# =================================================================== # # Copyright (c) 2015, Legrandin # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # =================================================================== import unittest from binascii import unhexlify from Cryptodome.SelfTest.st_common import list_test_cases from Cryptodome.Util.py3compat import tobytes from Cryptodome.Cipher import AES, DES3, DES from Cryptodome.Hash import SHAKE128 def get_tag_random(tag, length): return SHAKE128.new(data=tobytes(tag)).read(length) from Cryptodome.SelfTest.Cipher.test_CBC import BlockChainingTests class OpenPGPTests(BlockChainingTests): aes_mode = AES.MODE_OPENPGP des3_mode = DES3.MODE_OPENPGP # Redefine test_unaligned_data_128/64 key_128 = get_tag_random("key_128", 16) key_192 = get_tag_random("key_192", 24) iv_128 = get_tag_random("iv_128", 16) iv_64 = get_tag_random("iv_64", 8) data_128 = get_tag_random("data_128", 16) def test_loopback_128(self): cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128) pt = get_tag_random("plaintext", 16 * 100) ct = cipher.encrypt(pt) eiv, ct = ct[:18], ct[18:] cipher = AES.new(self.key_128, AES.MODE_OPENPGP, eiv) pt2 = cipher.decrypt(ct) self.assertEqual(pt, pt2) def test_loopback_64(self): cipher = DES3.new(self.key_192, DES3.MODE_OPENPGP, self.iv_64) pt = get_tag_random("plaintext", 8 * 100) ct = cipher.encrypt(pt) eiv, ct = ct[:10], ct[10:] cipher = DES3.new(self.key_192, DES3.MODE_OPENPGP, eiv) pt2 = cipher.decrypt(ct) self.assertEqual(pt, pt2) def test_IV_iv_attributes(self): cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128) eiv = cipher.encrypt(b"") self.assertEqual(cipher.iv, self.iv_128) cipher = AES.new(self.key_128, AES.MODE_OPENPGP, eiv) self.assertEqual(cipher.iv, self.iv_128) def test_null_encryption_decryption(self): cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128) eiv = cipher.encrypt(b"") cipher = AES.new(self.key_128, AES.MODE_OPENPGP, eiv) self.assertEqual(cipher.decrypt(b""), b"") def test_either_encrypt_or_decrypt(self): cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128) eiv = cipher.encrypt(b"") self.assertRaises(TypeError, cipher.decrypt, b"") cipher = AES.new(self.key_128, AES.MODE_OPENPGP, eiv) cipher.decrypt(b"") self.assertRaises(TypeError, cipher.encrypt, b"") def test_unaligned_data_128(self): plaintexts = [ b"7777777" ] * 100 cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128) ciphertexts = [ cipher.encrypt(x) for x in plaintexts ] cipher = AES.new(self.key_128, AES.MODE_OPENPGP, self.iv_128) self.assertEqual(b"".join(ciphertexts), cipher.encrypt(b"".join(plaintexts))) def test_unaligned_data_64(self): plaintexts = [ b"7777777" ] * 100 cipher = DES3.new(self.key_192, DES3.MODE_OPENPGP, self.iv_64) ciphertexts = [ cipher.encrypt(x) for x in plaintexts ] cipher = DES3.new(self.key_192, DES3.MODE_OPENPGP, self.iv_64) self.assertEqual(b"".join(ciphertexts), cipher.encrypt(b"".join(plaintexts))) def test_output_param(self): pass def test_output_param_same_buffer(self): pass def test_output_param_memoryview(self): pass def test_output_param_neg(self): pass class TestVectors(unittest.TestCase): def test_aes(self): # The following test vectors have been generated with gpg v1.4.0. # The command line used was: # # gpg -c -z 0 --cipher-algo AES --passphrase secret_passphrase \ # --disable-mdc --s2k-mode 0 --output ct pt # # As result, the content of the file 'pt' is encrypted with a key derived # from 'secret_passphrase' and written to file 'ct'. # Test vectors must be extracted from 'ct', which is a collection of # TLVs (see RFC4880 for all details): # - the encrypted data (with the encrypted IV as prefix) is the payload # of the TLV with tag 9 (Symmetrical Encrypted Data Packet). # This is the ciphertext in the test vector. # - inside the encrypted part, there is a further layer of TLVs. One must # look for tag 11 (Literal Data Packet); in its payload, after a short # but time dependent header, there is the content of file 'pt'. # In the test vector, the plaintext is the complete set of TLVs that gets # encrypted. It is not just the content of 'pt'. # - the key is the leftmost 16 bytes of the SHA1 digest of the password. # The test vector contains such shortened digest. # # Note that encryption uses a clear IV, and decryption an encrypted IV plaintext = 'ac18620270744fb4f647426c61636b4361745768697465436174' ciphertext = 'dc6b9e1f095de609765c59983db5956ae4f63aea7405389d2ebb' key = '5baa61e4c9b93f3f0682250b6cf8331b' iv = '3d7d3e62282add7eb203eeba5c800733' encrypted_iv='fd934601ef49cb58b6d9aebca6056bdb96ef' plaintext = unhexlify(plaintext) ciphertext = unhexlify(ciphertext) key = unhexlify(key) iv = unhexlify(iv) encrypted_iv = unhexlify(encrypted_iv) cipher = AES.new(key, AES.MODE_OPENPGP, iv) ct = cipher.encrypt(plaintext) self.assertEqual(ct[:18], encrypted_iv) self.assertEqual(ct[18:], ciphertext) cipher = AES.new(key, AES.MODE_OPENPGP, encrypted_iv) pt = cipher.decrypt(ciphertext) self.assertEqual(pt, plaintext) def test_des3(self): # The following test vectors have been generated with gpg v1.4.0. # The command line used was: # gpg -c -z 0 --cipher-algo 3DES --passphrase secret_passphrase \ # --disable-mdc --s2k-mode 0 --output ct pt # For an explanation, see test_AES.py . plaintext = 'ac1762037074324fb53ba3596f73656d69746556616c6c6579' ciphertext = '9979238528357b90e2e0be549cb0b2d5999b9a4a447e5c5c7d' key = '7ade65b460f5ea9be35f9e14aa883a2048e3824aa616c0b2' iv='cd47e2afb8b7e4b0' encrypted_iv='6a7eef0b58050e8b904a' plaintext = unhexlify(plaintext) ciphertext = unhexlify(ciphertext) key = unhexlify(key) iv = unhexlify(iv) encrypted_iv = unhexlify(encrypted_iv) cipher = DES3.new(key, DES3.MODE_OPENPGP, iv) ct = cipher.encrypt(plaintext) self.assertEqual(ct[:10], encrypted_iv) self.assertEqual(ct[10:], ciphertext) cipher = DES3.new(key, DES3.MODE_OPENPGP, encrypted_iv) pt = cipher.decrypt(ciphertext) self.assertEqual(pt, plaintext) def get_tests(config={}): tests = [] tests += list_test_cases(OpenPGPTests) tests += list_test_cases(TestVectors) return tests if __name__ == '__main__': suite = lambda: unittest.TestSuite(get_tests()) unittest.main(defaultTest='suite')