
|
import os
|
|
import pickle
|
|
from pickle import PicklingError
|
|
from Cryptodome.Util.py3compat import *
|
|
|
|
import unittest
|
|
from Cryptodome.SelfTest.st_common import list_test_cases, a2b_hex, b2a_hex
|
|
|
|
class RSATest(unittest.TestCase):
|
|
# Test vectors from "RSA-OAEP and RSA-PSS test vectors (.zip file)"
|
|
# ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1-vec.zip
|
|
# See RSADSI's PKCS#1 page at
|
|
# http://www.rsa.com/rsalabs/node.asp?id=2125
|
|
|
|
# from oaep-int.txt
|
|
|
|
# TODO: PyCryptodome treats the message as starting *after* the leading "00"
|
|
# TODO: That behaviour should probably be changed in the future.
|
|
plaintext = """
|
|
eb 7a 19 ac e9 e3 00 63 50 e3 29 50 4b 45 e2
|
|
ca 82 31 0b 26 dc d8 7d 5c 68 f1 ee a8 f5 52 67
|
|
c3 1b 2e 8b b4 25 1f 84 d7 e0 b2 c0 46 26 f5 af
|
|
f9 3e dc fb 25 c9 c2 b3 ff 8a e1 0e 83 9a 2d db
|
|
4c dc fe 4f f4 77 28 b4 a1 b7 c1 36 2b aa d2 9a
|
|
b4 8d 28 69 d5 02 41 21 43 58 11 59 1b e3 92 f9
|
|
82 fb 3e 87 d0 95 ae b4 04 48 db 97 2f 3a c1 4f
|
|
7b c2 75 19 52 81 ce 32 d2 f1 b7 6d 4d 35 3e 2d
|
|
"""
|
|
|
|
ciphertext = """
|
|
12 53 e0 4d c0 a5 39 7b b4 4a 7a b8 7e 9b f2 a0
|
|
39 a3 3d 1e 99 6f c8 2a 94 cc d3 00 74 c9 5d f7
|
|
63 72 20 17 06 9e 52 68 da 5d 1c 0b 4f 87 2c f6
|
|
53 c1 1d f8 23 14 a6 79 68 df ea e2 8d ef 04 bb
|
|
6d 84 b1 c3 1d 65 4a 19 70 e5 78 3b d6 eb 96 a0
|
|
24 c2 ca 2f 4a 90 fe 9f 2e f5 c9 c1 40 e5 bb 48
|
|
da 95 36 ad 87 00 c8 4f c9 13 0a de a7 4e 55 8d
|
|
51 a7 4d df 85 d8 b5 0d e9 68 38 d6 06 3e 09 55
|
|
"""
|
|
|
|
modulus = """
|
|
bb f8 2f 09 06 82 ce 9c 23 38 ac 2b 9d a8 71 f7
|
|
36 8d 07 ee d4 10 43 a4 40 d6 b6 f0 74 54 f5 1f
|
|
b8 df ba af 03 5c 02 ab 61 ea 48 ce eb 6f cd 48
|
|
76 ed 52 0d 60 e1 ec 46 19 71 9d 8a 5b 8b 80 7f
|
|
af b8 e0 a3 df c7 37 72 3e e6 b4 b7 d9 3a 25 84
|
|
ee 6a 64 9d 06 09 53 74 88 34 b2 45 45 98 39 4e
|
|
e0 aa b1 2d 7b 61 a5 1f 52 7a 9a 41 f6 c1 68 7f
|
|
e2 53 72 98 ca 2a 8f 59 46 f8 e5 fd 09 1d bd cb
|
|
"""
|
|
|
|
e = 0x11 # public exponent
|
|
|
|
prime_factor = """
|
|
c9 7f b1 f0 27 f4 53 f6 34 12 33 ea aa d1 d9 35
|
|
3f 6c 42 d0 88 66 b1 d0 5a 0f 20 35 02 8b 9d 86
|
|
98 40 b4 16 66 b4 2e 92 ea 0d a3 b4 32 04 b5 cf
|
|
ce 33 52 52 4d 04 16 a5 a4 41 e7 00 af 46 15 03
|
|
"""
|
|
|
|
def setUp(self):
|
|
global RSA, Random, bytes_to_long
|
|
from Cryptodome.PublicKey import RSA
|
|
from Cryptodome import Random
|
|
from Cryptodome.Util.number import bytes_to_long, inverse
|
|
self.n = bytes_to_long(a2b_hex(self.modulus))
|
|
self.p = bytes_to_long(a2b_hex(self.prime_factor))
|
|
|
|
# Compute q, d, and u from n, e, and p
|
|
self.q = self.n // self.p
|
|
self.d = inverse(self.e, (self.p-1)*(self.q-1))
|
|
self.u = inverse(self.p, self.q) # u = e**-1 (mod q)
|
|
|
|
self.rsa = RSA
|
|
|
|
def test_generate_1arg(self):
|
|
"""RSA (default implementation) generated key (1 argument)"""
|
|
rsaObj = self.rsa.generate(1024)
|
|
self._check_private_key(rsaObj)
|
|
self._exercise_primitive(rsaObj)
|
|
pub = rsaObj.public_key()
|
|
self._check_public_key(pub)
|
|
self._exercise_public_primitive(rsaObj)
|
|
|
|
def test_generate_2arg(self):
|
|
"""RSA (default implementation) generated key (2 arguments)"""
|
|
rsaObj = self.rsa.generate(1024, Random.new().read)
|
|
self._check_private_key(rsaObj)
|
|
self._exercise_primitive(rsaObj)
|
|
pub = rsaObj.public_key()
|
|
self._check_public_key(pub)
|
|
self._exercise_public_primitive(rsaObj)
|
|
|
|
def test_generate_3args(self):
|
|
rsaObj = self.rsa.generate(1024, Random.new().read,e=65537)
|
|
self._check_private_key(rsaObj)
|
|
self._exercise_primitive(rsaObj)
|
|
pub = rsaObj.public_key()
|
|
self._check_public_key(pub)
|
|
self._exercise_public_primitive(rsaObj)
|
|
self.assertEqual(65537,rsaObj.e)
|
|
|
|
def test_construct_2tuple(self):
|
|
"""RSA (default implementation) constructed key (2-tuple)"""
|
|
pub = self.rsa.construct((self.n, self.e))
|
|
self._check_public_key(pub)
|
|
self._check_encryption(pub)
|
|
|
|
def test_construct_3tuple(self):
|
|
"""RSA (default implementation) constructed key (3-tuple)"""
|
|
rsaObj = self.rsa.construct((self.n, self.e, self.d))
|
|
self._check_encryption(rsaObj)
|
|
self._check_decryption(rsaObj)
|
|
|
|
def test_construct_4tuple(self):
|
|
"""RSA (default implementation) constructed key (4-tuple)"""
|
|
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p))
|
|
self._check_encryption(rsaObj)
|
|
self._check_decryption(rsaObj)
|
|
|
|
def test_construct_5tuple(self):
|
|
"""RSA (default implementation) constructed key (5-tuple)"""
|
|
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q))
|
|
self._check_private_key(rsaObj)
|
|
self._check_encryption(rsaObj)
|
|
self._check_decryption(rsaObj)
|
|
|
|
def test_construct_6tuple(self):
|
|
"""RSA (default implementation) constructed key (6-tuple)"""
|
|
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q, self.u))
|
|
self._check_private_key(rsaObj)
|
|
self._check_encryption(rsaObj)
|
|
self._check_decryption(rsaObj)
|
|
|
|
def test_construct_bad_key2(self):
|
|
tup = (self.n, 1)
|
|
self.assertRaises(ValueError, self.rsa.construct, tup)
|
|
|
|
# An even modulus is wrong
|
|
tup = (self.n+1, self.e)
|
|
self.assertRaises(ValueError, self.rsa.construct, tup)
|
|
|
|
def test_construct_bad_key3(self):
|
|
tup = (self.n, self.e, self.d+1)
|
|
self.assertRaises(ValueError, self.rsa.construct, tup)
|
|
|
|
def test_construct_bad_key5(self):
|
|
tup = (self.n, self.e, self.d, self.p, self.p)
|
|
self.assertRaises(ValueError, self.rsa.construct, tup)
|
|
|
|
tup = (self.p*self.p, self.e, self.p, self.p)
|
|
self.assertRaises(ValueError, self.rsa.construct, tup)
|
|
|
|
tup = (self.p*self.p, 3, self.p, self.q)
|
|
self.assertRaises(ValueError, self.rsa.construct, tup)
|
|
|
|
def test_construct_bad_key6(self):
|
|
tup = (self.n, self.e, self.d, self.p, self.q, 10)
|
|
self.assertRaises(ValueError, self.rsa.construct, tup)
|
|
|
|
from Cryptodome.Util.number import inverse
|
|
tup = (self.n, self.e, self.d, self.p, self.q, inverse(self.q, self.p))
|
|
self.assertRaises(ValueError, self.rsa.construct, tup)
|
|
|
|
def test_factoring(self):
|
|
rsaObj = self.rsa.construct([self.n, self.e, self.d])
|
|
self.assertTrue(rsaObj.p==self.p or rsaObj.p==self.q)
|
|
self.assertTrue(rsaObj.q==self.p or rsaObj.q==self.q)
|
|
self.assertTrue(rsaObj.q*rsaObj.p == self.n)
|
|
|
|
self.assertRaises(ValueError, self.rsa.construct, [self.n, self.e, self.n-1])
|
|
|
|
def test_repr(self):
|
|
rsaObj = self.rsa.construct((self.n, self.e, self.d, self.p, self.q))
|
|
repr(rsaObj)
|
|
|
|
def test_serialization(self):
|
|
"""RSA keys are unpickable"""
|
|
|
|
rsa_key = self.rsa.generate(1024)
|
|
self.assertRaises(PicklingError, pickle.dumps, rsa_key)
|
|
|
|
def test_raw_rsa_boundary(self):
|
|
# The argument of every RSA raw operation (encrypt/decrypt) must be
|
|
# non-negative and no larger than the modulus
|
|
rsa_obj = self.rsa.generate(1024)
|
|
|
|
self.assertRaises(ValueError, rsa_obj._decrypt, rsa_obj.n)
|
|
self.assertRaises(ValueError, rsa_obj._decrypt_to_bytes, rsa_obj.n)
|
|
self.assertRaises(ValueError, rsa_obj._encrypt, rsa_obj.n)
|
|
|
|
self.assertRaises(ValueError, rsa_obj._decrypt, -1)
|
|
self.assertRaises(ValueError, rsa_obj._decrypt_to_bytes, -1)
|
|
self.assertRaises(ValueError, rsa_obj._encrypt, -1)
|
|
|
|
def test_size(self):
|
|
pub = self.rsa.construct((self.n, self.e))
|
|
self.assertEqual(pub.size_in_bits(), 1024)
|
|
self.assertEqual(pub.size_in_bytes(), 128)
|
|
|
|
def _check_private_key(self, rsaObj):
|
|
from Cryptodome.Math.Numbers import Integer
|
|
|
|
# Check capabilities
|
|
self.assertEqual(1, rsaObj.has_private())
|
|
|
|
# Sanity check key data
|
|
self.assertEqual(rsaObj.n, rsaObj.p * rsaObj.q) # n = pq
|
|
lcm = int(Integer(rsaObj.p-1).lcm(rsaObj.q-1))
|
|
self.assertEqual(1, rsaObj.d * rsaObj.e % lcm) # ed = 1 (mod LCM(p-1, q-1))
|
|
self.assertEqual(1, rsaObj.p * rsaObj.u % rsaObj.q) # pu = 1 (mod q)
|
|
self.assertEqual(1, rsaObj.p > 1) # p > 1
|
|
self.assertEqual(1, rsaObj.q > 1) # q > 1
|
|
self.assertEqual(1, rsaObj.e > 1) # e > 1
|
|
self.assertEqual(1, rsaObj.d > 1) # d > 1
|
|
|
|
self.assertEqual(rsaObj.u, rsaObj.invp)
|
|
self.assertEqual(1, rsaObj.q * rsaObj.invq % rsaObj.p)
|
|
|
|
def _check_public_key(self, rsaObj):
|
|
ciphertext = a2b_hex(self.ciphertext)
|
|
|
|
# Check capabilities
|
|
self.assertEqual(0, rsaObj.has_private())
|
|
|
|
# Check rsaObj.[ne] -> rsaObj.[ne] mapping
|
|
self.assertEqual(rsaObj.n, rsaObj.n)
|
|
self.assertEqual(rsaObj.e, rsaObj.e)
|
|
|
|
# Check that private parameters are all missing
|
|
self.assertEqual(0, hasattr(rsaObj, 'd'))
|
|
self.assertEqual(0, hasattr(rsaObj, 'p'))
|
|
self.assertEqual(0, hasattr(rsaObj, 'q'))
|
|
self.assertEqual(0, hasattr(rsaObj, 'u'))
|
|
|
|
# Sanity check key data
|
|
self.assertEqual(1, rsaObj.e > 1) # e > 1
|
|
|
|
# Public keys should not be able to sign or decrypt
|
|
self.assertRaises(TypeError, rsaObj._decrypt,
|
|
bytes_to_long(ciphertext))
|
|
self.assertRaises(TypeError, rsaObj._decrypt_to_bytes,
|
|
bytes_to_long(ciphertext))
|
|
|
|
# Check __eq__ and __ne__
|
|
self.assertEqual(rsaObj.public_key() == rsaObj.public_key(),True) # assert_
|
|
self.assertEqual(rsaObj.public_key() != rsaObj.public_key(),False) # assertFalse
|
|
|
|
self.assertEqual(rsaObj.publickey(), rsaObj.public_key())
|
|
|
|
def _exercise_primitive(self, rsaObj):
|
|
# Since we're using a randomly-generated key, we can't check the test
|
|
# vector, but we can make sure encryption and decryption are inverse
|
|
# operations.
|
|
ciphertext = bytes_to_long(a2b_hex(self.ciphertext))
|
|
|
|
# Test decryption
|
|
plaintext = rsaObj._decrypt(ciphertext)
|
|
|
|
# Test encryption (2 arguments)
|
|
new_ciphertext2 = rsaObj._encrypt(plaintext)
|
|
self.assertEqual(ciphertext, new_ciphertext2)
|
|
|
|
def _exercise_public_primitive(self, rsaObj):
|
|
plaintext = a2b_hex(self.plaintext)
|
|
|
|
# Test encryption (2 arguments)
|
|
new_ciphertext2 = rsaObj._encrypt(bytes_to_long(plaintext))
|
|
|
|
def _check_encryption(self, rsaObj):
|
|
plaintext = a2b_hex(self.plaintext)
|
|
ciphertext = a2b_hex(self.ciphertext)
|
|
|
|
# Test encryption
|
|
new_ciphertext2 = rsaObj._encrypt(bytes_to_long(plaintext))
|
|
self.assertEqual(bytes_to_long(ciphertext), new_ciphertext2)
|
|
|
|
def _check_decryption(self, rsaObj):
|
|
plaintext = bytes_to_long(a2b_hex(self.plaintext))
|
|
ciphertext = bytes_to_long(a2b_hex(self.ciphertext))
|
|
|
|
# Test plain decryption
|
|
new_plaintext = rsaObj._decrypt(ciphertext)
|
|
self.assertEqual(plaintext, new_plaintext)
|
|
|
|
|
|
def get_tests(config={}):
|
|
tests = []
|
|
tests += list_test_cases(RSATest)
|
|
return tests
|
|
|
|
if __name__ == '__main__':
|
|
suite = lambda: unittest.TestSuite(get_tests())
|
|
unittest.main(defaultTest='suite')
|
|
|
|
# vim:set ts=4 sw=4 sts=4 expandtab:
|